10. Bounded Linear Functionals in L^{2}

In the following, $(\Omega, \mathcal{F}, \mu)$ is a measure space.
Definition 78 We call subsequence of a sequence $\left(x_{n}\right)_{n \geq 1}$, any sequence of the form $\left(x_{\phi(n)}\right)_{n \geq 1}$ where $\phi: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is a strictly increasing map.

Exercise 1. Let (E, d) be a metric space, with metric topology \mathcal{T}. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in E. For all $n \geq 1$, let F_{n} be the closure of the set $\left\{x_{k}: k \geq n\right\}$.

1. Show that for all $x \in E, x_{n} \xrightarrow{\mathcal{T}} x$ is equivalent to:

$$
\forall \epsilon>0, \exists n_{0} \geq 1, n \geq n_{0} \Rightarrow d\left(x_{n}, x\right) \leq \epsilon
$$

2. Show that $\left(F_{n}\right)_{n \geq 1}$ is a decreasing sequence of closed sets in E.
3. Show that if $F_{n} \downarrow \emptyset$, then $\left(F_{n}^{c}\right)_{n \geq 1}$ is an open covering of E.
4. Show that if (E, \mathcal{T}) is compact then $\cap_{n=1}^{+\infty} F_{n} \neq \emptyset$.
5. Show that if (E, \mathcal{T}) is compact, there exists $x \in E$ such that for all $n \geq 1$ and $\epsilon>0$, we have $B(x, \epsilon) \cap\left\{x_{k}, k \geq n\right\} \neq \emptyset$.
6. By induction, construct a subsequence $\left(x_{n_{p}}\right)_{p \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$ such that $x_{n_{p}} \in B(x, 1 / p)$ for all $p \geq 1$.
7. Conclude that if (E, \mathcal{T}) is compact, any sequence $\left(x_{n}\right)_{n \geq 1}$ in E has a convergent subsequence.

Exercise 2. Let (E, d) be a metric space, with metric topology \mathcal{T}. We assume that any sequence $\left(x_{n}\right)_{n \geq 1}$ in E has a convergent subsequence. Let $\left(V_{i}\right)_{i \in I}$ be an open covering of E. For $x \in E$, let:

$$
r(x) \triangleq \sup \left\{r>0: B(x, r) \subseteq V_{i}, \text { for some } i \in I\right\}
$$

1. Show that $\forall x \in E, \exists i \in I, \exists r>0$, such that $B(x, r) \subseteq V_{i}$.

Tutorial 10: Bounded Linear Functionals in L^{2}
2. Show that $\forall x \in E, r(x)>0$.

Exercise 3. Further to ex. (2), suppose $\inf _{x \in E} r(x)=0$.

1. Show that for all $n \geq 1$, there is $x_{n} \in E$ such that $r\left(x_{n}\right)<1 / n$.
2. Extract a subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$ converging to some $x^{*} \in E$. Let $r^{*}>0$ and $i \in I$ be such that $B\left(x^{*}, r^{*}\right) \subseteq V_{i}$. Show that we can find some $k_{0} \geq 1$, such that $d\left(x^{*}, x_{n_{k_{0}}}\right)<r^{*} / 2$ and $r\left(x_{n_{k_{0}}}\right) \leq r^{*} / 4$.
3. Show that $d\left(x^{*}, x_{n_{k_{0}}}\right)<r^{*} / 2$ implies that $B\left(x_{n_{k_{0}}}, r^{*} / 2\right) \subseteq V_{i}$. Show that this contradicts $r\left(x_{n_{k_{0}}}\right) \leq r^{*} / 4$, and conclude that $\inf _{x \in E} r(x)>0$.

Exercise 4. Further to ex. (3), Let r_{0} with $0<r_{0}<\inf _{x \in E} r(x)$. Suppose that E cannot be covered by a finite number of open balls with radius r_{0}.

1. Show the existence of a sequence $\left(x_{n}\right)_{n \geq 1}$ in E, such that for all $n \geq 1, x_{n+1} \notin B\left(x_{1}, r_{0}\right) \cup \ldots \cup B\left(x_{n}, r_{0}\right)$.
2. Show that for all $n>m$ we have $d\left(x_{n}, x_{m}\right) \geq r_{0}$.
3. Show that $\left(x_{n}\right)_{n \geq 1}$ cannot have a convergent subsequence.
4. Conclude that there exists a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of E such that $E=B\left(x_{1}, r_{0}\right) \cup \ldots \cup B\left(x_{n}, r_{0}\right)$.
5. Show that for all $x \in E$, we have $B\left(x, r_{0}\right) \subseteq V_{i}$ for some $i \in I$.
6. Conclude that (E, \mathcal{T}) is compact.
7. Prove the following:

Theorem 47 A metrizable topological space (E, \mathcal{T}) is compact, if and only if for every sequence $\left(x_{n}\right)_{n \geq 1}$ in E, there exists a subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$ and some $x \in E$, such that $x_{n_{k}} \xrightarrow{\mathcal{T}} x$.

