6. Product Spaces

In the following, I is a non-empty set.
Definition 50 Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of sets, indexed by a nonempty set I. We call Cartesian product of the family $\left(\Omega_{i}\right)_{i \in I}$ the set, denoted $\Pi_{i \in I} \Omega_{i}$, and defined by:

$$
\prod_{i \in I} \Omega_{i} \triangleq\left\{\omega: I \rightarrow \cup_{i \in I} \Omega_{i}, \omega(i) \in \Omega_{i}, \forall i \in I\right\}
$$

In other words, $\Pi_{i \in I} \Omega_{i}$ is the set of all maps ω defined on I, with values in $\cup_{i \in I} \Omega_{i}$, such that $\omega(i) \in \Omega_{i}$ for all $i \in I$.

Theorem 25 (Axiom of choice) Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of sets, indexed by a non-empty set I. Then, $\Pi_{i \in I} \Omega_{i}$ is non-empty, if and only if Ω_{i} is non-empty for all $i \in I^{1}$.
${ }^{1}$ When I is finite, this theorem is traditionally derived from other axioms.

Exercise 1.

1. Let Ω be a set and suppose that $\Omega_{i}=\Omega, \forall i \in I$. We use the notation Ω^{I} instead of $\Pi_{i \in I} \Omega_{i}$. Show that Ω^{I} is the set of all maps $\omega: I \rightarrow \Omega$.
2. What are the sets $\mathbf{R}^{\mathbf{R}^{+}}, \mathbf{R}^{\mathbf{N}},[0,1]^{\mathbf{N}}, \overline{\mathbf{R}}^{\mathbf{R}}$?
3. Suppose $I=\mathbf{N}^{*}$. We sometimes use the notation $\Pi_{n=1}^{+\infty} \Omega_{n}$ instead of $\Pi_{n \in \mathbf{N} *} \Omega_{n}$. Let \mathcal{S} be the set of all sequences $\left(x_{n}\right)_{n \geq 1}$ such that $x_{n} \in \Omega_{n}$ for all $n \geq 1$. Is \mathcal{S} the same thing as the product $\Pi_{n=1}^{+\infty} \Omega_{n}$?
4. Suppose $I=\mathbf{N}_{n}=\{1, \ldots, n\}, n \geq 1$. We use the notation $\Omega_{1} \times \ldots \times \Omega_{n}$ instead of $\Pi_{i \in\{1, \ldots, n\}} \Omega_{i}$. For $\omega \in \Omega_{1} \times \ldots \times \Omega_{n}$, it is customary to write $\left(\omega_{1}, \ldots, \omega_{n}\right)$ instead of ω, where we have $\omega_{i}=\omega(i)$. What is your guess for the definition of sets such as $\mathbf{R}^{n}, \overline{\mathbf{R}}^{n}, \mathbf{Q}^{n}, \mathbf{C}^{n}$.
5. Let E, F, G be three sets. Define $E \times F \times G$.

Definition 51 Let I be a non-empty set. We say that a family of sets $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$, where $\Lambda \neq \emptyset$, is a partition of I, if and only if:
(i) $\quad \forall \lambda \in \Lambda, I_{\lambda} \neq \emptyset$
(ii) $\quad \forall \lambda, \lambda^{\prime} \in \Lambda, \lambda \neq \lambda^{\prime} \Rightarrow I_{\lambda} \cap I_{\lambda^{\prime}}=\emptyset$
(iii) $I=\cup_{\lambda \in \Lambda} I_{\lambda}$

Exercise 2. Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of sets indexed by I, and $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$ be a partition of the set I.

1. For each $\lambda \in \Lambda$, recall the definition of $\Pi_{i \in I_{\lambda}} \Omega_{i}$.
2. Recall the definition of $\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$.
3. Define a natural bijection $\Phi: \Pi_{i \in I} \Omega_{i} \rightarrow \Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$.
4. Define a natural bijection $\psi: \mathbf{R}^{p} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{p+n}$, for all $n, p \geq 1$.

