3. Stieltjes-Lebesgue Measure

Definition 12 Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ and $\mu: \mathcal{A} \rightarrow[0,+\infty]$ be a map. We say that μ is finitely additive if and only if, given $n \geq 1$:

$$
A \in \mathcal{A}, A_{i} \in \mathcal{A}, A=\biguplus_{i=1}^{n} A_{i} \Rightarrow \mu(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

We say that μ is finitely sub-additive if and only if, given $n \geq 1$:

$$
A \in \mathcal{A}, A_{i} \in \mathcal{A}, A \subseteq \bigcup_{i=1}^{n} A_{i} \Rightarrow \mu(A) \leq \sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

ExERCISE 1. Let $\mathcal{S} \triangleq] a, b], a, b \in \mathbf{R}\}$ be the set of all intervals $] a, b]$, defined as $] a, b]=\{x \in \mathbf{R}, a<x \leq b\}$.

1. Show that $] a, b] \cap] c, d]=] a \vee c, b \wedge d]$
2. Show that $] a, b] \backslash] c, d]=] a, b \wedge c] \cup] a \vee d, b]$
3. Show that $c \leq d \Rightarrow b \wedge c \leq a \vee d$.
4. Show that \mathcal{S} is a semi-ring on \mathbf{R}.

Exercise 2. Suppose \mathcal{S} is a semi-ring in Ω and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ is finitely additive. Show that μ can be extended to a finitely additive $\operatorname{map} \bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$, with $\bar{\mu}_{\mid \mathcal{S}}=\mu$.

Exercise 3. Everything being as before, Let $A \in \mathcal{R}(\mathcal{S}), A_{i} \in \mathcal{R}(\mathcal{S})$, $A \subseteq \cup_{i=1}^{n} A_{i}$ where $n \geq 1$. Define $B_{1}=A_{1} \cap A$ and for $i=1, \ldots, n-1$:

$$
B_{i+1} \triangleq\left(A_{i+1} \cap A\right) \backslash\left(\left(A_{1} \cap A\right) \cup \ldots \cup\left(A_{i} \cap A\right)\right)
$$

1. Show that B_{1}, \ldots, B_{n} are pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$ such that $A=\uplus_{i=1}^{n} B_{i}$.
2. Show that for all $i=1, \ldots, n$, we have $\bar{\mu}\left(B_{i}\right) \leq \bar{\mu}\left(A_{i}\right)$.
3. Show that $\bar{\mu}$ is finitely sub-additive.
4. Show that μ is finitely sub-additive.

Exercise 4. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Let \mathcal{S} be the semi-ring on $\mathbf{R}, \mathcal{S}=\{] a, b], a, b \in \mathbf{R}\}$. Define the map $\mu: \mathcal{S} \rightarrow[0,+\infty]$ by $\mu(\emptyset)=0$, and:

$$
\begin{equation*}
\forall a \leq b, \mu(] a, b]) \triangleq F(b)-F(a) \tag{1}
\end{equation*}
$$

Let $a<b$ and $a_{i}<b_{i}$ for $i=1, \ldots, n$ and $n \geq 1$, with :

$$
] a, b]=\biguplus_{i=1}^{n}\right] a_{i}, b_{i}\right]
$$

1. Show that there is $i_{1} \in\{1, \ldots, n\}$ such that $a_{i_{1}}=a$.
2. Show that $\left.\left.\left.] b_{i_{1}}, b\right]=\uplus_{i \in\{1, \ldots, n\} \backslash\left\{i_{1}\right\}}\right] a_{i}, b_{i}\right]$
3. Show the existence of a permutation $\left(i_{1}, \ldots, i_{n}\right)$ of $\{1, \ldots, n\}$ such that $a=a_{i_{1}}<b_{i_{1}}=a_{i_{2}}<\ldots<b_{i_{n}}=b$.
4. Show that μ is finitely additive and finitely sub-additive.

