15. Stieltjes Integration

Definition 112 $b : \mathbf{R}^+ \to \mathbf{C}$ is right-continuous of finite variation. The **Stieltjes L¹-spaces** associated with b are defined as:

$$\begin{split} L^{1}_{\mathbf{C}}(b) &\stackrel{\triangle}{=} \left\{ f: \mathbf{R}^{+} \to \mathbf{C} \ measurable, \int |f|d|b| < +\infty \right\} \\ L^{1,loc}_{\mathbf{C}}(b) &\stackrel{\triangle}{=} \left\{ f: \mathbf{R}^{+} \to \mathbf{C} \ measurable, \int_{0}^{t} |f|d|b| < +\infty, \forall t \in \mathbf{R}^{+} \right\} \end{split}$$

where the notation |f| refers to the modulus map $t \to |f(t)|$.

Warning : In these tutorials, $\int_0^t \dots$ refers to $\int_{[0,t]} \dots$, i.e. the domain of integration is always [0,t], not [0,t], [0,t[, or]0,t[.

EXERCISE 1. $b : \mathbf{R}^+ \to \mathbf{C}$ is right-continuous of finite variation.

- 1. Propose a definition for $L^{1}_{\mathbf{R}}(b)$ and $L^{1,\text{loc}}_{\mathbf{R}}(b)$.
- 2. Is $L^{1}_{\mathbf{C}}(b)$ the same thing as $L^{1}_{\mathbf{C}}(\mathbf{R}^{+}, \mathcal{B}(\mathbf{R}^{+}), d|b|)$?

www.probability.net

1

- 3. Is it meaningful to speak of $L^{1}_{\mathbf{C}}(\mathbf{R}^{+}, \mathcal{B}(\mathbf{R}^{+}), |db|)$?
- 4. Show that $L^{1}_{\mathbf{C}}(b) = L^{1}_{\mathbf{C}}(|b|)$ and $L^{1,\text{loc}}_{\mathbf{C}}(b) = L^{1,\text{loc}}_{\mathbf{C}}(|b|)$.

5. Show that
$$L^{1}_{\mathbf{C}}(b) \subseteq L^{1, \text{IOC}}_{\mathbf{C}}(b)$$
.

EXERCISE 2. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. For all $f \in L^{1,\text{loc}}_{\mathbf{C}}(a)$, we define $f.a : \mathbf{R}^+ \to \mathbf{C}$ as:

$$f.a(t) \stackrel{ riangle}{=} \int_0^t f da \;,\; \forall t \in \mathbf{R}^+$$

- 1. Explain why $f.a: \mathbf{R}^+ \to \mathbf{C}$ is a well-defined map.
- 2. Let $t \in \mathbf{R}^+$, $(t_n)_{n \ge 1}$ be a sequence in \mathbf{R}^+ with $t_n \downarrow \downarrow t$. Show:

$$\lim_{n \to +\infty} \int f \mathbf{1}_{[0,t_n]} da = \int f \mathbf{1}_{[0,t]} da$$

- 3. Show that f.a is right-continuous.
- 4. Let $t \in \mathbf{R}^+$ and $t_0 \leq \ldots \leq t_n$ be a finite sequence in [0, t]. Show:

$$\sum_{i=1}^{n} |f.a(t_i) - f.a(t_{i-1})| \le \int_{]0,t]} |f| da$$

5. Show that f.a is a map of finite variation with:

$$|f.a|(t) \le \int_0^t |f| da$$
, $\forall t \in \mathbf{R}^+$

EXERCISE 3. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $f \in L^1_{\mathbf{C}}(a)$.

1. Show that f.a is a right-continuous map of bounded variation.

- 2. Show $d(f.a)([0,t]) = \nu([0,t])$, for all $t \in \mathbf{R}^+$, where $\nu = \int f da$.
- 3. Prove the following:

Theorem 86 Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $f \in L^1_{\mathbf{C}}(a)$. The map $f.a : \mathbf{R}^+ \to \mathbf{C}$ defined by:

$$f.a(t) \stackrel{ riangle}{=} \int_0^t f da \ , \ \forall t \in \mathbf{R}^+$$

is a right-continuous map of bounded variation, and its associated complex Stieltjes measure is given by $d(f.a) = \int f da$, i.e.

$$d(f.a)(B) = \int_B f da , \ \forall B \in \mathcal{B}(\mathbf{R}^+)$$

EXERCISE 4. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $f \in L^{1,\text{loc}}_{\mathbf{R}}(a), f \ge 0$.