Exercise 5. Let $a, b \in \mathbf{R}, a<b$ and $\left(x_{n}\right)_{n \geq 1}$ be a sequence in $] a, b[$.

1. Show that $\left(x_{n}\right)_{n \geq 1}$ has a convergent subsequence.
2. Can we conclude that $] a, b[$ is a compact subset of \mathbf{R} ?

Exercise 6. Let $E=[-M, M] \times \ldots \times[-M, M] \subseteq \mathbf{R}^{n}$, where $n \geq 1$ and $M \in \mathbf{R}^{+}$. Let $\mathcal{T}_{\mathbf{R}^{n}}$ be the usual product topology on \mathbf{R}^{n}, and $\mathcal{T}_{E}=\left(\mathcal{T}_{\mathbf{R}^{n}}\right)_{\mid E}$ be the induced topology on E.

1. Let $\left(x_{p}\right)_{p \geq 1}$ be a sequence in E. Let $x \in E$. Show that $x_{p} \xrightarrow{\mathcal{T}_{E}} x$ is equivalent to $x_{p} \xrightarrow{\mathcal{T}_{\mathbf{R}^{n}}} x$.
2. Propose a metric on \mathbf{R}^{n}, inducing the topology $\mathcal{T}_{\mathbf{R}^{n}}$.
3. Let $\left(x_{p}\right)_{p \geq 1}$ be a sequence in \mathbf{R}^{n}. Let $x \in \mathbf{R}^{n}$. Show that $x_{p} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x$ if and only if, $x_{p}^{i} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x^{i}$ for all $i \in \mathbf{N}_{n}$.

Exercise 7. Further to ex. (6), suppose $\left(x_{p}\right)_{p \geq 1}$ is a sequence in E.

1. Show the existence of a subsequence $\left(x_{\phi(p)}\right)_{p \geq 1}$ of $\left(x_{p}\right)_{p \geq 1}$, such that $x_{\phi(p)}^{1} \xrightarrow{\mathcal{T}_{[-M, M]}} x^{1}$ for some $x^{1} \in[-M, M]$.
2. Explain why the above convergence is equivalent to $x_{\phi(p)}^{1} \xrightarrow{\mathcal{T}_{R}} x^{1}$.
3. Suppose that $1 \leq k \leq n-1$ and $\left(y_{p}\right)_{p \geq 1}=\left(x_{\phi(p)}\right)_{p \geq 1}$ is a subsequence of $\left(x_{p}\right)_{p \geq 1}$ such that:

$$
\forall j=1, \ldots, k, x_{\phi(p)}^{j} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x^{j} \text { for some } x^{j} \in[-M, M]
$$

Show the existence of a subsequence $\left(y_{\psi(p)}\right)_{p \geq 1}$ of $\left(y_{p}\right)_{p \geq 1}$ such that $y_{\psi(p)}^{k+1} \xrightarrow{\mathcal{T}_{\mathrm{R}}} x^{k+1}$ for some $x^{k+1} \in[-M, M]$.
4. Show that $\phi \circ \psi: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is strictly increasing.
5. Show that $\left(x_{\phi \circ \psi(p)}\right)_{p \geq 1}$ is a subsequence of $\left(x_{p}\right)_{p \geq 1}$ such that:

$$
\forall j=1, \ldots, k+1, x_{\phi \circ \psi(p)}^{j} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x^{j} \in[-M, M]
$$

6. Show the existence of a subsequence $\left(x_{\phi(p)}\right)_{p \geq 1}$ of $\left(x_{p}\right)_{p \geq 1}$, and $x \in E$, such that $x_{\phi(p)} \xrightarrow{\mathcal{T}_{E}} x$
7. Show that $\left(E, \mathcal{I}_{E}\right)$ is a compact topological space.

Exercise 8. Let A be a closed subset of $\mathbf{R}^{n}, n \geq 1$, which is bounded with respect to the usual metric of \mathbf{R}^{n}.

1. Show that $A \subseteq E=[-M, M] \times \ldots \times[-M, M]$, for some $M \in \mathbf{R}^{+}$.
2. Show from $E \backslash A=E \cap A^{c}$ that A is closed in E.
3. Show $\left(A,\left(\mathcal{T}_{\mathbf{R}^{n}}\right)_{\mid A}\right)$ is a compact topological space.
4. Conversely, let A is a compact subset of \mathbf{R}^{n}. Show that A is closed and bounded.

Theorem 48 A subset of \mathbf{R}^{n} is compact if and only if it is closed and bounded with respect to its usual metric.