Definition 52 Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of sets, indexed by a nonempty set I. For all $i \in I$, let \mathcal{E}_{i} be a set of subsets of Ω_{i}. We define a rectangle of the family $\left(\mathcal{E}_{i}\right)_{i \in I}$, as any subset A of $\Pi_{i \in I} \Omega_{i}$, of the form $A=\Pi_{i \in I} A_{i}$ where $A_{i} \in \mathcal{E}_{i} \cup\left\{\Omega_{i}\right\}$ for all $i \in I$, and such that $A_{i}=\Omega_{i}$ except for a finite number of indices $i \in I$. Consequently, the set of all rectangles, denoted $\amalg_{i \in I} \mathcal{E}_{i}$, is defined as:
$\coprod_{i \in I} \mathcal{E}_{i} \triangleq\left\{\prod_{i \in I} A_{i}: A_{i} \in \mathcal{E}_{i} \cup\left\{\Omega_{i}\right\}, A_{i} \neq \Omega_{i}\right.$ for finitely many $\left.i \in I\right\}$
ExERCISE 3. $\left(\Omega_{i}\right)_{i \in I}$ and $\left(\mathcal{E}_{i}\right)_{i \in I}$ being as above:

1. Show that if $I=\mathbf{N}_{n}$ and $\Omega_{i} \in \mathcal{E}_{i}$ for all $i=1, \ldots, n$, then $\mathcal{E}_{1} \amalg \ldots \amalg \mathcal{E}_{n}=\left\{A_{1} \times \ldots \times A_{n} \quad: \quad A_{i} \in \mathcal{E}_{i}, \forall i \in I\right\}$.
2. Let A be a rectangle. Show that there exists a finite subset J of I such that: $A=\left\{\omega \in \Pi_{i \in I} \Omega_{i}: \omega(j) \in A_{j}, \forall j \in J\right\}$ for some A_{j} 's such that $A_{j} \in \mathcal{E}_{j}$, for all $j \in J$.

Definition 53 Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces, indexed by a non-empty set I. We call measurable rectangle , any rectangle of the family $\left(\mathcal{F}_{i}\right)_{i \in I}$. The set of all measurable rectangles is given by ${ }^{2}$:

$$
\coprod_{i \in I} \mathcal{F}_{i} \triangleq\left\{\prod_{i \in I} A_{i}: A_{i} \in \mathcal{F}_{i}, A_{i} \neq \Omega_{i} \text { for finitely many } i \in I\right\}
$$

Definition 54 Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces, indexed by a non-empty set I. We define the product σ-algebra of $\left(\mathcal{F}_{i}\right)_{i \in I}$, as the σ-algebra on $\Pi_{i \in I} \Omega_{i}$, denoted $\otimes_{i \in I} \mathcal{F}_{i}$, and generated by all measurable rectangles, i.e.

$$
\bigotimes_{i \in I} \mathcal{F}_{i} \triangleq \sigma\left(\coprod_{i \in I} \mathcal{F}_{i}\right)
$$

[^0]Exercise 4.

1. Suppose $I=\mathbf{N}_{n}$. Show that $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$ is generated by all sets of the form $A_{1} \times \ldots \times A_{n}$, where $A_{i} \in \mathcal{F}_{i}$ for all $i=1, \ldots, n$.
2. Show that $\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$ is generated by sets of the form $A \times B \times C$ where $A, B, C \in \mathcal{B}(\mathbf{R})$.
3. Show that if (Ω, \mathcal{F}) is a measurable space, $\mathcal{B}\left(\mathbf{R}^{+}\right) \otimes \mathcal{F}$ is the σ-algebra on $\mathbf{R}^{+} \times \Omega$ generated by sets of the form $B \times F$ where $B \in \mathcal{B}\left(\mathbf{R}^{+}\right)$and $F \in \mathcal{F}$.

ExERCISE 5. Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of non-empty sets and \mathcal{E}_{i} be a subset of the power set $\mathcal{P}\left(\Omega_{i}\right)$ for all $i \in I$.