1. Show f.a is right-continuous, non-decreasing with $f.a(0) \ge 0$.

2. Show $d(f.a)([0,t]) = \mu([0,t])$, for all $t \in \mathbf{R}^+$, where $\mu = \int f da$.

- 3. Prove that $d(f.a)([0,T] \cap \cdot) = \mu([0,T] \cap \cdot)$, for all $T \in \mathbf{R}^+$.
- 4. Prove with the following:

Theorem 87 Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $f \in L^{1,loc}_{\mathbf{R}}(a), f \ge 0$. The map $f.a : \mathbf{R}^+ \to \mathbf{R}^+$ defined by:

$$f.a(t) \stackrel{\Delta}{=} \int_0^t f da \; , \; \forall t \in \mathbf{R}^+$$

is right-continuous, non-decreasing with $(f.a)(0) \ge 0$, and its associated Stieltjes measure is given by $d(f.a) = \int f da$, i.e.

$$d(f.a)(B) = \int_B f da \ , \ \forall B \in \mathcal{B}(\mathbf{R}^+)$$

EXERCISE 5. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $f \in L^{1,\text{loc}}_{\mathbf{C}}(a)$ and $T \in \mathbf{R}^+$.

- 1. Show that $\int |f| \mathbf{1}_{[0,T]} da = \int |f| da^{[0,T]} = \int |f| da^T.$
- 2. Show that $f1_{[0,T]} \in L^1_{\mathbf{C}}(a)$ and $f \in L^1_{\mathbf{C}}(a^T)$.
- 3. Show that $(f.a)^T = f.(a^T) = (f1_{[0,T]}).a$.
- 4. Show that for all $B \in \mathcal{B}(\mathbf{R}^+)$:

$$d(f.a)^{T}(B) = \int_{B} f da^{T} = \int_{B} f \mathbf{1}_{[0,T]} da$$

5. Explain why it does not in general make sense to write:

$$d(f.a)^T = d(f.a)([0,T] \cap \cdot)$$

6. Show that for all $B \in \mathcal{B}(\mathbf{R}^+)$:

$$|d(f.a)^{T}|(B) = \int_{B} |f| \mathbf{1}_{[0,T]} da$$

7. Show that $|d(f.a)^T| = d|f.a|([0,T] \cap \cdot)$

8. Show that for all $t \in \mathbf{R}^+$

$$|f.a|(t) = (|f|.a)(t) = \int_0^t |f|da$$

- 9. Show that f.a is of bounded variation if and only if $f \in L^1_{\mathbf{C}}(a)$.
- 10. Show that $\Delta(f.a)(0) = f(0)\Delta a(0)$.
- 11. Let t > 0, $(t_n)_{n \ge 1}$ be a sequence in \mathbf{R}^+ with $t_n \uparrow \uparrow t$. Show:

$$\lim_{n \to +\infty} \int f \mathbf{1}_{[0,t_n]} da = \int f \mathbf{1}_{[0,t_n]} da$$

- 12. Show that $\Delta(f.a)(t) = f(t)\Delta a(t)$ for all $t \in \mathbf{R}^+$.
- 13. Show that if a is continuous with a(0) = 0, then f.a is itself continuous with (f.a)(0) = 0.
- 14. Prove with the following:

Theorem 88 Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $f \in L^{1,loc}_{\mathbf{C}}(a)$. The map $f.a : \mathbf{R}^+ \to \mathbf{C}$ defined by: $f.a(t) \stackrel{\triangle}{=} \int_{-\infty}^{t} f.da \quad \forall t \in \mathbf{R}^+$

$$f.a(t) \stackrel{\Delta}{=} \int_0^{\cdot} f da , \ \forall t \in \mathbf{R}^+$$

is right-continuous of finite variation, and we have |f.a| = |f|.a, i.e.

$$|f.a|(t) = \int_0^t |f| da , \ \forall t \in \mathbf{R}^+$$

In particular, f.a is of bounded variation if and only if $f \in L^1_{\mathbf{C}}(a)$. Furthermore, we have $\Delta(f.a) = f\Delta a$.

EXERCISE 6. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous of finite variation.