Exercise 9. Let $n \geq 1$. Consider the map:

$$
\phi:\left\{\begin{array}{ccc}
\mathbf{C}^{n} & \rightarrow & \mathbf{R}^{2 n} \\
\left(a_{1}+i b_{1}, \ldots, a_{n}+i b_{n}\right) & \rightarrow & \left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)
\end{array}\right.
$$

1. Recall the expressions of the usual metrics $d_{\mathbf{C}^{n}}$ and $d_{\mathbf{R}^{2 n}}$ of \mathbf{C}^{n} and $\mathbf{R}^{2 n}$ respectively.
2. Show that for all $z, z^{\prime} \in \mathbf{C}^{n}, d_{\mathbf{C}^{n}}\left(z, z^{\prime}\right)=d_{\mathbf{R}^{2 n}}\left(\phi(z), \phi\left(z^{\prime}\right)\right)$.
3. Show that ϕ is a homeomorphism from \mathbf{C}^{n} to $\mathbf{R}^{2 n}$.
4. Show that a subset K of \mathbf{C}^{n} is compact, if and only if $\phi(K)$ is a compact subset of $\mathbf{R}^{2 n}$.
5. Show that K is closed, if and only if $\phi(K)$ is closed.
6. Show that K is bounded, if and only if $\phi(K)$ is bounded.
7. Show that a subset K of \mathbf{C}^{n} is compact, if and only if it is closed and bounded with respect to its usual metric.

Definition 79 Let (E, d) be a metric space. A sequence $\left(x_{n}\right)_{n \geq 1}$ in E is said to be a Cauchy sequence with respect to the metric d, if and only if for all $\epsilon>0$, there exists $n_{0} \geq 1$ such that:

$$
n, m \geq n_{0} \Rightarrow d\left(x_{n}, x_{m}\right) \leq \epsilon
$$

Definition 80 We say that a metric space (E, d) is complete, if and only if for any Cauchy sequence $\left(x_{n}\right)_{n \geq 1}$ in E, there exists $x \in E$ such that $\left(x_{n}\right)_{n \geq 1}$ converges to x.

Exercise 10.

1. Explain why strictly speaking, given $p \in[1,+\infty]$, definition (77) of Cauchy sequences in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is not a covered by definition (79).
2. Explain why $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is not a complete metric space, despite theorem (46) and definition (80).

ExErcise 11. Let $\left(z_{k}\right)_{k \geq 1}$ be a Cauchy sequence in $\mathbf{C}^{n}, n \geq 1$, with respect to the usual metric $d\left(z, z^{\prime}\right)=\left\|z-z^{\prime}\right\|$, where:

$$
\|z\| \triangleq \sqrt{\sum_{i=1}^{n}\left|z_{i}\right|^{2}}
$$

1. Show that the sequence $\left(z_{k}\right)_{k \geq 1}$ is bounded, i.e. that there exists $M \in \mathbf{R}^{+}$such that $\left\|z_{k}\right\| \leq M$, for all $k \geq 1$.
2. Define $B=\left\{z \in \mathbf{C}^{n},\|z\| \leq M\right\}$. Show that $\delta(B)<+\infty$, and that B is closed in \mathbf{C}^{n}.
3. Show the existence of a subsequence $\left(z_{k_{p}}\right)_{p \geq 1}$ of $\left(z_{k}\right)_{k \geq 1}$ such that $z_{k_{p}} \xrightarrow{\mathcal{T}_{\mathbb{C}^{n}}} z$ for some $z \in B$.
4. Show that for all $\epsilon>0$, there exists $p_{0} \geq 1$ and $n_{0} \geq 1$ such that $d\left(z, z_{k_{p_{0}}}\right) \leq \epsilon / 2$ and:

$$
k \geq n_{0} \Rightarrow d\left(z_{k}, z_{k_{p_{0}}}\right) \leq \epsilon / 2
$$

5. Show that $z_{k} \xrightarrow{\mathcal{T}_{\mathbf{C l}^{n}}} z$.
6. Conclude that \mathbf{C}^{n} is complete with respect to its usual metric.
7. For which theorem of Tutorial 9 was the completeness of \mathbf{C} used?

EXERCISE 12. Let $\left(x_{k}\right)_{k \geq 1}$ be a sequence in \mathbf{R}^{n} such that $x_{k} \xrightarrow{\mathcal{T}_{\mathbf{C}^{n}}} z$, for some $z \in \mathbf{C}^{n}$.

Tutorial 10: Bounded Linear Functionals in L^{2}

1. Show that $z \in \mathbf{R}^{n}$.
2. Show that \mathbf{R}^{n} is complete with respect to its usual metric.

Theorem $49 \mathbf{C}^{n}$ and \mathbf{R}^{n} are complete w.r. to their usual metrics.

Exercise 13. Let (E, d) be a metric space, with metric topology \mathcal{T}. Let $F \subseteq E$, and \bar{F} denote the closure of F.

