18. The Jacobian Formula

In the following, \mathbf{K} denotes \mathbf{R} or \mathbf{C}.
Definition 125 We call \mathbf{K}-normed space, an ordered pair (E, N), where E is a \mathbf{K}-vector space, and $N: E \rightarrow \mathbf{R}^{+}$is a norm on E.

See definition (89) for vector space, and definition (95) for norm.
Exercise 1. Let $\langle\cdot, \cdot\rangle$ be an inner-product on a \mathbf{K}-vector space \mathcal{H}.

1. Show that $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ is a norm on \mathcal{H}.
2. Show that $(\mathcal{H},\|\cdot\|)$ is a \mathbf{K}-normed space.

Exercise 2. Let $(E,\|\cdot\|)$ be a K-normed space:

1. Show that $d(x, y)=\|x-y\|$ defines a metric on E.
2. Show that for all $x, y \in E$, we have $|\|x\|-\|y\|| \leq\|x-y\|$.

Definition 126 Let $(E,\|\cdot\|)$ be a \mathbf{K}-normed space, and d be the metric defined by $d(x, y)=\|x-y\|$. We call norm topology on E, denoted $\mathcal{T}_{\|\cdot\|}$, the topology on E associated with d.

Note that this definition is consistent with definition (82) of the norm topology associated with an inner-product.

Exercise 3. Let E, F be two K-normed spaces, and $l: E \rightarrow F$ be a linear map. Show that the following are equivalent:
(i) $\quad l$ is continuous (w.r. to the norm topologies)
(ii) $\quad l$ is continuous at $x=0$.
(iii) $\quad \exists K \in \mathbf{R}^{+}, \forall x \in E,\|l(x)\| \leq K\|x\|$ (iv) $\quad \sup \{\|l(x)\|: x \in E,\|x\|=1\}<+\infty$

Definition 127 Let E, F be \mathbf{K}-normed spaces. The \mathbf{K}-vector space of all continuous linear maps $l: E \rightarrow F$ is denoted $\mathcal{L}_{\mathbf{K}}(E, F)$.

Exercise 4. Show that $\mathcal{L}_{\mathbf{K}}(E, F)$ is indeed a \mathbf{K}-vector space.
Exercise 5. Let E, F be \mathbf{K}-normed spaces. Given $l \in \mathcal{L}_{\mathbf{K}}(E, F)$, let:

$$
\|l\| \triangleq \sup \{\|l(x)\|: x \in E,\|x\|=1\}<+\infty
$$

1. Show that:

$$
\|l\|=\sup \{\|l(x)\|: x \in E,\|x\| \leq 1\}
$$

2. Show that:

$$
\|l\|=\sup \left\{\frac{\|l(x)\|}{\|x\|}: x \in E, x \neq 0\right\}
$$

3. Show that $\|l(x)\| \leq\|l\| .\|x\|$, for all $x \in E$.
4. Show that $\|l\|$ is the smallest $K \in \mathbf{R}^{+}$, such that:

$$
\forall x \in E,\|l(x)\| \leq K\|x\|
$$

5. Show that $l \rightarrow\|l\|$ is a norm on $\mathcal{L}_{\mathbf{K}}(E, F)$.
6. Show that $\left(\mathcal{L}_{\mathbf{K}}(E, F),\|\cdot\|\right)$ is a \mathbf{K}-normed space.

Definition 128 Let E, F be \mathbf{R}-normed spaces and U be an open subset of E. We say that a map $\phi: U \rightarrow F$ is differentiable at some $a \in U$, if and only if there exists $l \in \mathcal{L}_{\mathbf{R}}(E, F)$ such that, for all $\epsilon>0$, there exists $\delta>0$, such that for all $h \in E$:

$$
\|h\| \leq \delta \Rightarrow a+h \in U \text { and }\|\phi(a+h)-\phi(a)-l(h)\| \leq \epsilon\|h\|
$$

Exercise 6. Let E, F be two \mathbf{R}-normed spaces, and U be open in E. Let $\phi: U \rightarrow F$ be a map and $a \in U$.

1. Suppose that $\phi: U \rightarrow F$ is differentiable at $a \in U$, and that $l_{1}, l_{2} \in \mathcal{L}_{\mathbf{R}}(E, F)$ satisfy the requirement of definition (128). Show that for all $\epsilon>0$, there exists $\delta>0$ such that:

$$
\forall h \in E,\|h\| \leq \delta \Rightarrow\left\|l_{1}(h)-l_{2}(h)\right\| \leq \epsilon\|h\|
$$

2. Conclude that $\left\|l_{1}-l_{2}\right\|=0$ and finally that $l_{1}=l_{2}$.

Definition 129 Let E, F be \mathbf{R}-normed spaces and U be an open subset of E. Let $\phi: U \rightarrow F$ be a map and $a \in U$. If ϕ is differentiable at a, we call differential of ϕ at a, the unique element of $\mathcal{L}_{\mathbf{R}}(E, F)$, denoted $d \phi(a)$, satisfying the requirement of definition (128). If ϕ is differentiable at all points of U, the map $d \phi: U \rightarrow \mathcal{L}_{\mathbf{R}}(E, F)$ is also called the differential of ϕ.

Definition 130 Let E, F be \mathbf{R}-normed spaces and U be an open subset of E. A map $\phi: U \rightarrow F$ is said to be of class C^{1}, if and only if $d \phi(a)$ exists for all $a \in U$, and the differential $d \phi: U \rightarrow \mathcal{L}_{\mathbf{R}}(E, F)$ is a continuous map.

Exercise 7. Let E, F be two \mathbf{R}-normed spaces and U be open in E. Let $\phi: U \rightarrow F$ be a map, and $a \in U$.

1. Show that ϕ differentiable at $a \Rightarrow \phi$ continuous at a.
2. If ϕ is of class C^{1}, explain with respect to which topologies the differential $d \phi: U \rightarrow \mathcal{L}_{\mathbf{R}}(E, F)$ is said to be continuous.
3. Show that if ϕ is of class C^{1}, then ϕ is continuous.
4. Suppose that $E=\mathbf{R}$. Show that for all $a \in U, \phi$ is differentiable at $a \in U$, if and only if the derivative:

$$
\phi^{\prime}(a) \triangleq \lim _{t \neq 0, t \rightarrow 0} \frac{\phi(a+t)-\phi(a)}{t}
$$

exists in F, in which case $d \phi(a) \in \mathcal{L}_{\mathbf{R}}(\mathbf{R}, F)$ is given by:

$$
\forall t \in \mathbf{R}, d \phi(a)(t)=t \cdot \phi^{\prime}(a)
$$

In particular, $\phi^{\prime}(a)=d \phi(a)(1)$.