1. Give a generator of the σ-algebra $\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$ on $\Pi_{i \in I} \Omega_{i}$.
2. Show that:

$$
\sigma\left(\coprod_{i \in I} \mathcal{E}_{i}\right) \subseteq \bigotimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)
$$

3. Let A be a rectangle of the family $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$. Show that if A is not empty, then the representation $A=\Pi_{i \in I} A_{i}$ with $A_{i} \in \sigma\left(\mathcal{E}_{i}\right)$ is unique. Define $J_{A}=\left\{i \in I: A_{i} \neq \Omega_{i}\right\}$. Explain why J_{A} is a well-defined finite subset of I.
4. If $A \in \amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$, Show that if $A=\emptyset$, or $A \neq \emptyset$ and $J_{A}=\emptyset$, then $A \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$.

Exercise 6. Everything being as before, Let $n \geq 0$. We assume that the following induction hypothesis has been proved:

$$
A \in \coprod_{i \in I} \sigma\left(\mathcal{E}_{i}\right), A \neq \emptyset, \operatorname{card} J_{A}=n \Rightarrow A \in \sigma\left(\coprod_{i \in I} \mathcal{E}_{i}\right)
$$

We assume that A is a non empty measurable rectangle of $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$ with $\operatorname{card} J_{A}=n+1$. Let $J_{A}=\left\{i_{1}, \ldots, i_{n+1}\right\}$ be an extension of J_{A}.

Tutorial 6: Product Spaces
For all $B \subseteq \Omega_{i_{1}}$, we define:

$$
A^{B} \triangleq \prod_{i \in I} \bar{A}_{i}
$$

where each \bar{A}_{i} is equal to A_{i} except $\overline{A_{1}}=B$. We define the set:

$$
\Gamma \triangleq\left\{B \subseteq \Omega_{i_{1}}: A^{B} \in \sigma\left(\coprod_{i \in I} \mathcal{E}_{i}\right)\right\}
$$

1. Show that $A^{\Omega_{i_{1}}} \neq \emptyset, \operatorname{card} J_{A^{\Omega_{i_{1}}}}=n$ and that $A^{\Omega_{i_{1}}} \in \amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$.
2. Show that $\Omega_{i_{1}} \in \Gamma$.
3. Show that for all $B \subseteq \Omega_{i_{1}}$, we have $A^{\Omega_{i_{1}} \backslash B}=A^{\Omega_{i_{1}}} \backslash A^{B}$.
4. Show that $B \in \Gamma \Rightarrow \Omega_{i_{1}} \backslash B \in \Gamma$.
5. Let $B_{n} \subseteq \Omega_{i_{1}}, n \geq 1$. Show that $A^{\cup B_{n}}=\cup_{n \geq 1} A^{B_{n}}$.
6. Show that Γ is a σ-algebra on $\Omega_{i_{1}}$.
7. Let $B \in \mathcal{E}_{i_{1}}$, and for $i \in I$ define $\bar{B}_{i}=\Omega_{i}$ for all i 's except $\bar{B}_{i_{1}}=B$. Show that $A^{B}=A^{\Omega_{i_{1}}} \cap\left(\Pi_{i \in I} \bar{B}_{i}\right)$.
8. Show that $\sigma\left(\mathcal{E}_{i_{1}}\right) \subseteq \Gamma$.
9. Show that $A=A^{A_{i_{1}}}$ and $A \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$.
10. Show that $\amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right) \subseteq \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$.
11. Show that $\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)=\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$.

Theorem 26 Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of non-empty sets indexed by a non-empty set I. For all $i \in I$, let \mathcal{E}_{i} be a set of subsets of Ω_{i}. Then, the product σ-algebra $\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$ on the Cartesian product $\Pi_{i \in I} \Omega_{i}$ is generated by the rectangles of $\left(\mathcal{E}_{i}\right)_{i \in I}$, i.e. :

$$
\bigotimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)=\sigma\left(\coprod_{i \in I} \mathcal{E}_{i}\right)
$$

Exercise 7. Let $\mathcal{T}_{\mathbf{R}}$ denote the usual topology in \mathbf{R}. Let $n \geq 1$.

