20. Gaussian Measures

$\mathcal{M}_n(\mathbb{R})$ is the set of all $n \times n$-matrices with real entries, $n \geq 1$.

Definition 141 A matrix $M \in \mathcal{M}_n(\mathbb{R})$ is said to be symmetric, if and only if $M = M^t$. M is orthogonal, if and only if M is non-singular and $M^{-1} = M^t$. If M is symmetric, we say that M is non-negative, if and only if:
\[\forall u \in \mathbb{R}^n, \langle u, Mu \rangle \geq 0 \]

Theorem 131 Let $\Sigma \in \mathcal{M}_n(\mathbb{R})$, $n \geq 1$, be a symmetric and non-negative real matrix. There exist $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^+$ and $P \in \mathcal{M}_n(\mathbb{R})$ orthogonal matrix, such that:
\[
\Sigma = P \begin{pmatrix} \lambda_1 & 0 \\ \vdots & \ddots \\ 0 & \lambda_n \end{pmatrix} P^t
\]

In particular, there exists $A \in \mathcal{M}_n(\mathbb{R})$ such that $\Sigma = A.A^t$.

www.probability.net
As a rare exception, theorem (131) is given without proof.

Exercise 1. Given $n \geq 1$ and $M \in \mathcal{M}_n(\mathbb{R})$, show that we have:
\[
\forall u, v \in \mathbb{R}^n, \quad \langle u, Mv \rangle = \langle M^t u, v \rangle
\]

Exercise 2. Let $n \geq 1$ and $m \in \mathbb{R}^n$. Let $\Sigma \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative matrix. Let μ_1 be the probability measure on \mathbb{R}:
\[
\forall B \in \mathcal{B}(\mathbb{R}) , \quad \mu_1(B) = \frac{1}{\sqrt{2\pi}} \int_B e^{-x^2/2} dx
\]

Let $\mu = \mu_1 \otimes \ldots \otimes \mu_1$ be the product measure on \mathbb{R}^n. Let $A \in \mathcal{M}_n(\mathbb{R})$ be such that $\Sigma = AA^t$. We define the map $\phi : \mathbb{R}^n \to \mathbb{R}^n$ by:
\[
\forall x \in \mathbb{R}^n, \quad \phi(x) \triangleq Ax + m
\]

1. Show that μ is a probability measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.
2. Explain why the image measure $P = \phi(\mu)$ is well-defined.
3. Show that P is a probability measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.

www.probability.net
4. Show that for all $u \in \mathbb{R}^n$:

$$FP(u) = \int_{\mathbb{R}^n} e^{i(u, \phi(x))} d\mu(x)$$

5. Let $v = A^t u$. Show that for all $u \in \mathbb{R}^n$:

$$FP(u) = e^{i(u, m) - \|v\|^2/2}$$

6. Show the following:

Theorem 132 Let $n \geq 1$ and $m \in \mathbb{R}^n$. Let $\Sigma \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative real matrix. There exists a unique complex measure on \mathbb{R}^n, denoted $N_n(m, \Sigma)$, with Fourier transform:

$$\mathcal{F}N_n(m, \Sigma)(u) \triangleq \int_{\mathbb{R}^n} e^{i(u, x)} dN_n(m, \Sigma)(x) = e^{i\langle u, m \rangle} - \frac{1}{2} \langle u, \Sigma u \rangle$$

for all $u \in \mathbb{R}^n$. Furthermore, $N_n(m, \Sigma)$ is a probability measure.
Definition 142 Let $n \geq 1$ and $m \in \mathbb{R}^n$. Let $\Sigma \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative real matrix. The probability measure $N_n(m, \Sigma)$ on \mathbb{R}^n defined in theorem (132) is called the n-dimensional gaussian measure or normal distribution, with mean $m \in \mathbb{R}^n$ and covariance matrix Σ.

Exercise 3. Let $n \geq 1$ and $m \in \mathbb{R}^n$. Show that $N_n(m, 0) = \delta_m$.