Exercise 5. μ being defined as before, suppose $a<b$ and $a_{n}<b_{n}$ for $n \geq 1$ with:

$$
] a, b]=\biguplus_{n=1}^{+\infty}\right] a_{n}, b_{n}\right]
$$

Given $N \geq 1$, let $\left(i_{1}, \ldots, i_{N}\right)$ be a permutation of $\{1, \ldots, N\}$ with:

$$
a \leq a_{i_{1}}<b_{i_{1}} \leq a_{i_{2}}<\ldots<b_{i_{N}} \leq b
$$

1. Show that $\sum_{k=1}^{N} F\left(b_{i_{k}}\right)-F\left(a_{i_{k}}\right) \leq F(b)-F(a)$.
2. Show that $\left.\left.\left.\left.\sum_{n=1}^{+\infty} \mu(] a_{n}, b_{n}\right]\right) \leq \mu(] a, b\right]\right)$
3. Given $\epsilon>0$, show that there is $\eta \in] 0, b-a[$ such that:

$$
0 \leq F(a+\eta)-F(a) \leq \epsilon
$$

Tutorial 3: Stieltjes-Lebesgue Measure
4. For $n \geq 1$, show that there is $\eta_{n}>0$ such that:

$$
0 \leq F\left(b_{n}+\eta_{n}\right)-F\left(b_{n}\right) \leq \frac{\epsilon}{2^{n}}
$$

5. Show that $\left.[a+\eta, b] \subseteq \cup_{n=1}^{+\infty}\right] a_{n}, b_{n}+\eta_{n}[$.
6. Explain why there exist $p \geq 1$ and integers n_{1}, \ldots, n_{p} such that:

$$
] a+\eta, b] \subseteq \cup_{k=1}^{p}\right] a_{n_{k}}, b_{n_{k}}+\eta_{n_{k}}\right]
$$

7. Show that $F(b)-F(a) \leq 2 \epsilon+\sum_{n=1}^{+\infty} F\left(b_{n}\right)-F\left(a_{n}\right)$
8. Show that $\mu: \mathcal{S} \rightarrow[0,+\infty]$ is a measure.

Definition $13 A$ topology on Ω is a subset \mathcal{T} of the power set $\mathcal{P}(\Omega)$, with the following properties:

$$
\begin{array}{ll}
\text { (i) } & \Omega, \emptyset \in \mathcal{T} \\
\text { (ii) } & A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T} \\
\text { (iii) } & A_{i} \in \mathcal{T}, \forall i \in I \Rightarrow \bigcup_{i \in I} A_{i} \in \mathcal{T}
\end{array}
$$

Property (iii) of definition (13) can be translated as: for any family $\left(A_{i}\right)_{i \in I}$ of elements of \mathcal{T}, the union $\cup_{i \in I} A_{i}$ is still an element of \mathcal{T}. Hence, a topology on Ω, is a set of subsets of Ω containing Ω and the empty set, which is closed under finite intersection and arbitrary union.

Definition $14 A$ topological space is an ordered pair (Ω, \mathcal{T}), where Ω is a set and \mathcal{T} is a topology on Ω.

Definition 15 Let (Ω, \mathcal{T}) be a topological space. We say that $A \subseteq \Omega$ is an open set in Ω, if and only if it is an element of the topology \mathcal{T}. We say that $A \subseteq \Omega$ is a closed set in Ω, if and only if its complement A^{c} is an open set in Ω.

Definition 16 Let (Ω, \mathcal{T}) be a topological space. We define the Borel σ-algebra on Ω, denoted $\mathcal{B}(\Omega)$, as the σ-algebra on Ω, generated by the topology \mathcal{T}. In other words, $\mathcal{B}(\Omega)=\sigma(\mathcal{T})$

Definition 17 We define the usual topology on \mathbf{R}, denoted $\mathcal{T}_{\mathbf{R}}$, as the set of all $U \subseteq \mathbf{R}$ such that:

$$
\forall x \in U, \exists \epsilon>0,] x-\epsilon, x+\epsilon[\subseteq U
$$

Exercise 6. Show that $\mathcal{T}_{\mathbf{R}}$ is indeed a topology on \mathbf{R}.
EXERCISE 7. Consider the semi-ring $\mathcal{S} \triangleq] a, b], a, b \in \mathbf{R}\}$. Let $\mathcal{T}_{\mathbf{R}}$ be the usual topology on \mathbf{R}, and $\mathcal{B}(\mathbf{R})$ be the Borel σ-algebra on \mathbf{R}.

