17. Image Measure

In the following, \mathbf{K} denotes \mathbf{R} or \mathbf{C}. We denote $\mathcal{M}_{n}(\mathbf{K}), n \geq 1$, the set of all $n \times n$-matrices with \mathbf{K}-valued entries. We recall that for all $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K}), M$ is identified with the linear map $M: \mathbf{K}^{n} \rightarrow \mathbf{K}^{n}$ uniquely determined by:

$$
\forall j=1, \ldots, n, M e_{j} \triangleq \sum_{i=1}^{n} m_{i j} e_{i}
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbf{K}^{n}, i.e. $e_{i} \triangleq(0, . \overbrace{1}^{i}, ., 0)$.
Exercise 1. For all $\alpha \in \mathbf{K}$, let $H_{\alpha} \in \mathcal{M}_{n}(\mathbf{K})$ be defined by:

$$
H_{\alpha} \triangleq\left(\begin{array}{cccc}
\alpha & & & \\
& 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)
$$

i.e. by $H_{\alpha} e_{1}=\alpha e_{1}, H_{\alpha} e_{j}=e_{j}$, for all $j \geq 2$. Note that H_{α} is obtained from the identity matrix, by multiplying the top left entry by α. For $k, l \in\{1, \ldots, n\}$, we define the matrix $\Sigma_{k l} \in \mathcal{M}_{n}(\mathbf{K})$ by $\Sigma_{k l} e_{k}=e_{l}, \Sigma_{k l} e_{l}=e_{k}$ and $\Sigma_{k l} e_{j}=e_{j}$, for all $j \in\{1, \ldots, n\} \backslash\{k, l\}$. Note that $\Sigma_{k l}$ is obtained from the identity matrix, by interchanging column k and column l. If $n \geq 2$, we define the matrix $U \in \mathcal{M}_{n}(\mathbf{K})$ by:

$$
U \triangleq\left(\begin{array}{cccc}
1 & 0 & & \\
1 & 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)
$$

i.e. by $U e_{1}=e_{1}+e_{2}, U e_{j}=e_{j}$ for all $j \geq 2$. Note that the matrix U is obtained from the identity matrix, by adding column 2 to column 1. If $n=1$, we put $U=1$. We define $\mathcal{N}_{n}(\mathbf{K})=\left\{H_{\alpha}: \alpha \in \mathbf{K}\right\} \cup\left\{\Sigma_{k l}\right.$: $k, l=1, \ldots, n\} \cup\{U\}$, and $\mathcal{M}_{n}^{\prime}(\mathbf{K})$ to be the set of all finite products
of elements of $\mathcal{N}_{n}(\mathbf{K})$:
$\mathcal{M}_{n}^{\prime}(\mathbf{K}) \triangleq\left\{M \in \mathcal{M}_{n}(\mathbf{K}): M=Q_{1} \ldots . Q_{p}, p \geq 1, Q_{j} \in \mathcal{N}_{n}(\mathbf{K}), \forall j\right\}$
We shall prove that $\mathcal{M}_{n}(\mathbf{K})=\mathcal{M}_{n}^{\prime}(\mathbf{K})$.

1. Show that if $\alpha \in \mathbf{K} \backslash\{0\}, H_{\alpha}$ is non-singular with $H_{\alpha}^{-1}=H_{1 / \alpha}$
2. Show that if $k, l=1, \ldots, n, \Sigma_{k l}$ is non-singular with $\Sigma_{k l}^{-1}=\Sigma_{k l}$.
3. Show that U is non-singular, and that for $n \geq 2$:

$$
U^{-1}=\left(\begin{array}{cccc}
1 & 0 & & \\
-1 & 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)
$$

Tutorial 17: Image Measure
4. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$. Let R_{1}, \ldots, R_{n} be the rows of M :

$$
M \triangleq\left(\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

Show that for all $\alpha \in \mathbf{K}$:

$$
H_{\alpha} \cdot M=\left(\begin{array}{c}
\alpha R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

Conclude that multiplying M by H_{α} from the left, amounts to multiplying the first row of M by α.
5. Show that multiplying M by H_{α} from the right, amounts to multiplying the first column of M by α.
6. Show that multiplying M by $\Sigma_{k l}$ from the left, amounts to interchanging the rows R_{l} and R_{k}.
7. Show that multiplying M by $\Sigma_{k l}$ from the right, amounts to interchanging the columns C_{l} and C_{k}.
8. Show that multiplying M by U^{-1} from the left ($n \geq 2$), amounts to subtracting R_{1} from R_{2}, i.e.:

$$
U^{-1} \cdot\left(\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)=\left(\begin{array}{c}
R_{1} \\
R_{2}-R_{1} \\
\vdots \\
R_{n}
\end{array}\right)
$$