Exercise 4. Let $m \in \mathbb{R}^n$. Let $\Sigma \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative real matrix. Let $A \in \mathcal{M}_n(\mathbb{R})$ be such that $\Sigma = AA^t$. A map $p : \mathbb{R}^n \to \mathbb{C}$ is said to be a polynomial, if and only if, it is a finite linear complex combination of maps $x \to x^\alpha$, 1 for $\alpha \in \mathbb{N}^n$.

1. Show that for all $B \in \mathcal{B}(\mathbb{R})$, we have:

 $$N_1(0, 1)(B) = \frac{1}{\sqrt{2\pi}} \int_B e^{-x^2/2}dx$$

1See definition (140).
2. Show that:
\[\int_{-\infty}^{+\infty} |x| dN_1(0,1)(x) < +\infty \]

3. Show that for all integer \(k \geq 1 \):
\[
\frac{1}{\sqrt{2\pi}} \int_0^{+\infty} x^{k+1} e^{-x^2/2} \, dx = \frac{k}{\sqrt{2\pi}} \int_0^{+\infty} x^{k-1} e^{-x^2/2} \, dx
\]

4. Show that for all integer \(k \geq 0 \):
\[\int_{-\infty}^{+\infty} |x|^k dN_1(0,1)(x) < +\infty \]

5. Show that for all \(\alpha \in \mathbb{N}^n \):
\[\int_{\mathbb{R}^n} |x|\alpha dN_1(0,1) \otimes \ldots \otimes N_1(0,1)(x) < +\infty \]
6. Let $p : \mathbb{R}^n \to \mathbb{C}$ be a polynomial. Show that:

$$\int_{\mathbb{R}^n} |p(x)| dN_1(0,1) \otimes \cdots \otimes N_1(0,1)(x) < +\infty$$

7. Let $\phi : \mathbb{R}^n \to \mathbb{R}^n$ be defined by $\phi(x) = Ax + m$. Explain why the image measure $\phi(N_1(0,1) \otimes \cdots \otimes N_1(0,1))$ is well-defined.

8. Show that $\phi(N_1(0,1) \otimes \cdots \otimes N_1(0,1)) = N_n(m, \Sigma)$.

9. Show if $\beta \in \mathbb{N}^n$ and $|\beta| = 1$, then $x \to \phi(x)^\beta$ is a polynomial.

10. Show that if $\alpha' \in \mathbb{N}^n$ and $|\alpha'| = k+1$, then $\phi(x)^{\alpha'} = \phi(x)^\alpha \phi(x)^\beta$ for some $\alpha, \beta \in \mathbb{N}^n$ such that $|\alpha| = k$ and $|\beta| = 1$.

11. Show that the product of two polynomials is a polynomial.

12. Show that for all $\alpha \in \mathbb{N}^n$, $x \to \phi(x)^\alpha$ is a polynomial.

13. Show that for all $\alpha \in \mathbb{N}^n$:

$$\int_{\mathbb{R}^n} |\phi(x)^\alpha| dN_1(0,1) \otimes \cdots \otimes N_1(0,1)(x) < +\infty$$
14. Show the following:

Theorem 133 Let $n \geq 1$ and $m \in \mathbb{R}^n$. Let $\Sigma \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative real matrix. Then, for all $\alpha \in \mathbb{N}^n$, the map $x \to x^\alpha$ is integrable with respect to the gaussian measure $N_n(m, \Sigma)$:

$$\int_{\mathbb{R}^n} |x^\alpha| dN_n(m, \Sigma)(x) < +\infty$$

Exercise 5. Let $m \in \mathbb{R}^n$. Let $\Sigma = (\sigma_{ij}) \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative real matrix. Let $j, k \in \mathbb{N}_n$. Let ϕ be the fourier transform of the gaussian measure $N_n(m, \Sigma)$, i.e.:

$$\forall u \in \mathbb{R}^n, \quad \phi(u) \triangleq e^{i(u, m) - \frac{1}{2}(u, \Sigma u)}$$

1. Show that:

$$\int_{\mathbb{R}^n} x_j dN_n(m, \Sigma)(x) = i^{-1} \frac{\partial \phi}{\partial u_j}(0)$$
2. Show that:
\[\int_{\mathbb{R}^n} x_j dN_n(m, \Sigma)(x) = m_j \]

