4. Measurability

Definition 25 Let A and B be two sets, and $f: A \rightarrow B$ be a map. Given $A^{\prime} \subseteq A$, we call direct image of A^{\prime} by f the set denoted $f\left(A^{\prime}\right)$, and defined by $f\left(A^{\prime}\right)=\left\{f(x): x \in A^{\prime}\right\}$.

Definition 26 Let A and B be two sets, and $f: A \rightarrow B$ be a map. Given $B^{\prime} \subseteq B$, we call inverse image of B^{\prime} by f the set denoted $f^{-1}\left(B^{\prime}\right)$, and defined by $f^{-1}\left(B^{\prime}\right)=\left\{x: x \in A, f(x) \in B^{\prime}\right\}$.

Exercise 1. Let A and B be two sets, and $f: A \rightarrow B$ be a bijection from A to B. Let $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$.

1. Explain why the notation $f^{-1}\left(B^{\prime}\right)$ is potentially ambiguous.
2. Show that the inverse image of B^{\prime} by f is in fact equal to the direct image of B^{\prime} by f^{-1}.
3. Show that the direct image of A^{\prime} by f is in fact equal to the inverse image of A^{\prime} by f^{-1}.

Definition 27 Let (Ω, \mathcal{T}) and $\left(S, \mathcal{T}_{S}\right)$ be two topological spaces. A map $f: \Omega \rightarrow S$ is said to be continuous if and only if:

$$
\forall B \in \mathcal{T}_{S}, f^{-1}(B) \in \mathcal{T}
$$

In other words, if and only if the inverse image of any open set in S is an open set in Ω.

We Write $f:(\Omega, \mathcal{T}) \rightarrow\left(S, \mathcal{T}_{S}\right)$ is continuous, as a way of emphasizing the two topologies \mathcal{T} and \mathcal{T}_{S} with respect to which f is continuous.

Definition 28 Let E be a set. A map $d: E \times E \rightarrow[0,+\infty[$ is said to be a metric on E, if and only if:

$$
\begin{aligned}
\text { (i) } & \forall x, y \in E, d(x, y)=0 \Leftrightarrow x=y \\
(i i) & \forall x, y \in E, d(x, y)=d(y, x) \\
\text { (iii) } & \forall x, y, z \in E, d(x, y) \leq d(x, z)+d(z, y)
\end{aligned}
$$

Definition $29 A$ metric space is an ordered pair (E, d) where E is a set, and d is a metric on E.

Definition 30 Let (E, d) be a metric space. For all $x \in E$ and $\epsilon>0$, we define the so-called open ball in E :

$$
B(x, \epsilon) \triangleq\{y: y \in E, d(x, y)<\epsilon\}
$$

We call metric topology on E, associated with d, the topology \mathcal{T}_{E}^{d} defined by:

$$
\mathcal{T}_{E}^{d} \triangleq\{U \subseteq E, \forall x \in U, \exists \epsilon>0, B(x, \epsilon) \subseteq U\}
$$

Exercise 2. Let \mathcal{T}_{E}^{d} be the metric topology associated with d, where (E, d) is a metric space.

1. Show that \mathcal{T}_{E}^{d} is indeed a topology on E.
2. Given $x \in E$ and $\epsilon>0$, show that $B(x, \epsilon)$ is an open set in E.

Exercise 3. Show that the usual topology on \mathbf{R} is nothing but the metric topology associated with $d(x, y)=|x-y|$.

Exercise 4. Let (E, d) and (F, δ) be two metric spaces. Show that a map $f: E \rightarrow F$ is continuous, if and only if for all $x \in E$ and $\epsilon>0$, there exists $\eta>0$ such that for all $y \in E$:

$$
d(x, y)<\eta \quad \Rightarrow \quad \delta(f(x), f(y))<\epsilon
$$

Definition 31 Let (Ω, \mathcal{T}) and $\left(S, \mathcal{T}_{S}\right)$ be two topological spaces. A map $f: \Omega \rightarrow S$ is said to be a homeomorphism, if and only if f is a continuous bijection, such that f^{-1} is also continuous.

Definition 32 A topological space (Ω, \mathcal{T}) is said to be metrizable, if and only if there exists a metric d on Ω, such that the associated metric topology coincides with \mathcal{T}, i.e. $\mathcal{T}_{\Omega}^{d}=\mathcal{T}$.