1. Prove the equivalence between the following:

$$(i) \qquad d|b| << da$$

(*ii*)
$$|db^T| \ll da$$
, $\forall T \in \mathbf{R}^+$
(*iii*) $db^T \ll da$, $\forall T \in \mathbf{R}^+$

2. Does it make sense in general to write $db \ll da$?

Definition 113 Let $a: \mathbb{R}^+ \to \mathbb{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $b: \mathbb{R}^+ \to \mathbb{C}$ be right-continuous of finite variation. We say that b is **absolutely continuous** with respect to a, and we write $b \ll a$, if and only if, one of the following holds:

(i)
$$d|b| \ll da$$

(ii) $|db^T| \ll da$, $\forall T \in \mathbf{R}^+$
(iii) $db^T \ll da$, $\forall T \in \mathbf{R}^+$

In other words, b is absolutely continuous w.r. to a, if and only if the Stieltjes measure associated with the total variation of b is absolutely continuous w.r. to the Stieltjes measure associated with a.

EXERCISE 7. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous of finite variation, absolutely continuous w.r. to a, i.e. with $b \ll a$.

1. Show that for all $T \in \mathbf{R}^+$, there exits $f_T \in L^1_{\mathbf{C}}(a)$ such that:

$$db^T(B) = \int_B f_T da , \ \forall B \in \mathcal{B}(\mathbf{R}^+)$$

2. Suppose that $T, T' \in \mathbf{R}^+$ and $T \leq T'$. Show that:

$$\int_B f_T da = \int_{B \cap [0,T]} f_{T'} da , \ \forall B \in \mathcal{B}(\mathbf{R}^+)$$

- 3. Show that $f_T = f_{T'} 1_{[0,T]} \, da$ -a.s.
- 4. Show the existence of a sequence $(f_n)_{n\geq 1}$ in $L^1_{\mathbf{C}}(a)$, such that for all $1 \leq n \leq p$, $f_n = f_p \mathbb{1}_{[0,n]}$ and:

$$\forall n \ge 1 , db^n(B) = \int_B f_n da , \forall B \in \mathcal{B}(\mathbf{R}^+)$$

5. We define $f: (\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+)) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ by:

$$\forall t \in \mathbf{R}^+$$
, $f(t) \stackrel{\triangle}{=} f_n(t)$ for any $n \ge 1$: $t \in [0, n]$

Explain why f is unambiguously defined.

- 6. Show that for all $B \in \mathcal{B}(\mathbb{C}), \{f \in B\} = \bigcup_{n=1}^{+\infty} [0,n] \cap \{f_n \in B\}.$
- 7. Show that $f: (\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+)) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ is measurable.
- 8. Show that $f \in L^{1,\text{loc}}_{\mathbf{C}}(a)$ and that we have:

$$b(t) = \int_0^t f da \ , \ \forall t \in \mathbf{R}^+$$

9. Prove the following:

Theorem 89 Let $a: \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a right-continuous map of finite variation. Then, b is absolutely continuous w.r. to a, i.e. $d|b| \ll da$, if and only if there exists $f \in L^{1,loc}_{\mathbf{C}}(a)$ such that b = f.a, i.e.

$$b(t) = \int_0^t f da \ , \ \forall t \in \mathbf{R}^+$$

If b is **R**-valued, we can assume that $f \in L^{1,loc}_{\mathbf{R}}(a)$. If b is non-decreasing with $b(0) \ge 0$, we can assume that $f \ge 0$.

EXERCISE 8. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. Let $f, g \in L^{1,\text{loc}}_{\mathbf{C}}(a)$ be such that f.a = g.a, i.e.:

$$\int_0^t f da = \int_0^t g da \ , \ \forall t \in \mathbf{R}^+$$

1. Show that for all $T \in \mathbf{R}^+$ and $B \in \mathcal{B}(\mathbf{R}^+)$:

$$d(f.a)^{T}(B) = \int_{B} f \mathbf{1}_{[0,T]} da = \int_{B} g \mathbf{1}_{[0,T]} da$$

- 2. Show that for all $T \in \mathbf{R}^+$, $f \mathbb{1}_{[0,T]} = g \mathbb{1}_{[0,T]} da$ -a.s.
- 3. Show that $f = g \, da$ -a.s.

EXERCISE 9. $b: \mathbf{R}^+ \to \mathbf{C}$ is right-continuous of finite variation.