9. Show that multiplying M by U^{-1} from the right (for $n \geq 2$), amounts to subtracting C_{2} from C_{1}.
10. Define $U^{\prime}=\Sigma_{12} \cdot U^{-1} \cdot \Sigma_{12},(n \geq 2)$. Show that multiplying M by U^{\prime} from the right, amounts to subtracting C_{1} from C_{2}.
11. Show that if $n=1$, then indeed we have $\mathcal{M}_{1}(\mathbf{K})=\mathcal{M}_{1}^{\prime}(\mathbf{K})$.

Exercise 2. Further to exercise (1), we now assume that $n \geq 2$, and make the induction hypothesis that $\mathcal{M}_{n-1}(\mathbf{K})=\mathcal{M}_{n-1}^{\prime}(\mathbf{K})$.

1. Let $O_{n} \in \mathcal{M}_{n}(\mathbf{K})$ be the matrix with all entries equal to zero. Show the existence of $Q_{1}^{\prime}, \ldots, Q_{p}^{\prime} \in \mathcal{N}_{n-1}(\mathbf{K}), p \geq 1$, such that:

$$
O_{n-1}=Q_{1}^{\prime} \ldots . Q_{p}^{\prime}
$$

2. For $k=1, \ldots, p$, we define $Q_{k} \in \mathcal{M}_{n}(\mathbf{K})$, by:

$$
Q_{k} \triangleq\left(\begin{array}{cccc}
& & & 0 \\
& Q_{k}^{\prime} & & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Show that $Q_{k} \in \mathcal{N}_{n}(\mathbf{K})$, and that we have:

$$
\Sigma_{1 n} \cdot Q_{1} \ldots \ldots Q_{p} \cdot \Sigma_{1 n}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & O_{n-1} & \\
0 & & &
\end{array}\right)
$$

3. Conclude that $O_{n} \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$.
4. We now consider $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K}), M \neq O_{n}$. We want to show that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$. Show that for some $k, l \in\{1, \ldots, n\}$:

$$
H_{m_{k l}}^{-1} \cdot \Sigma_{1 k} \cdot M \cdot \Sigma_{1 l}=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
* & & & \\
\vdots & & * & \\
* & & &
\end{array}\right)
$$

5. Show that if $H_{m_{k l}}^{-1} \cdot \Sigma_{1 k} \cdot M \cdot \Sigma_{1 l} \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, then $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$. Conclude that without loss of generality, in order to prove that
M lies in $\mathcal{M}_{n}^{\prime}(\mathbf{K})$ we can assume that $m_{11}=1$.
6. Let $i=2, \ldots, n$. Show that if $m_{i 1} \neq 0$, we have:

$$
H_{m_{i 1}}^{-1} \cdot \Sigma_{2 i} \cdot U^{-1} \cdot \Sigma_{2 i} \cdot H_{1 / m_{i 1}}^{-1} \cdot M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
* & & & \\
0 & \leftarrow i & * & \\
* & & &
\end{array}\right)
$$

7. Conclude that without loss of generality, we can assume that $m_{i 1}=0$ for all $i \geq 2$, i.e. that M is of the form:

$$
M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & & & \\
\vdots & & * & \\
0 & & &
\end{array}\right)
$$

8. Show that in order to prove that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, without loss of

Tutorial 17: Image Measure
generality, we can assume that M is of the form:

$$
M=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & M^{\prime} & \\
0 & & &
\end{array}\right)
$$

9. Prove that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$ and conclude with the following:

Theorem 103 Given $n \geq 2$, any $n \times n$-matrix with values in \mathbf{K} is a finite product of matrices Q of the following types:
(i) $Q e_{1}=\alpha e_{1}, Q e_{j}=e_{j}, \forall j=2, \ldots, n,(\alpha \in \mathbf{K})$
(ii) $\quad Q e_{l}=e_{k}, Q e_{k}=e_{l}, Q e_{j}=e_{j}, \forall j \neq k, l,\left(k, l \in \mathbf{N}_{n}\right)$
(iii) $\quad Q e_{1}=e_{1}+e_{2}, Q e_{j}=e_{j}, \forall j=2, \ldots, n$
where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbf{K}^{n}.