Definition 33 Let (E, d) be a metric space and $F \subseteq E$. We call induced metric on F, denoted $d_{\mid F}$, the restriction of the metric d to $F \times F$, i.e. $d_{\mid F}=d_{\mid F \times F}$.

Exercise 5. Let (E, d) be a metric space and $F \subseteq E$. We define $\mathcal{T}_{F}=\left(\mathcal{T}_{E}^{d}\right)_{\mid F}$ as the topology on F induced by the metric topology on E. Let $\mathcal{T}_{F}^{\prime}=\mathcal{T}_{F}^{d_{\mid F}}$ be the metric topology on F associated with the induced metric $d_{\mid F}$ on F.

1. Show that $\mathcal{T}_{F} \subseteq \mathcal{T}_{F}^{\prime}$.
2. Given $A \in \mathcal{T}_{F}^{\prime}$, show that $A=\left(\cup_{x \in A} B\left(x, \epsilon_{x}\right)\right) \cap F$ for some $\epsilon_{x}>0, x \in A$, where $B\left(x, \epsilon_{x}\right)$ denotes the open ball in E.
3. Show that $\mathcal{T}_{F}^{\prime} \subseteq \mathcal{T}_{F}$.

Theorem 12 Let (E, d) be a metric space and $F \subseteq E$. Then, the topology on F induced by the metric topology, is equal to the metric topology on F associated with the induced metric, i.e. $\left(\mathcal{T}_{E}^{d}\right)_{\mid F}=\mathcal{T}_{F}^{d_{\mid F}}$.

Exercise 6 . Let $\phi: \mathbf{R} \rightarrow]-1,1[$ be the map defined by:

$$
\forall x \in \mathbf{R} \quad, \quad \phi(x) \triangleq \frac{x}{|x|+1}
$$

1. Show that $[-1,0[$ is not open in \mathbf{R}.
2. Show that $[-1,0[$ is open in $[-1,1]$.
3. Show that ϕ is a homeomorphism between \mathbf{R} and $]-1,1[$.
4. Show that $\lim _{x \rightarrow+\infty} \phi(x)=1$ and $\lim _{x \rightarrow-\infty} \phi(x)=-1$.

Exercise 7. Let $\overline{\mathbf{R}}=[-\infty,+\infty]=\mathbf{R} \cup\{-\infty,+\infty\}$. Let ϕ be defined
as in exercise (6), and $\bar{\phi}: \overline{\mathbf{R}} \rightarrow[-1,1]$ be the map defined by:

$$
\bar{\phi}(x)=\left\{\begin{array}{rll}
\phi(x) & \text { if } & x \in \mathbf{R} \\
1 & \text { if } & x=+\infty \\
-1 & \text { if } & x=-\infty
\end{array}\right.
$$

Define:

$$
\mathcal{T}_{\overline{\mathbf{R}}} \triangleq\{U \subseteq \overline{\mathbf{R}}, \bar{\phi}(U) \text { is open in }[-1,1]\}
$$

1. Show that $\bar{\phi}$ is a bijection from $\overline{\mathbf{R}}$ to $[-1,1]$, and let $\bar{\psi}=\bar{\phi}^{-1}$.
2. Show that $\mathcal{T}_{\overline{\mathbf{R}}}$ is a topology on $\overline{\mathbf{R}}$.
3. Show that $\bar{\phi}$ is a homeomorphism between $\overline{\mathbf{R}}$ and $[-1,1]$.
4. Show that $[-\infty, 2[] 3,,+\infty],] 3,+\infty[$ are open in $\overline{\mathbf{R}}$.
5. Show that if $\phi^{\prime}: \overline{\mathbf{R}} \rightarrow[-1,1]$ is an arbitrary homeomorphism, then $U \subseteq \overline{\mathbf{R}}$ is open, if and only if $\phi^{\prime}(U)$ is open in $[-1,1]$.

