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1 Introduction

The purpose of this report is to describe the question of the convexity adjustment
needed to convert a forward rate to its corresponding futures rate. Because of the
marking to market of any profit and loss on a futures position, strictly speaking
futures and forward contracts do not provide equal payoffs. It is therefore not
surprising that futures and forward rates should be different.

The theoretical results presented in this report are due to Paul Doust [1].
However, we shall resort to a slightly different approach, making use of mar-
tingales as opposed to PDE’s, and making small adjustments to distributional
assumptions. It is reassuring to see that whichever way one looks at it, the same
convexity adjustment is obtained.

This report can be divided in two parts. We shall first derive a theoretical
formula for the convexity adjustment. A second part will show how to approxi-
mate such formula, and provide comments on the results obtained, after a simple
spreadsheet implementation.

2 Theoretical Derivation

2.1 The Underlying Principle

Let T and T +ΔT be the starting and end dates of a forward period. We denote
Lt the forward rate between T and T + ΔT at time t, and Ft the futures rate
at time t corresponding to the same period. Note that both rates Lt and Ft

will converge at time T to the then prevailing money market rate with maturity
ΔT , so that LT = FT .

Let Vt denote the T + ΔT discount factor at time t. A forward contract
struck at a rate K is a contingent claim with final payoff at time T equal to:

ΠT = αVT (LT −K) (1)
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where α denotes the day count fraction between T and T +ΔT .
The value today (t = 0) of such a forward contract is given by:

Π0 = αV0(L0 −K) (2)

and as we can see, this value is a function of the current discount factor V0 and
forward rate L0. However, since LT = FT , the final payoff ΠT could also have
been written as:

ΠT = αVT (FT −K) (3)

This important point, together with the fact that futures contracts can actually
be traded, will enable to show that the current value Π0 of our forward contract
is also a function of V0 and the current futures rate F0, i.e.

Π0 = f(V0, F0) (4)

for some appropriate function f . It can therefore be seen from (2) and (4) that
the current forward rate L0 and its corresponding futures rate F0 are linked
together by:

αV0(L0 −K) = f(V0, F0) (5)

In general, the function f is not given by αV0(F0 −K), and L0 is not equal to
F0. Determining the explicit form of the function f will enable us through (5),
to determine the exact link between F0 and L0, which is the so called convexity
adjustment.

2.2 Valuing a FRA Using Futures

Determining f(V0, F0) amounts to valuing a forward contract viewed as a contin-
gent claim with final payoff (3). In order to do that, we shall call v0 = f(V0, F0)
the unknown premium to be determined. We consider an investor receiving an
initial (t = 0) amount of cash equal to v0, and engaging in a continuous trading
strategy θ = (θt) in the futures contract,1 where all cash is reinvested in the
discount bond Vt. If we call πt the value of the investor’s portfolio at time t,
then the process π = (πt) is given by π0 = v0, and the stochastic differential
equation: 2

dπt = θtdFt +
πt

Vt
dVt (6)

In other words, a variation dπt in the portfolio’s value arises due to variations
dFt and dVt, and the two long positions θt and πt/Vt in Ft and Vt respectively.
The solution to (6), given the initial condition π0 = v0 , can be expressed as:3

πt = Vt

(
v0
V0

+

∫ t

0

θ̂tdF̂t

)
(7)

1At time t, the investor has a long position θt in the rate Ft, which actually corresponds
to a short position in terms of contracts.

2Note that by writing (6), we have neglected the effect of minimum margin requirements.
In real life, an investor entering a futures contract could not reinvest the totality of his profits
in the discount bond, since some of his cash has to be left on his margin account.

3See appendix A.
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where:

F̂t
�
= Ft/Ct (8)

θ̂t
�
= θtCt/Vt (9)

and the process C = (Ct) has been defined as:

Ct
�
= exp

(∫ t

0

1

FsVs
d〈F, V 〉s

)
(10)

In particular, our investor will have a final wealth at time T equal to:

πT = πT (v0, θ) = VT

(
v0
V0

+

∫ T

0

θ̂tdF̂t

)
(11)

This final wealth is obviously a function of the initial premium v0 and trading
strategy θ. Now, suppose for a moment that we could find v0 and θ such that:

πT (v0, θ) = αVT (FT −K) (12)

Then, an investor receiving an initial cash payment of v0 and entering the strat-
egy θ, will exactly generate a final wealth equal to the final payoff of our forward
contract. In other words, an initial investment together with adequate trading,
enables the exact replication of a forward contract payoff. To avoid any pos-
sibility of arbitrage, the value of this forward contract has to be the initial
investment v0. Hence, if we can find v0 and θ satisfying (12), then we know that
v0 is exactly the premium that we are looking for.