1. Show that $\mathcal{T}_{\mathbf{R}} \amalg \ldots \amalg \mathcal{T}_{\mathbf{R}}=\left\{A_{1} \times \ldots \times A_{n}: A_{i} \in \mathcal{T}_{\mathbf{R}}\right\}$.
2. Show that $\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\sigma\left(\mathcal{T}_{\mathbf{R}} \amalg \ldots \amalg \mathcal{T}_{\mathbf{R}}\right)$.
3. Define $\left.\left.\left.\left.\mathcal{C}_{2}=\{] a_{1}, b_{1}\right] \times \ldots \times\right] a_{n}, b_{n}\right]: a_{i}, b_{i} \in \mathbf{R}\right\}$. Show that $\mathcal{C}_{2} \subseteq \mathcal{S} \amalg \ldots \amalg \mathcal{S}$, where $\left.\left.\mathcal{S}=\{] a, b\right]: a, b \in \mathbf{R}\right\}$, but that the inclusion is strict.
4. Show that $\mathcal{S} \amalg \ldots \amalg \mathcal{S} \subseteq \sigma\left(\mathcal{C}_{2}\right)$.
5. Show that $\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\sigma\left(\mathcal{C}_{2}\right)$.

ExErcise 8 . Let Ω and Ω^{\prime} be two non-empty sets. Let A be a subset of Ω such that $\emptyset \neq A \neq \Omega$. Let $\mathcal{E}=\{A\} \subseteq \mathcal{P}(\Omega)$ and $\mathcal{E}^{\prime}=\emptyset \subseteq \mathcal{P}\left(\Omega^{\prime}\right)$.

1. Show that $\sigma(\mathcal{E})=\left\{\emptyset, A, A^{c}, \Omega\right\}$.
2. Show that $\sigma\left(\mathcal{E}^{\prime}\right)=\left\{\emptyset, \Omega^{\prime}\right\}$.

Tutorial 6: Product Spaces
3. Define $\mathcal{C}=\left\{E \times F, E \in \mathcal{E}, F \in \mathcal{E}^{\prime}\right\}$ and show that $\mathcal{C}=\emptyset$.
4. Show that $\mathcal{E} \amalg \mathcal{E}^{\prime}=\left\{A \times \Omega^{\prime}, \Omega \times \Omega^{\prime}\right\}$.
5. Show that $\sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right)=\left\{\emptyset, A \times \Omega^{\prime}, A^{c} \times \Omega^{\prime}, \Omega \times \Omega^{\prime}\right\}$.
6. Conclude that $\sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right) \neq \sigma(\mathcal{C})=\left\{\emptyset, \Omega \times \Omega^{\prime}\right\}$.

Exercise 9. Let $n \geq 1$ and $p \geq 1$ be two positive integers.

1. Define $\mathcal{F}=\underbrace{\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})}_{n}$, and $\mathcal{G}=\underbrace{\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})}_{p}$.

Explain why $\mathcal{F} \otimes \mathcal{G}$ can be viewed as a σ-algebra on \mathbf{R}^{n+p}.
2. Show that $\mathcal{F} \otimes \mathcal{G}$ is generated by sets of the form $A_{1} \times \ldots \times A_{n+p}$ where $A_{i} \in \mathcal{B}(\mathbf{R}), i=1, \ldots, n+p$.

Tutorial 6: Product Spaces
3. Show that:

ExERCISE 10. Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces. Let $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$, where $\Lambda \neq \emptyset$, be a partition of I. Let $\Omega=\Pi_{i \in I} \Omega_{i}$ and $\Omega^{\prime}=\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$.

1. Define a natural bijection between $\mathcal{P}(\Omega)$ and $\mathcal{P}\left(\Omega^{\prime}\right)$.
2. Show that through such bijection, $A=\Pi_{i \in I} A_{i} \subseteq \Omega$, where $A_{i} \subseteq \Omega_{i}$, is identified with $A^{\prime}=\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} A_{i}\right) \subseteq \Omega^{\prime}$.
3. Show that $\amalg_{i \in I} \mathcal{F}_{i}=\amalg_{\lambda \in \Lambda}\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$.
4. Show that $\otimes_{i \in I} \mathcal{F}_{i}=\otimes_{\lambda \in \Lambda}\left(\otimes_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$.

Definition 55 Let Ω be set and \mathcal{A} be a set of subsets of Ω. We call topology generated by \mathcal{A}, the topology on Ω, denoted $\mathcal{T}(\mathcal{A})$, equal to the intersection of all topologies on Ω, which contain \mathcal{A}.