Tutorial 4: Measurability
Definition 34 The usual topology on $\overline{\mathbf{R}}$ is defined as:

$$
\mathcal{T}_{\overline{\mathbf{R}}} \triangleq\{U \subseteq \overline{\mathbf{R}}, \bar{\phi}(U) \text { is open in }[-1,1]\}
$$

where $\bar{\phi}: \overline{\mathbf{R}} \rightarrow[-1,1]$ is defined by $\bar{\phi}(-\infty)=-1, \bar{\phi}(+\infty)=1$ and:

$$
\forall x \in \mathbf{R} \quad, \quad \bar{\phi}(x) \triangleq \frac{x}{|x|+1}
$$

Exercise 8. Let ϕ and $\bar{\phi}$ be as in exercise (7). Define:

$$
\mathcal{T}^{\prime} \triangleq\left(\mathcal{T}_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R}} \triangleq\left\{U \cap \mathbf{R}, U \in \mathcal{T}_{\overline{\mathbf{R}}}\right\}
$$

1. Recall why \mathcal{T}^{\prime} is a topology on \mathbf{R}.
2. Show that for all $U \subseteq \overline{\mathbf{R}}, \phi(U \cap \mathbf{R})=\bar{\phi}(U) \cap]-1,1[$.
3. Explain why if $U \in \mathcal{T}_{\overline{\mathbf{R}}}, \phi(U \cap \mathbf{R})$ is open in $]-1,1[$.
4. Show that $\mathcal{T}^{\prime} \subseteq \mathcal{T}_{\mathbf{R}}$, (the usual topology on \mathbf{R}).

Tutorial 4: Measurability
5. Let $U \in \mathcal{T}_{\mathbf{R}}$. Show that $\bar{\phi}(U)$ is open in $]-1,1[$ and $[-1,1]$.
6. Show that $\mathcal{T}_{\mathbf{R}} \subseteq \mathcal{T}_{\overline{\mathbf{R}}}$
7. Show that $\mathcal{T}_{\mathbf{R}}=\mathcal{T}^{\prime}$, i.e. that the usual topology on $\overline{\mathbf{R}}$ induces the usual topology on \mathbf{R}.
8. Show that $\mathcal{B}(\mathbf{R})=\mathcal{B}(\overline{\mathbf{R}})_{\mid \mathbf{R}}=\{B \cap \mathbf{R}, B \in \mathcal{B}(\overline{\mathbf{R}})\}$

Exercise 9. Let $d: \overline{\mathbf{R}} \times \overline{\mathbf{R}} \rightarrow[0,+\infty[$ be defined by:

$$
\forall(x, y) \in \overline{\mathbf{R}} \times \overline{\mathbf{R}} \quad, \quad d(x, y)=|\phi(x)-\phi(y)|
$$

where ϕ is an arbitrary homeomorphism from $\overline{\mathbf{R}}$ to $[-1,1]$.

1. Show that d is a metric on $\overline{\mathbf{R}}$.
2. Show that if $U \in \mathcal{T}_{\overline{\mathbf{R}}}$, then $\phi(U)$ is open in $[-1,1]$
3. Show that for all $U \in \mathcal{T}_{\overline{\mathbf{R}}}$ and $y \in \phi(U)$, there exists $\epsilon>0$ such that:

$$
\forall z \in[-1,1],|z-y|<\epsilon \Rightarrow z \in \phi(U)
$$

4. Show that $\mathcal{T}_{\overline{\mathbf{R}}} \subseteq \mathcal{T}_{\overline{\mathbf{R}}}^{d}$.
5. Show that for all $U \in \mathcal{T}_{\overline{\mathbf{R}}}^{d}$ and $x \in U$, there is $\epsilon>0$ such that:

$$
\forall y \in \overline{\mathbf{R}},|\phi(x)-\phi(y)|<\epsilon \Rightarrow y \in U
$$

6. Show that for all $U \in \mathcal{T}_{\mathbf{R}}^{d}, \phi(U)$ is open in $[-1,1]$.
7. Show that $\mathcal{T}_{\overline{\mathbf{R}}}^{d} \subseteq \mathcal{T}_{\overline{\mathbf{R}}}$
8. Prove the following theorem.

Theorem 13 The topological space $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is metrizable.

Definition 35 Let (Ω, \mathcal{F}) and (S, Σ) be two measurable spaces. A map $f: \Omega \rightarrow S$ is said to be measurable with respect to \mathcal{F} and Σ, if and only if:

$$
\forall B \in \Sigma, f^{-1}(B) \in \mathcal{F}
$$

We Write $f:(\Omega, \mathcal{F}) \rightarrow(S, \Sigma)$ is measurable, as a way of emphasizing the two σ-algebras \mathcal{F} and Σ with respect to which f is measurable.

