11. Complex Measures

In the following, (Ω, \mathcal{F}) denotes an arbitrary measurable space.
Definition 90 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of complex numbers. We say that $\left(a_{n}\right)_{n \geq 1}$ has the permutation property if and only if, for all bijections $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$, the series $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges in \mathbf{C}^{1}

Exercise 1. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of complex numbers.

1. Show that if $\left(a_{n}\right)_{n \geq 1}$ has the permutation property, then the same is true of $\left(\operatorname{Re}\left(a_{n}\right)\right)_{n \geq 1}$ and $\left(\operatorname{Im}\left(a_{n}\right)\right)_{n \geq 1}$.
2. Suppose $a_{n} \in \mathbf{R}$ for all $n \geq 1$. Show that if $\sum_{k=1}^{+\infty} a_{k}$ converges:

$$
\sum_{k=1}^{+\infty}\left|a_{k}\right|=+\infty \Rightarrow \sum_{k=1}^{+\infty} a_{k}^{+}=\sum_{k=1}^{+\infty} a_{k}^{-}=+\infty
$$

${ }^{1}$ which excludes $\pm \infty$ as limit.

ExErcise 2. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence in \mathbf{R}, such that the series $\sum_{k=1}^{+\infty} a_{k}$ converges, and $\sum_{k=1}^{+\infty}\left|a_{k}\right|=+\infty$. Let $A>0$. We define:

$$
N^{+} \triangleq\left\{k \geq 1: a_{k} \geq 0\right\} \quad, \quad N^{-} \triangleq\left\{k \geq 1: a_{k}<0\right\}
$$

1. Show that N^{+}and N^{-}are infinite.
2. Let $\phi^{+}: \mathbf{N}^{*} \rightarrow N^{+}$and $\phi^{-}: \mathbf{N}^{*} \rightarrow N^{-}$be two bijections. Show the existence of $k_{1} \geq 1$ such that:

$$
\sum_{k=1}^{k_{1}} a_{\phi^{+}(k)} \geq A
$$

3. Show the existence of an increasing sequence $\left(k_{p}\right)_{p \geq 1}$ such that:

$$
\sum_{k=k_{p-1}+1}^{k_{p}} a_{\phi^{+}(k)} \geq A
$$

for all $p \geq 1$, where $k_{0}=0$.
4. Consider the permutation $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ defined informally by:

$$
(\phi^{-}(1), \underbrace{\phi^{+}(1), \ldots, \phi^{+}\left(k_{1}\right)}, \phi^{-}(2), \underbrace{\phi^{+}\left(k_{1}+1\right), \ldots, \phi^{+}\left(k_{2}\right)}, \ldots)
$$

representing $(\sigma(1), \sigma(2), \ldots)$. More specifically, define $k_{0}^{*}=0$ and $k_{p}^{*}=k_{p}+p$ for all $p \geq 1$. For all $n \in \mathbf{N}^{*}$ and $p \geq 1$ with:

$$
\begin{equation*}
k_{p-1}^{*}<n \leq k_{p}^{*} \tag{1}
\end{equation*}
$$

we define:

$$
\sigma(n)=\left\{\begin{array}{lll}
\phi^{-}(p) & \text { if } & n=k_{p-1}^{*}+1 \tag{2}\\
\phi^{+}(n-p) & \text { if } & n>k_{p-1}^{*}+1
\end{array}\right.
$$

Show that $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is indeed a bijection.
${ }^{2}$ Given an integer $n \geq 1$, there exists a unique $p \geq 1$ such that (1) holds.
5. Show that if $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges, there is $N \geq 1$, such that:

$$
n \geq N, p \geq 1 \Rightarrow\left|\sum_{k=n+1}^{n+p} a_{\sigma(k)}\right|<A
$$

6. Explain why $\left(a_{n}\right)_{n \geq 1}$ cannot have the permutation property.
7. Prove the following theorem:

Theorem 56 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of complex numbers such that for all bijections $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$, the series $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges. Then, the series $\sum_{k=1}^{+\infty} a_{k}$ converges absolutely, i.e.

$$
\sum_{k=1}^{+\infty}\left|a_{k}\right|<+\infty
$$

Definition 91 Let (Ω, \mathcal{F}) be a measurable space and $E \in \mathcal{F}$. We call measurable partition of E, any sequence $\left(E_{n}\right)_{n \geq 1}$ of pairwise disjoint elements of \mathcal{F}, such that $E=\uplus_{n \geq 1} E_{n}$.