Exercise 11. Let Ω be a set and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$.

1. Explain why $\mathcal{T}(\mathcal{A})$ is indeed a topology on Ω.
2. Show that $\mathcal{T}(\mathcal{A})$ is the smallest topology \mathcal{T} such that $\mathcal{A} \subseteq \mathcal{T}$.
3. Show that the metric topology on a metric space (E, d) is generated by the open balls $\mathcal{A}=\{B(x, \epsilon): x \in E, \epsilon>0\}$.

Definition 56 Let $\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$ be a family of topological spaces, indexed by a non-empty set I. We define the product topology of $\left(\mathcal{T}_{i}\right)_{i \in I}$, as the topology on $\Pi_{i \in I} \Omega_{i}$, denoted $\odot_{i \in I} \mathcal{T}_{i}$, and generated by

Tutorial 6: Product Spaces
all rectangles of $\left(\mathcal{T}_{i}\right)_{i \in I}$, i.e.

$$
\bigodot_{i \in I} \mathcal{T}_{i} \triangleq \mathcal{T}\left(\coprod_{i \in I} \mathcal{T}_{i}\right)
$$

Exercise 12. Let $\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$ be a family of topological spaces.

1. Show that $U \in \odot_{i \in I} \mathcal{T}_{i}$, if and only if:

$$
\forall x \in U, \exists V \in \amalg_{i \in I} \mathcal{T}_{i}, x \in V \subseteq U
$$

2. Show that $\amalg_{i \in I} \mathcal{T}_{i} \subseteq \odot_{i \in I} \mathcal{T}_{i}$.
3. Show that $\otimes_{i \in I} \mathcal{B}\left(\Omega_{i}\right)=\sigma\left(\amalg_{i \in I} \mathcal{T}_{i}\right)$.
4. Show that $\otimes_{i \in I} \mathcal{B}\left(\Omega_{i}\right) \subseteq \mathcal{B}\left(\Pi_{i \in I} \Omega_{i}\right)$.

Exercise 13. Let $n \geq 1$ be a positive integer. For all $x, y \in \mathbf{R}^{n}$, let:

$$
(x, y) \triangleq \sum_{i=1}^{n} x_{i} y_{i}
$$

and we put $\|x\|=\sqrt{(x, x)}$.

1. Show that for all $t \in \mathbf{R},\|x+t y\|^{2}=\|x\|^{2}+t^{2}\|y\|^{2}+2 t(x, y)$.
2. From $\|x+t y\|^{2} \geq 0$ for all t, deduce that $|(x, y)| \leq\|x\| .\|y\|$.
3. Conclude that $\|x+y\| \leq\|x\|+\|y\|$.

ExERCISE 14. Let $\left(\Omega_{1}, \mathcal{T}_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{T}_{n}\right), n \geq 1$, be metrizable topological spaces. Let d_{1}, \ldots, d_{n} be metrics on $\Omega_{1}, \ldots, \Omega_{n}$, inducing the topologies $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ respectively. Let $\Omega=\Omega_{1} \times \ldots \times \Omega_{n}$ and \mathcal{T} be
the product topology on Ω. For all $x, y \in \Omega$, we define:

$$
d(x, y) \triangleq \sqrt{\sum_{i=1}^{n}\left(d_{i}\left(x_{i}, y_{i}\right)\right)^{2}}
$$

1. Show that $d: \Omega \times \Omega \rightarrow \mathbf{R}^{+}$is a metric on Ω.
2. Show that $U \subseteq \Omega$ is open in Ω, if and only if, for all $x \in U$ there are open sets U_{1}, \ldots, U_{n} in $\Omega_{1}, \ldots, \Omega_{n}$ respectively, such that:

$$
x \in U_{1} \times \ldots \times U_{n} \subseteq U
$$

3. Let $U \in \mathcal{T}$ and $x \in U$. Show the existence of $\epsilon>0$ such that:

$$
\left(\forall i=1, \ldots, n d_{i}\left(x_{i}, y_{i}\right)<\epsilon\right) \Rightarrow y \in U
$$