1. Let $a \leq b$. Show that $\left.] a, b]=\cap_{n=1}^{+\infty}\right] a, b+1 / n[$.
2. Show that $\sigma(\mathcal{S}) \subseteq \mathcal{B}(\mathbf{R})$.
3. Let U be an open subset of \mathbf{R}. Show that for all $x \in U$, there exist $a_{x}, b_{x} \in \mathbf{Q}$ such that $\left.\left.x \in\right] a_{x}, b_{x}\right] \subseteq U$.
4. Show that $\left.\left.U=\cup_{x \in U}\right] a_{x}, b_{x}\right]$.
5. Show that the set $\left.I \triangleq\left] a_{x}, b_{x}\right], x \in U\right\}$ is countable.
6. Show that U can be written $U=\cup_{i \in I} A_{i}$ with $A_{i} \in \mathcal{S}$.
7. Show that $\sigma(\mathcal{S})=\mathcal{B}(\mathbf{R})$.

Theorem 6 Let \mathcal{S} be the semi-ring $\mathcal{S}=\{] a, b], a, b \in \mathbf{R}\}$. Then, the Borel σ-algebra $\mathcal{B}(\mathbf{R})$ on \mathbf{R}, is generated by \mathcal{S}, i.e. $\mathcal{B}(\mathbf{R})=\sigma(\mathcal{S})$.

Definition 18 A measurable space is an ordered pair (Ω, \mathcal{F}) where Ω is a set and \mathcal{F} is a σ-algebra on Ω.

Tutorial 3: Stieltjes-Lebesgue Measure
Definition $19 \quad A$ measure space is a triple $(\Omega, \mathcal{F}, \mu)$ where (Ω, \mathcal{F}) is a measurable space and $\mu: \mathcal{F} \rightarrow[0,+\infty]$ is a measure on \mathcal{F}.

ExERCISE 8.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of elements of \mathcal{F} such that $A_{n} \subseteq A_{n+1}$ for all $n \geq 1$, and let $A=\cup_{n=1}^{+\infty} A_{n}$ (we write $A_{n} \uparrow A$). Define $B_{1}=A_{1}$ and for all $n \geq 1$, $B_{n+1}=A_{n+1} \backslash A_{n}$.

1. Show that $\left(B_{n}\right)$ is a sequence of pairwise disjoint elements of \mathcal{F} such that $A=\uplus_{n=1}^{+\infty} B_{n}$.
2. Given $N \geq 1$ show that $A_{N}=\uplus_{n=1}^{N} B_{n}$.
3. Show that $\mu\left(A_{N}\right) \rightarrow \mu(A)$ as $N \rightarrow+\infty$
4. Show that $\mu\left(A_{n}\right) \leq \mu\left(A_{n+1}\right)$ for all $n \geq 1$.

Theorem 7 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then if $\left(A_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{F}, such that $A_{n} \uparrow A$, we have $\mu\left(A_{n}\right) \uparrow \mu(A)^{1}$.

Exercise 9.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of elements of \mathcal{F} such that $A_{n+1} \subseteq A_{n}$ for all $n \geq 1$, and let $A=\cap_{n=1}^{+\infty} A_{n}$ (we write $A_{n} \downarrow A$). We assume that $\mu\left(A_{1}\right)<+\infty$.

1. Define $B_{n} \triangleq A_{1} \backslash A_{n}$ and show that $B_{n} \in \mathcal{F}, B_{n} \uparrow A_{1} \backslash A$.
2. Show that $\mu\left(B_{n}\right) \uparrow \mu\left(A_{1} \backslash A\right)$
3. Show that $\mu\left(A_{n}\right)=\mu\left(A_{1}\right)-\mu\left(A_{1} \backslash A_{n}\right)$
4. Show that $\mu(A)=\mu\left(A_{1}\right)-\mu\left(A_{1} \backslash A\right)$
5. Why is $\mu\left(A_{1}\right)<+\infty$ important in deriving those equalities.
6. Show that $\mu\left(A_{n}\right) \rightarrow \mu(A)$ as $n \rightarrow+\infty$
${ }^{1}$ i.e. the sequence $\left(\mu\left(A_{n}\right)\right)_{n \geq 1}$ is non-decreasing and converges to $\mu(A)$.
7. Show that $\mu\left(A_{n+1}\right) \leq \mu\left(A_{n}\right)$ for all $n \geq 1$.

Theorem 8 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then if $\left(A_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{F}, such that $A_{n} \downarrow A$ and $\mu\left(A_{1}\right)<+\infty$, we have $\mu\left(A_{n}\right) \downarrow \mu(A)$.