Definition 92 We call complex measure on a measurable space (Ω, \mathcal{F}) any map $\mu: \mathcal{F} \rightarrow \mathbf{C}$, such that for all $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ measurable partition of E, the series $\sum_{n=1}^{+\infty} \mu\left(E_{n}\right)$ converges to $\mu(E)$. The set of all complex measures on (Ω, \mathcal{F}) is denoted $M^{1}(\Omega, \mathcal{F})$.

Definition 93 We call signed measure on a measurable space (Ω, \mathcal{F}), any complex measure on (Ω, \mathcal{F}) with values in $\mathbf{R} .{ }^{3}$

Exercise 3.

1. Show that a measure on (Ω, \mathcal{F}) may not be a complex measure.
2. Show that for all $\mu \in M^{1}(\Omega, \mathcal{F}), \mu(\emptyset)=0$.

[^0]3. Show that a finite measure on (Ω, \mathcal{F}) is a complex measure with values in \mathbf{R}^{+}, and conversely.
4. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. Let $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E. Show that:
$$
\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|<+\infty
$$
5. Let μ be a measure on (Ω, \mathcal{F}) and $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Define:
$$
\forall E \in \mathcal{F}, \nu(E) \triangleq \int_{E} f d \mu
$$

Show that ν is a complex measure on (Ω, \mathcal{F}).

Definition 94 Let μ be a complex measure on a measurable space (Ω, \mathcal{F}). We call total variation of μ, the map $|\mu|: \mathcal{F} \rightarrow[0,+\infty]$, defined by:

$$
\forall E \in \mathcal{F},|\mu|(E) \triangleq \sup \sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|
$$

where the 'sup' is taken over all measurable partitions $\left(E_{n}\right)_{n \geq 1}$ of E.

Exercise 4. Let μ be a complex measure on (Ω, \mathcal{F}).

1. Show that for all $E \in \mathcal{F},|\mu(E)| \leq|\mu|(E)$.
2. Show that $|\mu|(\emptyset)=0$.

Exercise 5. Let μ be a complex measure on (Ω, \mathcal{F}). Let $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E.

1. Show that there exists $\left(t_{n}\right)_{n \geq 1}$ in \mathbf{R}, with $t_{n}<|\mu|\left(E_{n}\right)$ for all n.
2. Show that for all $n \geq 1$, there exists a measurable partition $\left(E_{n}^{p}\right)_{p \geq 1}$ of E_{n} such that:

$$
t_{n}<\sum_{p=1}^{+\infty}\left|\mu\left(E_{n}^{p}\right)\right|
$$

3. Show that $\left(E_{n}^{p}\right)_{n, p \geq 1}$ is a measurable partition of E.
4. Show that for all $N \geq 1$, we have $\sum_{n=1}^{N} t_{n} \leq|\mu|(E)$.
5. Show that for all $N \geq 1$, we have:

$$
\sum_{n=1}^{N}|\mu|\left(E_{n}\right) \leq|\mu|(E)
$$

6. Suppose that $\left(A_{p}\right)_{p \geq 1}$ is another arbitrary measurable partition

Tutorial 11: Complex Measures
of E. Show that for all $p \geq 1$:

$$
\left|\mu\left(A_{p}\right)\right| \leq \sum_{n=1}^{+\infty}\left|\mu\left(A_{p} \cap E_{n}\right)\right|
$$

7. Show that for all $n \geq 1$:

$$
\sum_{p=1}^{+\infty}\left|\mu\left(A_{p} \cap E_{n}\right)\right| \leq|\mu|\left(E_{n}\right)
$$

8. Show that:

$$
\sum_{p=1}^{+\infty}\left|\mu\left(A_{p}\right)\right| \leq \sum_{n=1}^{+\infty}|\mu|\left(E_{n}\right)
$$

9. Show that $|\mu|: \mathcal{F} \rightarrow[0,+\infty]$ is a measure on (Ω, \mathcal{F}).

Exercise 6. Let $a, b \in \mathbf{R}, a<b$. Let $F \in C^{1}([a, b] ; \mathbf{R})$, and define:

$$
\forall x \in[a, b], H(x) \triangleq \int_{a}^{x} F^{\prime}(t) d t
$$

1. Show that $H \in C^{1}([a, b] ; \mathbf{R})$ and $H^{\prime}=F^{\prime}$.
2. Show that:

$$
F(b)-F(a)=\int_{a}^{b} F^{\prime}(t) d t
$$

3. Show that:

$$
\frac{1}{2 \pi} \int_{-\pi / 2}^{+\pi / 2} \cos \theta d \theta=\frac{1}{\pi}
$$