4. Show that $\mathcal{T} \subseteq \mathcal{T}_{\Omega}^{d}$.
5. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. Show the existence of $\epsilon>0$ such that:

$$
x \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{n}, \epsilon\right) \subseteq U
$$

6. Show that $\mathcal{T}_{\Omega}^{d} \subseteq \mathcal{T}$.
7. Show that the product topological space (Ω, \mathcal{T}) is metrizable.
8. For all $x, y \in \Omega$, define:

$$
\begin{aligned}
d^{\prime}(x, y) & \triangleq \sum_{i=1}^{n} d_{i}\left(x_{i}, y_{i}\right) \\
d^{\prime \prime}(x, y) & \triangleq \max _{i=1, \ldots, n} d_{i}\left(x_{i}, y_{i}\right)
\end{aligned}
$$

Show that $d^{\prime}, d^{\prime \prime}$ are metrics on Ω.
9. Show the existence of $\alpha^{\prime}, \beta^{\prime}, \alpha^{\prime \prime}$ and $\beta^{\prime \prime}>0$, such that we have $\alpha^{\prime} d^{\prime} \leq d \leq \beta^{\prime} d^{\prime}$ and $\alpha^{\prime \prime} d^{\prime \prime} \leq d \leq \beta^{\prime \prime} d^{\prime \prime}$.
10. Show that d^{\prime} and $d^{\prime \prime}$ also induce the product topology on Ω.

EXERCISE 15. Let $\left(\Omega_{n}, \mathcal{T}_{n}\right)_{n \geq 1}$ be a sequence of metrizable topological spaces. For all $n \geq 1$, let d_{n} be a metric on Ω_{n} inducing the topology
\mathcal{T}_{n}. Let $\Omega=\Pi_{n=1}^{+\infty} \Omega_{n}$ be the Cartesian product and \mathcal{T} be the product topology on Ω. For all $x, y \in \Omega$, we define:

$$
d(x, y) \triangleq \sum_{n=1}^{+\infty} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right)
$$

1. Show that for all $a, b \in \mathbf{R}^{+}$, we have $1 \wedge(a+b) \leq 1 \wedge a+1 \wedge b$.
2. Show that d is a metric on Ω.
3. Show that $U \subseteq \Omega$ is open in Ω, if and only if, for all $x \in U$, there is an integer $N \geq 1$ and open sets U_{1}, \ldots, U_{N} in $\Omega_{1}, \ldots, \Omega_{N}$ respectively, such that:

$$
x \in U_{1} \times \ldots \times U_{N} \times \prod_{n=N+1}^{+\infty} \Omega_{n} \subseteq U
$$

4. Show that $d(x, y)<1 / 2^{n} \Rightarrow d_{n}\left(x_{n}, y_{n}\right) \leq 2^{n} d(x, y)$.
5. Show that for all $U \in \mathcal{T}$ and $x \in U$, there exists $\epsilon>0$ such that $d(x, y)<\epsilon \Rightarrow y \in U$.
6. Show that $\mathcal{T} \subseteq \mathcal{T}_{\Omega}^{d}$.
7. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. Show the existence of $\epsilon>0$ and $N \geq 1$, such that:

$$
\sum_{n=1}^{N} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right)<\epsilon \Rightarrow y \in U
$$

8. Show that for all $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$, there is $\epsilon>0$ and $N \geq 1$ such that:

$$
x \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{N}, \epsilon\right) \times \prod_{n=N+1}^{+\infty} \Omega_{n} \subseteq U
$$

9. Show that $\mathcal{T}_{\Omega}^{d} \subseteq \mathcal{T}$.
10. Show that the product topological space (Ω, \mathcal{T}) is metrizable.

Definition 57 Let (Ω, \mathcal{T}) be a topological space. A subset \mathcal{H} of \mathcal{T} is called a countable base of (Ω, \mathcal{T}), if and only if \mathcal{H} is at most countable, and has the property:

$$
\forall U \in \mathcal{T}, \exists \mathcal{H}^{\prime} \subseteq \mathcal{H}, \quad U=\bigcup_{V \in \mathcal{H}^{\prime}} V
$$

Exercise 16.