Definition 123 Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where (Ω, \mathcal{F}) and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are two measurable spaces. Let μ be a (possibly complex) measure on (Ω, \mathcal{F}). Then, we call distribution of X under μ, or image measure of μ by X, or even law of X under μ, the (possibly complex) measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$, denoted $\mu^{X}, X(\mu)$ or $\mathcal{L}_{\mu}(X)$, and defined by:

$$
\forall B \in \mathcal{F}^{\prime}, \mu^{X}(B) \triangleq \mu(\{X \in B\})=\mu\left(X^{-1}(B)\right)
$$

Exercise 3. Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where (Ω, \mathcal{F}) and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are two measurable spaces.

1. Let $B \in \mathcal{F}^{\prime}$. Show that if $\left(B_{n}\right)_{n \geq 1}$ is a measurable partition of B, then $\left(X^{-1}\left(B_{n}\right)\right)_{n \geq 1}$ is a measurable partition of $X^{-1}(B)$.
2. Show that if μ is a measure on $(\Omega, \mathcal{F}), \mu^{X}$ is a well-defined measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$.
3. Show that if μ is a complex measure on $(\Omega, \mathcal{F}), \mu^{X}$ is a welldefined complex measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$.
4. Show that if μ is a complex measure on (Ω, \mathcal{F}), then $\left|\mu^{X}\right| \leq|\mu|^{X}$.
5. Let $Y:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow\left(\Omega^{\prime \prime}, \mathcal{F}^{\prime \prime}\right)$ be a measurable map, where $\left(\Omega^{\prime \prime}, \mathcal{F}^{\prime \prime}\right)$ is another measurable space. Show that for all (possibly complex) measure μ on (Ω, \mathcal{F}), we have:

$$
Y(X(\mu))=(Y \circ X)(\mu)=\left(\mu^{X}\right)^{Y}=\mu^{(Y \circ X)}
$$

Definition 124 Let μ be a (possibly complex) measure on $\mathbf{R}^{n}, n \geq 1$. We say that μ is invariant by translation, if and only if $\tau_{a}(\mu)=\mu$ for all $a \in \mathbf{R}^{n}$, where $\tau_{a}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is the translation mapping defined by $\tau_{a}(x)=a+x$, for all $x \in \mathbf{R}^{n}$.

EXERCISE 4. Let μ be a (possibly complex) measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.

1. Show that $\tau_{a}:\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ is measurable.
2. Show $\tau_{a}(\mu)$ is therefore a well-defined (possibly complex) measure on ($\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)$), for all $a \in \mathbf{R}^{n}$.
3. Show that $\tau_{a}(d x)=d x$ for all $a \in \mathbf{R}^{n}$.
4. Show the Lebesgue measure on \mathbf{R}^{n} is invariant by translation.

Exercise 5. Let $k_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined by $k_{\alpha}(x)=\alpha x, \alpha>0$.

1. Show that $k_{\alpha}:\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ is measurable.
2. Show that $k_{\alpha}(d x)=\alpha^{-n} d x$.

Exercise 6. Show the following:

Theorem 104 (Integral Projection 1) Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where $(\Omega, \mathcal{F}),\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}). Then, for all $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow[0,+\infty]$ non-negative and measurable, we have:

$$
\int_{\Omega} f \circ X d \mu=\int_{\Omega^{\prime}} f d X(\mu)
$$

Exercise 7. Show the following:
Theorem 105 (Integral Projection 2) Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where $(\Omega, \mathcal{F}),\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}). Then, for all $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ measurable, we have the equivalence:

$$
f \circ X \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu) \Leftrightarrow f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, X(\mu)\right)
$$

in which case, we have:

$$
\int_{\Omega} f \circ X d \mu=\int_{\Omega^{\prime}} f d X(\mu)
$$

Exercise 8. Further to theorem (105), suppose μ is in fact a complex measure on (Ω, \mathcal{F}). Show that:

$$
\begin{equation*}
\int_{\Omega^{\prime}}|f| d|X(\mu)| \leq \int_{\Omega}|f \circ X| d|\mu| \tag{1}
\end{equation*}
$$

Conclude with the following:
Theorem 106 (Integral Projection 3) Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where $(\Omega, \mathcal{F}),\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a complex measure on (Ω, \mathcal{F}). Then, for all measurable maps $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$, we have:

$$
f \circ X \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu) \Rightarrow f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, X(\mu)\right)
$$

and when the left-hand side of this implication is satisfied:

$$
\int_{\Omega} f \circ X d \mu=\int_{\Omega^{\prime}} f d X(\mu)
$$

Exercise 9. Let $X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be a measurable map with distribution $\mu=X(P)$, where (Ω, \mathcal{F}, P) is a probability space.