1. Explain why, for all $x \in \bar{F}$ and $n \geq 1$, we have $F \cap B(x, 1 / n) \neq \emptyset$.
2. Show that for all $x \in \bar{F}$, there exists a sequence $\left(x_{n}\right)_{n \geq 1}$ in F, such that $x_{n} \xrightarrow{\mathcal{T}} x$.
3. Show conversely that if there is a sequence $\left(x_{n}\right)_{n \geq 1}$ in F with $x_{n} \xrightarrow{\mathcal{T}} x$, then $x \in \bar{F}$.
4. Show that F is closed if and only if for all sequence $\left(x_{n}\right)_{n \geq 1}$ in F such that $x_{n} \xrightarrow{\mathcal{T}} x$ for some $x \in E$, we have $x \in F$.
5. Explain why $\left(F, \mathcal{T}_{\mid F}\right)$ is metrizable.
6. Show that if F is complete with respect to the metric $d_{\mid F \times F}$, then F is closed in E.
7. Let $d_{\overline{\mathbf{R}}}$ be a metric on $\overline{\mathbf{R}}$, inducing the usual topology $\mathcal{T}_{\overline{\mathbf{R}}}$. Show that $d^{\prime}=\left(d_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R} \times \mathbf{R}}$ is a metric on \mathbf{R}, inducing the topology $\mathcal{T}_{\mathbf{R}}$.
8. Find a metric on $[-1,1]$ which induces its usual topology.
9. Show that $\{-1,1\}$ is not open in $[-1,1]$.
10. Show that $\{-\infty,+\infty\}$ is not open in $\overline{\mathbf{R}}$.
11. Show that \mathbf{R} is not closed in $\overline{\mathbf{R}}$.
12. Let $d_{\mathbf{R}}$ be the usual metric of \mathbf{R}. Show that $d^{\prime}=\left(d_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R} \times \mathbf{R}}$ and $d_{\mathbf{R}}$ induce the same topology on \mathbf{R}, but that however, \mathbf{R}
is complete with respect to $d_{\mathbf{R}}$, whereas it cannot be complete with respect to d^{\prime}.

Definition 81 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We call inner-product on \mathcal{H}, any map $\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbf{K}$ with the following properties:

$$
\begin{aligned}
\text { (i) } & \forall x, y \in \mathcal{H},\langle x, y\rangle=\overline{\langle y, x\rangle} \\
(i i) & \forall x, y, z \in \mathcal{H},\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle \\
\text { (iii) } & \forall x, y \in \mathcal{H}, \forall \alpha \in \mathbf{K},\langle\alpha x, y\rangle=\alpha\langle x, y\rangle \\
\text { (iv) } & \forall x \in \mathcal{H},\langle x, x\rangle \geq 0 \\
(v) & \forall x \in \mathcal{H}, \quad\langle x, x\rangle=0 \Leftrightarrow x=0)
\end{aligned}
$$

where for all $z \in \mathbf{C}, \bar{z}$ denotes the complex conjugate of z. For all $x \in \mathcal{H}$, we call norm of x, denoted $\|x\|$, the number defined by:

$$
\|x\| \triangleq \sqrt{\langle x, x\rangle}
$$

Tutorial 10: Bounded Linear Functionals in L^{2}

Exercise 14. Let $\langle\cdot, \cdot\rangle$ be an inner-product on a \mathbf{K}-vector space \mathcal{H}.

1. Show that for all $y \in \mathcal{H}$, the map $x \rightarrow\langle x, y\rangle$ is linear.
2. Show that for all $x \in \mathcal{H}$, the map $y \rightarrow\langle x, y\rangle$ is linear if $\mathbf{K}=\mathbf{R}$, and conjugate-linear if $\mathbf{K}=\mathbf{C}$.

Exercise 15. Let $\langle\cdot, \cdot\rangle$ be an inner-product on a \mathbf{K}-vector space \mathcal{H}. Let $x, y \in \mathcal{H}$. Let $A=\|x\|^{2}, B=|\langle x, y\rangle|$ and $C=\|y\|^{2}$. let $\alpha \in \mathbf{K}$ be such that $|\alpha|=1$ and:

$$
B=\alpha \overline{\langle x, y\rangle}
$$

1. Show that $A, B, C \in \mathbf{R}^{+}$.
2. For all $t \in \mathbf{R}$, show that $\langle x-t \alpha y, x-t \alpha y\rangle=A-2 t B+t^{2} C$.
3. Show that if $C=0$ then $B^{2} \leq A C$.
4. Suppose that $C \neq 0$. Show that $P(t)=A-2 t B+t^{2} C$ has a minimal value which is in \mathbf{R}^{+}, and conclude that $B^{2} \leq A C$.
5. Conclude with the following:

Theorem 50 (Cauchy-Schwarz's inequality:second) Let \mathcal{H} be a K-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, and $\langle\cdot, \cdot\rangle$ be an inner-product on \mathcal{H}. Then, for all $x, y \in \mathcal{H}$, we have:

$$
|\langle x, y\rangle| \leq\|x\| \cdot\|y\|
$$

Exercise 16. For all $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, we define:

$$
\langle f, g\rangle \triangleq \int_{\Omega} f \bar{g} d \mu
$$

1. Use the first Cauchy-Schwarz inequality (42) to prove that for all $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, we have $f \bar{g} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Conclude that $\langle f, g\rangle$ is a well-defined complex number.
2. Show that for all $f \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, we have $\|f\|_{2}=\sqrt{\langle f, f\rangle}$.
3. Make another use of the first Cauchy-Schwarz inequality to show that for all $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, we have:

$$
\begin{equation*}
|\langle f, g\rangle| \leq\|f\|_{2} \cdot\|g\|_{2} \tag{1}
\end{equation*}
$$