Exercise 10. Let (Ω, \mathcal{F}) and (S, Σ) be two measurable spaces. Let S^{\prime} be a set and $f: \Omega \rightarrow S$ be a map such that $f(\Omega) \subseteq S^{\prime} \subseteq S$. We define Σ^{\prime} as the trace of Σ on S^{\prime}, i.e. $\Sigma^{\prime}=\Sigma_{\mid S^{\prime}}$.

1. Show that for all $B \in \Sigma$, we have $f^{-1}(B)=f^{-1}\left(B \cap S^{\prime}\right)$
2. Show that $f:(\Omega, \mathcal{F}) \rightarrow(S, \Sigma)$ is measurable, if and only if $f:(\Omega, \mathcal{F}) \rightarrow\left(S^{\prime}, \Sigma^{\prime}\right)$ is itself measurable.
3. Let $f: \Omega \rightarrow \mathbf{R}^{+}$. Show that the following are equivalent:
(i) $\quad f:(\Omega, \mathcal{F}) \rightarrow\left(\mathbf{R}^{+}, \mathcal{B}\left(\mathbf{R}^{+}\right)\right)$is measurable

$$
\begin{array}{ll}
\text { (ii) } & f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R})) \text { is measurable } \\
(\text { (iii) } & f:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}})) \text { is measurable }
\end{array}
$$

Exercise 11. Let $(\Omega, \mathcal{F}),(S, \Sigma),\left(S_{1}, \Sigma_{1}\right)$ be three measurable spaces. let $f:(\Omega, \mathcal{F}) \rightarrow(S, \Sigma)$ and $g:(S, \Sigma) \rightarrow\left(S_{1}, \Sigma_{1}\right)$ be two measurable maps.

1. For all $B \subseteq S_{1}$, show that $(g \circ f)^{-1}(B)=f^{-1}\left(g^{-1}(B)\right)$
2. Show that $g \circ f:(\Omega, \mathcal{F}) \rightarrow\left(S_{1}, \Sigma_{1}\right)$ is measurable.

Exercise 12. Let (Ω, \mathcal{F}) and (S, Σ) be two measurable spaces. Let $f: \Omega \rightarrow S$ be a map. We define:

$$
\Gamma \triangleq\left\{B \in \Sigma, f^{-1}(B) \in \mathcal{F}\right\}
$$

1. Show that $f^{-1}(S)=\Omega$.
2. Show that for all $B \subseteq S, f^{-1}\left(B^{c}\right)=\left(f^{-1}(B)\right)^{c}$.
3. Show that if $B_{n} \subseteq S, n \geq 1$, then $f^{-1}\left(\cup_{n=1}^{+\infty} B_{n}\right)=\cup_{n=1}^{+\infty} f^{-1}\left(B_{n}\right)$
4. Show that Γ is a σ-algebra on S.
5. Prove the following theorem.

Theorem 14 Let (Ω, \mathcal{F}) and (S, Σ) be two measurable spaces, and \mathcal{A} be a set of subsets of S generating Σ, i.e. such that $\Sigma=\sigma(\mathcal{A})$. Then $f:(\Omega, \mathcal{F}) \rightarrow(S, \Sigma)$ is measurable, if and only if:

$$
\forall B \in \mathcal{A} \quad, \quad f^{-1}(B) \in \mathcal{F}
$$

Exercise 13. Let (Ω, \mathcal{T}) and $\left(S, \mathcal{T}_{S}\right)$ be two topological spaces. Let $f: \Omega \rightarrow S$ be a map. Show that if $f:(\Omega, \mathcal{T}) \rightarrow\left(S, \mathcal{T}_{S}\right)$ is continuous, then $f:(\Omega, \mathcal{B}(\Omega)) \rightarrow(S, \mathcal{B}(S))$ is measurable.