Exercise 8. Let E, F, G be three \mathbf{R}-normed spaces. Let U be open in E and V be open in F. Let $\phi: U \rightarrow F$ and $\psi: V \rightarrow G$ be two maps

Tutorial 18: The Jacobian Formula
such that $\phi(U) \subseteq V$. We assume that ϕ is differentiable at $a \in U$, and we put:

$$
l_{1} \triangleq d \phi(a) \in \mathcal{L}_{\mathbf{R}}(E, F)
$$

We assume that ψ is differentiable at $\phi(a) \in V$, and we put:

$$
l_{2} \triangleq d \psi(\phi(a)) \in \mathcal{L}_{\mathbf{R}}(F, G)
$$

1. Explain why $\psi \circ \phi: U \rightarrow G$ is a well-defined map.
2. Given $\epsilon>0$, show the existence of $\eta>0$ such that:

$$
\eta\left(\eta+\left\|l_{1}\right\|+\left\|l_{2}\right\|\right) \leq \epsilon
$$

3. Show the existence of $\delta_{2}>0$ such that for all $h_{2} \in F$ with $\left\|h_{2}\right\| \leq \delta_{2}$, we have $\phi(a)+h_{2} \in V$ and:

$$
\left\|\psi\left(\phi(a)+h_{2}\right)-\psi \circ \phi(a)-l_{2}\left(h_{2}\right)\right\| \leq \eta\left\|h_{2}\right\|
$$

4. Show that if $h_{2} \in F$ and $\left\|h_{2}\right\| \leq \delta_{2}$, then for all $h \in E$, we have:

$$
\left\|\psi\left(\phi(a)+h_{2}\right)-\psi \circ \phi(a)-l_{2} \circ l_{1}(h)\right\| \leq \eta\left\|h_{2}\right\|+\left\|l_{2}\right\| \cdot\left\|h_{2}-l_{1}(h)\right\|
$$

5. Show the existence of $\delta>0$ such that for all $h \in E$ with $\|h\| \leq \delta$, we have $a+h \in U$ and $\left\|\phi(a+h)-\phi(a)-l_{1}(h)\right\| \leq \eta\|h\|$, together with $\|\phi(a+h)-\phi(a)\| \leq \delta_{2}$.
6. Show that if $h \in E$ is such that $\|h\| \leq \delta$, then $a+h \in U$ and:

$$
\begin{aligned}
\left\|\psi \circ \phi(a+h)-\psi \circ \phi(a)-l_{2} \circ l_{1}(h)\right\| & \leq \eta\|\phi(a+h)-\phi(a)\|+\eta\left\|l_{2}\right\| \cdot\|h\| \\
& \leq \eta\left(\eta+\left\|l_{1}\right\|+\left\|l_{2}\right\|\right)\|h\| \\
& \leq \epsilon\|h\|
\end{aligned}
$$

7. Show that $l_{2} \circ l_{1} \in \mathcal{L}_{\mathbf{R}}(E, G)$
8. Conclude with the following:

Theorem 110 Let E, F, G be three \mathbf{R}-normed spaces, U be open in E and V be open in F. Let $\phi: U \rightarrow F$ and $\psi: V \rightarrow G$ be two maps such that $\phi(U) \subseteq V$. Let $a \in U$. Then, if ϕ is differentiable at $a \in U$, and ψ is differentiable at $\phi(a) \in V$, then $\psi \circ \phi$ is differentiable at $a \in U$, and furthermore:

$$
d(\psi \circ \phi)(a)=d \psi(\phi(a)) \circ d \phi(a)
$$

Exercise 9. Let $\left(\Omega^{\prime}, \mathcal{T}^{\prime}\right)$ and (Ω, \mathcal{T}) be two topological spaces, and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ be a set of subsets of Ω generating the topology \mathcal{T}, i.e. such that $\mathcal{T}=\mathcal{T}(\mathcal{A})$ as defined in (55). Let $f: \Omega^{\prime} \rightarrow \Omega$ be a map, and define:

$$
\mathcal{U} \triangleq\left\{A \subseteq \Omega: f^{-1}(A) \in \mathcal{T}^{\prime}\right\}
$$

1. Show that \mathcal{U} is a topology on Ω.
2. Show that $f:\left(\Omega^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow(\Omega, \mathcal{T})$ is continuous, if and only if:

$$
\forall A \in \mathcal{A}, f^{-1}(A) \in \mathcal{T}^{\prime}
$$

Exercise 10. Let $\left(\Omega^{\prime}, \mathcal{T}^{\prime}\right)$ be a topological space, and $\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$ be a family of topological spaces, indexed by a non-empty set I. Let Ω be the Cartesian product $\Omega=\Pi_{i \in I} \Omega_{i}$ and $\mathcal{T}=\odot_{i \in I} \mathcal{T}_{i}$ be the product topology on Ω. Let $\left(f_{i}\right)_{i \in I}$ be a family of maps $f_{i}: \Omega^{\prime} \rightarrow \Omega_{i}$ indexed by I, and let $f: \Omega^{\prime} \rightarrow \Omega$ be the map defined by $f(\omega)=\left(f_{i}(\omega)\right)_{i \in I}$ for all $\omega \in \Omega^{\prime}$. Let $p_{i}: \Omega \rightarrow \Omega_{i}$ be the canonical projection mapping.

1. Show that $p_{i}:(\Omega, \mathcal{T}) \rightarrow\left(\Omega_{i}, \mathcal{T}_{i}\right)$ is continuous for all $i \in I$.
2. Show that $f:\left(\Omega^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow(\Omega, \mathcal{T})$ is continuous, if and only if each coordinate mapping $f_{i}:\left(\Omega^{\prime}, \mathcal{T}^{\prime}\right) \rightarrow\left(\Omega, \mathcal{T}_{i}\right)$ is continuous.

Exercise 11. Let E, F, G be three \mathbf{R}-normed spaces. Let U be open in E and V be open in F. Let $\phi: U \rightarrow F$ and $\psi: V \rightarrow G$ be two maps of class C^{1} such that $\phi(U) \subseteq V$.

1. For all $\left(l_{1}, l_{2}\right) \in \mathcal{L}_{\mathbf{R}}(F, G) \times \mathcal{L}_{\mathbf{R}}(E, F)$, we define:

$$
N_{1}\left(l_{1}, l_{2}\right) \triangleq\left\|l_{1}\right\|+\left\|l_{2}\right\|
$$

$$
\begin{aligned}
N_{2}\left(l_{1}, l_{2}\right) & \triangleq \sqrt{\left\|l_{1}\right\|^{2}+\left\|l_{2}\right\|^{2}} \\
N_{\infty}\left(l_{1}, l_{2}\right) & \triangleq \max \left(\left\|l_{1}\right\|,\left\|l_{2}\right\|\right)
\end{aligned}
$$

Show that N_{1}, N_{2}, N_{∞} are all norms on $\mathcal{L}_{\mathbf{R}}(F, G) \times \mathcal{L}_{\mathbf{R}}(E, F)$.
2. Show they induce the product topology on $\mathcal{L}_{\mathbf{R}}(F, G) \times \mathcal{L}_{\mathbf{R}}(E, F)$.
3. We define the map $H: \mathcal{L}_{\mathbf{R}}(F, G) \times \mathcal{L}_{\mathbf{R}}(E, F) \rightarrow \mathcal{L}_{\mathbf{R}}(E, G)$ by:

$$
\forall\left(l_{1}, l_{2}\right) \in \mathcal{L}_{\mathbf{R}}(F, G) \times \mathcal{L}_{\mathbf{R}}(E, F), H\left(l_{1}, l_{2}\right) \triangleq l_{1} \circ l_{2}
$$

Show that $\left\|H\left(l_{1}, l_{2}\right)\right\| \leq\left\|l_{1}\right\| \cdot\left\|l_{2}\right\|$, for all l_{1}, l_{2}.
4. Show that H is continuous.
5. We define $K: U \rightarrow \mathcal{L}_{\mathbf{R}}(F, G) \times \mathcal{L}_{\mathbf{R}}(E, F)$ by:

$$
\forall a \in U, K(a) \triangleq(d \psi(\phi(a)), d \phi(a))
$$

Show that K is continuous.
6. Show that $\psi \circ \phi$ is differentiable on U.
7. Show that $d(\psi \circ \phi)=H \circ K$.
8. Conclude with the following:

Theorem 111 Let E, F, G be three \mathbf{R}-normed spaces, U be open in E and V be open in F. Let $\phi: U \rightarrow F$ and $\psi: V \rightarrow G$ be two maps of class C^{1} such that $\phi(U) \subseteq V$. Then, $\psi \circ \phi: U \rightarrow G$ is of class C^{1}.