4. Go through definition (81), and indicate which of the properties $(i)-(v)$ fails to be satisfied by $\langle\cdot, \cdot\rangle$. Conclude that $\langle\cdot, \cdot\rangle$ is not an inner-product on $L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, and therefore that inequality $\left({ }^{*}\right)$ is not a particular case of the second Cauchy-Schwarz inequality (50).
5. Let $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. By considering $\int(|f|+t|g|)^{2} d \mu$ for $t \in \mathbf{R}$, imitate the proof of the second Cauchy-Schwarz inequality to show that:

$$
\int_{\Omega}|f g| d \mu \leq\left(\int_{\Omega}|f|^{2} d \mu\right)^{\frac{1}{2}}\left(\int_{\Omega}|g|^{2} d \mu\right)^{\frac{1}{2}}
$$

6. Let $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ non-negative and measurable. Show that if $\int f^{2} d \mu$ and $\int g^{2} d \mu$ are finite, then f and g are μ-almost surely equal to elements of $L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. Deduce from 5 . a new proof of the first Cauchy-Schwarz inequality:

$$
\int_{\Omega} f g d \mu \leq\left(\int_{\Omega} f^{2} d \mu\right)^{\frac{1}{2}}\left(\int_{\Omega} g^{2} d \mu\right)^{\frac{1}{2}}
$$

Exercise 17. Let $\langle\cdot, \cdot\rangle$ be an inner-product on a \mathbf{K}-vector space \mathcal{H}.

1. Show that for all $x, y \in \mathcal{H}$, we have:

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle}
$$

2. Using the second Cauchy-Schwarz inequality (50), show that:

$$
\|x+y\| \leq\|x\|+\|y\|
$$

3. Show that $d_{\langle\cdot, \cdot\rangle}(x, y)=\|x-y\|$ defines a metric on \mathcal{H}.

Definition 82 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, and $\langle\cdot, \cdot\rangle$ be an inner-product on \mathcal{H}. We call norm topology on \mathcal{H}, denoted $\mathcal{T}_{\langle\cdot, \cdot\rangle}$, the metric topology associated with $d_{\langle\cdot,\rangle}(x, y)=\|x-y\|$.

Definition 83 We call Hilbert space over \mathbf{K} where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, any ordered pair $(\mathcal{H},\langle\cdot, \cdot\rangle)$ where $\langle\cdot, \cdot\rangle$ is an inner-product on a \mathbf{K}-vector space \mathcal{H}, which is complete w.r. to $d_{\langle\cdot,\rangle}(x, y)=\|x-y\|$.

Exercise 18. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K} and let \mathcal{M} be a closed linear subspace of \mathcal{H}, (closed with respect to the norm topology $\left.\mathcal{T}_{\langle\cdot, \cdot\rangle}\right)$. Define $[\cdot, \cdot]=\langle\cdot, \cdot\rangle_{\mid \mathcal{M} \times \mathcal{M}}$.

1. Show that $[\cdot, \cdot]$ is an inner-product on the \mathbf{K}-vector space \mathcal{M}.
2. With obvious notations, show that $d_{[\cdot, \cdot]}=\left(d_{\langle\cdot,\rangle}\right)_{\mid \mathcal{M} \times \mathcal{M}}$.
3. Deduce that $\mathcal{T}_{[\cdot,]}=\left(\mathcal{T}_{\langle, \cdot,\rangle}\right)_{\mid \mathcal{M}}$.

Exercise 19. Further to ex. (18), Let $\left(x_{n}\right)_{n \geq 1}$ be a Cauchy sequence in \mathcal{M}, with respect to the metric $d_{[,,]}$.

1. Show that $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence in \mathcal{H}.
2. Explain why there exists $x \in \mathcal{H}$ such that $x_{n} \xrightarrow{\mathcal{T}_{\langle(, .)}} x$.
3. Explain why $x \in \mathcal{M}$.
4. Explain why we also have $x_{n} \xrightarrow{\mathcal{T}_{[0,]}} x$.
5. Explain why $\left(\mathcal{M},\langle\cdot, \cdot\rangle_{\mid \mathcal{M} \times \mathcal{M}}\right)$ is a Hilbert space over \mathbf{K}.

