Tutorial 8: Jensen inequality

8. Jensen inequality

Definition 64 Let $a, b \in \overline{\mathbf{R}}$, with $a<b$. Let $\phi:] a, b[\rightarrow \mathbf{R}$ be an \mathbf{R}-valued function. We say that ϕ is a convex function, if and only if, for all $x, y \in] a, b[$ and $t \in[0,1]$, we have:

$$
\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y)
$$

Exercise 1. Let $a, b \in \overline{\mathbf{R}}$, with $a<b$. Let $\phi:] a, b[\rightarrow \mathbf{R}$ be a map.

1. Show that $\phi:] a, b\left[\rightarrow \mathbf{R}\right.$ is convex, if and only if for all x_{1}, \ldots, x_{n} in $] a, b\left[\right.$ and $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbf{R}^{+}with $\alpha_{1}+\ldots+\alpha_{n}=1, n \geq 1$, we have:

$$
\phi\left(\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right) \leq \alpha_{1} \phi\left(x_{1}\right)+\ldots \alpha_{n} \phi\left(x_{n}\right)
$$

2. Show that $\phi:] a, b[\rightarrow \mathbf{R}$ is convex, if and only if for all x, y, z with $a<x<y<z<b$ we have:

$$
\phi(y) \leq \frac{z-y}{z-x} \phi(x)+\frac{y-x}{z-x} \phi(z)
$$

3. Show that $\phi:] a, b[\rightarrow \mathbf{R}$ is convex if and only if for all x, y, z with $a<x<y<z<b$, we have:

$$
\frac{\phi(y)-\phi(x)}{y-x} \leq \frac{\phi(z)-\phi(y)}{z-y}
$$

4. Let $\phi:] a, b\left[\rightarrow \mathbf{R}\right.$ be convex. Let $\left.x_{0} \in\right] a, b\left[\right.$, and $\left.u, u^{\prime}, v, v^{\prime} \in\right] a, b[$ be such that $u<u^{\prime}<x_{0}<v<v^{\prime}$. Show that for all $\left.x \in\right] x_{0}, v[$:

$$
\frac{\phi\left(u^{\prime}\right)-\phi(u)}{u^{\prime}-u} \leq \frac{\phi(x)-\phi\left(x_{0}\right)}{x-x_{0}} \leq \frac{\phi\left(v^{\prime}\right)-\phi(v)}{v^{\prime}-v}
$$

and deduce that $\lim _{x \downarrow \downarrow x_{0}} \phi(x)=\phi\left(x_{0}\right)$
5. Show that if $\phi:] a, b[\rightarrow \mathbf{R}$ is convex, then ϕ is continuous.
6. Define $\phi:[0,1] \rightarrow \mathbf{R}$ by $\phi(0)=1$ and $\phi(x)=0$ for all $x \in] 0,1]$. Show that $\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y), \forall x, y, t \in[0,1]$, but that ϕ fails to be continuous on $[0,1]$.

Definition 65 Let (Ω, \mathcal{T}) be a topological space. We say that (Ω, \mathcal{T}) is a compact topological space if and only if, for all family $\left(V_{i}\right)_{i \in I}$ of open sets in Ω, such that $\Omega=\cup_{i \in I} V_{i}$, there exists a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I such that $\Omega=V_{i_{1}} \cup \ldots \cup V_{i_{n}}$.

In short, we say that (Ω, \mathcal{T}) is compact if and only if, from any open covering of Ω, one can extract a finite sub-covering.

Definition 66 Let (Ω, \mathcal{T}) be a topological space, and $K \subseteq \Omega$. We say that K is a compact subset of Ω, if and only if the induced topological space $\left(K, \mathcal{T}_{\mid K}\right)$ is a compact topological space.

ExErcise 2. Let (Ω, \mathcal{T}) be a topological space.