Exercise 12. Let E be an \mathbf{R}-normed space. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow E$ and $g:[a, b] \rightarrow \mathbf{R}$ be two continuous maps which are differentiable at every point of $] a, b[$. We assume that:

$$
\forall t \in] a, b\left[,\left\|f^{\prime}(t)\right\| \leq g^{\prime}(t)\right.
$$

1. Given $\epsilon>0$, we define $\phi_{\epsilon}:[a, b] \rightarrow \mathbf{R}$ by:

$$
\phi_{\epsilon}(t) \triangleq\|f(t)-f(a)\|-g(t)+g(a)-\epsilon(t-a)
$$

for all $t \in[a, b]$. Show that ϕ_{ϵ} is continuous.
2. Define $E_{\epsilon}=\left\{t \in[a, b]: \phi_{\epsilon}(t) \leq \epsilon\right\}$, and $c=\sup E_{\epsilon}$. Show that:

$$
c \in[a, b] \text { and } \phi_{\epsilon}(c) \leq \epsilon
$$

3. Show the existence of $h>0$, such that:

$$
\forall t \in\left[a, a+h\left[\cap[a, b], \phi_{\epsilon}(t) \leq \epsilon\right.\right.
$$

4. Show that $c \in] a, b]$.
5. Suppose that $c \in] a, b\left[\right.$. Show the existence of $\left.\left.t_{0} \in\right] c, b\right]$ such that:

$$
\left\|\frac{f\left(t_{0}\right)-f(c)}{t_{0}-c}\right\| \leq\left\|f^{\prime}(c)\right\|+\epsilon / 2 \text { and } g^{\prime}(c) \leq \frac{g\left(t_{0}\right)-g(c)}{t_{0}-c}+\epsilon / 2
$$

6. Show that $\left\|f\left(t_{0}\right)-f(c)\right\| \leq g\left(t_{0}\right)-g(c)+\epsilon\left(t_{0}-c\right)$.
7. Show that $\|f(c)-f(a)\| \leq g(c)-g(a)+\epsilon(c-a)+\epsilon$.
8. Show that $\left\|f\left(t_{0}\right)-f(a)\right\| \leq g\left(t_{0}\right)-g(a)+\epsilon\left(t_{0}-a\right)+\epsilon$.
9. Show that $c \in] a, b[$ leads to a contradiction.
10. Show that $\|f(b)-f(a)\| \leq g(b)-g(a)+\epsilon(b-a)+\epsilon$.
11. Conclude with the following:

Theorem 112 Let E be an \mathbf{R}-normed space. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow E$ and $g:[a, b] \rightarrow \mathbf{R}$ be two continuous maps which are differentiable at every point of $] a, b[$, and such that:

$$
\forall t \in] a, b\left[,\left\|f^{\prime}(t)\right\| \leq g^{\prime}(t)\right.
$$

Then:

$$
\|f(b)-f(a)\| \leq g(b)-g(a)
$$

Definition 131 Let $n \geq 1$ and U be open in \mathbf{R}^{n}. Let $\phi: U \rightarrow E$ be a map, where E is an \mathbf{R}-normed space. For all $i=1, \ldots, n$, we say that ϕ has an ith partial derivative at $a \in U$, if and only if the limit:

$$
\frac{\partial \phi}{\partial x_{i}}(a) \triangleq \lim _{h \neq 0, h \rightarrow 0} \frac{\phi\left(a+h e_{i}\right)-\phi(a)}{h}
$$

exists in E, where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbf{R}^{n}.
Exercise 13. Let $n \geq 1$ and U be open in \mathbf{R}^{n}. Let $\phi: U \rightarrow E$ be a map, where E is an \mathbf{R}-normed space.

1. Suppose ϕ is differentiable at $a \in U$. Show that for all $i \in \mathbf{N}_{n}$:

$$
\lim _{h \neq 0, h \rightarrow 0} \frac{1}{\left\|h e_{i}\right\|}\left\|\phi\left(a+h e_{i}\right)-\phi(a)-d \phi(a)\left(h e_{i}\right)\right\|=0
$$

2. Show that for all $i \in \mathbf{N}_{n}, \frac{\partial \phi}{\partial x_{i}}(a)$ exists, and:

$$
\frac{\partial \phi}{\partial x_{i}}(a)=d \phi(a)\left(e_{i}\right)
$$

3. Conclude with the following:

Theorem 113 Let $n \geq 1$ and U be open in \mathbf{R}^{n}. Let $\phi: U \rightarrow E$ be a map, where E is an \mathbf{R}-normed space. Then, if ϕ is differentiable at $a \in U$, for all $i=1, \ldots, n, \frac{\partial \phi}{\partial x_{i}}(a)$ exists and we have:

$$
\forall h \triangleq\left(h_{1}, \ldots, h_{n}\right) \in \mathbf{R}^{n}, d \phi(a)(h)=\sum_{i=1}^{n} \frac{\partial \phi}{\partial x_{i}}(a) h_{i}
$$

ExErcise 14. Let $n \geq 1$ and U be open in \mathbf{R}^{n}. Let $\phi: U \rightarrow E$ be a map, where E is an \mathbf{R}-normed space.

1. Show that if ϕ is differentiable at $a, b \in U$, then for all $i \in \mathbf{N}_{n}$:

$$
\left\|\frac{\partial \phi}{\partial x_{i}}(b)-\frac{\partial \phi}{\partial x_{i}}(a)\right\| \leq\|d \phi(b)-d \phi(a)\|
$$

2. Conclude that if ϕ is of class C^{1} on U, then $\frac{\partial \phi}{\partial x_{i}}$ exists and is continuous on U, for all $i \in \mathbf{N}_{n}$.

ExErcise 15. Let $n \geq 1$ and U be open in \mathbf{R}^{n}. Let $\phi: U \rightarrow E$ be a map, where E is an \mathbf{R}-normed space. We assume that $\frac{\partial \phi}{\partial x_{i}}$ exists on U, and is continuous at $a \in U$, for all $i \in \mathbf{N}_{n}$. We define $l: \mathbf{R}^{n} \rightarrow E$:

$$
\forall h \triangleq\left(h_{1}, \ldots, h_{n}\right) \in \mathbf{R}^{n}, l(h) \triangleq \sum_{i=1}^{n} \frac{\partial \phi}{\partial x_{i}}(a) h_{i}
$$

1. Show that $l \in \mathcal{L}_{\mathbf{R}}\left(\mathbf{R}^{n}, E\right)$.
2. Given $\epsilon>0$, show the existence of $\eta>0$ such that for all $h \in \mathbf{R}^{n}$ with $\|h\|<\eta$, we have $a+h \in U$, and:

$$
\forall i=1, \ldots, n,\left\|\frac{\partial \phi}{\partial x_{i}}(a+h)-\frac{\partial \phi}{\partial x_{i}}(a)\right\| \leq \epsilon
$$

3. Let $h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbf{R}^{n}$ be such that $\|h\|<\eta$. $\left(e_{1}, \ldots, e_{n}\right)$ being the canonical basis of \mathbf{R}^{n}, we define $k_{0}=a$ and for $i \in \mathbf{N}_{n}$:

$$
k_{i} \triangleq a+\sum_{j=1}^{i} h_{j} e_{j}
$$

Show that $k_{0}, \ldots, k_{n} \in U$, and that we have:

$$
\phi(a+h)-\phi(a)-l(h)=\sum_{i=1}^{n}\left(\phi\left(k_{i-1}+h_{i} e_{i}\right)-\phi\left(k_{i-1}\right)-h_{i} \frac{\partial \phi}{\partial x_{i}}(a)\right)
$$