Exercise 20. For all $z, z^{\prime} \in \mathbf{C}^{n}, n \geq 1$, we define:

$$
\left\langle z, z^{\prime}\right\rangle \triangleq \sum_{i=1}^{n} z_{i} \bar{z}_{i}^{\prime}
$$

1. Show that $\langle\cdot, \cdot\rangle$ is an inner-product on \mathbf{C}^{n}.
2. Show that the metric $d_{\langle\cdot, \cdot\rangle}$ is equal to the usual metric of \mathbf{C}^{n}.
3. Conclude that $\left(\mathbf{C}^{n},\langle\cdot, \cdot\rangle\right)$ is a Hilbert space over \mathbf{C}.
4. Show that \mathbf{R}^{n} is a closed subset of \mathbf{C}^{n}.
5. Show however that \mathbf{R}^{n} is not a linear subspace of \mathbf{C}^{n}.
6. Show that $\left(\mathbf{R}^{n},\langle\cdot, \cdot\rangle_{\mid \mathbf{R}^{n} \times \mathbf{R}^{n}}\right)$ is a Hilbert space over \mathbf{R}.

Definition 84 We call usual inner-product in \mathbf{K}^{n}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, the inner-product denoted $\langle\cdot, \cdot\rangle$ and defined by:

$$
\forall x, y \in \mathbf{K}^{n},\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}
$$

Theorem $51 \mathbf{C}^{n}$ and \mathbf{R}^{n} together with their usual inner-products, are Hilbert spaces over \mathbf{C} and \mathbf{R} respectively.

Definition 85 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let $\mathcal{C} \subseteq \mathcal{H}$. We say that \mathcal{C} is a convex subset or \mathcal{H}, if and only if, for all $x, y \in \mathcal{C}$ and $t \in[0,1]$, we have $t x+(1-t) y \in \mathcal{C}$.

Exercise 21. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over K. Let $\mathcal{C} \subseteq \mathcal{H}$ be a non-empty closed convex subset of \mathcal{H}. Let $x_{0} \in \mathcal{H}$. Define:

$$
\delta_{\min } \triangleq \inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{C}\right\}
$$

1. Show the existence of a sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathcal{C} such that

$$
\left\|x_{n}-x_{0}\right\| \rightarrow \delta_{\min }
$$

2. Show that for all $x, y \in \mathcal{H}$, we have:

$$
\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}-4\left\|\frac{x+y}{2}\right\|^{2}
$$

3. Explain why for all $n, m \geq 1$, we have:

$$
\delta_{\min } \leq\left\|\frac{x_{n}+x_{m}}{2}-x_{0}\right\|
$$

4. Show that for all $n, m \geq 1$, we have:

$$
\left\|x_{n}-x_{m}\right\|^{2} \leq 2\left\|x_{n}-x_{0}\right\|^{2}+2\left\|x_{m}-x_{0}\right\|^{2}-4 \delta_{\min }^{2}
$$

5. Show the existence of some $x^{*} \in \mathcal{H}$, such that $x_{n} \xrightarrow{\mathcal{T}\langle\cdots,\rangle} x^{*}$.
6. Explain why $x^{*} \in \mathcal{C}$
7. Show that for all $x, y \in \mathcal{H}$, we have $|\|x\|-\|y\|| \leq\|x-y\|$.
8. Show that $\left\|x_{n}-x_{0}\right\| \rightarrow\left\|x^{*}-x_{0}\right\|$.
9. Conclude that we have found $x^{*} \in \mathcal{C}$ such that:

$$
\left\|x^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{C}\right\}
$$

10. Let y^{*} be another element of \mathcal{C} with such property. Show that:

$$
\left\|x^{*}-y^{*}\right\|^{2} \leq 2\left\|x^{*}-x_{0}\right\|^{2}+2\left\|y^{*}-x_{0}\right\|^{2}-4 \delta_{\min }^{2}
$$

11. Conclude that $x^{*}=y^{*}$.

Theorem 52 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let \mathcal{C} be a non-empty, closed and convex subset of \mathcal{H}. For all $x_{0} \in \mathcal{H}$, there exists a unique $x^{*} \in \mathcal{C}$ such that:

$$
\left\|x^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{C}\right\}
$$

Definition $86 \operatorname{Let}(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let $\mathcal{G} \subseteq \mathcal{H}$. We call orthogonal of \mathcal{G}, the subset of \mathcal{H} denoted \mathcal{G}^{\perp} and defined by:

$$
\mathcal{G}^{\perp} \triangleq\{x \in \mathcal{H}:\langle x, y\rangle=0, \forall y \in \mathcal{G}\}
$$

Exercise 22. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K} and $\mathcal{G} \subseteq \mathcal{H}$.

Tutorial 10: Bounded Linear Functionals in L^{2}

1. Show that \mathcal{G}^{\perp} is a linear subspace of \mathcal{H}, even if \mathcal{G} isn't.
2. Show that $\phi_{y}: \mathcal{H} \rightarrow K$ defined by $\phi_{y}(x)=\langle x, y\rangle$ is continuous.
3. Show that $\mathcal{G}^{\perp}=\cap_{y \in \mathcal{G}} \phi_{y}^{-1}(\{0\})$.
4. Show that \mathcal{G}^{\perp} is a closed subset of \mathcal{H}, even if \mathcal{G} isn't.
5. Show that $\emptyset^{\perp}=\{0\}^{\perp}=\mathcal{H}$.
6. Show that $\mathcal{H}^{\perp}=\{0\}$.