1. Show that if (Ω, \mathcal{T}) is compact, it is a compact subset of itself.
2. Show that \emptyset is a compact subset of Ω.
3. Show that if $\Omega^{\prime} \subseteq \Omega$ and K is a compact subset of Ω^{\prime}, then K is also a compact subset of Ω.
4. Show that if $\left(V_{i}\right)_{i \in I}$ is a family of open sets in Ω such that $K \subseteq \cup_{i \in I} V_{i}$, then $K=\cup_{i \in I}\left(V_{i} \cap K\right)$ and $V_{i} \cap K$ is open in K for all $i \in I$.
5. Show that $K \subseteq \Omega$ is a compact subset of Ω, if and only if for any family $\left(V_{i}\right)_{i \in I}$ of open sets in Ω such that $K \subseteq \cup_{i \in I} V_{i}$, there is a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I such that $K \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$.
6. Show that if (Ω, \mathcal{T}) is compact and K is closed in Ω, then K is a compact subset of Ω.

Exercise 3. Let $a, b \in \mathbf{R}, a<b$. Let $\left(V_{i}\right)_{i \in I}$ be a family of open sets in \mathbf{R} such that $[a, b] \subseteq \cup_{i \in I} V_{i}$. We define A as the set of all $x \in[a, b]$ such that $[a, x]$ can be covered by a finite number of V_{i} 's. Let $c=\sup A$.

1. Show that $a \in A$.
2. Show that there is $\epsilon>0$ such that $a+\epsilon \in A$.

Tutorial 8: Jensen inequality
3. Show that $a<c \leq b$.
4. Show the existence of $i_{0} \in I$ and $c^{\prime}, c^{\prime \prime}$ with $a<c^{\prime}<c<c^{\prime \prime}$, such that $\left.] c^{\prime}, c^{\prime \prime}\right] \subseteq V_{i_{0}}$.
5. Show that $\left[a, c^{\prime}\right]$ can be covered by a finite number of V_{i} 's.
6. Show that $\left[a, c^{\prime \prime}\right]$ can be covered by a finite number of V_{i} 's.
7. Show that $b \wedge c^{\prime \prime} \leq c$ and conclude that $c=b$.
8. Show that $[a, b]$ is a compact subset of \mathbf{R}.

Theorem 34 Let $a, b \in \mathbf{R}, a<b$. The closed interval $[a, b]$ is a compact subset of \mathbf{R}.

Tutorial 8: Jensen inequality

Definition 67 Let (Ω, \mathcal{T}) be a topological space. We say that (Ω, \mathcal{T}) is a Hausdorff topological space, if and only if for all $x, y \in \Omega$ with $x \neq y$, there exists open sets U and V in Ω, such that:

$$
x \in U, y \in V, U \cap V=\emptyset
$$

Exercise 4. Let (Ω, \mathcal{T}) be a topological space.

1. Show that if (Ω, \mathcal{T}) is Hausdorff and $\Omega^{\prime} \subseteq \Omega$, then the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is itself Hausdorff.
2. Show that if (Ω, \mathcal{T}) is metrizable, then it is Hausdorff.
3. Show that any subset of $\overline{\mathbf{R}}$ is Hausdorff.
4. Let $\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$ be a family of Hausdorff topological spaces. Show that the product topological space $\Pi_{i \in I} \Omega_{i}$ is Hausdorff.

Exercise 5. Let (Ω, \mathcal{T}) be a Hausdorff topological space. Let K be a compact subset of Ω and suppose there exists $y \in K^{c}$.

Tutorial 8: Jensen inequality

1. Show that for all $x \in K$, there are open sets V_{x}, W_{x} in Ω, such that $y \in V_{x}, x \in W_{x}$ and $V_{x} \cap W_{x}=\emptyset$.
2. Show that there exists a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of K such that $K \subseteq W^{y}$ where $W^{y}=W_{x_{1}} \cup \ldots \cup W_{x_{n}}$.
3. Let $V^{y}=V_{x_{1}} \cap \ldots \cap V_{x_{n}}$. Show that V^{y} is open and $V^{y} \cap W^{y}=\emptyset$.
4. Show that $y \in V^{y} \subseteq K^{c}$.
5. Show that $K^{c}=\cup_{y \in K^{c}} V^{y}$
6. Show that K is closed in Ω.