Exercise 10.Take $\Omega=\mathbf{R}$ and $\mathcal{F}=\mathcal{B}(\mathbf{R})$. Suppose μ is a measure on $\mathcal{B}(\mathbf{R})$ such that $\mu(] a, b])=b-a$, for $a<b$. Take $\left.A_{n}=\right] n,+\infty[$.

1. Show that $A_{n} \downarrow \emptyset$.
2. Show that $\mu\left(A_{n}\right)=+\infty$, for all $n \geq 1$.
3. Conclude that $\mu\left(A_{n}\right) \downarrow \mu(\emptyset)$ fails to be true.

Exercise 11. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Show the existence of a measure $\mu: \mathcal{B}(\mathbf{R}) \rightarrow[0,+\infty]$ such that:

$$
\begin{equation*}
\forall a, b \in \mathbf{R}, a \leq b, \mu(] a, b])=F(b)-F(a) \tag{2}
\end{equation*}
$$

Tutorial 3: Stieltjes-Lebesgue Measure
Exercise 12.Let μ_{1}, μ_{2} be two measures on $\mathcal{B}(\mathbf{R})$ with property (2). For $n \geq 1$, we define:

$$
\left.\left.\left.\left.\mathcal{D}_{n} \triangleq\left\{B \in \mathcal{B}(\mathbf{R}), \mu_{1}(B \cap]-n, n\right]\right)=\mu_{2}(B \cap]-n, n\right]\right)\right\}
$$

1. Show that \mathcal{D}_{n} is a Dynkin system on \mathbf{R}.
2. Explain why $\left.\left.\mu_{1}(]-n, n\right]\right)<+\infty$ and $\left.\left.\mu_{2}(]-n, n\right]\right)<+\infty$ is needed when proving 1 .
3. Show that $\mathcal{S} \triangleq] a, b], a, b \in \mathbf{R}\} \subseteq \mathcal{D}_{n}$.
4. Show that $\mathcal{B}(\mathbf{R}) \subseteq \mathcal{D}_{n}$.
5. Show that $\mu_{1}=\mu_{2}$.
6. Prove the following theorem.

Theorem 9 Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. There exists a unique measure $\mu: \mathcal{B}(\mathbf{R}) \rightarrow[0,+\infty]$ such that:

$$
\forall a, b \in \mathbf{R}, a \leq b, \mu(] a, b])=F(b)-F(a)
$$

Definition 20 Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. We call $\mathbf{S t i e l t j e s ~ m e a s u r e ~ o n ~} \mathbf{R}$ associated with F, the unique measure on $\mathcal{B}(\mathbf{R})$, denoted $d F$, such that:

$$
\forall a, b \in \mathbf{R}, a \leq b, d F(] a, b])=F(b)-F(a)
$$

Definition 21 We call Lebesgue measure on \mathbf{R}, the unique measure on $\mathcal{B}(\mathbf{R})$, denoted $d x$, such that:

$$
\forall a, b \in \mathbf{R}, a \leq b, d x(] a, b])=b-a
$$

Exercise 13. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Let $x_{0} \in \mathbf{R}$.

1. Show that the limit $F\left(x_{0}-\right)=\lim _{x<x_{0}, x \rightarrow x_{0}} F(x)$ exists and is an element of \mathbf{R}.

Tutorial 3: Stieltjes-Lebesgue Measure
2. Show that $\left.\left.\left\{x_{0}\right\}=\cap_{n=1}^{+\infty}\right] x_{0}-1 / n, x_{0}\right]$.
3. Show that $\left\{x_{0}\right\} \in \mathcal{B}(\mathbf{R})$
4. Show that $d F\left(\left\{x_{0}\right\}\right)=F\left(x_{0}\right)-F\left(x_{0}-\right)$

Exercise 14.Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Let $a \leq b$.