Our problem of finding v0 can now be rephrased in terms of the following
questions:

1. Do there exist v0 and θ such that (12) holds?

2. If so, how do we calculate v0?

Of course, the answer to these questions will very much depend on the particular
assumptions made on the processes V = (Vt) and F = (Ft). In general, it is
not true that v0 and θ always exist, and if they do, actually computing v0 can
be quite tedious. However, without (for now) being more specific on V and
F , we can indicate the general procedure enabling to get answers to the above
questions: firstly, comparing (12) with (11) shows that v0 and θ should satisfy
the equation:

v0
V0

+

∫ T

0

θ̂tdF̂t = α(FT −K) (13)

Now, let us assume that there exists a probability measure Q, under which the
process F̂ = (F̂t) (as defined in (8) ) is a martingale,4 and furthermore, that

4See appendix C for the proof of such existence, (provided we make the right assumptions).
Do not be put off by the terminology here: everything you need to know is recalled below.
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the martingale representation theorem can actually be applied:5 this theorem
states the existence of a constant x0 together with a process φ = (φt) such that:

x0 +

∫ T

0

φtdF̂t = α(FT −K) (14)

Of course, we do not know explicitly what x0 and φ are. But we are only inter-
ested in their existence: for once we know that x0 and φ do exist, then defining

v0
�
= x0V0 and θt

�
= Vtφt/Ct, equation (14) can be rewritten as (13), which

shows the existence of a premium v0 and a strategy θ satisfying equation (12).
This is the answer to the above first question.

Having answered question 1, we are now left with the task of actually com-
puting v0. As we shall see, there is very little to it: indeed, the nice thing about
F̂ = (F̂t) being a martingale under Q, is that we can always write:6

EQ

[∫ T

0

θ̂tdF̂t

]
= 0 (15)

and taking Q-expectation on both sides of (13), we therefore obtain:

v0 = αV0(EQ[FT ]−K) (16)

which shows that computing v0 amounts to the computation of the Q-expec-
tation EQ[FT ]. In general, this expectation can be quite difficult to obtain
explicitly. However, if the assumptions made on the processes F and V are such
that the process C = (Ct) as defined in (10) is actually deterministic,7 then we
have the following:8

EQ[FT ] = EQ[F̂TCT ] = CTEQ[F̂T ] = CTF0 (17)

which can be substituted into (16) in order to obtain:

f(V0, F0)
�
= v0 = αV0(CTF0 −K) (18)

This completes our task of answering questions 1 and 2. It should be remem-
bered however, that before deriving anything like (18), some assumptions had
to be made. In other words, taking just any kind of diffusion for the processes F
and V will inevitably lead to the collapse of the previous developments. When
confronted with the task of designing our financial model, three fundamental
points have to be kept in mind:9

5See appendix D for the proof of that.
6We are being slightly over optimistic here. In reality, some integrability condition has to

be met by θ̂. See appendix D.
7This looks like we have an additional requirement on F and V . In fact, the assumption

of C being deterministic is also needed to ensure that the martingale representation theorem
can be applied. See appendix D

8F̂ being a martingale under Q, (and F0 being constant), EQ[F̂T ] = EQ[F̂0] = F0.
9As already mentioned, point 3 is in fact a prerequisite to point 2.
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1. We need a probability measure Q, under which F̂ is a martingale.