Theorem 35 Let (Ω, \mathcal{T}) be a Hausdorff topological space. For all $K \subseteq \Omega$, if K is a compact subset, then it is closed.

Tutorial 8: Jensen inequality

Definition 68 Let (E, d) be a metric space. For all $A \subseteq E$, we call diameter of A with respect to d, the element of $\overline{\mathbf{R}}$ denoted $\delta(A)$, defined as $\delta(A)=\sup \{d(x, y): x, y \in A\}$, with the convention that $\delta(\emptyset)=-\infty$.

Definition 69 Let (E, d) be a metric space, and $A \subseteq E$. We say that A is bounded, if and only if $\delta(A)<+\infty$.

Exercise 6. Let (E, d) be a metric space. Let $A \subseteq E$.

1. Show that $\delta(A)=0$ if and only if $A=\{x\}$ for some $x \in E$.
2. Let $\phi: \mathbf{R} \rightarrow]-1,1$ [be an increasing homeomorphism. Define $d^{\prime \prime}(x, y)=|x-y|$ and $d^{\prime}(x, y)=|\phi(x)-\phi(y)|$, for all $x, y \in \mathbf{R}$. Show that d^{\prime} is a metric on \mathbf{R} inducing the usual topology on \mathbf{R}. Show that \mathbf{R} is bounded with respect to d^{\prime} but not with respect to $d^{\prime \prime}$.
3. Show that if $K \subseteq E$ is a compact subset of E, for all $\epsilon>0$, there is a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of K such that:

$$
K \subseteq B\left(x_{1}, \epsilon\right) \cup \ldots \cup B\left(x_{n}, \epsilon\right)
$$

4. Show that any compact subset of any metrizable topological space (Ω, \mathcal{T}), is bounded with respect to any metric inducing the topology \mathcal{T}.

Exercise 7. Suppose K is a closed subset of \mathbf{R} which is bounded with respect to the usual metric on \mathbf{R}.

1. Show that there exists $M \in \mathbf{R}^{+}$such that $K \subseteq[-M, M]$.
2. Show that K is also closed in $[-M, M]$.
3. Show that K is a compact subset of $[-M, M]$.
4. Show that K is a compact subset of \mathbf{R}.

Tutorial 8: Jensen inequality
5. Show that any compact subset of \mathbf{R} is closed and bounded.
6. Show the following:

Theorem 36 A subset of \mathbf{R} is compact if and only if it is closed, and bounded with respect to the usual metric on \mathbf{R}.

Exercise 8. Let (Ω, \mathcal{T}) and $\left(S, \mathcal{T}_{S}\right)$ be two topological spaces. Let $f:(\Omega, \mathcal{T}) \rightarrow\left(S, \mathcal{T}_{S}\right)$ be a continuous map.

1. Show that if $\left(W_{i}\right)_{i \in I}$ is an open covering of $f(\Omega)$, then the family $\left(f^{-1}\left(W_{i}\right)\right)_{i \in I}$ is an open covering of Ω.
2. Show that if (Ω, \mathcal{T}) is a compact topological space, then $f(\Omega)$ is a compact subset of $\left(S, \mathcal{T}_{S}\right)$.

Tutorial 8: Jensen inequality

Exercise 9.