Exercise 14. We define the following subsets of the power set $\mathcal{P}(\overline{\mathbf{R}})$:

$$
\begin{aligned}
& \mathcal{C}_{1} \triangleq\{[-\infty, c], c \in \mathbf{R}\} \\
& \mathcal{C}_{2} \triangleq\{[-\infty, c[, c \in \mathbf{R}\} \\
& \mathcal{C}_{3} \triangleq\{[c,+\infty], c \in \mathbf{R}\} \\
& \left.\left.\mathcal{C}_{4} \triangleq\{] c,+\infty\right], c \in \mathbf{R}\right\}
\end{aligned}
$$

1. Show that \mathcal{C}_{2} and \mathcal{C}_{4} are subsets of $\mathcal{T}_{\overline{\mathbf{R}}}$.
2. Show that the elements of \mathcal{C}_{1} and \mathcal{C}_{3} are closed in $\overline{\mathbf{R}}$.
3. Show that for all $i=1,2,3,4, \sigma\left(\mathcal{C}_{i}\right) \subseteq \mathcal{B}(\overline{\mathbf{R}})$.
4. Let U be open in $\overline{\mathbf{R}}$. Explain why $U \cap \mathbf{R}$ is open in \mathbf{R}.
5. Show that any open subset of \mathbf{R} is a countable union of open bounded intervals in \mathbf{R}.
6. Let $a<b, a, b \in \mathbf{R}$. Show that we have:

$$
] a, b\left[=\bigcup_{n=1}^{+\infty}\right] a, b-1 / n\right]=\bigcup_{n=1}^{+\infty}[a+1 / n, b[
$$

7. Show that for all $i=1,2,3,4,] a, b\left[\in \sigma\left(\mathcal{C}_{i}\right)\right.$.
8. Show that for all $i=1,2,3,4,\{\{-\infty\},\{+\infty\}\} \subseteq \sigma\left(\mathcal{C}_{i}\right)$.
9. Show that for all $i=1,2,3,4, \sigma\left(\mathcal{C}_{i}\right)=\mathcal{B}(\overline{\mathbf{R}})$
10. Prove the following theorem.

Theorem 15 Let (Ω, \mathcal{F}) be a measurable space, and $f: \Omega \rightarrow \overline{\mathbf{R}}$ be a map. The following are equivalent:

(i)	$f:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable
$(i i)$	$\forall B \in \mathcal{B}(\overline{\mathbf{R}}),\{f \in B\} \in \mathcal{F}$
$(i i i)$	$\forall c \in \mathbf{R},\{f \leq c\} \in \mathcal{F}$
$(i v)$	$\forall c \in \mathbf{R},\{f<c\} \in \mathcal{F}$
(v)	$\forall c \in \mathbf{R},\{c \leq f\} \in \mathcal{F}$
$(v i)$	$\forall c \in \mathbf{R},\{c<f\} \in \mathcal{F}$

Exercise 15. Let (Ω, \mathcal{F}) be a measurable space. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$. Let g and h be the maps defined by $g(\omega)=\inf _{n \geq 1} f_{n}(\omega)$ and $h(\omega)=\sup _{n \geq 1} f_{n}(\omega)$, for all $\omega \in \Omega$.

1. Let $c \in \mathbf{R}$. Show that $\{c \leq g\}=\cap_{n=1}^{+\infty}\left\{c \leq f_{n}\right\}$.
2. Let $c \in \mathbf{R}$. Show that $\{h \leq c\}=\cap_{n=1}^{+\infty}\left\{f_{n} \leq c\right\}$.
3. Show that $g, h:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ are measurable.

Definition 36 Let $\left(v_{n}\right)_{n \geq 1}$ be a sequence in $\overline{\mathbf{R}}$. We define:

$$
u \triangleq \liminf _{n \rightarrow+\infty} v_{n} \triangleq \sup _{n \geq 1}\left(\inf _{k \geq n} v_{k}\right)
$$

and:

$$
w \triangleq \limsup _{n \rightarrow+\infty} v_{n} \triangleq \inf _{n \geq 1}\left(\sup _{k \geq n} v_{k}\right)
$$

Then, $u, w \in \overline{\mathbf{R}}$ are respectively called lower limit and upper limit of the sequence $\left(v_{n}\right)_{n \geq 1}$.

ExERCISE 16. Let $\left(v_{n}\right)_{n \geq 1}$ be a sequence in $\overline{\mathbf{R}}$. for $n \geq 1$ we define $u_{n}=\inf _{k \geq n} v_{k}$ and $w_{n}=\sup _{k \geq n} v_{k}$. Let u and w be the lower limit and upper limit of $\left(v_{n}\right)_{n \geq 1}$, respectively.