3. Show that:
\[\int_{\mathbb{R}^n} x_j x_k dN_n(m, \Sigma)(x) = i^{-2} \frac{\partial^2 \phi}{\partial u_j \partial u_k}(0) \]

4. Show that:
\[\int_{\mathbb{R}^n} x_j x_k dN_n(m, \Sigma)(x) = \sigma_{jk} + m_j m_k \]

5. Show that:
\[\int_{\mathbb{R}^n} (x_j - m_j)(x_k - m_k) dN_n(m, \Sigma)(x) = \sigma_{jk} \]
Theorem 134 Let $n \geq 1$ and $m \in \mathbb{R}^n$. Let $\Sigma = (\sigma_{ij}) \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative real matrix. Let $N_n(m, \Sigma)$ be the gaussian measure with mean m and covariance matrix Σ. Then, for all $j, k \in \mathbb{N}_n$, we have:

$$\int_{\mathbb{R}^n} x_j dN_n(m, \Sigma)(x) = m_j$$

and:

$$\int_{\mathbb{R}^n} (x_j - m_j)(x_k - m_k) dN_n(m, \Sigma)(x) = \sigma_{jk}$$

Definition 143 Let $n \geq 1$. Let (Ω, \mathcal{F}, P) be a probability space. Let $X : (\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ be a measurable map. We say that X is an n-dimensional gaussian or normal vector, if and only if its distribution is a gaussian measure, i.e., $X(P) = N_n(m, \Sigma)$ for some $m \in \mathbb{R}^n$ and $\Sigma \in \mathcal{M}_n(\mathbb{R})$ symmetric and non-negative real matrix.

Exercise 6. Show the following:

www.probability.net
Theorem 135. Let \(n \geq 1 \). Let \((\Omega, \mathcal{F}, P)\) be a probability space. Let \(X : (\Omega, \mathcal{F}) \to \mathbb{R}^n \) be a measurable map. Then \(X \) is a gaussian vector, if and only if there exist \(m \in \mathbb{R}^n \) and \(\Sigma \in M_n(\mathbb{R}) \) symmetric and non-negative real matrix, such that:

\[
\forall u \in \mathbb{R}^n, \quad E[e^{i\langle u, X \rangle}] = e^{i\langle u, m \rangle - \frac{1}{2} \langle u, \Sigma u \rangle}
\]

where \(\langle \cdot, \cdot \rangle \) is the usual inner-product on \(\mathbb{R}^n \).

Definition 144. Let \(X : (\Omega, \mathcal{F}) \to \mathbb{R} \) (or \(\mathbb{C} \)) be a random variable on a probability space \((\Omega, \mathcal{F}, P)\). We say that \(X \) is integrable, if and only if we have \(E[|X|] < +\infty \). We say that \(X \) is square-integrable, if and only if we have \(E[|X|^2] < +\infty \).

Exercise 7. Further to definition (144), suppose \(X \) is \(\mathbb{C} \)-valued.

1. Show \(X \) is integrable if and only if \(X \in L_1^\mathbb{C}(\Omega, \mathcal{F}, P) \).
2. Show \(X \) is square-integrable, if and only if \(X \in L_2^\mathbb{C}(\Omega, \mathcal{F}, P) \).
Exercise 8. Further to definition (144), suppose X is \mathbb{R}-valued.

1. Show that X is integrable, if and only if X is P-almost surely equal to an element of $L^1_{\mathbb{R}}(\Omega, \mathcal{F}, P)$.

2. Show that X is square-integrable, if and only if X is P-almost surely equal to an element of $L^2_{\mathbb{R}}(\Omega, \mathcal{F}, P)$.

Exercise 9. Let $X, Y : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be two square-integrable random variables on a probability space (Ω, \mathcal{F}, P).

1. Show that both X and Y are integrable.

2. Show that XY is integrable.

3. Show that $(X - E[X])(Y - E[Y])$ is a well-defined and integrable.
Definition 145 Let \(X, Y : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R})) \) be two square-integrable random variables on a probability space \((\Omega, \mathcal{F}, P)\). We define the covariance between \(X \) and \(Y \), denoted \(\text{cov}(X, Y) \), as:

\[
\text{cov}(X, Y) = E[(X - E[X])(Y - E[Y])]
\]

We say that \(X \) and \(Y \) are uncorrelated if and only if \(\text{cov}(X, Y) = 0 \). If \(X = Y \), \(\text{cov}(X, Y) \) is called the variance of \(X \), denoted \(\text{var}(X) \).