2. The martingale representation theorem must be applicable.

3. The process C = (Ct) should be deterministic.

2.3 The Convexity Adjustment

In the previous section, we were able to explicitly determine f(V0, F0) by equa-
tion (18). Looking back at (5), it appears that the forward rate L0 and futures
rate F0 satisfy the equation:

αV0(L0 −K) = αV0(CTF0 −K) (19)

from which we conclude that:

L0 = CTF0 (20)

In other words, the forward rate L0 is equal to the futures rate F0 times a
convexity adjustment CT given by:10

CT = exp

(∫ T

0

1

FtVt
d〈F, V 〉t

)
(21)

In order to give a more explicit formulation of CT , it is now time to be more
specific about the processes F = (Ft) and V = (Vt). As detailed in appendix B,
the chosen diffusion for F and V are:

dFt = μ(t)Ftdt+ σF (t)FtdWt (22)

Vt
�
= exp(−(T +ΔT − t)Rt) (23)

dRt = γ(R∞ −Rt)dt+ σR(t)R∞dW ′′
t (24)

with F0, R0 > 0, where γ,R∞ are strictly positive constants, and all processes
μ, σF , σR are deterministic. It is of course understood that W and W ′′ in (22)
and (24) are standard brownian motions. Furthermore, we assume that W and
W ′′ have deterministic correlation ρ(t).

In appendix B, we show that given (22), (23) and (24), the convexity ad-
justment CT can be expressed as:11

CT = exp

(
−R∞

∫ T

0

(T +ΔT − t)σR(t)σF (t)ρ(t)dt

)
(25)

10There is no particular reason to call CT a convexity adjustment, apart from current
practice.

11Paul Doust [1] assumes log-normal diffusion for both F and V , with deterministic corre-
lation ρF,V . In this case we obtain:

CT = exp

(∫ T

0

σV (t)σF (t)ρF,V (t)dt

)
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t T+Δ TT

: Continuously compounded spot rateR t

F t : Futures rates

T-t ΔT

Figure 1: ρ(t) = e−δ(T−t)/ΔT is assumed to be the correlation between the
futures rate Ft and continuously compounded spot rate Rt.

3 Practical Results

3.1 Approximating the Convexity Adjustment

In the previous section, we obtained formula (25), giving the convexity adjust-
ment needed to convert a futures rate to its corresponding forward rate. As we
can see, some additional assumptions have to be made on σR(t) ,σF (t) and ρ(t)
in order to compute the integral in (25) explicitly. Following Paul Doust in [2],
we shall put:

∀t ∈ R+ , σR(t) = σF (t) = σ (26)

where σ is meant to represent some sort of average volatility for rates. This
approximation could obviously be improved: it is widely acknowledged that
volatilities for long rates are usually lower than short term volatilities. Hence,
σR(t) could be chosen to be an increasing function of time. As we shall see,
given (26), the sensitivity of the convexity adjustment (25) with respect to the
parameter σ (and indeed w.r. to R∞), will not appear to be significant compared
to the sensitivity with respect to our correlation input. The latter will be chosen
to be of the form:

ρ(t) = exp

(
−δ

(T − t)

ΔT

)
(27)

There is of course no true answer to the question of estimating the correlation
ρ.12 However, we believe that formula (27) displays some interesting features,
which may be worth pointing out:

Firstly, assumption (27) has the simplicity of having only one parameter, the
decorrelation factor δ, to describe the whole structure of correlation ρ(t). Also,
as t tends to the maturity T , ρ(t) is increasing to 1, which is exactly what we
should expect.13 Furthermore, formula (27) ensures that the two rates Ft and

12Paul Doust in [2] assumes ρ(t) = 1− δ(T − t).
13As t tends to T , the spot rate Rt is getting more and more in line with the futures rate

Ft. In the limit, we have: e−RT ΔT = (1 + αFT )−1
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Jun95 Sep95 Dec95 Mar96 Sep96 Mar05Spot

1
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40

Figure 2: Each of the 40 forward periods is between two points of the IMM grid.

Rt are always positively correlated. Finally, as the forward interval ΔT goes to
infinity, the relative weight of the period T−t compared to (T+ΔT−t) is getting
smaller and smaller. Hence, one would expect the corresponding correlation to
increase to the value 1, as is indeed the case with formula (27).

Having made assumptions (26) and (27), the computation of the convexity
adjustment (25) is just a simple exercise. We obtain:

CT = exp

[
−σ2R∞(ΔT )2

δ2

(
(δ + 1)

(
1− e−δT/ΔT

)
−
(

δT

ΔT

)
e−δT/ΔT

)]
(28)

Note that in the limit case where Ft and Rt are perfectly correlated, i.e. where
the decorrelation factor δ is zero, we have:

CT = exp

[
−σ2R∞(ΔT )2

(
T

ΔT
+

1

2

(
T

ΔT

)2
)]

(29)

Formulas (28)and (29) can easily be implemented on any spreadsheet. In the
next section, we discuss the results following such implementation.