1. Show that $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is a compact topological space.
2. Show that any compact subset of \mathbf{R} is a compact subset of $\overline{\mathbf{R}}$.
3. Show that a subset of $\overline{\mathbf{R}}$ is compact if and only if it is closed.
4. Let A be a non-empty subset of $\overline{\mathbf{R}}$, and let $\alpha=\sup A$. Show that if $\alpha \neq-\infty$, then for all $U \in \mathcal{T}_{\overline{\mathbf{R}}}$ with $\alpha \in U$, there exists $\beta \in \mathbf{R}$ with $\beta<\alpha$ and $] \beta, \alpha] \subseteq U$. Conclude that $\alpha \in \bar{A}$.
5. Show that if A is a non-empty closed subset of $\overline{\mathbf{R}}$, then we have $\sup A \in A$ and $\inf A \in A$.
6. Consider $A=\{x \in \mathbf{R}, \sin (x)=0\}$. Show that A is closed in \mathbf{R}, but that $\sup A \notin A$ and $\inf A \notin A$.
7. Show that if A is a non-empty, closed and bounded subset of \mathbf{R}, then $\sup A \in A$ and $\inf A \in A$.

Tutorial 8: Jensen inequality

Exercise 10. Let (Ω, \mathcal{T}) be a compact, non-empty topological space. Let $f:(\Omega, \mathcal{T}) \rightarrow\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ be a continuous map.

1. Show that if $f(\Omega) \subseteq \mathbf{R}$, the continuity of f with respect to $\mathcal{T}_{\overline{\mathbf{R}}}$ is equivalent to the continuity of f with respect to $\mathcal{T}_{\mathbf{R}}$.
2. Show the following:

Theorem 37 Let $f:(\Omega, \mathcal{T}) \rightarrow\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ be a continuous map, where (Ω, \mathcal{T}) is a non-empty topological space. Then, if (Ω, \mathcal{T}) is compact, f attains its maximum and minimum, i.e. there exist $x_{m}, x_{M} \in \Omega$, such that:

$$
f\left(x_{m}\right)=\inf _{x \in \Omega} f(x), f\left(x_{M}\right)=\sup _{x \in \Omega} f(x)
$$

Exercise 11. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous on $[a, b]$, and differentiable on $] a, b[$, with $f(a)=f(b)$.

Tutorial 8: Jensen inequality

1. Show that if $c \in] a, b\left[\right.$ and $f(c)=\sup _{x \in[a, b]} f(x)$, then $f^{\prime}(c)=0$.
2. Show the following:

Theorem 38 (Rolle) Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous on $[a, b]$, and differentiable on $] a, b[$, with $f(a)=f(b)$. Then, there exists $c \in] a, b\left[\right.$ such that $f^{\prime}(c)=0$.

Exercise 12. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous on $[a, b]$ and differentiable on $] a, b[$. Define:

$$
h(x) \triangleq f(x)-(x-a) \frac{f(b)-f(a)}{b-a}
$$

1. Show that h is continuous on $[a, b]$ and differentiable on $] a, b[$.
2. Show the existence of $c \in] a, b[$ such that:

$$
f(b)-f(a)=(b-a) f^{\prime}(c)
$$

Exercise 13. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be a map. Let $n \geq 0$. We assume that f is of class C^{n} on $[a, b]$, and that $f^{(n+1)}$ exists on $] a, b[$. Define:

$$
h(x) \triangleq f(b)-f(x)-\sum_{k=1}^{n} \frac{(b-x)^{k}}{k!} f^{(k)}(x)-\alpha \frac{(b-x)^{n+1}}{(n+1)!}
$$

where α is chosen such that $h(a)=0$.

1. Show that h is continuous on $[a, b]$ and differentiable on $] a, b[$.
2. Show that for all $x \in] a, b[$:

$$
h^{\prime}(x)=\frac{(b-x)^{n}}{n!}\left(\alpha-f^{(n+1)}(x)\right)
$$

3. Prove the following:

Tutorial 8: Jensen inequality
Theorem 39 (Taylor-Lagrange) Let $a, b \in \mathbf{R}, a<b$, and $n \geq 0$. Let $f:[a, b] \rightarrow \mathbf{R}$ be a map of class C^{n} on $[a, b]$ such that $f^{(n+1)}$ exists on $] a, b[$. Then, there exists $c \in] a, b[$ such that:

$$
f(b)-f(a)=\sum_{k=1}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a)+\frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

Exercise 14. Let $a, b \in \overline{\mathbf{R}}, a<b$ and $\phi:] a, b[\rightarrow \mathbf{R}$ be differentiable.

