2. Caratheodory's Extension

In the following, Ω is a set. Whenever a union of sets is denoted \uplus as opposed to \cup, it indicates that the sets involved are pairwise disjoint.

Definition $6 \quad A$ semi-ring on Ω is a subset \mathcal{S} of the power set $\mathcal{P}(\Omega)$ with the following properties:
(i) $\quad \emptyset \in \mathcal{S}$
(ii) $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$
(iii) $A, B \in \mathcal{S} \Rightarrow \exists n \geq 0, \exists A_{i} \in \mathcal{S}: A \backslash B=\biguplus_{i=1}^{n} A_{i}$

The last property (iii) says that whenever $A, B \in \mathcal{S}$, there is $n \geq 0$ and A_{1}, \ldots, A_{n} in \mathcal{S} which are pairwise disjoint, such that $A \backslash B=$ $A_{1} \uplus \ldots \uplus A_{n}$. If $n=0$, it is understood that the corresponding union is equal to \emptyset, (in which case $A \subseteq B$).

Definition $7 \quad A$ ring on Ω is a subset \mathcal{R} of the power set $\mathcal{P}(\Omega)$ with the following properties:

$$
\begin{aligned}
(i) & \emptyset \in \mathcal{R} \\
(i i) & A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R} \\
\text { (iii) } & A, B \in \mathcal{R} \Rightarrow A \backslash B \in \mathcal{R}
\end{aligned}
$$

Exercise 1. Show that $A \cap B=A \backslash(A \backslash B)$ and therefore that a ring is closed under pairwise intersection.

Exercise 2. Show that a ring on Ω is also a semi-ring on Ω.
Exercise 3.Suppose that a set Ω can be decomposed as $\Omega=A_{1} \uplus$ $A_{2} \uplus A_{3}$ where A_{1}, A_{2} and A_{3} are distinct from \emptyset and Ω. Define $\mathcal{S}_{1} \triangleq\left\{\emptyset, A_{1}, A_{2}, A_{3}, \Omega\right\}$ and $\mathcal{S}_{2} \triangleq\left\{\emptyset, A_{1}, A_{2} \uplus A_{3}, \Omega\right\}$. Show that \mathcal{S}_{1} and \mathcal{S}_{2} are semi-rings on Ω, but that $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ fails to be a semi-ring on Ω.

Exercise 4. Let $\left(\mathcal{R}_{i}\right)_{i \in I}$ be an arbitrary family of rings on Ω, with $I \neq \emptyset$. Show that $\mathcal{R} \triangleq \cap_{i \in I} \mathcal{R}_{i}$ is also a ring on Ω.

Exercise 5. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Define:

$$
R(\mathcal{A}) \triangleq\{\mathcal{R} \text { ring on } \Omega: \mathcal{A} \subseteq \mathcal{R}\}
$$

Show that $\mathcal{P}(\Omega)$ is a ring on Ω, and that $R(\mathcal{A})$ is not empty. Define:

$$
\mathcal{R}(\mathcal{A}) \triangleq \bigcap_{\mathcal{R} \in R(\mathcal{A})} \mathcal{R}
$$

Show that $\mathcal{R}(\mathcal{A})$ is a ring on Ω such that $\mathcal{A} \subseteq \mathcal{R}(\mathcal{A})$, and that it is the smallest ring on Ω with such property, (i.e. if \mathcal{R} is a ring on Ω and $\mathcal{A} \subseteq \mathcal{R}$ then $\mathcal{R}(\mathcal{A}) \subseteq \mathcal{R})$.

Definition 8 Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. We call ring generated by \mathcal{A}, the ring on Ω, denoted $\mathcal{R}(\mathcal{A})$, equal to the intersection of all rings on Ω, which contain \mathcal{A}.