3.2 Spreadsheet Implementation for Eurodollars

We have applied formula (28) to the Eurodollars market. There are currently
40 futures contracts being traded, which gives 40 forward periods, as figure 2
indicates.

Each forward period is chosen to be an interval between two points of the
IMM grid, the first point corresponding to the maturity of the futures con-
tract. Note however that strictly speaking, a futures quote implies a futures
rate corresponding to a period between the maturity of the contract, and this
maturity +3 months. This period may not be exactly the one between two IMM
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Futures rate vs maturity
on 20 Apr 1995
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Figure 3: The futures rates of all 40 contracts as a function of their maturity,
on spot 24 Apr 1995

points.14 This problem is referred to as the gap effect, which hopefully should
not be significant.

For each forward period, the convexity adjustment can be calculated using
formula (28). A possible set of inputs to this formula is shown in figure 4.
As expected, Rate, Vol and Decorr refer to R∞, σ and the decorrelation δ
respectively. However, the latter is not a very intuitive notion. It is easy to
guess sensible values for R∞ (e.g. 7%) or σ (e.g. 18%), but the same cannot be
said for the decorrelation δ. Therefore, we have chosen to specify δ indirectly
by the use of another input correl, more appealing to intuition: looking at (27),
it appears that if the forward period is equal (in length) to the time left to
maturity (see figure 5), then the corresponding correlation is given by:

ρ = exp(−δ) (30)

The corresponding ρ is exactly the correl factor of figure 4. It is the correlation
between a spot and a forward15 with same maturity, where the forward period is
half the length of the period spanned by the spot rate.

In figure 6, we show the results obtained for the inputs of figure 4. As we can
see, the difference between a futures and its corresponding forward is limited to
a few basis points. However, this is true for a correlation factor equal to 0.86.16

As figure 7 shows, the effect of the correlation factor can be quite dramatic.
As ρ tends to 1, the last contract of Mar 05 can have an adjustment of up to

14In other words, we want to know about forwards between IMM points, but we only know
about futures between IMM and IMM+3m.

15Strictly speaking futures rate.
16The value of 0.86 is implied by an adjustment of 5 basis points on the Mar 00 contract,

given σ = 18% and R∞ = 7%.
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INPUT

Spot 24-Apr-95

Rate 7.00

Vol 18.00

Correl 0.86

Decorr 0.15

Figure 4: These are the inputs needed by the spreadsheet. Note that decorr
and correl are redundant information. It is however easier to get a feel for a
correlation than it is for a decorrelation

t T T+ΔT

T-t= ΔT T-t= ΔT

Futures Rate

Spot rate

Figure 5: When T − t = ΔT , the correlation between the spot rate and futures
rate is ρ = e−δ. Inputting ρ is equivalent to inputting δ, but is a lot more
intuitive.
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(Futures-Forward) vs Maturity
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Spot: 24 Apr 1995
Rate: 7%
Vol: 18%

Correl: 0.86

Figure 6: A futures rate is always larger than a forward rate. For a correlation
factor equal to 0.86, the difference is of the order of a few basis points. Note
that the blip on Mar 00 is due to the fact that the forward period is 5 weeks
instead of 4.

100 basis points. In comparison, the effect of the volatility σ and rate R∞ (see
figure 8 and 9) is far less significant.

3.3 Conclusion

Using formula (28), we are theoretically able to explicitly determine the con-
vexity adjustment between a forward and futures rate. However, it is extremely
unfortunate that this adjustment should be particularly sensitive to the correla-
tion input. If we estimate a rate volatility to be 14%, whether it is actually 16%
or 12%, will not have a significant impact on the final result. In any case, the
consequence for getting a wrong volatility estimate will be very little, compared
with the consequence of assuming ρ = .85 when the true correlation is .95. It
appears therefore that formula (28) is not sufficient in itself, to obtain both re-
liable and accurate estimate of the convexity adjustment. More information is
needed on the correlation factor. One way forward could be to regard the SWAP
market as a benchmark providing implied estimates. Another could be the use
of historical data.17 As we can see, further research appears to be necessary.