Exercise 10. Let \(X, Y \) be two square integrable, real random variable on a probability space \((\Omega, \mathcal{F}, P)\).

2. Show that \(\text{var}(X) = E[X^2] - E[X]^2 \).
3. Show that \(\text{var}(X + Y) = \text{var}(X) + 2\text{cov}(X, Y) + \text{var}(Y) \)
4. Show that \(X \) and \(Y \) are uncorrelated, if and only if:
 \[
 \text{var}(X + Y) = \text{var}(X) + \text{var}(Y)
 \]
Exercise 11. Let X be an n-dimensional normal vector on some probability space (Ω, \mathcal{F}, P), with law $N_n(m, \Sigma)$, where $m \in \mathbb{R}^n$ and $\Sigma = (\sigma_{ij}) \in M_n(\mathbb{R})$ is a symmetric and non-negative real matrix.

1. Show that each coordinate $X_j : (\Omega, \mathcal{F}) \to \mathbb{R}$ is measurable.
2. Show that $E[X_j] < +\infty$ for all $j \in \mathbb{N}$.
3. Show that for all $j = 1, \ldots, n$, we have $E[X_j] = m_j$.
4. Show that for all $j, k = 1, \ldots, n$, we have $\text{cov}(X_j, X_k) = \sigma_{jk}$.

Theorem 136. Let X be an n-dimensional normal vector on a probability space (Ω, \mathcal{F}, P), with law $N_n(m, \Sigma)$, where $m \in \mathbb{R}^n$ and $\Sigma = (\sigma_{ij}) \in M_n(\mathbb{R})$ is a symmetric and non-negative real matrix. Then, for all $j, k \in \mathbb{N}$, we have:

$$E[X_j] = m_j$$

and:

$$\text{cov}(X_j, X_k) = \sigma_{jk}$$

where $(\sigma_{ij}) = \Sigma$.

www.probability.net
Exercise 12. Show the following:

Theorem 137 Let $X : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a real random variable on a probability space (Ω, \mathcal{F}, P). Then, X is a normal random variable, if and only if it is square integrable, and:

$$
\forall u \in \mathbb{R}, \quad E[e^{iuX}] = e^{iuE[X]} - \frac{1}{2}u^2 \var(X)
$$

Exercise 13. Let X be an n-dimensional normal vector on a probability space (Ω, \mathcal{F}, P), with law $N_n(m, \Sigma)$. Let $A \in \mathcal{M}_{d,n}(\mathbb{R})$ be an $d \times n$ real matrix, $(n, d \geq 1)$. Let $b \in \mathbb{R}^d$ and $Y = AX + b$.

1. Show that $Y : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is measurable.
2. Show that the law of Y is $N_d(AM + b, A\Sigma A^t)$
3. Conclude that Y is an \mathbb{R}^d-valued normal random vector.
Theorem 138 Let X be an n-dimensional normal vector with law $N_n(m, \Sigma)$ on a probability space (Ω, \mathcal{F}, P), ($n \geq 1$). Let $d \geq 1$ and $A \in \mathcal{M}_{d,n}(\mathbb{R})$ be an $d \times n$ real matrix. Let $b \in \mathbb{R}^d$. Then, $Y = AX + b$ is an d-dimensional normal vector, with law:

$$Y(P) = N_d(\text{Am} + b, A\Sigma A^t)$$

Exercise 14. Let $X : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ be a measurable map, where (Ω, \mathcal{F}, P) is a probability space. Show that if X is a gaussian vector, then for all $u \in \mathbb{R}^n$, $\langle u, X \rangle$ is a normal random variable.

Exercise 15. Let $X : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ be a measurable map, where (Ω, \mathcal{F}, P) is a probability space. We assume that for all $u \in \mathbb{R}^n$, $\langle u, X \rangle$ is a normal random variable.