1. Show that $u_{n} \leq u_{n+1} \leq u$, for all $n \geq 1$.
2. Show that $w \leq w_{n+1} \leq w_{n}$, for all $n \geq 1$.
3. Show that $u_{n} \rightarrow u$ and $w_{n} \rightarrow w$ as $n \rightarrow+\infty$.
4. Show that $u_{n} \leq v_{n} \leq w_{n}$, for all $n \geq 1$.
5. Show that $u \leq w$.
6. Show that if $u=w$ then $\left(v_{n}\right)_{n \geq 1}$ converges to a limit $v \in \overline{\mathbf{R}}$, with $u=v=w$.
7. Show that if $a, b \in \mathbf{R}$ are such that $u<a<b<w$ then for all $n \geq 1$, there exist $N_{1}, N_{2} \geq n$ such that $v_{N_{1}}<a<b<v_{N_{2}}$.
8. Show that if $a, b \in \mathbf{R}$ are such that $u<a<b<w$ then there exist two strictly increasing sequences of integers $\left(n_{k}\right)_{k \geq 1}$ and $\left(m_{k}\right)_{k \geq 1}$ such that for all $k \geq 1$, we have $v_{n_{k}}<a<b<v_{m_{k}}$.
9. Show that if $\left(v_{n}\right)_{n \geq 1}$ converges to some $v \in \overline{\mathbf{R}}$, then $u=w$.

Theorem 16 Let $\left(v_{n}\right)_{n \geq 1}$ be a sequence in $\overline{\mathbf{R}}$. Then, the following are equivalent:

$$
\begin{array}{ll}
\text { (i) } & \liminf _{n \rightarrow+\infty} v_{n}=\limsup _{n \rightarrow+\infty} v_{n} \\
\text { (ii) } & \lim _{n \rightarrow+\infty} v_{n} \text { exists in } \overline{\mathbf{R}} .
\end{array}
$$

in which case:

$$
\lim _{n \rightarrow+\infty} v_{n}=\liminf _{n \rightarrow+\infty} v_{n}=\limsup _{n \rightarrow+\infty} v_{n}
$$

ExERCISE 17. Let $f, g:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ be two measurable maps, where (Ω, \mathcal{F}) is a measurable space.

1. Show that $\{f<g\}=\cup_{r \in \mathbf{Q}}(\{f<r\} \cap\{r<g\})$.
2. Show that the sets $\{f<g\},\{f>g\},\{f=g\},\{f \leq g\},\{f \geq g\}$ belong to the σ-algebra \mathcal{F}.

Exercise 18. Let (Ω, \mathcal{F}) be a measurable space. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$. We define $g=\liminf f_{n}$ and $h=\limsup f_{n}$ in the obvious way:

$$
\begin{aligned}
& \forall \omega \in \Omega, g(\omega) \triangleq \liminf _{n \rightarrow+\infty} f_{n}(\omega) \\
& \forall \omega \in \Omega, h(\omega) \triangleq \limsup _{n \rightarrow+\infty} f_{n}(\omega)
\end{aligned}
$$

1. Show that $g, h:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ are measurable.
2. Show that $g \leq h$, i.e. $\forall \omega \in \Omega, g(\omega) \leq h(\omega)$.
3. Show that $\{g=h\} \in \mathcal{F}$.
4. Show that $\left\{\omega: \omega \in \Omega, \lim _{n \rightarrow+\infty} f_{n}(\omega)\right.$ exists in $\left.\overline{\mathbf{R}}\right\} \in \mathcal{F}$.
5. Suppose $\Omega=\{g=h\}$, and let $f(\omega)=\lim _{n \rightarrow+\infty} f_{n}(\omega)$, for all $\omega \in \Omega$. Show that $f:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable.

Exercise 19. Let $f, g:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ be two measurable maps, where (Ω, \mathcal{F}) is a measurable space.

1. Show that $-f,|f|, f^{+}=\max (f, 0)$ and $f^{-}=\max (-f, 0)$ are measurable with respect to \mathcal{F} and $\mathcal{B}(\overline{\mathbf{R}})$.
2. Let $a \in \overline{\mathbf{R}}$. Explain why the map $a+f$ may not be well defined.
3. Show that $(a+f):(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, whenever $a \in \mathbf{R}$.
4. Show that $($ a.f $):(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, for all $a \in \overline{\mathbf{R}}$. (Recall the convention $0 . \infty=0$).
5. Explain why the map $f+g$ may not be well defined.
6. Suppose that $f \geq 0$ and $g \geq 0$, i.e. $f(\Omega) \subseteq[0,+\infty]$ and also $g(\Omega) \subseteq[0,+\infty]$. Show that $\{f+g<c\}=\{f<c-g\}$, for all $c \in \mathbf{R}$. Show that $f+g:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable.
7. Show that $f+g:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable whenever $f+g$ is well-defined, i.e. when the following condition holds:

$$
(\{f=+\infty\} \cap\{g=-\infty\}) \cup(\{f=-\infty\} \cap\{g=+\infty\})=\emptyset
$$