17Although one tends to prefer implied data, making sure that historical estimates are not
too far off is surely worth investigating.
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(Futures-Forward) vs Correlation
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Figure 7: Unfortunately, the convexity adjustment is extremely sensitive to the
correlation input, as it goes to 1. In practice,this means that the true Mar 05
adjustment could be anywhere between 10 and 100 basis points...

(Futures-Forward) vs Volatility
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Figure 8: Estimating a true volatility for rates may be difficult. However, the
consequence of getting it wrong is less dramatic than before.

11



(Futures-Forward) vs Rate
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Figure 9: The effect of the R∞ factor.
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A Appendix

In this appendix, we solve the stochastic differential equation:

dπt = θtdFt +
πt

Vt
dVt (31)

given the initial condition π0 = v0.
We are given a complete probability space (Ω,F , P ) together with a filtration

(Ft)t∈R+ satisfying the usual conditions. We assume that F and V are two
strictly positive continuous semi-martingales, and that the process θ = (θt) is
integrable with respect to F : by this we mean that θ is a real valued progressive
process satisfying:

∀t ∈ R+ ,

∫ t

0

|θs|d|B|s < +∞ , P-a.s.

∀t ∈ R+ ,

∫ t

0

θ2sd〈M〉s < +∞ , P-a.s.

where B and M are respectively the finite variations and local martingale parts
of F .18 Note that the integrability condition imposed on θ, together with the
fact that all paths of π/V (when π is continuous) are bounded on any compact
interval (i.e. π/V is integrable w.r. to V ), ensures that the r.h.s. of (31) does
make sense for any continuous semi-martingale π.

We are now in a position to state:

Proposition 1 There is a unique (up to indistinguishability) continuous semi-
martingale π satisfying equation (31) with π0 = v0, and it is given by equa-

tion (7), where F̂ , θ̂ and C are defined as in (8), (9) and (10) respectively.

Proof
Before we check that π as defined in (7) is indeed a solution of (31), it may be
worth pointing that all processes defined in (7), (8), (9) and (10) (including π
itself) do actually make sense: having assumed F and V continuous and strictly
positive, all paths of 1/FV are bounded on compact intervals, and the process C
is therefore a well-defined strictly positive continuous process of finite variations.
Furthermore, applying Ito’s lemma19

dCt

Ct
=

1

FtVt
d〈F, V 〉t (32)

which shows that F̂ is a continuous semi-martingale satisfying:

dF̂t =
1

Ct
dFt − 1

CtVt
d〈F, V 〉t (33)

18Note that the quadratic variation process 〈M〉 will often be denoted 〈F 〉, just as we have
used the notation 〈F, V 〉 in (10) , where strictly speaking we meant 〈M,N〉 where N is the
local martingale part of the V .

19See e.g. [3], p. 149, Th. 3.3. Although there is no need to apply Ito’s lemma here
(everything is of finite variations), it is a good reference opportunity. See also p. 153, Th. 3.6
and p. 155, Pb. 3.12
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Consequently, if B and M are respectively the finite variations and local mar-
tingale parts of F , then the finite variations and local martingale parts of F̂ ,
are given by:

P-a.s. , ∀t ∈ R+ , B̂t =

∫ t

0

1

Cs
dBs −

∫ t

0

1

CsVs
d〈F, V 〉s (34)

P-a.s. , ∀t ∈ R+ , M̂t =

∫ t

0

1

Cs
dMs (35)

and from the integrability of θ with respect to F , we deduce the integrability of
θ̂ with respect to F̂ , the only may-be-delicate point being to show that:

∀t ∈ R+ ,

∫ t

0

|θ̂s|
CsVs

d|〈F, V 〉|s < +∞ , P-a.s.

which is a consequence of the Kunita-Watanabe inequality.20 Hence, the process
π as defined in (7) is a well-defined continuous semi-martingale.