- 1. Show the existence of $h \in L^{1, \text{loc}}_{\mathbf{C}}(|b|)$ such that b = h.|b|.
- 2. Show that for all $B \in \mathcal{B}(\mathbf{R}^+)$ and $T \in \mathbf{R}^+$:

$$db^{T}(B) = \int_{B} hd|b|^{T} = \int_{B} h|db^{T}|$$

3. Show that $|h| = 1 |db^T|$ -a.s. for all $T \in \mathbf{R}^+$.

- 4. Show that for all $T \in \mathbf{R}^+$, $d|b|([0,T] \cap \{|h| \neq 1\}) = 0$.
- 5. Show that |h| = 1 d|b|-a.s.
- 6. Prove the following:

Theorem 90 Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous of finite variation. There exists $h \in L^{1,loc}_{\mathbf{C}}(|b|)$ such that |h| = 1 and b = h.|b|, i.e.

$$b(t) = \int_0^t h d|b| \ , \ \forall t \in \mathbf{R}^+$$

Definition 114 $b : \mathbf{R}^+ \to \mathbf{C}$ is right-continuous of finite variation. For all $f \in L^1_{\mathbf{C}}(b)$, the **Stieltjes integral** of f with respect to b, is defined as:

$$\int f db \stackrel{ riangle}{=} \int f h d|b|$$

where $h \in L^{1,loc}_{\mathbf{C}}(|b|)$ is such that |h| = 1 and b = h.|b|.

Warning : the notation $\int f db$ of definition (114) is controversial and potentially confusing: 'db' is not in general a complex measure on \mathbf{R}^+ , unless b is of bounded variation.

EXERCISE 10. $b : \mathbf{R}^+ \to \mathbf{C}$ is right-continuous of finite variation.

- 1. Show that if $f \in L^1_{\mathbf{C}}(b)$, then $\int fhd|b|$ is well-defined.
- 2. Explain why, given $f \in L^1_{\mathbf{C}}(b)$, $\int f db$ is unambiguously defined.
- 3. Show that if b is right-continuous, non-decreasing with $b(0) \ge 0$, definition (114) of $\int f db$ coincides with that of an integral w.r. to the Stieltjes measure db.
- 4. Show that if b is a right-continuous map of bounded variation, definition (114) of $\int f db$ coincides with that of an integral w.r. to the complex Stieltjes measure db.

EXERCISE 11. Let $b : \mathbf{R}^+ \to \mathbf{C}$ be a right-continuous map of finite

variation. For all $f \in L^{1,\text{loc}}_{\mathbf{C}}(b)$, we define $f.b: \mathbf{R}^+ \to \mathbf{C}$ as:

$$f.b(t) \stackrel{ riangle}{=} \int_0^t f db \stackrel{ riangle}{=} \int f \mathbf{1}_{[0,t]} db \ , \ \forall t \in \mathbf{R}^+$$

- 1. Explain why $f.b: \mathbf{R}^+ \to \mathbf{C}$ is a well-defined map.
- 2. If b is right-continuous, non-decreasing with $b(0) \ge 0$, show this definition of f.b coincides with that of theorem (88).
- 3. Show f.b = (fh).|b|, where $h \in L^{1, \text{loc}}_{\mathbf{C}}(|b|), |h| = 1, b = h.|b|$.
- 4. Show that $f.b: \mathbb{R}^+ \to \mathbb{C}$ is right-continuous of finite variation, with |f.b| = |f|.|b|, i.e.

$$|f.b|(t) = \int_0^t |f|d|b| , \ \forall t \in \mathbf{R}^+$$

- 5. Show that f.b is of bounded variation if and only if $f \in L^1_{\mathbf{C}}(b)$.
- 6. Show that $\Delta(f.b) = f\Delta b$.

- 7. Show that if b is continuous with b(0) = 0, then f.b is itself continuous with (f.b)(0) = 0.
- 8. Prove the following:

Theorem 91 Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous of finite variation. For all $f \in L^{1,loc}_{\mathbf{C}}(b)$, the map $f.b : \mathbf{R}^+ \to \mathbf{C}$ defined by:

$$f.b(t) \stackrel{ riangle}{=} \int_0^t f db \ , \ \forall t \in \mathbf{R}^+$$

is right-continuous of finite variation, and we have |f.b| = |f|.|b|, i.e.

$$|f.b|(t) = \int_0^t |f|d|b| , \ \forall t \in \mathbf{R}^+$$

In particular, f.b is of bounded variation if and only if $f \in L^1_{\mathbf{C}}(b)$. Furthermore, we have $\Delta(f.b) = f\Delta b$.