4. Let $i \in \mathbf{N}_{n}$. Assume that $h_{i}>0$. We define $f_{i}:\left[0, h_{i}\right] \rightarrow E$ by:

$$
\forall t \in\left[0, h_{i}\right], f_{i}(t) \triangleq \phi\left(k_{i-1}+t e_{i}\right)-\phi\left(k_{i-1}\right)-t \frac{\partial \phi}{\partial x_{i}}(a)
$$

Show f_{i} is well-defined, $f_{i}^{\prime}(t)$ exists for all $t \in\left[0, h_{i}\right]$, and:

$$
\forall t \in\left[0, h_{i}\right], f_{i}^{\prime}(t)=\frac{\partial \phi}{\partial x_{i}}\left(k_{i-1}+t e_{i}\right)-\frac{\partial \phi}{\partial x_{i}}(a)
$$

5. Show f_{i} is continuous on $\left[0, h_{i}\right]$, differentiable on $] 0, h_{i}[$, with:

$$
\forall t \in] 0, h_{i}\left[,\left\|f_{i}^{\prime}(t)\right\| \leq \epsilon\right.
$$

6. Show that:

$$
\left\|\phi\left(k_{i-1}+h_{i} e_{i}\right)-\phi\left(k_{i-1}\right)-h_{i} \frac{\partial \phi}{\partial x_{i}}(a)\right\| \leq \epsilon\left|h_{i}\right|
$$

7. Show that the previous inequality still holds if $h_{i} \leq 0$.
8. Conclude that for all $h \in \mathbf{R}^{n}$ with $\|h\|<\eta$, we have:

$$
\|\phi(a+h)-\phi(a)-l(h)\| \leq \epsilon \sqrt{n}\|h\|
$$

9. Prove the following:

Theorem 114 Let $n \geq 1$ and U be open in \mathbf{R}^{n}. Let $\phi: U \rightarrow E$ be a map, where E is an \mathbf{R}-normed space. If, for all $i \in \mathbf{N}_{n} \frac{\partial \phi}{\partial x_{i}}$ exists on U and is continuous at $a \in U$, then ϕ is differentiable at $a \in U$.

Exercise 16. Let $n \geq 1$ and U be open in \mathbf{R}^{n}. Let $\phi: U \rightarrow E$ be a map, where E is an \mathbf{R}-normed space. We assume that for all $i \in \mathbf{N}_{n}$, $\frac{\partial \phi}{\partial x_{i}}$ exists and is continuous on U.

1. Show that ϕ is differentiable on U.
2. Show that for all $a, b \in U$ and $h \in \mathbf{R}^{n}$:

$$
\|(d \phi(b)-d \phi(a))(h)\| \leq\left(\sum_{i=1}^{n}\left\|\frac{\partial \phi}{\partial x_{i}}(b)-\frac{\partial \phi}{\partial x_{i}}(a)\right\|^{2}\right)^{1 / 2}\|h\|
$$

3. Show that for all $a, b \in U$:

$$
\|d \phi(b)-d \phi(a)\| \leq\left(\sum_{i=1}^{n}\left\|\frac{\partial \phi}{\partial x_{i}}(b)-\frac{\partial \phi}{\partial x_{i}}(a)\right\|^{2}\right)^{1 / 2}
$$

4. Show that $d \phi: U \rightarrow \mathcal{L}_{\mathbf{R}}\left(\mathbf{R}^{n}, E\right)$ is continuous.
5. Prove the following:

Theorem 115 Let $n \geq 1$ and U be open in \mathbf{R}^{n}. Let $\phi: U \rightarrow E$ be a map, where E is an \mathbf{R}-normed space. Then, ϕ is of class C^{1} on U, if and only if for all $i=1, \ldots, n, \frac{\partial \phi}{\partial x_{i}}$ exists and is continuous on U.

Exercise 17. Let E, F be two \mathbf{R}-normed spaces and $l \in \mathcal{L}_{\mathbf{R}}(E, F)$. Let U be open in E and $l_{\mid U}$ be the restriction of l to U. Show that $l_{\mid U}$ is of class C^{1} on U, and that we have:

$$
\forall x \in U, d\left(l_{\mid U}\right)(x)=l
$$

Exercise 18. Let $E_{1}, \ldots, E_{n}, n \geq 1$, be $n \mathbf{K}$-normed spaces. Let $E=E_{1} \times \ldots \times E_{n}$. Let $p \in\left[1,+\infty\left[\right.\right.$, and for all $x=\left(x_{1}, \ldots, x_{n}\right) \in E$:

$$
\begin{aligned}
\|x\|_{p} & \triangleq\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p} \\
\|x\|_{\infty} & \triangleq \max _{i=1, \ldots, n}\left\|x_{i}\right\|
\end{aligned}
$$

1. Using theorem (43), show that $\|\cdot\|_{p}$ and $\|\cdot\|_{\infty}$ are norms on E.
2. Show $\|\cdot\|_{p}$ and $\|\cdot\|_{\infty}$ induce the product topology on E.
3. Conclude that E is also an \mathbf{K}-normed space, and that the norm topology on E is exactly the product topology on E.

Exercise 19. Let E and F be two R-normed spaces. Let U be open in E and $\phi, \psi: U \rightarrow F$ be two maps. We assume that both ϕ and ψ are differentiable at $a \in U$. Given $\alpha \in \mathbf{R}$, show that $\phi+\alpha \psi$ is differentiable at $a \in U$ and:

$$
d(\phi+\alpha \psi)(a)=d \phi(a)+\alpha d \psi(a)
$$

Exercise 20. Let E and F be \mathbf{K}-normed spaces. Let U be open in E and $\phi: U \rightarrow F$ be a map. Let N_{E} and N_{F} be two norms on E and F, inducing the same topologies as the norm topologies of E and F
respectively. For all $l \in \mathcal{L}_{\mathbf{K}}(E, F)$, we define:

$$
N(l)=\sup \left\{N_{F}(l(x)): x \in E, N_{E}(x)=1\right\}
$$

1. Explain why the set $\mathcal{L}_{\mathrm{K}}(E, F)$ is unambiguously defined.
2. Show that the identity $i d_{E}:(E,\|\cdot\|) \rightarrow\left(E, N_{E}\right)$ is continuous
3. Show the existence of $m_{E}, M_{E}>0$ such that:

$$
\forall x \in E, m_{E}\|x\| \leq N_{E}(x) \leq M_{E}\|x\|
$$

4. Show the existence of $m, M>0$ such that:

$$
\forall l \in \mathcal{L}_{\mathbf{K}}(E, F), m\|l\| \leq N(l) \leq M\|l\|
$$

5. Show that $\|\cdot\|$ and N induce the same topology on $\mathcal{L}_{\mathbf{K}}(E, F)$.
6. Show that if $\mathbf{K}=\mathbf{R}$ and ϕ is differentiable at $a \in U$, then ϕ is also differentiable at a with respect to the norms N_{E} and N_{F}, and the differential $d \phi(a)$ is unchanged
7. Show that if $\mathbf{K}=\mathbf{R}$ and ϕ is of class C^{1} on U, then ϕ is also of class C^{1} on U with respect to the norms N_{E} and N_{F}.