Exercise 6 .Let \mathcal{S} be a semi-ring on Ω. Define the set \mathcal{R} of all finite unions of pairwise disjoint elements of \mathcal{S}, i.e.

$$
\mathcal{R} \triangleq\left\{A: A=\uplus_{i=1}^{n} A_{i} \text { for some } n \geq 0, A_{i} \in \mathcal{S}\right\}
$$

Tutorial 2: Caratheodory's Extension
(where if $n=0$, the corresponding union is empty, i.e. $\emptyset \in \mathcal{R}$). Let $A=\uplus_{i=1}^{n} A_{i}$ and $B=\uplus_{j=1}^{p} B_{j} \in \mathcal{R}$:

1. Show that $A \cap B=\uplus_{i, j}\left(A_{i} \cap B_{j}\right)$ and that \mathcal{R} is closed under pairwise intersection.
2. Show that if $p \geq 1$ then $A \backslash B=\cap_{j=1}^{p}\left(\uplus_{i=1}^{n}\left(A_{i} \backslash B_{j}\right)\right)$.
3. Show that \mathcal{R} is closed under pairwise difference.
4. Show that $A \cup B=(A \backslash B) \uplus B$ and conclude that \mathcal{R} is a ring on Ω.
5. Show that $\mathcal{R}(\mathcal{S})=\mathcal{R}$.

Exercise 7. Everything being as before, define:

$$
\mathcal{R}^{\prime} \triangleq\left\{A: A=\cup_{i=1}^{n} A_{i} \text { for some } n \geq 0, A_{i} \in \mathcal{S}\right\}
$$

(We do not require the sets involved in the union to be pairwise disjoint). Using the fact that \mathcal{R} is closed under finite union, show that $\mathcal{R}^{\prime} \subseteq \mathcal{R}$, and conclude that $\mathcal{R}^{\prime}=\mathcal{R}=\mathcal{R}(\mathcal{S})$.

Definition 9 Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ with $\emptyset \in \mathcal{A}$. We call measure on \mathcal{A}, any map $\mu: \mathcal{A} \rightarrow[0,+\infty]$ with the following properties:

$$
\begin{equation*}
\mu(\emptyset)=0 \tag{i}
\end{equation*}
$$

$$
\text { (ii) } A \in \mathcal{A}, A_{n} \in \mathcal{A} \text { and } A=\biguplus_{n=1}^{+\infty} A_{n} \Rightarrow \mu(A)=\sum_{n=1}^{+\infty} \mu\left(A_{n}\right)
$$

The \uplus indicates that we assume the A_{n} 's to be pairwise disjoint in the l.h.s. of $(i i)$. It is customary to say in view of condition (ii) that a measure is countably additive.
ExERCISE 8.If \mathcal{A} is a σ-algebra on Ω explain why property (ii) can be replaced by:

$$
(i i)^{\prime} A_{n} \in \mathcal{A} \text { and } A=\biguplus_{n=1}^{+\infty} A_{n} \Rightarrow \mu(A)=\sum_{n=1}^{+\infty} \mu\left(A_{n}\right)
$$

Exercise 9. Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ with $\emptyset \in \mathcal{A}$ and $\mu: \mathcal{A} \rightarrow[0,+\infty]$ be a measure on \mathcal{A}.

1. Show that if $A_{1}, \ldots, A_{n} \in \mathcal{A}$ are pairwise disjoint and the union $A=\uplus_{i=1}^{n} A_{i}$ lies in \mathcal{A}, then $\mu(A)=\mu\left(A_{1}\right)+\ldots+\mu\left(A_{n}\right)$.
2. Show that if $A, B \in \mathcal{A}, A \subseteq B$ and $B \backslash A \in \mathcal{A}$ then $\mu(A) \leq \mu(B)$.

Exercise 10. Let \mathcal{S} be a semi-ring on Ω, and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be a measure on \mathcal{S}. Suppose that there exists an extension of μ on $\mathcal{R}(\mathcal{S})$, i.e. a measure $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ such that $\bar{\mu}_{\mid \mathcal{S}}=\mu$.

1. Let A be an element of $\mathcal{R}(\mathcal{S})$ with representation $A=\uplus_{i=1}^{n} A_{i}$ as a finite union of pairwise disjoint elements of \mathcal{S}. Show that $\bar{\mu}(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$
2. Show that if $\bar{\mu}^{\prime}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ is another measure with $\bar{\mu}_{\mid \mathcal{S}}^{\prime}=\mu$, i.e. another extension of μ on $\mathcal{R}(\mathcal{S})$, then $\bar{\mu}^{\prime}=\bar{\mu}$.