EXERCISE 12. Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous of finite variation. Let $f \in L^{1,\text{loc}}_{\mathbf{C}}(b)$ and $T \in \mathbf{R}^+$.

- 1. Show that $\int |f| \mathbf{1}_{[0,T]} d|b| = \int |f| d|b|^{[0,T]} = \int |f| d|b^T|$.
- 2. Show that $f1_{[0,T]} \in L^1_{\mathbf{C}}(b)$ and $f \in L^1_{\mathbf{C}}(b^T)$.
- 3. Show $b^T = h | b^T |$, where $h \in L^{1, \text{loc}}_{\mathbf{C}}(|b|), |h| = 1, b = h |b|.$
- 4. Show that $(f.b)^T = f.(b^T) = (f1_{[0,T]}).b$
- 5. Show that $d|f.b|(B) = \int_B |f|d|b|$ for all $B \in \mathcal{B}(\mathbf{R}^+)$.
- 6. Let $g: \mathbf{R}^+ \to \mathbf{C}$ be a measurable map. Show the equivalence:

$$g \in L^{1,\text{loc}}_{\mathbf{C}}(f.b) \iff gf \in L^{1,\text{loc}}_{\mathbf{C}}(b)$$

7. Show that $d(f.b)^T(B) = \int_B fhd|b^T|$ for all $B \in \mathcal{B}(\mathbf{R}^+)$.

8. Show that $db^T = \int hd|b^T|$ and conclude that:

$$d(f.b)^T(B) = \int_B f db^T , \ \forall B \in \mathcal{B}(\mathbf{R}^+)$$

9. Let
$$g \in L^{1, \text{loc}}_{\mathbf{C}}(f.b)$$
. Show that $g \in L^{1}_{\mathbf{C}}((f.b)^{T})$ and:
$$\int g \mathbb{1}_{[0,t]} d(f.b)^{T} = \int g f \mathbb{1}_{[0,t]} db^{T} , \ \forall t \in \mathbf{R}^{+}$$

- 10. Show that $g.((f.b)^T) = (gf).(b^T).$
- 11. Show that $(g.(f.b))^T = ((gf).b)^T$.
- 12. Show that g.(f.b) = (gf).b
- 13. Prove the following:

Theorem 92 Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous of finite variation. For all $f \in L^{1,loc}_{\mathbf{C}}(b)$ and $g : (\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+)) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ measurable map, we have the equivalence:

$$g \in L^{1,loc}_{\mathbf{C}}(f.b) \iff gf \in L^{1,loc}_{\mathbf{C}}(b)$$

and when such condition is satisfied, g.(f.b) = (fg).b, i.e.

$$\int_0^t g d(f.b) = \int_0^t g f db \ , \ orall t \in \mathbf{R}^+$$

EXERCISE 13. Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous of finite variation. let $f, g \in L^{1,\text{loc}}_{\mathbf{C}}(b)$ and $\alpha \in \mathbf{C}$. Show that $f + \alpha g \in L^{1,\text{loc}}_{\mathbf{C}}(b)$, and:

$$(f + \alpha g).b = f.b + \alpha(g.b)$$

EXERCISE 14. Let $b, c : \mathbf{R}^+ \to \mathbf{C}$ be two right-continuous maps of finite variations. Let $f \in L^{1,\text{loc}}_{\mathbf{C}}(b) \cap L^{1,\text{loc}}_{\mathbf{C}}(c)$ and $\alpha \in \mathbf{C}$.

- 1. Show that for all $T \in \mathbf{R}^+$, $d(b + \alpha c)^T = db^T + \alpha dc^T$.
- 2. Show that for all $T \in \mathbf{R}^+$, $d|b + \alpha c|^T \le d|b|^T + |\alpha|d|c|^T$.
- 3. Show that $d|b + \alpha c| \le d|b| + |\alpha|d|c|$.
- 4. Show that $f \in L^{1,\text{loc}}_{\mathbf{C}}(b + \alpha c)$.
- 5. Show $d(f.(b+\alpha c))^T(B) = \int_B f d(b+\alpha c)^T$ for all $B \in \mathcal{B}(\mathbf{R}^+)$.
- 6. Show that $d(f.(b+\alpha c))^T = d(f.b)^T + \alpha d(f.c)^T$.
- 7. Show that $(f.(b + \alpha c))^T = (f.b)^T + \alpha (f.c)^T$
- 8. Show that $f(b + \alpha c) = f(b + \alpha (f(c)))$.