1. Show that X is integrable, i.e. $\int|X| d P<+\infty$, if and only if:

$$
\int_{-\infty}^{+\infty}|x| d \mu(x)<+\infty
$$

2. Show that if X is integrable, then:

$$
E[X]=\int_{-\infty}^{+\infty} x d \mu(x)
$$

3. Show that:

$$
E\left[X^{2}\right]=\int_{-\infty}^{+\infty} x^{2} d \mu(x)
$$

EXERCISE 10. Let μ be a locally finite measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right.$), which is invariant by translation. For all $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbf{R}^{+}\right)^{n}$, we define $Q_{a}=\left[0, a_{1}\left[\times \ldots \times\left[0, a_{n}\left[\right.\right.\right.\right.$, and in particular $Q=Q_{(1, \ldots, 1)}=[0,1]^{n}$.

1. Show that $\mu\left(Q_{a}\right)<+\infty$ for all $a \in\left(\mathbf{R}^{+}\right)^{n}$, and $\mu(Q)<+\infty$.
2. Let $p=\left(p_{1}, \ldots, p_{n}\right)$ where $p_{i} \geq 1$ is an integer for all i 's. Show:

$$
\begin{aligned}
Q_{p}= & \biguplus_{\substack{k \in \mathbf{N}^{n}}}\left[k_{1}, k_{1}+1\left[\times \ldots \times\left[k_{n}, k_{n}+1[\right.\right.\right. \\
& 0 \leq k_{i}<p_{i}
\end{aligned}
$$

3. Show that $\mu\left(Q_{p}\right)=p_{1} \ldots p_{n} \mu(Q)$.
4. Let $q_{1}, \ldots, q_{n} \geq 1$ be n positive integers. Show that:

$$
\begin{aligned}
Q_{p}= & \biguplus_{\substack{k \in \mathbf{N}^{n}}}\left[\frac{k_{1} p_{1}}{q_{1}}, \frac{\left(k_{1}+1\right) p_{1}}{q_{1}}\left[\times \ldots \times\left[\frac{k_{n} p_{n}}{q_{n}}, \frac{\left(k_{n}+1\right) p_{n}}{q_{n}}[\right.\right.\right. \\
& 0 \leq k_{i}<q_{i}
\end{aligned}
$$

5. Show that $\mu\left(Q_{p}\right)=q_{1} \ldots q_{n} \mu\left(Q_{\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right)}\right)$
6. Show that $\mu\left(Q_{r}\right)=r_{1} \ldots r_{n} \mu(Q)$, for all $r \in\left(\mathbf{Q}^{+}\right)^{n}$.
7. Show that $\mu\left(Q_{a}\right)=a_{1} \ldots a_{n} \mu(Q)$, for all $a \in\left(\mathbf{R}^{+}\right)^{n}$.

Tutorial 17: Image Measure
8. Show that $\mu(B)=\mu(Q) d x(B)$, for all $B \in \mathcal{C}$, where:

$$
\mathcal{C} \triangleq\left\{\left[a_{1}, b_{1}\left[\times \ldots \times\left[a_{n}, b_{n}\left[, a_{i}, b_{i} \in \mathbf{R}, a_{i} \leq b_{i}, \forall i \in \mathbf{N}^{n}\right\}\right.\right.\right.\right.
$$

9. Show that $B\left(\mathbf{R}^{n}\right)=\sigma(\mathcal{C})$.
10. Show that $\mu=\mu(Q) d x$, and conclude with the following:

Theorem 107 Let μ be a locally finite measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$. If μ is invariant by translation, then there exists $\alpha \in \mathbf{R}^{+}$such that:

$$
\mu=\alpha d x
$$

Exercise 11. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection.