Exercise 11. Let \mathcal{S} be a semi-ring on Ω and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be a measure. Let A be an element of $\mathcal{R}(\mathcal{S})$ with two representations:

$$
A=\biguplus_{i=1}^{n} A_{i}=\biguplus_{j=1}^{p} B_{j}
$$

as a finite union of pairwise disjoint elements of \mathcal{S}.

1. For $i=1, \ldots, n$, show that $\mu\left(A_{i}\right)=\sum_{j=1}^{p} \mu\left(A_{i} \cap B_{j}\right)$
2. Show that $\sum_{i=1}^{n} \mu\left(A_{i}\right)=\sum_{j=1}^{p} \mu\left(B_{j}\right)$
3. Explain why we can define a map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ as:

$$
\bar{\mu}(A) \triangleq \sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

4. Show that $\bar{\mu}(\emptyset)=0$.

Exercise 12. Everything being as before, suppose that $\left(A_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$, each A_{n} having the representation:

$$
A_{n}=\biguplus_{k=1}^{p_{n}} A_{n}^{k}, n \geq 1
$$

as a finite union of disjoint elements of \mathcal{S}. Suppose moreover that $A=\uplus_{n=1}^{+\infty} A_{n}$ is an element of $\mathcal{R}(\mathcal{S})$ with representation $A=\uplus_{j=1}^{p} B_{j}$, as a finite union of pairwise disjoint elements of \mathcal{S}.

1. Show that for $j=1, \ldots, p, B_{j}=\cup_{n=1}^{+\infty} \cup_{k=1}^{p_{n}}\left(A_{n}^{k} \cap B_{j}\right)$ and explain why B_{j} is of the form $B_{j}=\uplus_{m=1}^{+\infty} C_{m}$ for some sequence $\left(C_{m}\right)_{m \geq 1}$ of pairwise disjoint elements of \mathcal{S}.
2. Show that $\mu\left(B_{j}\right)=\sum_{n=1}^{+\infty} \sum_{k=1}^{p_{n}} \mu\left(A_{n}^{k} \cap B_{j}\right)$
3. Show that for $n \geq 1$ and $k=1, \ldots, p_{n}, A_{n}^{k}=\uplus_{j=1}^{p}\left(A_{n}^{k} \cap B_{j}\right)$

Tutorial 2: Caratheodory's Extension
4. Show that $\mu\left(A_{n}^{k}\right)=\sum_{j=1}^{p} \mu\left(A_{n}^{k} \cap B_{j}\right)$
5. Recall the definition of $\bar{\mu}$ of exercise (11) and show that it is a measure on $\mathcal{R}(\mathcal{S})$.

Exercise 13.Prove the following theorem:
Theorem 2 Let \mathcal{S} be a semi-ring on Ω. Let $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be a measure on \mathcal{S}. There exists a unique measure $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ such that $\bar{\mu}_{\mid \mathcal{S}}=\mu$.

Definition 10 We define an outer-measure on Ω as being any map $\mu^{*}: \mathcal{P}(\Omega) \rightarrow[0,+\infty]$ with the following properties:

$$
\begin{equation*}
\mu^{*}(\emptyset)=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
A \subseteq B \Rightarrow \mu^{*}(A) \leq \mu^{*}(B) \tag{ii}
\end{equation*}
$$

$$
\text { (iii) } \quad \mu^{*}\left(\bigcup_{n=1}^{+\infty} A_{n}\right) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)
$$

Exercise 14. Show that $\mu^{*}(A \cup B) \leq \mu^{*}(A)+\mu^{*}(B)$, where μ^{*} is an outer-measure on Ω and $A, B \subseteq \Omega$.

Definition 11 Let μ^{*} be an outer-measure on Ω. We define:

$$
\Sigma\left(\mu^{*}\right) \triangleq\left\{A \subseteq \Omega: \mu^{*}(T)=\mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right), \forall T \subseteq \Omega\right\}
$$

We call $\Sigma\left(\mu^{*}\right)$ the σ-algebra associated with the outer-measure μ^{*}.
Note that the fact that $\Sigma\left(\mu^{*}\right)$ is indeed a σ-algebra on Ω, remains to be proved. This will be your task in the following exercises.