Checking that π is indeed solution of (31) is now straightforward: applying
Ito’s lemma to (7), we obtain:

dπt = Vtθ̂tdF̂t +
πt

Vt
dVt + θ̂td〈F̂ , V 〉t (36)

However, from (35), we have:

d〈F̂ , V 〉t = 1

Ct
d〈F, V 〉t (37)

and substituting (33) and (37) into (36), we obtain equation (31).
We are now left with proving the uniqueness of π: suppose there are two

continuous semi-martingales with v0 as initial value and satisfying equation (31).
Let X be their difference and define Y = X/V . Then X0 = 0 and X satisfies
the equation:

dXt =
Xt

Vt
dVt (38)

In particular, we have:

P-a.s. , ∀t ∈ R+ , 〈X,V 〉t =
∫ t

0

Xs

Vs
d〈V 〉s (39)

Furthermore, by Ito’s lemma:

d

(
1

Vt

)
= − 1

V 2
t

dVt +
1

V 3
t

d〈V 〉t (40)

20See e.g. [3], p. 142, prop. 2.14. Strictly speaking the result in [3] is not as general as the
one used now, but extending it from square integrable martingales, to local martingales is not
such a big step.
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from which it is seen that:

dYt =
1

Vt
dXt − Xt

V 2
t

dVt +
Xt

V 3
t

d〈V 〉t − 1

V 2
t

d〈X,V 〉t (41)

Substituting (38) and (39) into (41) shows that Y is indistinguishable from zero
(Y0 = 0). This completes the proof of the uniqueness property. QED

B Appendix

In this appendix, we explicitly determine the process C as defined in (10) ,
and describe the assumptions made on F and V . We are given a complete
probability space (Ω,F , P ) together with a two-dimensional standard Brownian
motion (W,W ′) and the corresponding augmented Brownian filtration (Ft)t∈R+ .
Given a borel map ρ : R+ → [−1, 1], we define the Brownian motion: 21

W ′′
t

�
=

∫ t

0

ρ(s)dWs +

∫ t

0

√
1− ρ2(s)dW ′

s (42)

We assume that the processes F and V are given by F0, V0 > 0 and the following:

dFt = μ(t)Ftdt+ σF (t)FtdWt (43)

Vt = exp(−(T +ΔT − t)Rt) (44)

dRt = γ(R∞ −Rt)dt+ σR(t)R∞dW ′′
t (45)

where γ,R∞ > 0 are constant, and μ, σF , σR are locally square integrable Borel
maps on R+. We further assume that |σF | is bounded away from zero, by a
strictly positive constant. Note that F and R are explicitly given by:22

Ft = F0 exp

(∫ t

0

σF (s)dWs − 1

2

∫ t

0

σ2
F (s)ds+

∫ t

0

μ(s)ds

)
(46)

Rt = R0e
−γt +R∞(1− e−γt) +R∞e−γt

∫ t

0

eγsσR(s)dW
′′
s (47)

Moreover, F and V are two strictly positive continuous semi-martingales, which
shows that appendix A can legitimately be applied to them.

It follows from (42) that the cross-variation process between W and W ′′ is
equal to:

P-a.s. , ∀t ∈ R+ , 〈W,W ′′〉t =
∫ t

0

ρ(s)ds (48)

21W ′′ is a continuous (local) martingale with quadratic variation 〈W ′′〉t = t, hence it is a
standard Brownian motion. See [3],p. 157,Th. 3.16

22The assumptions made on μ, σF and σR ensures that all integrals in (46) and (47) are
meaningful. The reason for assuming |σF | bounded away from zero, and μ locally square
integrable (as opposed to just locally integrable) will appear in appendix C.
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from which we see, using (43) and (45):

P-a.s. , ∀t ∈ R+ , 〈F,R〉t = R∞
∫ t

0

FsσR(s)σF (s)ρ(s)ds (49)

However, applying Ito’s lemma to (44):

dVt

Vt
= Rtdt− (T +ΔT − t)dRt +

1

2
(T +ΔT − t)2d〈R〉t (50)

and therefore, using (49):

〈F, V 〉t = −R∞
∫ t

0

FsVs(T +ΔT − s)σR(s)σF (s)ρ(s)ds (51)

We finally obtain from (10):

Ct = exp

(
−R∞

∫ t

0

(T +ΔT − s)σR(s)σF (s)ρ(s)ds

)
(52)