Exercise 21. Let E and $F_{1}, \ldots, F_{p}, p \geq 1$, be $p+1$ R-normed spaces. Let U be open in E and $F=F_{1} \times \ldots \times F_{p}$. Let $\phi: U \rightarrow F$ be a map. For all $i \in \mathbf{N}_{p}$, we denote $p_{i}: F \rightarrow F_{i}$ the canonical projection and we define $\phi_{i}=p_{i} \circ \phi$. We also consider $u_{i}: F_{i} \rightarrow F$, defined as:

$$
\forall x_{i} \in F_{i}, u_{i}\left(x_{i}\right) \triangleq(0, \ldots, \overbrace{x_{i}}^{i}, \ldots, 0)
$$

1. Given $i \in \mathbf{N}_{p}$, show that $p_{i} \in \mathcal{L}_{\mathbf{R}}\left(F, F_{i}\right)$.
2. Given $i \in \mathbf{N}_{p}$, show that $u_{i} \in \mathcal{L}_{\mathbf{R}}\left(F_{i}, F\right)$ and $\phi=\sum_{i=1}^{p} u_{i} \circ \phi_{i}$.
3. Show that if ϕ is differentiable at $a \in U$, then for all $i \in \mathbf{N}_{p}$, $\phi_{i}: U \rightarrow F_{i}$ is differentiable at $a \in U$ and $d \phi_{i}(a)=p_{i} \circ d \phi(a)$.
4. Show that if ϕ_{i} is differentiable at $a \in U$ for all $i \in \mathbf{N}_{p}$, then ϕ is differentiable at $a \in U$ and:

$$
d \phi(a)=\sum_{i=1}^{p} u_{i} \circ d \phi_{i}(a)
$$

5. Suppose that ϕ is differentiable at $a, b \in U$. Let F be given the norm $\|\cdot\|_{2}$ of exercise (18). Show that for all $i \in \mathbf{N}_{p}$:

$$
\left\|d \phi_{i}(b)-d \phi_{i}(a)\right\| \leq\|d \phi(b)-d \phi(a)\|
$$

6. Show that:

$$
\|d \phi(b)-d \phi(a)\| \leq\left(\sum_{i=1}^{p}\left\|d \phi_{i}(b)-d \phi_{i}(a)\right\|^{2}\right)^{1 / 2}
$$

7. Show that ϕ is of class $C^{1} \Leftrightarrow \phi_{i}$ is of class C^{1} for all $i \in \mathbf{N}_{p}$.
8. Conclude with theorem (116)

Theorem 116 Let $E, F_{1}, \ldots, F_{p},(p \geq 1)$, be $p+1 \mathbf{R}$-normed spaces and U be open in E. Let F be the \mathbf{R}-normed space $F=F_{1} \times \ldots \times F_{p}$ and $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right): U \rightarrow F$ be a map. Then, ϕ is differentiable at $a \in U$, if and only if $d \phi_{i}(a)$ exists for all $i \in \mathbf{N}_{p}$, in which case:

$$
\forall h \in E, d \phi(a)(h)=\left(d \phi_{1}(a)(h), \ldots, d \phi_{p}(a)(h)\right)
$$

Also, ϕ is of class C^{1} on $U \Leftrightarrow \phi_{i}$ is of class C^{1} on U, for all $i \in \mathbf{N}_{p}$.
Theorem 117 Let $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right): U \rightarrow \mathbf{R}^{n}$ be a map, where $n \geq 1$ and U is open in \mathbf{R}^{n}. We assume that ϕ is differentiable at $a \in U$. Then, for all $i, j=1, \ldots, n, \frac{\partial \phi_{i}}{\partial x_{j}}(a)$ exists, and we have:

$$
d \phi(a)=\left(\begin{array}{ccc}
\frac{\partial \phi_{1}}{\partial x_{1}}(a) & \ldots & \frac{\partial \phi_{1}}{\partial x_{n}}(a) \\
\vdots & & \vdots \\
\frac{\partial \phi_{n}}{\partial x_{1}}(a) & \ldots & \frac{\partial \phi_{n}}{\partial x_{n}}(a)
\end{array}\right)
$$

Moreover, ϕ is of class C^{1} on U, if and only if for all $i, j=1, \ldots, n$, $\frac{\partial \phi_{i}}{\partial x_{j}}$ exists and is continuous on U.

Exercise 22. Prove theorem (117)
Definition 132 Let $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right): U \rightarrow \mathbf{R}^{n}$ be a map, where $n \geq 1$ and U is open in \mathbf{R}^{n}. We assume that ϕ is differentiable at $a \in U$. We call Jacobian of ϕ at a, denoted $J(\phi)(a)$, the determinant of the differential $d \phi(a)$ at a, i.e.

$$
J(\phi)(a)=\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial \phi_{1}}{\partial x_{1}}(a) & \ldots & \frac{\partial \phi_{1}}{\partial x_{n}}(a) \\
\vdots & & \vdots \\
\frac{\partial \phi_{n}}{\partial x_{1}}(a) & \ldots & \frac{\partial \phi_{n}}{\partial x_{n}}(a)
\end{array}\right)
$$

Definition 133 Let $n \geq 1$ and Ω, Ω^{\prime} be open in \mathbf{R}^{n}. A bijection $\phi: \Omega \rightarrow \Omega^{\prime}$ is called a C^{1}-diffeomorphism between Ω and Ω^{\prime}, if and only if $\phi: \Omega \rightarrow \mathbf{R}^{n}$ and $\phi^{-1}: \Omega^{\prime} \rightarrow \mathbf{R}^{n}$ are both of class C^{1}.

Tutorial 18: The Jacobian Formula

ExErcise 23. Let Ω and Ω^{\prime} be open in \mathbf{R}^{n}. Let $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism, $\psi=\phi^{-1}$, and I_{n} be the identity mapping of \mathbf{R}^{n}.

1. Explain why $J(\psi): \Omega^{\prime} \rightarrow \mathbf{R}$ and $J(\phi): \Omega \rightarrow \mathbf{R}$ are continuous.
2. Show that $d \phi(\psi(x)) \circ d \psi(x)=I_{n}$, for all $x \in \Omega^{\prime}$.
3. Show that $d \psi(\phi(x)) \circ d \phi(x)=I_{n}$, for all $x \in \Omega$.
4. Show that $J(\psi)(x) \neq 0$ for all $x \in \Omega^{\prime}$.
5. Show that $J(\phi)(x) \neq 0$ for all $x \in \Omega$.
6. Show that $J(\psi)=1 /(J(\phi) \circ \psi)$ and $J(\phi)=1 /(J(\psi) \circ \phi)$.

Definition 134 Let $n \geq 1$ and $\Omega \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, be a Borel set in \mathbf{R}^{n}. We define the Lebesgue measure on Ω, denoted $d x_{\mid \Omega}$, as the restriction to $\mathcal{B}(\Omega)$ of the Lebesgue measure on \mathbf{R}^{n}, i.e the measure on $(\Omega, \mathcal{B}(\Omega))$ defined by:

$$
\forall B \in \mathcal{B}(\Omega), d x_{\mid \Omega}(B) \triangleq d x(B)
$$

Exercise 24. Show that $d x_{\mid \Omega}$ is a well-defined measure on $(\Omega, \mathcal{B}(\Omega))$.
EXERCISE 25. Let $n \geq 1$ and Ω, Ω^{\prime} be open in \mathbf{R}^{n}. Let $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism and $\psi=\phi^{-1}$. Let $a \in \Omega^{\prime}$. We assume that $d \psi(a)=I_{n}$, (identity mapping on \mathbf{R}^{n}), and given $\epsilon>0$, we denote:

$$
B(a, \epsilon) \triangleq\left\{x \in \mathbf{R}^{n}:\|a-x\|<\epsilon\right\}
$$

where $\|$.$\| is the usual norm in \mathbf{R}^{n}$.