Exercise 15. Let μ^{*} be an outer-measure on Ω. Let $\Sigma=\Sigma\left(\mu^{*}\right)$ be the σ-algebra associated with μ^{*}. Let $A, B \in \Sigma$ and $T \subseteq \Omega$

1. Show that $\Omega \in \Sigma$ and $A^{c} \in \Sigma$.
2. Show that $\mu^{*}(T \cap A)=\mu^{*}(T \cap A \cap B)+\mu^{*}\left(T \cap A \cap B^{c}\right)$
3. Show that $T \cap A^{c}=T \cap(A \cap B)^{c} \cap A^{c}$
4. Show that $T \cap A \cap B^{c}=T \cap(A \cap B)^{c} \cap A$
5. Show that $\mu^{*}\left(T \cap A^{c}\right)+\mu^{*}\left(T \cap A \cap B^{c}\right)=\mu^{*}\left(T \cap(A \cap B)^{c}\right)$
6. Adding $\mu^{*}(T \cap(A \cap B))$ on both sides 5 ., conclude that $A \cap B \in \Sigma$.
7. Show that $A \cup B$ and $A \backslash B$ belong to Σ.

Exercise 16. Everything being as before, let $A_{n} \in \Sigma, n \geq 1$. Define $B_{1}=A_{1}$ and $B_{n+1}=A_{n+1} \backslash\left(A_{1} \cup \ldots \cup A_{n}\right)$. Show that the B_{n} 's are pairwise disjoint elements of Σ and that $\cup_{n=1}^{+\infty} A_{n}=\uplus_{n=1}^{+\infty} B_{n}$.

Exercise 17. Everything being as before, show that if $B, C \in \Sigma$ and $B \cap C=\emptyset$, then $\mu^{*}(T \cap(B \uplus C))=\mu^{*}(T \cap B)+\mu^{*}(T \cap C)$ for any $T \subseteq \Omega$.

Exercise 18.Everything being as before, let $\left(B_{n}\right)_{n \geq 1}$ be a sequence of pairwise disjoint elements of Σ, and let $B \triangleq \uplus_{n=1}^{+\infty} B_{n}$. Let $N \geq 1$.

1. Explain why $\uplus_{n=1}^{N} B_{n} \in \Sigma$
2. Show that $\mu^{*}\left(T \cap\left(\uplus_{n=1}^{N} B_{n}\right)\right)=\sum_{n=1}^{N} \mu^{*}\left(T \cap B_{n}\right)$
3. Show that $\mu^{*}\left(T \cap B^{c}\right) \leq \mu^{*}\left(T \cap\left(\uplus_{n=1}^{N} B_{n}\right)^{c}\right)$
4. Show that $\mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{+\infty} \mu^{*}\left(T \cap B_{n}\right) \leq \mu^{*}(T)$, and:
5. $\mu^{*}(T) \leq \mu^{*}\left(T \cap B^{c}\right)+\mu^{*}(T \cap B) \leq \mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{+\infty} \mu^{*}\left(T \cap B_{n}\right)$
6. Show that $B \in \Sigma$ and $\mu^{*}(B)=\sum_{n=1}^{+\infty} \mu^{*}\left(B_{n}\right)$.
7. Show that Σ is a σ-algebra on Ω, and $\mu_{\mid \Sigma}^{*}$ is a measure on Σ.

Theorem 3 Let $\mu^{*}: \mathcal{P}(\Omega) \rightarrow[0,+\infty]$ be an outer-measure on Ω. Then $\Sigma\left(\mu^{*}\right)$, the so-called σ-algebra associated with μ^{*}, is indeed a σ-algebra on Ω and $\mu_{\mid \Sigma\left(\mu^{*}\right)}^{*}$, is a measure on $\Sigma\left(\mu^{*}\right)$.