1. Show that $] a, b] \in \mathcal{B}(\mathbf{R})$ and $d F(] a, b])=F(b)-F(a)$
2. Show that $[a, b] \in \mathcal{B}(\mathbf{R})$ and $d F([a, b])=F(b)-F(a-)$
3. Show that $] a, b[\in \mathcal{B}(\mathbf{R})$ and $d F(] a, b[)=F(b-)-F(a)$
4. Show that $[a, b[\in \mathcal{B}(\mathbf{R})$ and $d F([a, b[)=F(b-)-F(a-)$

Exercise 15 . Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Let $\Omega^{\prime} \subseteq \Omega$. Define:

$$
\mathcal{A}_{\mid \Omega^{\prime}} \triangleq\left\{A \cap \Omega^{\prime}, A \in \mathcal{A}\right\}
$$

1. Show that if \mathcal{A} is a topology on $\Omega, \mathcal{A}_{\mid \Omega^{\prime}}$ is a topology on Ω^{\prime}.
2. Show that if \mathcal{A} is a σ-algebra on $\Omega, \mathcal{A}_{\mid \Omega^{\prime}}$ is a σ-algebra on Ω^{\prime}.

Definition 22 Let Ω be a set, and $\Omega^{\prime} \subseteq \Omega$. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. We call trace of \mathcal{A} on Ω^{\prime}, the subset $\mathcal{A}_{\mid \Omega^{\prime}}$ of the power set $\mathcal{P}\left(\Omega^{\prime}\right)$ defined by:

$$
\mathcal{A}_{\mid \Omega^{\prime}} \triangleq\left\{A \cap \Omega^{\prime}, A \in \mathcal{A}\right\}
$$

Definition 23 Let (Ω, \mathcal{T}) be a topological space and $\Omega^{\prime} \subseteq \Omega$. We call induced topology on Ω^{\prime}, denoted $\mathcal{T}_{\mid \Omega^{\prime}}$, the topology on Ω^{\prime} defined by:

$$
\mathcal{T}_{\mid \Omega^{\prime}} \triangleq\left\{A \cap \Omega^{\prime}, A \in \mathcal{T}\right\}
$$

In other words, the induced topology $\mathcal{T}_{\mid \Omega^{\prime}}$ is the trace of \mathcal{T} on Ω^{\prime}.
Exercise 16. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Let $\Omega^{\prime} \subseteq \Omega$, and $\mathcal{A}_{\mid \Omega^{\prime}}$ be the trace of \mathcal{A} on Ω^{\prime}. Define:

$$
\Gamma \triangleq\left\{A \in \sigma(\mathcal{A}), A \cap \Omega^{\prime} \in \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)\right\}
$$

where $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$ refers to the σ-algebra generated by $\mathcal{A}_{\mid \Omega^{\prime}}$ on Ω^{\prime}.

1. Explain why the notation $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$ by itself is ambiguous.
2. Show that $\mathcal{A} \subseteq \Gamma$.
3. Show that Γ is a σ-algebra on Ω.
4. Show that $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)=\sigma(\mathcal{A})_{\mid \Omega^{\prime}}$

Theorem 10 Let $\Omega^{\prime} \subseteq \Omega$ and \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Then, the trace on Ω^{\prime} of the σ-algebra $\sigma(\mathcal{A})$ generated by \mathcal{A}, is equal to the σ-algebra on Ω^{\prime} generated by the trace of \mathcal{A} on Ω^{\prime}. In other words, $\sigma(\mathcal{A})_{\mid \Omega^{\prime}}=\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$.

ExERCISE 17.Let (Ω, \mathcal{T}) be a topological space and $\Omega^{\prime} \subseteq \Omega$ with its induced topology $\mathcal{T}_{\mid \Omega^{\prime}}$.

1. Show that $\mathcal{B}(\Omega)_{\mid \Omega^{\prime}}=\mathcal{B}\left(\Omega^{\prime}\right)$.
2. Show that if $\Omega^{\prime} \in \mathcal{B}(\Omega)$ then $\mathcal{B}\left(\Omega^{\prime}\right) \subseteq \mathcal{B}(\Omega)$.
3. Show that $\mathcal{B}\left(\mathbf{R}^{+}\right)=\left\{A \cap \mathbf{R}^{+}, A \in \mathcal{B}(\mathbf{R})\right\}$.
4. Show that $\mathcal{B}\left(\mathbf{R}^{+}\right) \subseteq \mathcal{B}(\mathbf{R})$.