1. Show that $\mathcal{H}=\{] r, q[: r, q \in \mathbf{Q}\}$ is a countable base of $\left(\mathbf{R}, \mathcal{T}_{\mathbf{R}}\right)$.
2. Show that if (Ω, \mathcal{T}) is a topological space with countable base, and $\Omega^{\prime} \subseteq \Omega$, then the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ also has a countable base.
3. Show that $[-1,1]$ has a countable base.
4. Show that if (Ω, \mathcal{T}) and $\left(S, \mathcal{T}_{S}\right)$ are homeomorphic, then (Ω, \mathcal{T}) has a countable base if and only if $\left(S, \mathcal{T}_{S}\right)$ has a countable base.
5. Show that $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ has a countable base.

Exercise 17. Let $\left(\Omega_{n}, \mathcal{T}_{n}\right)_{n \geq 1}$ be a sequence of topological spaces with countable base. For $n \geq 1$, Let $\left\{V_{n}^{k}: k \in I_{n}\right\}$ be a countable base of $\left(\Omega_{n}, \mathcal{T}_{n}\right)$ where I_{n} is a finite or countable set. Let $\Omega=\Pi_{n=1}^{\infty} \Omega_{n}$ be the Cartesian product and \mathcal{T} be the product topology on Ω. For all $p \geq 1$, we define:

$$
\mathcal{H}^{p} \triangleq\left\{V_{1}^{k_{1}} \times \ldots \times V_{p}^{k_{p}} \times \prod_{n=p+1}^{+\infty} \Omega_{n}:\left(k_{1}, \ldots, k_{p}\right) \in I_{1} \times \ldots \times I_{p}\right\}
$$

and we put $\mathcal{H}=\cup_{p \geq 1} \mathcal{H}^{p}$.

1. Show that for all $p \geq 1, \mathcal{H}^{p} \subseteq \mathcal{T}$.
2. Show that $\mathcal{H} \subseteq \mathcal{T}$.
3. For all $p \geq 1$, show the existence of an injection $j_{p}: \mathcal{H}^{p} \rightarrow \mathbf{N}^{p}$.
4. Show the existence of a bijection $\phi_{2}: \mathbf{N}^{2} \rightarrow \mathbf{N}$.
5. For $p \geq 1$, show the existence of an bijection $\phi_{p}: \mathbf{N}^{p} \rightarrow \mathbf{N}$.
6. Show that \mathcal{H}^{p} is at most countable for all $p \geq 1$.
7. Show the existence of an injection $j: \mathcal{H} \rightarrow \mathbf{N}^{2}$.
8. Show that \mathcal{H} is a finite or countable set of open sets in Ω.
9. Let $U \in \mathcal{T}$ and $x \in U$. Show that there is $p \geq 1$ and U_{1}, \ldots, U_{p} open sets in $\Omega_{1}, \ldots, \Omega_{p}$ such that:

$$
x \in U_{1} \times \ldots \times U_{p} \times \prod_{n=p+1}^{+\infty} \Omega_{n} \subseteq U
$$

10. Show the existence of some $V_{x} \in \mathcal{H}$ such that $x \in V_{x} \subseteq U$.
11. Show that \mathcal{H} is a countable base of the topological space (Ω, \mathcal{T}).
12. Show that $\otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right) \subseteq \mathcal{B}(\Omega)$.
13. Show that $\mathcal{H} \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$.
14. Show that $\mathcal{B}(\Omega)=\otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$

Theorem 27 Let $\left(\Omega_{n}, \mathcal{T}_{n}\right)_{n \geq 1}$ be a sequence of topological spaces with countable base. Then, the product space $\left(\Pi_{n=1}^{+\infty} \Omega_{n}, \odot_{n=1}^{+\infty} \mathcal{T}_{n}\right)$ has a countable base and:

$$
\mathcal{B}\left(\prod_{n=1}^{+\infty} \Omega_{n}\right)=\bigotimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)
$$

Exercise 18.

1. Show that if (Ω, \mathcal{T}) has a countable base and $n \geq 1$:

$$
\mathcal{B}\left(\Omega^{n}\right)=\underbrace{\mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)}_{n}
$$

2. Show that $\mathcal{B}\left(\overline{\mathbf{R}}^{n}\right)=\mathcal{B}(\overline{\mathbf{R}}) \otimes \ldots \otimes \mathcal{B}(\overline{\mathbf{R}})$.
3. Show that $\mathcal{B}(\mathbf{C})=\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$.