1. Show that T and T^{-1} are continuous.
2. Show that for all $B \subseteq \mathbf{R}^{n}$, the inverse image $T^{-1}(B)=\{T \in B\}$ coincides with the direct image:

$$
T^{-1}(B) \triangleq\left\{y: y=T^{-1}(x) \text { for some } x \in B\right\}
$$

3. Show that for all $B \subseteq \mathbf{R}^{n}$, the direct image $T(B)$ coincides with the inverse image $\left(T^{-1}\right)^{-1}(B)=\left\{T^{-1} \in B\right\}$.
4. Let $K \subseteq \mathbf{R}^{n}$ be compact. Show that $\{T \in K\}$ is compact.
5. Show that $T(d x)$ is a locally finite measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.
6. Let τ_{a} be the translation of vector $a \in \mathbf{R}^{n}$. Show that:

$$
T \circ \tau_{T^{-1}(a)}=\tau_{a} \circ T
$$

7. Show that $T(d x)$ is invariant by translation.
8. Show the existence of $\alpha \in \mathbf{R}^{+}$, such that $T(d x)=\alpha d x$. Show that such constant is unique, and denote it by $\Delta(T)$.
9. Show that $Q=T\left([0,1]^{n}\right) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ and that we have:

$$
\Delta(T) d x(Q)=T(d x)(Q)=1
$$

10. Show that $\Delta(T) \neq 0$.
11. Let $T_{1}, T_{2}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be two linear bijections. Show that:

$$
\left(T_{1} \circ T_{2}\right)(d x)=\Delta\left(T_{1}\right) \Delta\left(T_{2}\right) d x
$$

and conclude that $\Delta\left(T_{1} \circ T_{2}\right)=\Delta\left(T_{1}\right) \Delta\left(T_{2}\right)$.

Exercise 12. Let $\alpha \in \mathbf{R} \backslash\{0\}$. Let $H_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection uniquely defined by $H_{\alpha}\left(e_{1}\right)=\alpha e_{1}, H_{\alpha}\left(e_{j}\right)=e_{j}$ for $j \geq 2$.

1. Show that $H_{\alpha}(d x)\left([0,1]^{n}\right)=|\alpha|^{-1}$.
2. Conclude that $\Delta\left(H_{\alpha}\right)=\left|\operatorname{det} H_{\alpha}\right|^{-1}$.

Exercise 13. Let $k, l \in \mathbf{N}_{n}$ and $\Sigma: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection uniquely defined by $\Sigma\left(e_{k}\right)=e_{l}, \Sigma\left(e_{l}\right)=e_{k}, \Sigma\left(e_{j}\right)=e_{j}$, for $j \neq k, l$.

1. Show that $\Sigma(d x)\left([0,1]^{n}\right)=1$.
2. Show that $\Sigma . \Sigma=I_{n}$. (Identity mapping on \mathbf{R}^{n}).
3. Show that $|\operatorname{det} \Sigma|=1$.
4. Conclude that $\Delta(\Sigma)=|\operatorname{det} \Sigma|^{-1}$.

ExERCISE 14. Let $n \geq 2$ and $U: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection uniquely defined by $U\left(e_{1}\right)=e_{1}+e_{2}$ and $U\left(e_{j}\right)=e_{j}$ for $j \geq 2$. Let $Q=\left[0,1\left[^{n}\right.\right.$.

1. Show that:

$$
U^{-1}(Q)=\left\{x \in \mathbf{R}^{n}: 0 \leq x_{1}+x_{2}<1,0 \leq x_{i}<1, \forall i \neq 2\right\}
$$

2. Define:

$$
\begin{aligned}
& \Omega_{1} \triangleq U^{-1}(Q) \cap\left\{x \in \mathbf{R}^{n}: x_{2} \geq 0\right\} \\
& \Omega_{2} \triangleq U^{-1}(Q) \cap\left\{x \in \mathbf{R}^{n}: x_{2}<0\right\}
\end{aligned}
$$

Show that $\Omega_{1}, \Omega_{2} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
3. Let $\tau_{e_{2}}$ be the translation of vector e_{2}. Draw a picture of Q, Ω_{1}, Ω_{2} and $\tau_{e_{2}}\left(\Omega_{2}\right)$ in the case when $n=2$.
4. Show that if $x \in \Omega_{1}$, then $0 \leq x_{2}<1$.
5. Show that $\Omega_{1} \subseteq Q$.
6. Show that if $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$, then $0 \leq x_{2}<1$.
7. Show that $\tau_{e_{2}}\left(\Omega_{2}\right) \subseteq Q$.
8. Show that if $x \in Q$ and $x_{1}+x_{2}<1$ then $x \in \Omega_{1}$.
9. Show that if $x \in Q$ and $x_{1}+x_{2} \geq 1$ then $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$.