EXERCISE 15. Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous of finite variation.

1. Show that $d|b| \le d|b_1| + d|b_2|$, where $b_1 = Re(b)$ and $b_2 = Im(b)$.

- 2. Show that $d|b_1| \leq d|b|$ and $d|b_2| \leq d|b|$.
- 3. Show that $f \in L^{1,\text{loc}}_{\mathbf{C}}(b)$, if and only if:

 $f \in L^{1, \text{loc}}_{\mathbf{C}}(|b_1|^+) \cap L^{1, \text{loc}}_{\mathbf{C}}(|b_1|^-) \cap L^{1, \text{loc}}_{\mathbf{C}}(|b_2|^+) \cap L^{1, \text{loc}}_{\mathbf{C}}(|b_2|^-)$

4. Show that if $f \in L^{1,\text{loc}}_{\mathbf{C}}(b)$, for all $t \in \mathbf{R}^+$:

$$\int_0^t f db = \int_0^t f d|b_1|^+ - \int_0^t f d|b_1|^- + i\left(\int_0^t f d|b_2|^+ - \int_0^t f d|b_2|^-\right)$$

EXERCISE 16. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. We define $c : \mathbf{R}^+ \to [0, +\infty]$ as:

$$c(t) \stackrel{\triangle}{=} \inf\{s \in \mathbf{R}^+ : t < a(s)\}, \ \forall t \in \mathbf{R}^+$$

where it is understood that $\inf \emptyset = +\infty$. Let $s, t \in \mathbf{R}^+$.

1. Show that $t < a(s) \Rightarrow c(t) \leq s$.

- 2. Show that $c(t) < s \implies t < a(s)$.
- 3. Show that $c(t) \leq s \implies t < a(s + \epsilon)$, $\forall \epsilon > 0$.
- 4. Show that $c(t) \leq s \implies t \leq a(s)$.
- 5. Show that $c(t) < +\infty \Leftrightarrow t < a(\infty)$.
- 6. Show that c is non-decreasing.
- 7. Show that if $t_0 \in [a(\infty), +\infty[, c \text{ is right-continuous at } t_0]$.
- 8. Suppose $t_0 \in [0, a(\infty)]$. Given $\epsilon > 0$, show the existence of $s \in \mathbf{R}^+$, such that $c(t_0) \leq s < c(t_0) + \epsilon$ and $t_0 < a(s)$.
- 9. Show that $t \in [t_0, a(s)] \Rightarrow c(t_0) \le c(t) \le c(t_0) + \epsilon$.
- 10. Show that c is right-continuous.
- 11. Show that if $a(\infty) = +\infty$, then c is a map $c : \mathbf{R}^+ \to \mathbf{R}^+$ which is right-continuous, non-decreasing with $c(0) \ge 0$.

- 12. We define $\bar{a}(s) = \inf\{t \in \mathbf{R}^+ : s < c(t)\}$ for all $s \in \mathbf{R}^+$. Show that for all $s, t \in \mathbf{R}^+$, $s < c(t) \Rightarrow a(s) \le t$.
- 13. Show that $a \leq \bar{a}$.
- 14. Show that for all $s, t \in \mathbf{R}^+$ and $\epsilon > 0$:

$$a(s+\epsilon) \le t \implies s < s+\epsilon \le c(t)$$

15. Show that for all $s, t \in \mathbf{R}^+$ and $\epsilon > 0, a(s+\epsilon) \le t \implies \bar{a}(s) \le t$.

16. Show that $\bar{a} \leq a$ and conclude that:

$$a(s) = \inf\{t \in \mathbf{R}^+ : s < c(t)\}, \forall s \in \mathbf{R}^+$$

EXERCISE 17. Let $f : \mathbf{R}^+ \to \overline{\mathbf{R}}$ be a non-decreasing map. Let $\alpha \in \mathbf{R}$. We define:

$$x_0 \stackrel{\triangle}{=} \sup\{x \in \mathbf{R}^+ : f(x) \le \alpha\}$$

- 1. Explain why $x_0 = -\infty$ if and only if $\{f \le \alpha\} = \emptyset$.
- 2. Show that $x_0 = +\infty$ if and only if $\{f \le \alpha\} = \mathbf{R}^+$.
- 3. We assume from now on that $x_0 \neq \pm \infty$. Show that $x_0 \in \mathbf{R}^+$.
- 4. Show that if $f(x_0) \leq \alpha$ then $\{f \leq \alpha\} = [0, x_0]$.
- 5. Show that if $\alpha < f(x_0)$ then $\{f \leq \alpha\} = [0, x_0[$.
- 6. Conclude that $f: (\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+)) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable.