4. Let $u \in \mathbf{R}^{n}$ and $\tau_{u}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the translation $\tau_{u}(x)=x+u$. Show that the Lebesgue measure $d x$ on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ is invariant by translation τ_{u}, i.e. $d x\left(\left\{\tau_{u} \in B\right\}\right)=d x(B)$ for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
5. Show that for all $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$, and $u \in \mathbf{R}^{n}$:

$$
\int_{\mathbf{R}^{n}} f(x+u) d x=\int_{\mathbf{R}^{n}} f(x) d x
$$

6. Show that for all $\alpha \in \mathbf{R}$, we have:

$$
\int_{-\pi}^{+\pi} \cos ^{+}(\alpha-\theta) d \theta=\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta
$$

7. Let $\alpha \in \mathbf{R}$ and $k \in \mathbf{Z}$ such that $k \leq \alpha / 2 \pi<k+1$. Show:

$$
-\pi-\alpha \leq-2 k \pi-\pi<\pi-\alpha \leq-2 k \pi+\pi
$$

8. Show that:

$$
\int_{-\pi-\alpha}^{-2 k \pi-\pi} \cos ^{+} \theta d \theta=\int_{\pi-\alpha}^{-2 k \pi+\pi} \cos ^{+} \theta d \theta
$$

9. Show that:

$$
\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta=\int_{-2 k \pi-\pi}^{-2 k \pi+\pi} \cos ^{+} \theta d \theta=\int_{-\pi}^{+\pi} \cos ^{+} \theta d \theta
$$

10. Show that for all $\alpha \in \mathbf{R}$:

$$
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \cos ^{+}(\alpha-\theta) d \theta=\frac{1}{\pi}
$$

Exercise 7. Let z_{1}, \ldots, z_{N} be N complex numbers. Let $\alpha_{k} \in \mathbf{R}$ be such that $z_{k}=\left|z_{k}\right| e^{i \alpha_{k}}$, for all $k=1, \ldots, N$. For all $\theta \in[-\pi,+\pi]$, we define $S(\theta)=\left\{k=1, \ldots, N: \cos \left(\alpha_{k}-\theta\right)>0\right\}$.

1. Show that for all $\theta \in[-\pi,+\pi]$, we have:

$$
\left|\sum_{k \in S(\theta)} z_{k}\right|=\left|\sum_{k \in S(\theta)} z_{k} e^{-i \theta}\right| \geq \sum_{k \in S(\theta)}\left|z_{k}\right| \cos \left(\alpha_{k}-\theta\right)
$$

2. Define $\phi:[-\pi,+\pi] \rightarrow \mathbf{R}$ by $\phi(\theta)=\sum_{k=1}^{N}\left|z_{k}\right| \cos ^{+}\left(\alpha_{k}-\theta\right)$. Show the existence of $\theta_{0} \in[-\pi,+\pi]$ such that:

$$
\phi\left(\theta_{0}\right)=\sup _{\theta \in[-\pi,+\pi]} \phi(\theta)
$$

3. Show that:

$$
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \phi(\theta) d \theta=\frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right|
$$

4. Conclude that:

$$
\frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right| \leq\left|\sum_{k \in S\left(\theta_{0}\right)} z_{k}\right|
$$

Exercise 8. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. Suppose that $|\mu|(E)=+\infty$ for some $E \in \mathcal{F}$. Define $t=\pi(1+|\mu(E)|) \in \mathbf{R}^{+}$.

1. Show that there is a measurable partition $\left(E_{n}\right)_{n \geq 1}$ of E, with:

$$
t<\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|
$$

2. Show the existence of $N \geq 1$ such that:

$$
t<\sum_{n=1}^{N}\left|\mu\left(E_{n}\right)\right|
$$

3. Show the existence of $S \subseteq\{1, \ldots, N\}$ such that:

$$
\sum_{n=1}^{N}\left|\mu\left(E_{n}\right)\right| \leq \pi\left|\sum_{n \in S} \mu\left(E_{n}\right)\right|
$$

4. Show that $|\mu(A)|>t / \pi$, where $A=\uplus_{n \in S} E_{n}$.
5. Let $B=E \backslash A$. Show that $|\mu(B)| \geq|\mu(A)|-|\mu(E)|$.