Definition 58 We say that a metric space (E, d) is separable, if and only if there exists a finite or countable dense subset of E, i.e. a finite or countable subset A of E such that $E=\bar{A}$, where \bar{A} is the closure of A in E.

Exercise 19. Let (E, d) be a metric space.

1. Suppose that (E, d) is separable. Let $\mathcal{H}=\left\{B\left(x_{n}, \frac{1}{p}\right): n, p \geq 1\right\}$, where $\left\{x_{n}: n \geq 1\right\}$ is a countable dense subset in E. Show that \mathcal{H} is a countable base of the metric topological space $\left(E, \mathcal{I}_{E}^{d}\right)$.
2. Suppose conversely that $\left(E, \mathcal{T}_{E}^{d}\right)$ has a countable base \mathcal{H}. For all $V \in \mathcal{H}$ such that $V \neq \emptyset$, take $x_{V} \in V$. Show that the set $\left\{x_{V}: V \in \mathcal{H}, V \neq \emptyset\right\}$ is at most countable and dense in E.
3. For all $x, y, x^{\prime}, y^{\prime} \in E$, show that:

$$
\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)
$$

4. Let $\mathcal{T}_{E \times E}$ be the product topology on $E \times E$. Show that the map $d:\left(E \times E, \mathcal{T}_{E \times E}\right) \rightarrow\left(\mathbf{R}^{+}, \mathcal{T}_{\mathbf{R}^{+}}\right)$is continuous.
5. Show that $d:(E \times E, \mathcal{B}(E \times E)) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable.
6. Show that $d:(E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E)) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, whenever (E, d) is a separable metric space.
7. Let (Ω, \mathcal{F}) be a measurable space and $f, g:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{B}(E))$ be measurable maps. Show that $\Phi:(\Omega, \mathcal{F}) \rightarrow E \times E$ defined by $\Phi(\omega)=(f(\omega), g(\omega))$ is measurable with respect to the product σ-algebra $\mathcal{B}(E) \otimes \mathcal{B}(E)$.
8. Show that if (E, d) is separable, then $\Psi:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ defined by $\Psi(\omega)=d(f(\omega), g(\omega))$ is measurable.
9. Show that if (E, d) is separable then $\{f=g\} \in \mathcal{F}$.
10. Let $\left(E_{n}, d_{n}\right)_{n \geq 1}$ be a sequence of separable metric spaces. Show that the product space $\Pi_{n=1}^{+\infty} E_{n}$ is metrizable and separable.

Exercise 20. Prove the following theorem.
Theorem 28 Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces and (Ω, \mathcal{F}) be a measurable space. For all $i \in I$, let $f_{i}: \Omega \rightarrow \Omega_{i}$ be a map, and define $f: \Omega \rightarrow \Pi_{i \in I} \Omega_{i}$ by $f(\omega)=\left(f_{i}(\omega)\right)_{i \in I}$. Then, the map:

$$
f:(\Omega, \mathcal{F}) \rightarrow\left(\prod_{i \in I} \Omega_{i}, \bigotimes_{i \in I} \mathcal{F}_{i}\right)
$$

is measurable, if and only if each $f_{i}:(\Omega, \mathcal{F}) \rightarrow\left(\Omega_{i}, \mathcal{F}_{i}\right)$ is measurable.

Exercise 21.

1. Let $\phi, \psi: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $\phi(x, y)=x+y$ and $\psi(x, y)=x . y$. Show that both ϕ and ψ are continuous.
2. Show that $\phi, \psi:\left(\mathbf{R}^{2}, \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ are measurable.
3. Let (Ω, \mathcal{F}) be a measurable space, and $f, g:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be measurable maps. Using the previous results, show that $f+g$ and $f . g$ are measurable with respect to \mathcal{F} and $\mathcal{B}(\mathbf{R})$.

[^0]: ${ }^{2}$ Note that $\Omega_{i} \in \mathcal{F}_{i}$ for all $i \in I$.