Exercise 19. Let \mathcal{R} be a ring on Ω and $\mu: \mathcal{R} \rightarrow[0,+\infty]$ be a measure on \mathcal{R}. For all $T \subseteq \Omega$, define:

$$
\mu^{*}(T) \triangleq \inf \left\{\sum_{n=1}^{+\infty} \mu\left(A_{n}\right),\left(A_{n}\right) \text { is an } \mathcal{R} \text {-cover of } T\right\}
$$

where an \mathcal{R}-cover of T is defined as any sequence $\left(A_{n}\right)_{n \geq 1}$ of elements of \mathcal{R} such that $T \subseteq \cup_{n=1}^{+\infty} A_{n}$. By convention $\inf \emptyset \triangleq+\infty$.

1. Show that $\mu^{*}(\emptyset)=0$.
2. Show that if $A \subseteq B$ then $\mu^{*}(A) \leq \mu^{*}(B)$.
3. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of subsets of Ω, with $\mu^{*}\left(A_{n}\right)<+\infty$ for all $n \geq 1$. Given $\epsilon>0$, show that for all $n \geq 1$, there exists an \mathcal{R}-cover $\left(A_{n}^{p}\right)^{p \geq 1}$ of A_{n} such that:

$$
\sum_{p=1}^{+\infty} \mu\left(A_{n}^{p}\right)<\mu^{*}\left(A_{n}\right)+\epsilon / 2^{n}
$$

Why is it important to assume $\mu^{*}\left(A_{n}\right)<+\infty$.
4. Show that there exists an \mathcal{R}-cover $\left(R_{k}\right)$ of $\cup_{n=1}^{+\infty} A_{n}$ such that:

$$
\sum_{k=1}^{+\infty} \mu\left(R_{k}\right)=\sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty} \mu\left(A_{n}^{p}\right)
$$

5. Show that $\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \epsilon+\sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)$
6. Show that μ^{*} is an outer-measure on Ω.

Exercise 20. Everything being as before, Let $A \in \mathcal{R}$. Let $\left(A_{n}\right)_{n \geq 1}$ be an \mathcal{R}-cover of A and put $B_{1}=A_{1} \cap A$, and:

$$
B_{n+1} \triangleq\left(A_{n+1} \cap A\right) \backslash\left(\left(A_{1} \cap A\right) \cup \ldots \cup\left(A_{n} \cap A\right)\right)
$$

1. Show that $\mu^{*}(A) \leq \mu(A)$.
2. Show that $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{R} such that $A=\uplus_{n=1}^{+\infty} B_{n}$.
3. Show that $\mu(A) \leq \mu^{*}(A)$ and conclude that $\mu_{\mid \mathcal{R}}^{*}=\mu$.

Exercise 21. Everything being as before, Let $A \in \mathcal{R}$ and $T \subseteq \Omega$.

1. Show that $\mu^{*}(T) \leq \mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right)$.
2. Let $\left(T_{n}\right)$ be an \mathcal{R}-cover of T. Show that $\left(T_{n} \cap A\right)$ and $\left(T_{n} \cap A^{c}\right)$ are \mathcal{R}-covers of $T \cap A$ and $T \cap A^{c}$ respectively.
3. Show that $\mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right) \leq \mu^{*}(T)$.
4. Show that $\mathcal{R} \subseteq \Sigma\left(\mu^{*}\right)$.
5. Conclude that $\sigma(\mathcal{R}) \subseteq \Sigma\left(\mu^{*}\right)$.

Exercise 22.Prove the following theorem:
Theorem 4 (Caratheodory's extension) Let \mathcal{R} be a ring on Ω and $\mu: \mathcal{R} \rightarrow[0,+\infty]$ be a measure on \mathcal{R}. There exists a measure $\mu^{\prime}: \sigma(\mathcal{R}) \rightarrow[0,+\infty]$ such that $\mu_{\mid \mathcal{R}}^{\prime}=\mu$.

Exercise 23. Let \mathcal{S} be a semi-ring on Ω. Show that $\sigma(\mathcal{R}(\mathcal{S}))=\sigma(\mathcal{S})$. Exercise 24.Prove the following theorem:

Theorem 5 Let \mathcal{S} be a semi-ring on Ω and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be a measure on \mathcal{S}. There exists a measure $\mu^{\prime}: \sigma(\mathcal{S}) \rightarrow[0,+\infty]$ such that $\mu_{\mid \mathcal{S}}^{\prime}=\mu$.