Tutorial 17: Image Measure
10. Show that if $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$ then $x_{1}+x_{2} \geq 1$.
11. Show that $\tau_{e_{2}}\left(\Omega_{2}\right) \cap \Omega_{1}=\emptyset$.
12. Show that $Q=\Omega_{1} \uplus \tau_{e_{2}}\left(\Omega_{2}\right)$.
13. Show that $d x(Q)=d x\left(U^{-1}(Q)\right)$.
14. Show that $\Delta(U)=1$.
15. Show that $\Delta(U)=|\operatorname{det} U|^{-1}$.

Exercise 15. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection, $(n \geq 1)$.

1. Show the existence of linear bijections $Q_{1}, \ldots, Q_{p}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, $p \geq 1$, with $T=Q_{1} \circ \ldots \circ Q_{p}, \Delta\left(Q_{i}\right)=\left|\operatorname{det} Q_{i}\right|^{-1}$ for all $i \in \mathbf{N}_{p}$.
2. Show that $\Delta(T)=|\operatorname{det} T|^{-1}$.
3. Conclude with the following:

Theorem 108 Let $n \geq 1$ and $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection. Then, the image measure $T(d x)$ of the Lebesgue measure on \mathbf{R}^{n} is:

$$
T(d x)=|\operatorname{det} T|^{-1} d x
$$

ExERCISE 16. Let $f:\left(\mathbf{R}^{2}, \mathcal{B}\left(\mathbf{R}^{2}\right)\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. Let $a, b, c, d \in \mathbf{R}$ such that $a d-b c \neq 0$. Show that:

$$
\int_{\mathbf{R}^{2}} f(a x+b y, c x+d y) d x d y=|a d-b c|^{-1} \int_{\mathbf{R}^{2}} f(x, y) d x d y
$$

Exercise 17. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection. Show that for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, we have $T(B) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ and:

$$
d x(T(B))=|\operatorname{det} T| d x(B)
$$

Exercise 18. Let V be a linear subspace of \mathbf{R}^{n} and $p=\operatorname{dim} V$. We assume that $1 \leq p \leq n-1$. Let u_{1}, \ldots, u_{p} be an orthonormal basis of
V, and u_{p+1}, \ldots, u_{n} be such that u_{1}, \ldots, u_{n} is an orthonormal basis of \mathbf{R}^{n}. For $i \in \mathbf{N}_{n}$, Let $\phi_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be defined by $\phi_{i}(x)=\left\langle u_{i}, x\right\rangle$.

1. Show that all ϕ_{i} 's are continuous.
2. Show that $V=\bigcap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\})$.
3. Show that V is a closed subset of \mathbf{R}^{n}.
4. Let $Q=\left(q_{i j}\right) \in \mathcal{M}_{n}(\mathbf{R})$ be the matrix uniquely defined by $Q e_{j}=u_{j}$ for all $j \in \mathbf{N}_{n}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbf{R}^{n}. Show that for all $i, j \in \mathbf{N}_{n}$:

$$
\left\langle u_{i}, u_{j}\right\rangle=\sum_{k=1}^{n} q_{k i} q_{k j}
$$

5. Show that $Q^{t} \cdot Q=I_{n}$ and conclude that $|\operatorname{det} Q|=1$.
6. Show that $d x(\{Q \in V\})=d x(V)$.
7. Show that $\{Q \in V\}=\operatorname{span}\left(e_{1}, \ldots, e_{p}\right) .{ }^{1}$
8. For all $m \geq 1$, we define:

$$
E_{m} \triangleq \overbrace{[-m, m] \times \ldots \times[-m, m]}^{n-1} \times\{0\}
$$

Show that $d x\left(E_{m}\right)=0$ for all $m \geq 1$.
9. Show that $d x\left(\operatorname{span}\left(e_{1}, \ldots, e_{n-1}\right)\right)=0$.
10. Conclude with the following:

Theorem 109 Let $n \geq 1$. Any linear subspace V of \mathbf{R}^{n} is a closed subset of \mathbf{R}^{n}. Moreover, if $\operatorname{dim} V \leq n-1$, then $d x(V)=0$.

[^0]
[^0]: ${ }^{1}$ i.e. the linear subspace of \mathbf{R}^{n} generated by e_{1}, \ldots, e_{p}.

