1. Dynkin systems

Definition 1 A **Dynkin system** on a set Ω is a subset \mathcal{D} of the power set $\mathcal{P}(\Omega)$, with the following properties:

(i) $\Omega \in \mathcal{D}$

(ii) $A, B \in \mathcal{D}, A \subseteq B \Rightarrow B \setminus A \in \mathcal{D}$

(iii) $A_n \in \mathcal{D}, A_n \subseteq A_{n+1}, n \geq 1 \Rightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{D}$

Definition 2 A **σ-algebra** on a set Ω is a subset \mathcal{F} of the power set $\mathcal{P}(\Omega)$ with the following properties:

(i) $\Omega \in \mathcal{F}$

(ii) $A \in \mathcal{F} \Rightarrow A^c \triangleq \Omega \setminus A \in \mathcal{F}$

(iii) $A_n \in \mathcal{F}, n \geq 1 \Rightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{F}$
Exercise 1. Let \(\mathcal{F} \) be a \(\sigma \)-algebra on \(\Omega \). Show that \(\emptyset \in \mathcal{F} \), that if \(A, B \in \mathcal{F} \) then \(A \cup B \in \mathcal{F} \) and also \(A \cap B \in \mathcal{F} \). Recall that \(B \setminus A = B \cap A^c \) and conclude that \(\mathcal{F} \) is also a Dynkin system on \(\Omega \).

Exercise 2. Let \((\mathcal{D}_i)_{i \in I}\) be an arbitrary family of Dynkin systems on \(\Omega \), with \(I \neq \emptyset \). Show that \(\mathcal{D} \triangleq \bigcap_{i \in I} \mathcal{D}_i \) is also a Dynkin system on \(\Omega \).

Exercise 3. Let \((\mathcal{F}_i)_{i \in I}\) be an arbitrary family of \(\sigma \)-algebras on \(\Omega \), with \(I \neq \emptyset \). Show that \(\mathcal{F} \triangleq \bigcap_{i \in I} \mathcal{F}_i \) is also a \(\sigma \)-algebra on \(\Omega \).

Exercise 4. Let \(A \) be a subset of the power set \(\mathcal{P}(\Omega) \). Define:

\[
D(A) \triangleq \{ \mathcal{D} \text{ Dynkin system on } \Omega : A \subseteq \mathcal{D} \}
\]

Show that \(\mathcal{P}(\Omega) \) is a Dynkin system on \(\Omega \), and that \(D(A) \) is not empty. Define:

\[
\mathcal{D}(A) \triangleq \bigcap_{\mathcal{D} \in D(A)} \mathcal{D}
\]
Show that $\mathcal{D}(\mathcal{A})$ is a Dynkin system on Ω such that $\mathcal{A} \subseteq \mathcal{D}(\mathcal{A})$, and that it is the smallest Dynkin system on Ω with such property, (i.e. if \mathcal{D} is a Dynkin system on Ω with $\mathcal{A} \subseteq \mathcal{D}$, then $\mathcal{D}(\mathcal{A}) \subseteq \mathcal{D}$).

Definition 3 Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. We call Dynkin system generated by \mathcal{A}, the Dynkin system on Ω, denoted $\mathcal{D}(\mathcal{A})$, equal to the intersection of all Dynkin systems on Ω, which contain \mathcal{A}.

Exercise 5. Do exactly as before, but replacing Dynkin systems by σ-algebras.

Definition 4 Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. We call σ-algebra generated by \mathcal{A}, the σ-algebra on Ω, denoted $\mathcal{\sigma}(\mathcal{A})$, equal to the intersection of all σ-algebras on Ω, which contain \mathcal{A}.

Definition 5 A subset \mathcal{A} of the power set $\mathcal{P}(\Omega)$ is called a π-system on Ω, if and only if it is closed under finite intersection, i.e. if it has the property:

$$A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$$
Exercise 6. Let \mathcal{A} be a π-system on Ω. For all $A \in \mathcal{D}(\mathcal{A})$, we define:

$$\Gamma(A) \triangleq \{ B \in \mathcal{D}(\mathcal{A}) : A \cap B \in \mathcal{D}(\mathcal{A}) \}$$

1. If $A \in \mathcal{A}$, show that $A \subseteq \Gamma(A)$
2. Show that for all $A \in \mathcal{D}(\mathcal{A})$, $\Gamma(A)$ is a Dynkin system on Ω.
3. Show that if $A \in \mathcal{A}$, then $\mathcal{D}(\mathcal{A}) \subseteq \Gamma(A)$.
4. Show that if $B \in \mathcal{D}(\mathcal{A})$, then $\mathcal{A} \subseteq \Gamma(B)$.
5. Show that for all $B \in \mathcal{D}(\mathcal{A})$, $\mathcal{D}(\mathcal{A}) \subseteq \Gamma(B)$.
6. Conclude that $\mathcal{D}(\mathcal{A})$ is also a π-system on Ω.

Exercise 7. Let \mathcal{D} be a Dynkin system on Ω which is also a π-system.

1. Show that if $A, B \in \mathcal{D}$ then $A \cup B \in \mathcal{D}$.

www.probability.net
2. Let $A_n \in \mathcal{D}, n \geq 1$. Consider $B_n \triangleq \bigcup_{i=1}^{n} A_i$. Show that $\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} B_n$.

3. Show that \mathcal{D} is a σ-algebra on Ω.

Exercise 8. Let \mathcal{A} be a π-system on Ω. Explain why $\mathcal{D}(\mathcal{A})$ is a σ-algebra on Ω, and $\sigma(\mathcal{A})$ is a Dynkin system on Ω. Conclude that $\mathcal{D}(\mathcal{A}) = \sigma(\mathcal{A})$. Prove the theorem:

Theorem 1 (Dynkin system) Let \mathcal{C} be a collection of subsets of Ω which is closed under pairwise intersection. If \mathcal{D} is a Dynkin system containing \mathcal{C} then \mathcal{D} also contains the σ-algebra $\sigma(\mathcal{C})$ generated by \mathcal{C}.