1. Show that for all $j = 1, \ldots, n$, X_j is integrable.

2. Show that for all $j = 1, \ldots, n$, X_j is square integrable.

3. Explain why given $j, k = 1, \ldots, n$, $\text{cov}(X_j, X_k)$ is well-defined.
4. Let $m \in \mathbb{R}^n$ be defined by $m_j = E[X_j]$, and $u \in \mathbb{R}^n$. Show:
 $$E[\langle u, X \rangle] = \langle u, m \rangle$$

5. Let $\Sigma = (\text{cov}(X_i, X_j))$. Show that for all $u \in \mathbb{R}^n$, we have:
 $$\text{var}(\langle u, X \rangle) = \langle u, \Sigma u \rangle$$

6. Show that Σ is a symmetric and non-negative $n \times n$ real matrix.

7. Show that for all $u \in \mathbb{R}^n$:
 $$E[e^{i\langle u, X \rangle}] = e^{iE[\langle u, X \rangle] - \frac{1}{2}\text{var}(\langle u, X \rangle)}$$

8. Show that for all $u \in \mathbb{R}^n$:
 $$E[e^{i\langle u, X \rangle}] = e^{i\langle u, m \rangle - \frac{1}{2}\langle u, \Sigma u \rangle}$$

9. Show that X is a normal vector.

10. Show the following:

www.probability.net
Theorem 139 Let $X : (\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ be a measurable map on a probability space (Ω, \mathcal{F}, P). Then, X is an n-dimensional normal vector, if and only if, any linear combination of its coordinates is itself normal, or in other words $\langle u, X \rangle$ is normal for all $u \in \mathbb{R}^n$.

Exercise 16. Let $(\Omega, \mathcal{F}) = (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ and μ be the probability on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined by $\mu = \frac{1}{2}(\delta_0 + \delta_1)$. Let $P = N_1(0, 1) \otimes \mu$, and $X, Y : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be the canonical projections defined by $X(x, y) = x$ and $Y(x, y) = y$.

1. Show that P is a probability measure on (Ω, \mathcal{F}).
2. Explain why X and Y are measurable.
3. Show that X has the distribution $N_1(0, 1)$.
4. Show that $P(\{Y = 0\}) = P(\{Y = 1\}) = \frac{1}{2}$.
5. Show that $P^{(X,Y)} = P$.

www.probability.net
6. Show for all $\phi : (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2)) \to \mathbb{C}$ measurable and bounded:
\[
E[\phi(X, Y)] = \frac{1}{2}(E[\phi(X, 0)] + E[\phi(X, 1)])
\]

7. Let $X_1 = X$ and X_2 be defined as:
\[
X_2 \triangleq X1_{\{Y=0\}} - X1_{\{Y=1\}}
\]
Show that $E[e^{iuX_2}] = e^{-u^2/2}$ for all $u \in \mathbb{R}$.

8. Show that $X_1(P) = X_2(P) = N_1(0, 1)$.

9. Explain why $cov(X_1, X_2)$ is well-defined.

10. Show that X_1 and X_2 are uncorrelated.

11. Let $Z = \frac{1}{2}(X_1 + X_2)$. Show that:
\[
\forall u \in \mathbb{R} : E[e^{iuZ}] = \frac{1}{2}(1 + e^{-u^2/2})
\]
12. Show that Z cannot be gaussian.

13. Conclude that although X_1, X_2 are normally distributed, (and even uncorrelated), (X_1, X_2) is not a gaussian vector.

Exercise 17. Let $n \geq 1$ and $m \in \mathbb{R}^n$. Let $\Sigma \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative real matrix. Let $A \in \mathcal{M}_n(\mathbb{R})$ be such that $\Sigma = A A^t$. We assume that Σ is non-singular. We define $p_{m,\Sigma} : \mathbb{R}^n \to \mathbb{R}^+$ by:

$$
\forall x \in \mathbb{R}^n, \quad p_{m,\Sigma}(x) \triangleq \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det(\Sigma)}} e^{-\frac{1}{2}(x - m, \Sigma^{-1}(x - m))}
$$

1. Explain why $\det(\Sigma) > 0$.

2. Explain why $\sqrt{\det(\Sigma)} = |\det(A)|$.

3. Explain why A is non-singular.
4. Let $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be defined by:

$$\forall x \in \mathbb{R}^n, \; \phi(x) \triangleq A^{-1}(x - m)$$

Show that for all $x \in \mathbb{R}^n$, $\langle x - m, \Sigma^{-1}(x - m) \rangle = ||\phi(x)||^2$.