Exercise 18.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Omega^{\prime} \subseteq \Omega$

1. Show that $\left(\Omega^{\prime}, \mathcal{F}_{\mid \Omega^{\prime}}\right)$ is a measurable space.
2. If $\Omega^{\prime} \in \mathcal{F}$, show that $\mathcal{F}_{\mid \Omega^{\prime}} \subseteq \mathcal{F}$.
3. If $\Omega^{\prime} \in \mathcal{F}$, show that $\left(\Omega^{\prime}, \mathcal{F}_{\mid \Omega^{\prime}}, \mu_{\mid \Omega^{\prime}}\right)$ is a measure space, where $\mu_{\mid \Omega^{\prime}}$ is defined as $\mu_{\mid \Omega^{\prime}}=\mu_{\mid\left(\mathcal{F}_{\mid \Omega^{\prime}}\right)}$.

Exercise 19. Let $F: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. Define:

$$
\bar{F}(x) \triangleq\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
F(x) & \text { if } & x \geq 0
\end{array}\right.
$$

1. Show that $\bar{F}: \mathbf{R} \rightarrow \mathbf{R}$ is right-continuous and non-decreasing.
2. Show that $\mu: \mathcal{B}\left(\mathbf{R}^{+}\right) \rightarrow[0,+\infty]$ defined by $\mu=d \bar{F}_{\mid \mathcal{B}\left(\mathbf{R}^{+}\right)}$, is a measure on $\mathcal{B}\left(\mathbf{R}^{+}\right)$with the properties:

$$
\begin{align*}
& \mu(\{0\})=F(0) \tag{i}\\
& \forall 0 \leq a \leq b, \mu(] a, b])=F(b)-F(a) \tag{ii}
\end{align*}
$$

Tutorial 3: Stieltjes-Lebesgue Measure

Exercise 20. Define: $\mathcal{C}=\{\{0\}\} \cup\{] a, b], 0 \leq a \leq b\}$

1. Show that $\mathcal{C} \subseteq \mathcal{B}\left(\mathbf{R}^{+}\right)$
2. Let U be open in \mathbf{R}^{+}. Show that U is of the form:

$$
\left.\left.U=\bigcup_{i \in I}\left(\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right]\right)
$$

where I is a countable set and $a_{i}, b_{i} \in \mathbf{R}$ with $a_{i} \leq b_{i}$.
3. For all $i \in I$, show that $\left.\left.\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right] \in \sigma(\mathcal{C})$.
4. Show that $\sigma(\mathcal{C})=\mathcal{B}\left(\mathbf{R}^{+}\right)$

EXERCISE 21.Let μ_{1} and μ_{2} be two measures on $\mathcal{B}\left(\mathbf{R}^{+}\right)$with:

$$
\begin{array}{ll}
(i) & \mu_{1}(\{0\})=\mu_{2}(\{0\})=F(0) \\
(i i) & \left.\left.\left.\left.\mu_{1}(] a, b\right]\right)=\mu_{2}(] a, b\right]\right)=F(b)-F(a)
\end{array}
$$

for all $0 \leq a \leq b$. For $n \geq 1$, we define:

$$
\mathcal{D}_{n}=\left\{B \in \mathcal{B}\left(\mathbf{R}^{+}\right), \mu_{1}(B \cap[0, n])=\mu_{2}(B \cap[0, n])\right\}
$$

1. Show that \mathcal{D}_{n} is a Dynkin system on \mathbf{R}^{+}with $\mathcal{C} \subseteq \mathcal{D}_{n}$, where the set \mathcal{C} is defined as in exercise (20).
2. Explain why $\mu_{1}([0, n])<+\infty$ and $\mu_{2}([0, n])<+\infty$ is important when proving 1.
3. Show that $\mu_{1}=\mu_{2}$.
4. Prove the following theorem.

Theorem 11 Let $F: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. There exists a unique $\mu: \mathcal{B}\left(\mathbf{R}^{+}\right) \rightarrow[0,+\infty]$ measure on $\mathcal{B}\left(\mathbf{R}^{+}\right)$such that:
(i) $\quad \mu(\{0\})=F(0)$
(ii) $\quad \forall 0 \leq a \leq b, \mu(] a, b])=F(b)-F(a)$

Definition 24 Let $F: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. We call Stieltjes measure on \mathbf{R}^{+}associated with F, the unique measure on $\mathcal{B}\left(\mathbf{R}^{+}\right)$, denoted $d F$, such that:

$$
\begin{array}{ll}
(i) & d F(\{0\})=F(0) \\
(i i) & \forall 0 \leq a \leq b, d F(] a, b])=F(b)-F(a)
\end{array}
$$