Exercise 23. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over K. Let \mathcal{M} be a closed linear subspace of \mathcal{H}, and $x_{0} \in \mathcal{H}$.

1. Explain why there exists $x^{*} \in \mathcal{M}$ such that:

$$
\left\|x^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{M}\right\}
$$

2. Define $y^{*}=x_{0}-x^{*} \in \mathcal{H}$. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$:

$$
\left\|y^{*}\right\|^{2} \leq\left\|y^{*}-\alpha y\right\|^{2}
$$

3. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$, we have:

$$
0 \leq-\alpha\left\langle y, y^{*}\right\rangle-\overline{\alpha\left\langle y, y^{*}\right\rangle}+|\alpha|^{2} \cdot\|y\|^{2}
$$

4. For all $y \in \mathcal{M} \backslash\{0\}$, taking $\alpha=\overline{\left\langle y, y^{*}\right\rangle} /\|y\|^{2}$, show that:

$$
0 \leq-\frac{\left|\left\langle y, y^{*}\right\rangle\right|^{2}}{\|y\|^{2}}
$$

5. Conclude that $x^{*} \in \mathcal{M}, y^{*} \in \mathcal{M}^{\perp}$ and $x_{0}=x^{*}+y^{*}$.
6. Show that $\mathcal{M} \cap \mathcal{M}^{\perp}=\{0\}$
7. Show that $x^{*} \in \mathcal{M}$ and $y^{*} \in \mathcal{M}^{\perp}$ with $x_{0}=x^{*}+y^{*}$, are unique.

Theorem 53 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let \mathcal{M} be a closed linear subspace of \mathcal{H}. Then, for all $x_{0} \in \mathcal{H}$, there is a unique decomposition:

$$
x_{0}=x^{*}+y^{*}
$$

where $x^{*} \in \mathcal{M}$ and $y^{*} \in \mathcal{M}^{\perp}$.
Definition 87 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We call linear functional, any map $\lambda: \mathcal{H} \rightarrow \mathbf{K}$, such that for all $x, y \in \mathcal{H}$ and $\alpha \in \mathbf{K}$:

$$
\lambda(x+\alpha y)=\lambda(x)+\alpha \lambda(y)
$$

Exercise 24. Let λ be a linear functional on a \mathbf{K}-Hilbert ${ }^{1}$ space \mathcal{H}.

1. Suppose that λ is continuous at some point $x_{0} \in \mathcal{H}$. Show the existence of $\eta>0$ such that:

$$
\forall x \in \mathcal{H},\left\|x-x_{0}\right\| \leq \eta \Rightarrow\left|\lambda(x)-\lambda\left(x_{0}\right)\right| \leq 1
$$

[^0]Show that for all $x \in \mathcal{H}$ with $x \neq 0$, we have $|\lambda(\eta x /\|x\|)| \leq 1$.
2. Show that if λ is continuous at x_{0}, there exits $M \in \mathbf{R}^{+}$, with:

$$
\begin{equation*}
\forall x \in \mathcal{H},|\lambda(x)| \leq M\|x\| \tag{2}
\end{equation*}
$$

3 . Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert ${ }^{2}$ space over $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let λ be a linear functional on \mathcal{H}. Then, the following are equivalent:

$$
\begin{array}{ll}
\text { (i) } & \lambda:\left(\mathcal{H}, \mathcal{T}_{\langle\cdot, \cdot\rangle}\right) \rightarrow\left(K, \mathcal{T}_{\mathbf{K}}\right) \text { is continuous } \\
\text { (ii) } & \exists M \in \mathbf{R}^{+}, \forall x \in \mathcal{H},|\lambda(x)| \leq M .\|x\|
\end{array}
$$

In which case, we say that λ is a bounded linear functional.
${ }^{2}$ Norm vector spaces are introduced later in these tutorials.

Exercise 25. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}. Let λ be a bounded linear functional on \mathcal{H}, such that $\lambda(x) \neq 0$ for some $x \in \mathcal{H}$, and define $\mathcal{M}=\lambda^{-1}(\{0\})$.

1. Show the existence of $x_{0} \in \mathcal{H}$, such that $x_{0} \notin \mathcal{M}$.
2. Show the existence of $x^{*} \in \mathcal{M}$ and $y^{*} \in \mathcal{M}^{\perp}$ with $x_{0}=x^{*}+y^{*}$.
3. Deduce the existence of some $z \in \mathcal{M}^{\perp}$ such that $\|z\|=1$.
4. Show that for all $\alpha \in \mathbf{K} \backslash\{0\}$ and $x \in \mathcal{H}$, we have:

$$
\frac{\lambda(x)}{\bar{\alpha}}\langle z, \alpha z\rangle=\lambda(x)
$$

5. Show that in order to have:

$$
\forall x \in \mathcal{H}, \lambda(x)=\langle x, \alpha z\rangle
$$

it is sufficient to choose $\alpha \in \mathbf{K} \backslash\{0\}$ such that:

$$
\forall x \in \mathcal{H}, \frac{\lambda(x) z}{\bar{\alpha}}-x \in \mathcal{M}
$$

6. Show the existence of $y \in \mathcal{H}$ such that:

$$
\forall x \in \mathcal{H}, \lambda(x)=\langle x, y\rangle
$$

7. Show the uniqueness of such $y \in \mathcal{H}$.

Theorem 54 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let λ be a bounded linear functional on \mathcal{H}. Then, there exists a unique $y \in \mathcal{H}$ such that: $\forall x \in \mathcal{H}, \lambda(x)=\langle x, y\rangle$.