5. Show that ϕ is a C^1-diffeomorphism.

6. Show that $\phi(dx) = |\det(A)|dx$.

7. Show that:

$$\int_{\mathbb{R}^n} p_{m, \Sigma}(x)dx = 1$$

8. Let $\mu = \int p_{m, \Sigma}dx$. Show that:

$$\forall u \in \mathbb{R}^n, \; \mathcal{F}_\mu(u) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{i(u,Ax + m) - \frac{1}{2} \|x\|^2} dx$$

9. Show that the fourier transform of μ is therefore given by:

$$\forall u \in \mathbb{R}^n, \; \mathcal{F}_\mu(u) = e^{i(u,m) - \frac{1}{2} (u, \Sigma u)}$$
10. Show that $\mu = N_n(m, \Sigma)$.

11. Show that $N_n(m, \Sigma) \ll dx$, i.e. that $N_n(m, \Sigma)$ is absolutely continuous w.r. to the Lebesgue measure on \mathbb{R}^n.

Exercise 18. Let $n \geq 1$ and $m \in \mathbb{R}^n$. Let $\Sigma \in \mathcal{M}_n(\mathbb{R})$ be a symmetric and non-negative real matrix. We assume that Σ is singular. Let $u \in \mathbb{R}^n$ be such that $\Sigma u = 0$ and $u \neq 0$. We define:

$$B \triangleq \{ x \in \mathbb{R}^n, \langle u, x \rangle = \langle u, m \rangle \}$$

Given $a \in \mathbb{R}^n$, let $\tau_a : \mathbb{R}^n \to \mathbb{R}^n$ be the translation of vector a.

1. Show $B = \tau_m^{-1}(u^\perp)$, where u^\perp is the orthogonal of u in \mathbb{R}^n.
2. Show that $B \in \mathcal{B}(\mathbb{R}^n)$.
3. Explain why $dx(u^\perp) = 0$. Is it important to have $u \neq 0$?
4. Show that $dx(B) = 0$.

www.probability.net
5. Show that \(\phi : \mathbb{R}^n \to \mathbb{R} \) defined by \(\phi(x) = \langle u, x \rangle \), is measurable.

6. Explain why \(\phi(N_n(m, \Sigma)) \) is a well-defined probability on \(\mathbb{R} \).

7. Show that for all \(\alpha \in \mathbb{R} \), we have:
 \[
 \mathcal{F}\phi(N_n(m, \Sigma))(\alpha) = \int_{\mathbb{R}^n} e^{i\alpha \langle u, x \rangle} dN_n(m, \Sigma)(x)
 \]

8. Show that \(\phi(N_n(m, \Sigma)) \) is the dirac distribution on \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \)
centered on \(\langle u, m \rangle \), i.e. \(\phi(N_n(m, \Sigma)) = \delta_{\langle u, m \rangle} \).

9. Show that \(N_n(m, \Sigma)(B) = 1 \).

10. Conclude that \(N_n(m, \Sigma) \) cannot be absolutely continuous with
 respect to the Lebesgue measure on \((\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)) \).

11. Show the following:
Theorem 140 Let \(n \geq 1 \) and \(m \in \mathbb{R}^n \). Let \(\Sigma \in \mathcal{M}_n(\mathbb{R}) \) be a symmetric and non-negative real matrix. Then, the gaussian measure \(N_n(m, \Sigma) \) is absolutely continuous with respect to the Lebesgue measure on \((\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))\), if and only if \(\Sigma \) is non-singular, in which case for all \(B \in \mathcal{B}(\mathbb{R}^n) \), we have:

\[
N_n(m, \Sigma)(B) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det(\Sigma)}} \int_B e^{-\frac{1}{2}(x-m, \Sigma^{-1}(x-m))} \, dx
\]