Tutorial 11: Complex Measures
6. Show that $E=A \uplus B$ with $|\mu(A)|>1$ and $|\mu(B)|>1$.
7. Show that $|\mu|(A)=+\infty$ or $|\mu|(B)=+\infty$.

Exercise 9. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. Suppose that $|\mu|(\Omega)=+\infty$.

1. Show the existence of $A_{1}, B_{1} \in \mathcal{F}$, such that $\Omega=A_{1} \uplus B_{1}$, $\left|\mu\left(A_{1}\right)\right|>1$ and $|\mu|\left(B_{1}\right)=+\infty$.
2. Show the existence of a sequence $\left(A_{n}\right)_{n \geq 1}$ of pairwise disjoint elements of \mathcal{F}, such that $\left|\mu\left(A_{n}\right)\right|>1$ for all $n \geq 1$.
3. Show that the series $\sum_{n=1}^{+\infty} \mu\left(A_{n}\right)$ does not converge to $\mu(A)$ where $A=\uplus_{n=1}^{+\infty} A_{n}$.
4. Conclude that $|\mu|(\Omega)<+\infty$.

Theorem 57 Let μ be a complex measure on a measurable space (Ω, \mathcal{F}). Then, its total variation $|\mu|$ is a finite measure on (Ω, \mathcal{F}).

Exercise 10. Show that $M^{1}(\Omega, \mathcal{F})$ is a \mathbf{C}-vector space, with:

$$
\begin{aligned}
(\lambda+\mu)(E) & \triangleq \lambda(E)+\mu(E) \\
(\alpha \lambda)(E) & \triangleq \alpha \cdot \lambda(E)
\end{aligned}
$$

where $\lambda, \mu \in M^{1}(\Omega, \mathcal{F}), \alpha \in \mathbf{C}$, and $E \in \mathcal{F}$.
Definition 95 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We call norm on \mathcal{H}, any map $N: \mathcal{H} \rightarrow \mathbf{R}^{+}$, with the following properties:
(i)

$$
\begin{align*}
& \forall x \in \mathcal{H}, \quad(N(x)=0 \Leftrightarrow x=0) \\
& \forall x \in \mathcal{H}, \forall \alpha \in \mathbf{K}, N(\alpha x)=|\alpha| N(x) \tag{ii}\\
& \forall x, y \in \mathcal{H}, \quad N(x+y) \leq N(x)+N(y) \tag{iii}
\end{align*}
$$

Tutorial 11: Complex Measures

Exercise 11.

1. Explain why $\|\cdot\|_{p}$ may not be a norm on $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$.
2. Show that $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ is a norm, when $\langle\cdot, \cdot\rangle$ is an inner-product.
3. Show that $\|\mu\| \triangleq|\mu|(\Omega)$ defines a norm on $M^{1}(\Omega, \mathcal{F})$.

Exercise 12. Let $\mu \in M^{1}(\Omega, \mathcal{F})$ be a signed measure. Show that:

$$
\begin{aligned}
\mu^{+} & \triangleq \frac{1}{2}(|\mu|+\mu) \\
\mu^{-} & \triangleq \frac{1}{2}(|\mu|-\mu)
\end{aligned}
$$

are finite measures such that:

$$
\mu=\mu^{+}-\mu^{-} \quad, \quad|\mu|=\mu^{+}+\mu^{-}
$$

Exercise 13. Let $\mu \in M^{1}(\Omega, \mathcal{F})$ and $l: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be a linear map.

Tutorial 11: Complex Measures

1. Show that l is continuous.
2. Show that $l \circ \mu$ is a signed measure on (Ω, \mathcal{F}). ${ }^{4}$
3. Show that all $\mu \in M^{1}(\Omega, \mathcal{F})$ can be decomposed as:

$$
\mu=\mu_{1}-\mu_{2}+i\left(\mu_{3}-\mu_{4}\right)
$$

where $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ are finite measures.
${ }^{4} l \circ \mu$ refers strictly speaking to $l(\operatorname{Re}(\mu), \operatorname{Im}(\mu))$.

[^0]: ${ }^{3}$ In these tutorials, signed measure may not have values in $\{-\infty,+\infty\}$.