EXERCISE 18. Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. We define $c : \mathbf{R}^+ \to [0, +\infty]$ as:

$$c(t) \stackrel{\Delta}{=} \inf\{s \in \mathbf{R}^+ : t < a(s)\}, \ \forall t \in \mathbf{R}^+$$

1. Let $f : \mathbf{R}^+ \to [0, +\infty]$ be non-negative and measurable. Show $(f \circ c) \mathbf{1}_{\{c < +\infty\}}$ is well-defined, non-negative and measurable.

2. Let $t, u \in \mathbf{R}^+$, and ds be the Lebesgue measure on \mathbf{R}^+ . Show:

$$\int_0^{a(t)} (1_{[0,u]} \circ c) 1_{\{c < +\infty\}} ds \le \int 1_{[0,a(t \land u)]} 1_{\{c < +\infty\}} ds$$

3. Show that:

$$\int_0^{a(t)} (1_{[0,u]} \circ c) 1_{\{c < +\infty\}} ds \le a(t \land u)$$

4. Show that:

$$a(t \wedge u) = \int_0^{a(t)} \mathbf{1}_{[0,a(u)]} ds = \int_0^{a(t)} \mathbf{1}_{[0,a(u)]} \mathbf{1}_{\{c < +\infty\}} ds$$

5. Show that:

$$a(t \wedge u) \le \int_0^{a(t)} (\mathbf{1}_{[0,u]} \circ c) \mathbf{1}_{\{c < +\infty\}} ds$$

6. Show that:

$$\int_0^t \mathbf{1}_{[0,u]} da = \int_0^{a(t)} (\mathbf{1}_{[0,u]} \circ c) \mathbf{1}_{\{c < +\infty\}} ds$$

7. Define:

$$\mathcal{D}_t \stackrel{\triangle}{=} \left\{ B \in \mathcal{B}(\mathbf{R}^+) : \int_0^t \mathbf{1}_B da = \int_0^{a(t)} (\mathbf{1}_B \circ c) \mathbf{1}_{\{c < +\infty\}} ds \right\}$$

Show that \mathcal{D}_t is a Dynkin system on \mathbf{R}^+ , and $\mathcal{D}_t = \mathcal{B}(\mathbf{R}^+)$.

8. Show that if $f: \mathbf{R}^+ \to [0, +\infty]$ is non-negative measurable:

$$\int_0^t f da = \int_0^{a(t)} (f \circ c) 1_{\{c < +\infty\}} ds , \ \forall t \in \mathbf{R}^+$$

9. Let $f : \mathbf{R}^+ \to \mathbf{C}$ be measurable. Show that $(f \circ c) \mathbb{1}_{\{c < +\infty\}}$ is itself well-defined and measurable.

10. Show that if $f \in L^{1,\text{loc}}_{\mathbf{C}}(a)$, then for all $t \in \mathbf{R}^+$, we have: $(f \circ c) \mathbf{1}_{\{c < +\infty\}} \mathbf{1}_{[0,a(t)]} \in L^1_{\mathbf{C}}(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+), ds)$

and furthermore:

$$\int_0^t f da = \int_0^{a(t)} (f \circ c) \mathbb{1}_{\{c < +\infty\}} ds$$

11. Show that we also have:

$$\int_0^t f da = \int (f \circ c) \mathbf{1}_{[0,a(t)]} ds$$

12. Conclude with the following:

Theorem 93 Let $a : \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \ge 0$. We define $c : \mathbf{R}^+ \to [0, +\infty]$ as:

$$c(t) \stackrel{\triangle}{=} \inf\{s \in \mathbf{R}^+ : t < a(s)\}, \ \forall t \in \mathbf{R}^+$$

Then, for all $f \in L^{1,loc}_{\mathbf{C}}(a)$, we have:

$$\int_0^t f da = \int_0^{a(t)} ((f \circ c) \mathbb{1}_{\{c < +\infty\}})(s) ds \ , \ \forall t \in \mathbf{R}^+$$