8. Show that $1 / f:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, in the case when $f(\Omega) \subseteq \mathbf{R} \backslash\{0\}$.
9. Suppose that f is \mathbf{R}-valued. Show that \bar{f} defined by $\bar{f}(\omega)=$ $f(\omega)$ if $f(\omega) \neq 0$ and $\bar{f}(\omega)=1$ if $f(\omega)=0$, is measurable with respect to \mathcal{F} and $\mathcal{B}(\overline{\mathbf{R}})$.
10. Suppose f and g take values in R. Let \bar{f} be defined as in 9 . Show that for all $c \in \mathbf{R}$, the set $\{f g<c\}$ can be expressed as: $(\{f>0\} \cap\{g<c / \bar{f}\}) \uplus(\{f<0\} \cap\{g>c / \bar{f}\}) \uplus(\{f=0\} \cap\{f<c\})$
11. Show that $f g:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, in the case when f and g take values in \mathbf{R}.

Exercise 20. Let $f, g:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ be two measurable maps, where (Ω, \mathcal{F}) is a measurable space. Let \bar{f}, \bar{g}, be defined by:

$$
\bar{f}(\omega) \triangleq\left\{\begin{array}{rll}
f(\omega) & \text { if } & f(\omega) \notin\{-\infty,+\infty\} \\
1 & \text { if } & f(\omega) \in\{-\infty,+\infty\}
\end{array}\right.
$$

$\bar{g}(\omega)$ being defined in a similar way. Consider the partitions of Ω, $\Omega=A_{1} \uplus A_{2} \uplus A_{3} \uplus A_{4} \uplus A_{5}$ and $\Omega=B_{1} \uplus B_{2} \uplus B_{3} \uplus B_{4} \uplus B_{5}$, where $A_{1}=\{f \in] 0,+\infty[\}, A_{2}=\{f \in]-\infty, 0[\}, A_{3}=\{f=0\}$, $A_{4}=\{f=-\infty\}, A_{5}=\{f=+\infty\}$ and $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ being defined in a similar way with g. Recall the conventions $0 \times(+\infty)=0$, $(-\infty) \times(+\infty)=(-\infty)$, etc..

1. Show that \bar{f} and \bar{g} are measurable with respect to \mathcal{F} and $\mathcal{B}(\overline{\mathbf{R}})$.
2. Show that all A_{i} 's and B_{j} 's are elements of \mathcal{F}.
3. Show that for all $B \in \mathcal{B}(\overline{\mathbf{R}})$:

$$
\{f g \in B\}=\biguplus_{i, j=1}^{5}\left(A_{i} \cap B_{j} \cap\{f g \in B\}\right)
$$

4. Show that $A_{i} \cap B_{j} \cap\{f g \in B\}=A_{i} \cap B_{j} \cap\{\bar{f} \bar{g} \in B\}$, in the case when $1 \leq i \leq 3$ and $1 \leq j \leq 3$.
5. Show that $A_{i} \cap B_{j} \cap\{f g \in B\}$ is either equal to \emptyset or $A_{i} \cap B_{j}$, in the case when $i \geq 4$ or $j \geq 4$.
6. Show that $\mathrm{fg}:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable.

Definition 37 Let (Ω, \mathcal{T}) be a topological space, and $A \subseteq \Omega$. We call closure of A in Ω, denoted \bar{A}, the set defined by:

$$
\bar{A} \triangleq\{x \in \Omega: x \in U \in \mathcal{T} \Rightarrow U \cap A \neq \emptyset\}
$$

Exercise 21. Let (E, \mathcal{T}) be a topological space, and $A \subseteq E$. Let \bar{A} be the closure of A.