1. Why are $d x_{\mid \Omega^{\prime}}, \phi\left(d x_{\mid \Omega}\right)$ well-defined measures on $\left(\Omega^{\prime}, \mathcal{B}\left(\Omega^{\prime}\right)\right)$.
2. Show that for $\epsilon>0$ sufficiently small, $B(a, \epsilon) \in \mathcal{B}\left(\Omega^{\prime}\right)$.
3. Show that it makes sense to investigate whether the limit:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{\phi\left(d x_{\mid \Omega}\right)(B(a, \epsilon))}{d x_{\mid \Omega^{\prime}}(B(a, \epsilon))}
$$

does exists in \mathbf{R}.
4. Given $r>0$, show the existence of $\epsilon_{1}>0$ such that for all $h \in \mathbf{R}^{n}$ with $\|h\| \leq \epsilon_{1}$, we have $a+h \in \Omega^{\prime}$, and:

$$
\|\psi(a+h)-\psi(a)-h\| \leq r\|h\|
$$

5. Show for all $h \in \mathbf{R}^{n}$ with $\|h\| \leq \epsilon_{1}$, we have $a+h \in \Omega^{\prime}$, and:

$$
\|\psi(a+h)-\psi(a)\| \leq(1+r)\|h\|
$$

6. Show that for all $\epsilon \in] 0, \epsilon_{1}\left[\right.$, we have $B(a, \epsilon) \subseteq \Omega^{\prime}$, and:

$$
\psi(B(a, \epsilon)) \subseteq B(\psi(a), \epsilon(1+r))
$$

7. Show that $d \phi(\psi(a))=I_{n}$.
8. Show the existence of $\epsilon_{2}>0$ such that for all $k \in \mathbf{R}^{n}$ with $\|k\| \leq \epsilon_{2}$, we have $\psi(a)+k \in \Omega$, and:

$$
\|\phi(\psi(a)+k)-a-k\| \leq r\|k\|
$$

9. Show for all $k \in \mathbf{R}^{n}$ with $\|k\| \leq \epsilon_{2}$, we have $\psi(a)+k \in \Omega$, and:

$$
\|\phi(\psi(a)+k)-a\| \leq(1+r)\|k\|
$$

10. Show for all $\epsilon \in] 0, \epsilon_{2}(1+r)\left[\right.$, we have $B\left(\psi(a), \frac{\epsilon}{1+r}\right) \subseteq \Omega$, and:

$$
B\left(\psi(a), \frac{\epsilon}{1+r}\right) \subseteq\{\phi \in B(a, \epsilon)\}
$$

11. Show that if $B(a, \epsilon) \subseteq \Omega^{\prime}$, then $\psi(B(a, \epsilon))=\{\phi \in B(a, \epsilon)\}$.
12. Show if $0<\epsilon<\epsilon_{0}=\epsilon_{1} \wedge \epsilon_{2}(1+r)$, then $B(a, \epsilon) \subseteq \Omega^{\prime}$, and:

$$
B\left(\psi(a), \frac{\epsilon}{1+r}\right) \subseteq\{\phi \in B(a, \epsilon)\} \subseteq B(\psi(a), \epsilon(1+r))
$$

13. Show that for all $\epsilon \in] 0, \epsilon_{0}[$:

$$
\begin{aligned}
(i) & d x\left(B\left(\psi(a), \frac{\epsilon}{1+r}\right)\right)=(1+r)^{-n} d x_{\mid \Omega^{\prime}}(B(a, \epsilon)) \\
(i i) & d x(B(\psi(a), \epsilon(1+r)))=(1+r)^{n} d x_{\mid \Omega^{\prime}}(B(a, \epsilon)) \\
\text { (iii) } & d x(\{\phi \in B(a, \epsilon)\})=\phi\left(d x_{\mid \Omega}\right)(B(a, \epsilon))
\end{aligned}
$$

14. Show that for all $\epsilon \in] 0, \epsilon_{0}\left[, B(a, \epsilon) \subseteq \Omega^{\prime}\right.$, and:

$$
(1+r)^{-n} \leq \frac{\phi\left(d x_{\mid \Omega}\right)(B(a, \epsilon))}{d x_{\mid \Omega^{\prime}}(B(a, \epsilon))} \leq(1+r)^{n}
$$

15. Conclude that:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{\phi\left(d x_{\mid \Omega}\right)(B(a, \epsilon))}{d x_{\mid \Omega^{\prime}}(B(a, \epsilon))}=1
$$

ExERCISE 26. Let $n \geq 1$ and Ω, Ω^{\prime} be open in \mathbf{R}^{n}. Let $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism and $\psi=\phi^{-1}$. Let $a \in \Omega^{\prime}$. We put $A=d \psi(a)$.

1. Show that $A: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a linear bijection.
2. Define $\Omega^{\prime \prime}=A^{-1}(\Omega)$. Show that this definition does not depend on whether $A^{-1}(\Omega)$ is viewed as inverse, or direct image.
3. Show that $\Omega^{\prime \prime}$ is an open subset of \mathbf{R}^{n}.
4. We define $\tilde{\phi}: \Omega^{\prime \prime} \rightarrow \Omega^{\prime}$ by $\tilde{\phi}(\underset{\tilde{\phi}}{x})=\phi \circ A(x)$. Show that $\tilde{\phi}$ is a C^{1}-diffeomorphism with $\tilde{\psi}=\tilde{\phi}^{-1}=A^{-1} \circ \psi$.
5. Show that $d \tilde{\psi}(a)=I_{n}$.
6. Show that:

$$
\lim _{\epsilon \downarrow 0} \frac{\tilde{\phi}\left(d x_{\mid \Omega^{\prime \prime}}\right)(B(a, \epsilon))}{d x_{\mid \Omega^{\prime}}(B(a, \epsilon))}=1
$$

7. Let $\epsilon>0$ with $B(a, \epsilon) \subseteq \Omega^{\prime}$. Justify each of the following steps:

$$
\begin{aligned}
\tilde{\phi}\left(d x_{\mid \Omega^{\prime \prime}}\right)(B(a, \epsilon)) & =d x_{\mid \Omega^{\prime \prime}}(\{\tilde{\phi} \in B(a, \epsilon)\}) \\
& =d x(\{\tilde{\phi} \in B(a, \epsilon)\})
\end{aligned}
$$

$$
\begin{aligned}
& =d x\left(\left\{x \in \Omega^{\prime \prime}: \phi \circ A(x) \in B(a, \epsilon)\right\}\right) \\
& =d x\left(\left\{x \in \Omega^{\prime \prime}: A(x) \in \phi^{-1}(B(a, \epsilon))\right\}\right) \\
& =d x\left(\left\{x \in \mathbf{R}^{n}: A(x) \in \phi^{-1}(B(a, \epsilon))\right\}\right) \\
& =A(d x)(\{\phi \in B(a, \epsilon)\}) \\
& =|\operatorname{det} A|^{-1} d x(\{\phi \in B(a, \epsilon)\}) \\
& =|\operatorname{det} A|^{-1} d x_{\mid \Omega}(\{\phi \in B(a, \epsilon)\}) \\
& =|\operatorname{det} A|^{-1} \phi\left(d x_{\mid \Omega}\right)(B(a, \epsilon))
\end{aligned}
$$

8. Show that:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{\phi\left(d x_{\mid \Omega}\right)(B(a, \epsilon))}{d x_{\mid \Omega^{\prime}}(B(a, \epsilon))}=|\operatorname{det} A|
$$

9. Conclude with the following:

Theorem 118 Let $n \geq 1$ and Ω, Ω^{\prime} be open in \mathbf{R}^{n}. Let $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism and $\psi=\phi^{-1}$. Then, for all $a \in \Omega^{\prime}$, we have:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{\phi\left(d x_{\mid \Omega}\right)(B(a, \epsilon))}{d x_{\mid \Omega^{\prime}}(B(a, \epsilon))}=|J(\psi)(a)|
$$

where $J(\psi)(a)$ is the Jacobian of ψ at $a, B(a, \epsilon)$ is the open ball in \mathbf{R}^{n}, and $d x_{\mid \Omega}, d x_{\mid \Omega^{\prime}}$ are the Lebesgue measures on Ω and Ω^{\prime} respectively.