C Appendix

In this appendix, we show the existence of a probability measure Q, such that
F̂ is a martingale under Q.23 This will prove possible by Girsanov Theorem24

and the assumptions described in appendix B. Looking at (8), (46) and (52),
we have:

F̂t = F0 exp

(∫ t

0

σF (s)β(s)ds +

∫ t

0

σF (s)dWs − 1

2

∫ t

0

σ2
F (s)ds

)
(53)

where the map β : R+ → R is defined as:

β(t)
�
=

μ(t)

σF (t)
+R∞(T +ΔT − t)σR(t)ρ(t) (54)

Let Q be defined as the probability measure on (Ω,F) with density ZT with
respect to P , where:25

ZT
�
= exp

(
−
∫ T

0

β(s)dWs − 1

2

∫ T

0

β2(s)ds

)
(55)

By Girsanov theorem, the two-dimensional process (W̃ , W̃ ′) defined by:26

W̃t
�
= Wt +

∫ t∧T

0

β(s)ds (56)

W̃ ′
t

�
= W ′

t (57)

23Strictly speaking, if F̂ is viewed as a process indexed by the whole of R+, then it will not
be a martingale under Q, but the stopped process F̂T = (Ft∧T ) will.

24See e.g. [3] , p. 191, Th. 5.1
25Note that the assumptions made on μ, σF , σR and ρ in appendix B, ensure that β is a

locally square integrable Borel map on R+. So ZT is well-defined.
26Do not forget to stop your integral at T in (56).
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is a standard two-dimensional Brownian motion on (Ω,F , Q) endowed with the
filtration (Ft). Looking back at (53), it appears that:27

F̂t∧T = F0 exp

(∫ t∧T

0

σF (s)dW̃s − 1

2

∫ t∧T

0

σ2
F (s)ds

)
(58)

from which we conclude that the stopped process F̂T is a continuous martingale
under Q.

D Appendix

In this appendix, we show that the martingale representation theorem28 can
actually be applied, to prove the existence of a constant x0 together with a
process φ such that:

x0 +

∫ T

0

φtdF̂t = α(FT −K) (59)

We shall also give a justification for formula (15).
We first consider the complete probability space (Ω,F , Q), together with

the augmented filtration (Gt)t∈R+ generated by the one-dimensional Brownian
motion W̃ .29 From equation (58), we have in particular:

F̂T = F0 exp

(∫ T

0

σF (s)dW̃s − 1

2

∫ T

0

σ2
F (s)ds

)
(60)

which shows that the random variable F̂T isQ-square integrable, and measurable
with respect to GT . If we assume that the process C is deterministic, then FT =
F̂TCT (and therefore α(FT −K)) is itself Q-square integrable and measurable
with respect to GT .

30

According to the martingale representation theorem, there exist a constant
x0 together with a (Gt)-progressive process y satisfying:

EQ

[∫ T

0

y2t dt

]
< +∞ (61)

27Beware, the following is NOT true for t greater than T :

F̂t = F0 exp

(∫ t

0

σF (s)dW̃s − 1

2

∫ t

0

σ2
F (s)ds

)
28See e.g. [3], p.182, Th.4.15. However, we shall more specifically use one of its corollaries:

p.184, Pb. 4.17
29Working on the right filtered probability space is of crucial importance here. Refer to

appendix C for unexplained notations.
30This is extremely important: if CT is random, we may still have the square integrability,

but the measurability with respect to GT is lost for good. Note that we could relax slightly
the assumption of C being deterministic, by just assuming CT non-random.
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such that:

P-a.s. , x0 +

∫ T

0

ytdW̃t = α(FT −K) (62)

Applying Ito’s lemma to (58), we have:

dF̂T
t = σF (t)F̂

T
t dW̃T (63)

from which we obtain (59), provided φ is defined as φt = yt/σF (t).

Finally, if we put v0 = x0V0 and θt = Vtφt/Ct
31, then φt = θ̂t and therefore:

v0
V0

+

∫ T

0

θ̂tdF̂t = α(FT −K)

and by (61), we see that t → ∫ t∧T

0 ysdW̃s is a Q-square integrable martingale,
from which we conclude:

EQ

[∫ T

0

θ̂tdF̂t

]
= EQ

[∫ T

0

ytdW̃t

]
= 0

31Exercise: show that θ is integrable w.r. to F .
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