1. Show that $A \subseteq \bar{A}$ and that \bar{A} is closed.
2. Show that if B is closed and $A \subseteq B$, then $\bar{A} \subseteq B$.
3. Show that \bar{A} is the smallest closed set in E containing A.
4. Show that A is closed if and only if $A=\bar{A}$.
5. Show that if (E, \mathcal{T}) is metrizable, then:

$$
\bar{A}=\{x \in E: \forall \epsilon>0, B(x, \epsilon) \cap A \neq \emptyset\}
$$

where $B(x, \epsilon)$ is relative to any metric d such that $\mathcal{T}_{E}^{d}=\mathcal{T}$.

Exercise 22. Let (E, d) be a metric space. Let $A \subseteq E$. For all $x \in E$, we define:

$$
d(x, A) \triangleq \inf \{d(x, y): y \in A\} \triangleq \Phi_{A}(x)
$$

where it is understood that $\inf \emptyset=+\infty$.

1. Show that for all $x \in E, d(x, A)=d(x, \bar{A})$.
2. Show that $d(x, A)=0$, if and only if $x \in \bar{A}$.
3. Show that for all $x, y \in E, d(x, A) \leq d(x, y)+d(y, A)$.
4. Show that if $A \neq \emptyset,|d(x, A)-d(y, A)| \leq d(x, y)$.
5. Show that $\Phi_{A}:\left(E, \mathcal{T}_{E}^{d}\right) \rightarrow\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is continuous.
6. Show that if A is closed, then $A=\Phi_{A}^{-1}(\{0\})$

Exercise 23. Let (Ω, \mathcal{F}) be a measurable space. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{B}(E))$, where (E, d) is a metric space. We assume that for all $\omega \in \Omega$, the sequence $\left(f_{n}(\omega)\right)_{n \geq 1}$ converges to some $f(\omega) \in E$.

1. Explain why $\lim \inf f_{n}$ and $\lim \sup f_{n}$ may not be defined in an arbitrary metric space E.
2. Show that $f:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{B}(E))$ is measurable, if and only if $f^{-1}(A) \in \mathcal{F}$ for all closed subsets A of E.
3. Show that for all A closed in $E, f^{-1}(A)=\left(\Phi_{A} \circ f\right)^{-1}(\{0\})$, where the map $\Phi_{A}: E \rightarrow \overline{\mathbf{R}}$ is defined as in exercise (22).
4. Show that $\Phi_{A} \circ f_{n}:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable.
5. Show that $f:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{B}(E))$ is measurable.

Theorem 17 Let (Ω, \mathcal{F}) be a measurable space. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{B}(E))$, where (E, d) is a metric space. Then, if the limit $f=\lim f_{n}$ exists on Ω, the map $f:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{B}(E))$ is itself measurable.

Definition 38 The usual topology on \mathbf{C}, the set of complex numbers, is defined as the metric topology associated with $d\left(z, z^{\prime}\right)=\left|z-z^{\prime}\right|$.

Exercise 24. Let $f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be a measurable map, where (Ω, \mathcal{F}) is a measurable space. Let $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$. Show that $u, v,|f|:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ are all measurable.

Exercise 25. Define the subset of the power set $\mathcal{P}(\mathbf{C})$:

$$
\mathcal{C} \triangleq] a, b[\times] c, d[, a, b, c, d \in \mathbf{R}\}
$$

where it is understood that:

$$
] a, b[\times] c, d[\triangleq\{z=x+i y \in \mathbf{C},(x, y) \in] a, b[\times] c, d[\}
$$

1. Show that any element of \mathcal{C} is open in \mathbf{C}.
2. Show that $\sigma(\mathcal{C}) \subseteq \mathcal{B}(\mathbf{C})$.
3. Let $z=x+i y \in \mathbf{C}$. Show that if $|x|<\eta$ and $|y|<\eta$ then we have $|z|<\sqrt{2} \eta$.
4. Let U be open in \mathbf{C}. Show that for all $z \in U$, there are rational numbers $a_{z}, b_{z}, c_{z}, d_{z}$ such that $\left.z \in\right] a_{z}, b_{z}[\times] c_{z}, d_{z}[\subseteq U$.
5. Show that U can be written as $U=\cup_{n=1}^{+\infty} A_{n}$ where $A_{n} \in \mathcal{C}$.
6. Show that $\sigma(\mathcal{C})=\mathcal{B}(\mathbf{C})$.
7. Let (Ω, \mathcal{F}) be a measurable space, and $u, v:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be two measurable maps. Show that $u+i v:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ is measurable.