EXERCISE 27. Let $n \geq 1$ and Ω, Ω^{\prime} be open in \mathbf{R}^{n}. Let $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism and $\psi=\phi^{-1}$.

1. Let $K \subseteq \Omega^{\prime}$ be a non-empty compact subset of Ω^{\prime} such that $d x_{\mid \Omega^{\prime}}(K)=0$. Given $\epsilon>0$, show the existence of V open in Ω^{\prime}, such that $K \subseteq V \subseteq \Omega^{\prime}$, and $d x_{\mid \Omega^{\prime}}(V) \leq \epsilon$.
2. Explain why V is also open in \mathbf{R}^{n}.
3. Show that $M \triangleq \sup _{x \in K}\|d \psi(x)\| \in \mathbf{R}^{+}$.
4. For all $x \in K$, show there is $\epsilon_{x}>0$ such that $B\left(x, \epsilon_{x}\right) \subseteq V$, and for all $h \in \mathbf{R}^{n}$ with $\|h\| \leq 3 \epsilon_{x}$, we have $x+h \in \Omega^{\prime}$, and:

$$
\|\psi(x+h)-\psi(x)\| \leq(M+1)\|h\|
$$

5. Show that for all $x \in K, B\left(x, 3 \epsilon_{x}\right) \subseteq \Omega^{\prime}$, and:

$$
\psi\left(B\left(x, 3 \epsilon_{x}\right)\right) \subseteq B\left(\psi(x), 3(M+1) \epsilon_{x}\right)
$$

6. Show that $\psi\left(B\left(x, 3 \epsilon_{x}\right)\right)=\left\{\phi \in B\left(x, 3 \epsilon_{x}\right)\right\}$, for all $x \in K$.
7. Show the existence of $\left\{x_{1}, \ldots, x_{p}\right\} \subseteq K,(p \geq 1)$, such that:

$$
K \subseteq B\left(x_{1}, \epsilon_{x_{1}}\right) \cup \ldots \cup B\left(x_{p}, \epsilon_{x_{p}}\right)
$$

8. Show the existence of $S \subseteq\{1, \ldots, p\}$ such that the $B\left(x_{i}, \epsilon_{x_{i}}\right)$'s are pairwise disjoint for $i \in S$, and:

$$
K \subseteq \bigcup_{i \in S} B\left(x_{i}, 3 \epsilon_{x_{i}}\right)
$$

9. Show that $\{\phi \in K\} \subseteq \cup_{i \in S} B\left(\psi\left(x_{i}\right), 3(M+1) \epsilon_{x_{i}}\right)$.
10. Show that $\phi\left(d x_{\mid \Omega}\right)(K) \leq \sum_{i \in S} 3^{n}(M+1)^{n} d x\left(B\left(x_{i}, \epsilon_{x_{i}}\right)\right)$.
11. Show that $\phi\left(d x_{\mid \Omega}\right)(K) \leq 3^{n}(M+1)^{n} d x(V)$.
12. Show that $\phi\left(d x_{\mid \Omega}\right)(K) \leq 3^{n}(M+1)^{n} \epsilon$.
13. Conclude that $\phi\left(d x_{\mid \Omega}\right)(K)=0$.
14. Show that $\phi\left(d x_{\mid \Omega}\right)$ is a locally finite measure on $\left(\Omega^{\prime}, \mathcal{B}\left(\Omega^{\prime}\right)\right)$.
15. Show that for all $B \in \mathcal{B}\left(\Omega^{\prime}\right)$:

$$
\phi\left(d x_{\mid \Omega}\right)(B)=\sup \left\{\phi\left(d x_{\mid \Omega}\right)(K): K \subseteq B, K \text { compact }\right\}
$$

16. Show that for all $B \in \mathcal{B}\left(\Omega^{\prime}\right)$:

$$
d x_{\mid \Omega^{\prime}}(B)=0 \Rightarrow \phi\left(d x_{\mid \Omega}\right)(B)=0
$$

17. Conclude with the following:

Theorem 119 Let $n \geq 1, \Omega, \Omega^{\prime}$ be open in \mathbf{R}^{n}, and $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism. Then, the image measure $\phi\left(d x_{\mid \Omega}\right)$, by ϕ of the Lebesgue measure on Ω, is absolutely continuous with respect to $d x_{\mid \Omega^{\prime}}$, the Lebesgue measure on Ω^{\prime}, i.e.:

$$
\phi\left(d x_{\mid \Omega}\right) \ll d x_{\mid \Omega^{\prime}}
$$

EXERCISE 28. Let $n \geq 1$ and Ω, Ω^{\prime} be open in \mathbf{R}^{n}. Let $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism and $\psi=\phi^{-1}$.

1. Explain why there exists a sequence $\left(V_{p}\right)_{p \geq 1}$ of open sets in Ω^{\prime}, such that $V_{p} \uparrow \Omega^{\prime}$ and for all $p \geq 1$, the closure of V_{p} in Ω^{\prime}, i.e. $\bar{V}_{p}^{\Omega^{\prime}}$, is compact.
2. Show that each V_{p} is also open in \mathbf{R}^{n}, and that $\bar{V}_{p}^{\Omega^{\prime}}=\bar{V}_{p}$.
3. Show that $\phi\left(d x_{\mid \Omega}\right)\left(V_{p}\right)<+\infty$, for all $p \geq 1$.
4. Show that $d x_{\mid \Omega^{\prime}}$ and $\phi\left(d x_{\mid \Omega}\right)$ are two σ-finite measures on Ω^{\prime}.
5. Show there is $h:\left(\Omega^{\prime}, \mathcal{B}\left(\Omega^{\prime}\right)\right) \rightarrow\left(\mathbf{R}^{+}, \mathcal{B}\left(\mathbf{R}^{+}\right)\right)$measurable, with:

$$
\forall B \in \mathcal{B}\left(\Omega^{\prime}\right), \phi\left(d x_{\mid \Omega}\right)(B)=\int_{B} h d x_{\mid \Omega^{\prime}}
$$

6. For all $p \geq 1$, we define $h_{p}=h 1_{V_{p}}$, and we put:

$$
\forall x \in \mathbf{R}^{n}, \tilde{h}_{p}(x) \triangleq\left\{\begin{array}{lll}
h_{p}(x) & \text { if } & x \in \Omega^{\prime} \\
0 & \text { if } & x \notin \Omega^{\prime}
\end{array}\right.
$$

Show that:

$$
\int_{\mathbf{R}^{n}} \tilde{h}_{p} d x=\int_{\Omega^{\prime}} h_{p} d x_{\mid \Omega^{\prime}}=\phi\left(d x_{\mid \Omega}\right)\left(V_{p}\right)<+\infty
$$

and conclude that $\tilde{h}_{p} \in L_{\mathbf{R}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$.
7. Show the existence of some $N \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, such that $d x(N)=0$
and for all $x \in N^{c}$ and $p \geq 1$, we have:

$$
\tilde{h}_{p}(x)=\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)} \tilde{h}_{p} d x
$$