Definition 89 Let $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We call K-vector space, any set \mathcal{H}, together with operators \oplus and \otimes for which there exits an element $0_{\mathcal{H}} \in \mathcal{H}$ such that for all $x, y, z \in \mathcal{H}$ and $\alpha, \beta \in \mathbf{K}$, we have:

$$
\begin{aligned}
\text { (i) } & 0_{\mathcal{H}} \oplus x=x \\
\text { (ii) } & \exists(-x) \in \mathcal{H},(-x) \oplus x=0_{\mathcal{H}} \\
\text { (iii) } & x \oplus(y \oplus z)=(x \oplus y) \oplus z
\end{aligned}
$$

Tutorial 10: Bounded Linear Functionals in L^{2}

$$
\begin{aligned}
(i v) & x \oplus y=y \oplus x \\
(v) & 1 \otimes x=x \\
(v i) & \alpha \otimes(\beta \otimes x)=(\alpha \beta) \otimes x \\
(v i i) & (\alpha+\beta) \otimes x=(\alpha \otimes x) \oplus(\beta \otimes x) \\
(v i i i) & \alpha \otimes(x \oplus y)=(\alpha \otimes x) \oplus(\alpha \otimes y)
\end{aligned}
$$

Exercise 26. For all $f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$, define:

$$
\mathcal{H} \triangleq\left\{[f]: f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)\right\}
$$

where $[f]=\left\{g \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu): g=f, \mu\right.$-a.s. $\}$. Let $0_{\mathcal{H}}=[0]$, and for all $[f],[g] \in \mathcal{H}$, and $\alpha \in \mathbf{K}$, we define:

$$
\begin{aligned}
{[f] \oplus[g] } & \triangleq[f+g] \\
\alpha \otimes[f] & \triangleq[\alpha f]
\end{aligned}
$$

We assume f, f^{\prime}, g and g^{\prime} are elements of $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$.

Tutorial 10: Bounded Linear Functionals in L^{2}

1. Show that for $f=g \mu$-a.s. is equivalent to $[f]=[g]$.
2. Show that if $[f]=\left[f^{\prime}\right]$ and $[g]=\left[g^{\prime}\right]$, then $[f+g]=\left[f^{\prime}+g^{\prime}\right]$.
3. Conclude that \oplus is well-defined.
4. Show that \otimes is also well-defined.
5. Show that $(\mathcal{H}, \oplus, \otimes)$ is a \mathbf{K}-vector space.

Exercise 27. Further to ex. (26), we define for all $[f],[g] \in \mathcal{H}$:

$$
\langle[f],[g]\rangle_{\mathcal{H}} \triangleq \int_{\Omega} f \bar{g} d \mu
$$

1. Show that $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is well-defined.
2. Show that $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is an inner-product on \mathcal{H}.
3. Show that $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ is a Hilbert space over \mathbf{K}.
4. Why is $\langle f, g\rangle \triangleq \int_{\Omega} f \bar{g} d \mu$ not an inner-product on $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$?

Exercise 28. Further to ex. (27), Let $\lambda: L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu) \rightarrow \mathbf{K}$ be a continuous linear functional ${ }^{3}$. Define $\Lambda: \mathcal{H} \rightarrow \mathbf{K}$ by $\Lambda([f])=\lambda(f)$.

1. Show the existence of $M \in \mathbf{R}^{+}$such that:

$$
\forall f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu),|\lambda(f)| \leq M \cdot\|f\|_{2}
$$

2. Show that if $[f]=[g]$ then $\lambda(f)=\lambda(g)$.
3. Show that Λ is a well defined bounded linear functional on \mathcal{H}.
4. Conclude with the following:
${ }^{3}$ As defined in these tutorials, $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$ is not a Hilbert space (not even a norm vector space). However, both $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$ and \mathbf{K} have natural topologies and it is therefore meaningful to speak of continuous linear functional. Note however that we are slightly outside the framework of definition (88).

Theorem 55 Let $\lambda: L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu) \rightarrow \mathbf{K}$ be a continuous linear functional, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. There exists $g \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$ such that:

$$
\forall f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu), \lambda(f)=\int_{\Omega} f \bar{g} d \mu
$$

[^0]: ${ }^{1}$ Norm vector spaces are introduced later in these tutorials.