1. Show that if ϕ is convex, then for all $x, y \in] a, b[, x<y$, we have:

$$
\phi^{\prime}(x) \leq \phi^{\prime}(y)
$$

2. Show that if $x, y, z \in] a, b\left[\right.$ with $x<y<z$, there are $\left.c_{1}, c_{2} \in\right] a, b[$, with $c_{1}<c_{2}$ and:

$$
\begin{aligned}
\phi(y)-\phi(x) & =\phi^{\prime}\left(c_{1}\right)(y-x) \\
\phi(z)-\phi(y) & =\phi^{\prime}\left(c_{2}\right)(z-y)
\end{aligned}
$$

3. Show conversely that if ϕ^{\prime} is non-decreasing, then ϕ is convex.

Tutorial 8: Jensen inequality
4. Show that $x \rightarrow e^{x}$ is convex on \mathbf{R}.
5. Show that $x \rightarrow-\ln (x)$ is convex on $] 0,+\infty[$.

Definition 70 we say that a finite measure space (Ω, \mathcal{F}, P) is a probability space, if and only if $P(\Omega)=1$.

Definition 71 Let (Ω, \mathcal{F}, P) be a probability space, and (S, Σ) be a measurable space. We call random variable w.r. to (S, Σ), any measurable map $X:(\Omega, \mathcal{F}) \rightarrow(S, \Sigma)$.

Definition 72 Let (Ω, \mathcal{F}, P) be a probability space. Let X be a nonnegative random variable, or an element of $L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, P)$. We call expectation of X, denoted $E[X]$, the integral:

$$
E[X] \triangleq \int_{\Omega} X d P
$$

Tutorial 8: Jensen inequality
ExERCISE 15. Let $a, b \in \overline{\mathbf{R}}, a<b$ and $\phi:] a, b[\rightarrow \mathbf{R}$ be a convex map. Let (Ω, \mathcal{F}, P) be a probability space and $X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$ be such that $X(\Omega) \subseteq] a, b[$.

1. Show that $\phi \circ X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ is measurable.
2. Show that $\phi \circ X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$, if and only if $E[|\phi \circ X|]<+\infty$.
3. Show that if $E[X]=a$, then $a \in \mathbf{R}$ and $X=a P$-a.s.
4. Show that if $E[X]=b$, then $b \in \mathbf{R}$ and $X=b P$-a.s.
5. Let $m=E[X]$. Show that $m \in] a, b[$.
6. Define:

$$
\beta \triangleq \sup _{x \in] a, m[} \frac{\phi(m)-\phi(x)}{m-x}
$$

Show that $\beta \in \mathbf{R}$ and that for all $z \in] m, b[$, we have:

$$
\beta \leq \frac{\phi(z)-\phi(m)}{z-m}
$$

Tutorial 8: Jensen inequality
7. Show that for all $x \in] a, b[$, we have $\phi(m)+\beta(x-m) \leq \phi(x)$.
8. Show that for all $\omega \in \Omega, \phi(m)+\beta(X(\omega)-m) \leq \phi(X(\omega))$.
9. Show that if $\phi \circ X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$ then $\phi(m) \leq E[\phi \circ X]$.

Theorem 40 (Jensen inequality) Let (Ω, \mathcal{F}, P) be a probability space. Let $a, b \in \overline{\mathbf{R}}, a<b$ and $\phi:] a, b[\rightarrow \mathbf{R}$ be a convex map. Suppose that $X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$ is such that $\left.X(\Omega) \subseteq\right] a, b[$ and such that $\phi \circ X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$. Then:

$$
\phi(E[X]) \leq E[\phi \circ X]
$$