8. Put $N^{\prime}=N \cap \Omega^{\prime}$. Show that $N^{\prime} \in \mathcal{B}\left(\Omega^{\prime}\right)$ and $d x_{\mid \Omega^{\prime}}\left(N^{\prime}\right)=0$.
9. Let $x \in \Omega^{\prime}$ and $p \geq 1$ be such that $x \in V_{p}$. Show that if $\epsilon>0$ is such that $B(x, \epsilon) \subseteq V_{p}$, then $d x(B(x, \epsilon))=d x_{\mid \Omega^{\prime}}(B(x, \epsilon))$, and:

$$
\int_{B(x, \epsilon)} \tilde{h}_{p} d x=\int_{\mathbf{R}^{n}} 1_{B(x, \epsilon)} \tilde{h}_{p} d x=\int_{\Omega^{\prime}} 1_{B(x, \epsilon)} h_{p} d x_{\mid \Omega^{\prime}}
$$

10. Show that:

$$
\int_{\Omega^{\prime}} 1_{B(x, \epsilon)} h_{p} d x_{\mid \Omega^{\prime}}=\int_{\Omega^{\prime}} 1_{B(x, \epsilon)} h d x_{\mid \Omega^{\prime}}=\phi\left(d x_{\mid \Omega}\right)(B(x, \epsilon))
$$

11. Show that for all $x \in \Omega^{\prime} \backslash N^{\prime}$, we have:

$$
h(x)=\lim _{\epsilon \downarrow \downarrow 0} \frac{\phi\left(d x_{\mid \Omega}\right)(B(x, \epsilon))}{d x_{\mid \Omega^{\prime}}(B(x, \epsilon))}
$$

12. Show that $h=|J(\psi)| d x_{\mid \Omega^{\prime}-\text { a.s. }}$ and conclude with the following:

Theorem 120 Let $n \geq 1$ and Ω, Ω^{\prime} be open in \mathbf{R}^{n}. Let $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism and $\psi=\phi^{-1}$. Then, the image measure by ϕ of the Lebesgue measure on Ω, is equal to the measure on $\left(\Omega^{\prime}, \mathcal{B}\left(\Omega^{\prime}\right)\right)$ with density $|J(\psi)|$ with respect to the Lebesgue measure on Ω^{\prime}, i.e.:

$$
\phi\left(d x_{\mid \Omega}\right)=\int|J(\psi)| d x_{\mid \Omega^{\prime}}
$$

Exercise 29. Prove the following:
Theorem 121 (Jacobian Formula 1) Let $n \geq 1$ and $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism where Ω, Ω^{\prime} are open in \mathbf{R}^{n}. Let $\psi=\phi^{-1}$. Then, for all $f:\left(\Omega^{\prime}, \mathcal{B}\left(\Omega^{\prime}\right)\right) \rightarrow[0,+\infty]$ non-negative and measurable:

$$
\int_{\Omega} f \circ \phi d x_{\mid \Omega}=\int_{\Omega^{\prime}} f|J(\psi)| d x_{\mid \Omega^{\prime}}
$$

Tutorial 18: The Jacobian Formula
and:

$$
\int_{\Omega}(f \circ \phi)|J(\phi)| d x_{\mid \Omega}=\int_{\Omega^{\prime}} f d x_{\mid \Omega^{\prime}}
$$

Exercise 30. Prove the following:
Theorem 122 (Jacobian Formula 2) Let $n \geq 1$ and $\phi: \Omega \rightarrow \Omega^{\prime}$ be a C^{1}-diffeomorphism where Ω, Ω^{\prime} are open in \mathbf{R}^{n}. Let $\psi=\phi^{-1}$. Then, for all measurable map $f:\left(\Omega^{\prime}, \mathcal{B}\left(\Omega^{\prime}\right)\right) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$, we have the equivalence:

$$
f \circ \phi \in L_{\mathbf{C}}^{1}\left(\Omega, \mathcal{B}(\Omega), d x_{\mid \Omega}\right) \Leftrightarrow f|J(\psi)| \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{B}\left(\Omega^{\prime}\right), d x_{\mid \Omega^{\prime}}\right)
$$

in which case:

$$
\int_{\Omega} f \circ \phi d x_{\mid \Omega}=\int_{\Omega^{\prime}} f|J(\psi)| d x_{\mid \Omega^{\prime}}
$$

and, furthermore:

$$
(f \circ \phi)|J(\phi)| \in L_{\mathbf{C}}^{1}\left(\Omega, \mathcal{B}(\Omega), d x_{\mid \Omega}\right) \Leftrightarrow f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{B}\left(\Omega^{\prime}\right), d x_{\mid \Omega^{\prime}}\right)
$$

Tutorial 18: The Jacobian Formula
in which case:

$$
\int_{\Omega}(f \circ \phi)|J(\phi)| d x_{\mid \Omega}=\int_{\Omega^{\prime}} f d x_{\mid \Omega^{\prime}}
$$

ExERCISE 31. Let $f: \mathbf{R}^{2} \rightarrow[0,+\infty]$, with $f(x, y)=\exp \left(-\left(x^{2}+y^{2}\right) / 2\right)$.

1. Show that:

$$
\int_{\mathbf{R}^{2}} f(x, y) d x d y=\left(\int_{-\infty}^{+\infty} e^{-u^{2} / 2} d u\right)^{2}
$$

2. Define:

$$
\begin{aligned}
& \Delta_{1} \triangleq\left\{(x, y) \in \mathbf{R}^{2}: x>0, y>0\right\} \\
& \Delta_{2} \triangleq\left\{(x, y) \in \mathbf{R}^{2}: x<0, y>0\right\}
\end{aligned}
$$

and let Δ_{3} and Δ_{4} be the other two open quarters of \mathbf{R}^{2}. Show:

$$
\int_{\mathbf{R}^{2}} f(x, y) d x d y=\int_{\Delta_{1} \cup \ldots \cup \Delta_{4}} f(x, y) d x d y
$$

3. Let $Q: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be defined by $Q(x, y)=(-x, y)$. Show that:

$$
\int_{\Delta_{1}} f(x, y) d x d y=\int_{\Delta_{2}} f \circ Q^{-1}(x, y) d x d y
$$

4. Show that:

$$
\int_{\mathbf{R}^{2}} f(x, y) d x d y=4 \int_{\Delta_{1}} f(x, y) d x d y
$$

5. Let $\left.D_{1}=\right] 0,+\infty[\times] 0, \pi / 2\left[\subseteq \mathbf{R}^{2}\right.$, and define $\phi: D_{1} \rightarrow \Delta_{1}$ by:

$$
\forall(r, \theta) \in D_{1}, \phi(r, \theta) \triangleq(r \cos \theta, r \sin \theta)
$$

Show that ϕ is a bijection and that $\psi=\phi^{-1}$ is given by:

$$
\forall(x, y) \in \Delta_{1}, \psi(x, y)=\left(\sqrt{x^{2}+y^{2}}, \arctan (y / x)\right)
$$

6. Show that ϕ is a C^{1}-diffeomorphism, with:

$$
\forall(r, \theta) \in D_{1}, d \phi(r, \theta)=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

Tutorial 18: The Jacobian Formula
and:

$$
\forall(x, y) \in \Delta_{1}, d \psi(x, y)=\left(\begin{array}{cc}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right)
$$

7. Show that $J(\phi)(r, \theta)=r$, for all $(r, \theta) \in D_{1}$.
8. Show that $J(\psi)(x, y)=1 /\left(\sqrt{x^{2}+y^{2}}\right)$, for all $(x, y) \in \Delta_{1}$.
9. Show that:

$$
\int_{\Delta_{1}} f(x, y) d x d y=\frac{\pi}{2}
$$

10. Prove the following:

Theorem 123 We have:

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-u^{2} / 2} d u=1
$$

