10. Bounded Linear Functionals in L^2

In the following, $(\Omega, \mathcal{F}, \mu)$ is a measure space.

Definition 78 We call subsequence of a sequence $(x_n)_{n \geq 1}$, any sequence of the form $(x_{\phi(n)})_{n \geq 1}$ where $\phi : \mathbb{N}^* \to \mathbb{N}^*$ is a strictly increasing map.

Exercise 1. Let (E, d) be a metric space, with metric topology T. Let $(x_n)_{n \geq 1}$ be a sequence in E. For all $n \geq 1$, let F_n be the closure of the set $\{x_k : k \geq n\}$.

1. Show that for all $x \in E$, $x_n \xrightarrow{T} x$ is equivalent to:
 $$\forall \epsilon > 0, \exists n_0 \geq 1, \ n \geq n_0 \Rightarrow d(x_n, x) \leq \epsilon$$

2. Show that $(F_n)_{n \geq 1}$ is a decreasing sequence of closed sets in E.

3. Show that if $F_n \downarrow \emptyset$, then $(F_n^c)_{n \geq 1}$ is an open covering of E.

www.probability.net
4. Show that if \((E, T)\) is compact then \(\cap_{n=1}^{+\infty} F_n \neq \emptyset\).

5. Show that if \((E, T)\) is compact, there exists \(x \in E\) such that for all \(n \geq 1\) and \(\epsilon > 0\), we have \(B(x, \epsilon) \cap \{x_k, k \geq n\} \neq \emptyset\).

6. By induction, construct a subsequence \((x_{n_p})_{p \geq 1}\) of \((x_n)_{n \geq 1}\) such that \(x_{n_p} \in B(x, 1/p)\) for all \(p \geq 1\).

7. Conclude that if \((E, T)\) is compact, any sequence \((x_n)_{n \geq 1}\) in \(E\) has a convergent subsequence.

Exercise 2. Let \((E, d)\) be a metric space, with metric topology \(T\). We assume that any sequence \((x_n)_{n \geq 1}\) in \(E\) has a convergent subsequence. Let \((V_i)_{i \in I}\) be an open covering of \(E\). For \(x \in E\), let:

\[
\hat{r}(x) \triangleq \sup\{r > 0 : B(x, r) \subseteq V_i, \text{ for some } i \in I\}
\]

1. Show that \(\forall x \in E, \exists i \in I, \exists r > 0, \text{ such that } B(x, r) \subseteq V_i\).
2. Show that $\forall x \in E, r(x) > 0$.

Exercise 3. Further to ex. (2), suppose $\inf_{x \in E} r(x) = 0$.

1. Show that for all $n \geq 1$, there is $x_n \in E$ such that $r(x_n) < 1/n$.

2. Extract a subsequence $(x_{n_k})_{k \geq 1}$ of $(x_n)_{n \geq 1}$ converging to some $x^* \in E$. Let $r^* > 0$ and $i \in I$ be such that $B(x^*, r^*) \subseteq V_i$. Show that we can find some $k_0 \geq 1$, such that $d(x^*, x_{n_{k_0}}) < r^*/2$ and $r(x_{n_{k_0}}) \leq r^*/4$.

3. Show that $d(x^*, x_{n_{k_0}}) < r^*/2$ implies that $B(x_{n_{k_0}}, r^*/2) \subseteq V_i$. Show that this contradicts $r(x_{n_{k_0}}) \leq r^*/4$, and conclude that $\inf_{x \in E} r(x) > 0$.

Exercise 4. Further to ex. (3), Let r_0 with $0 < r_0 < \inf_{x \in E} r(x)$. Suppose that E cannot be covered by a finite number of open balls with radius r_0.

www.probability.net
1. Show the existence of a sequence \((x_n)_{n \geq 1}\) in \(E\), such that for all \(n \geq 1\), \(x_{n+1} \notin B(x_1, r_0) \cup \ldots \cup B(x_n, r_0)\).

2. Show that for all \(n > m\) we have \(d(x_n, x_m) \geq r_0\).

3. Show that \((x_n)_{n \geq 1}\) cannot have a convergent subsequence.

4. Conclude that there exists a finite subset \(\{x_1, \ldots, x_n\}\) of \(E\) such that \(E = B(x_1, r_0) \cup \ldots \cup B(x_n, r_0)\).

5. Show that for all \(x \in E\), we have \(B(x, r_0) \subseteq V_i\) for some \(i \in I\).

6. Conclude that \((E, T)\) is compact.

7. Prove the following:

Theorem 47 A metrizable topological space \((E, T)\) is compact, if and only if for every sequence \((x_n)_{n \geq 1}\) in \(E\), there exists a subsequence \((x_{n_k})_{k \geq 1}\) of \((x_n)_{n \geq 1}\) and some \(x \in E\), such that \(x_{n_k} \xrightarrow{T} x\).
Exercise 5. Let \(a, b \in \mathbb{R}, a < b\) and \((x_n)_{n \geq 1}\) be a sequence in \([a, b]\).

1. Show that \((x_n)_{n \geq 1}\) has a convergent subsequence.
2. Can we conclude that \([a, b]\) is a compact subset of \(\mathbb{R}\)?

Exercise 6. Let \(E = [-M, M] \times \ldots \times [-M, M] \subseteq \mathbb{R}^n\), where \(n \geq 1\) and \(M \in \mathbb{R}^+\). Let \(\mathcal{T}_{\mathbb{R}^n}\) be the usual product topology on \(\mathbb{R}^n\), and \(\mathcal{T}_E = (\mathcal{T}_{\mathbb{R}^n})|_E\) be the induced topology on \(E\).

1. Let \((x_p)_{p \geq 1}\) be a sequence in \(E\). Let \(x \in E\). Show that \(x_p \overset{\mathcal{T}_E}{\to} x\) is equivalent to \(x_p \overset{\mathcal{T}_{\mathbb{R}^n}}{\to} x\).
2. Propose a metric on \(\mathbb{R}^n\), inducing the topology \(\mathcal{T}_{\mathbb{R}^n}\).
3. Let \((x_p)_{p \geq 1}\) be a sequence in \(\mathbb{R}^n\). Let \(x \in \mathbb{R}^n\). Show that \(x_p \overset{\mathcal{T}_{\mathbb{R}^n}}{\to} x\) if and only if, \(x_p^i \overset{\mathcal{T}_{\mathbb{R}}}{\to} x^i\) for all \(i \in \mathbb{N}_n\).
EXERCISE 7. Further to ex. (6), suppose \((x_p)_{p \geq 1}\) is a sequence in \(E\).

1. Show the existence of a subsequence \((x_{\phi(p)})_{p \geq 1}\) of \((x_p)_{p \geq 1}\), such that \(x_{\phi(p)}^1 \xrightarrow{T_{[-M,M]}} x^1\) for some \(x^1 \in [-M, M]\).

2. Explain why the above convergence is equivalent to \(x_{\phi(p)}^1 \xrightarrow{TR} x^1\).

3. Suppose that \(1 \leq k \leq n - 1\) and \((y_p)_{p \geq 1} = (x_{\phi(p)})_{p \geq 1}\) is a subsequence of \((x_p)_{p \geq 1}\) such that:

\[
\forall j = 1, \ldots, k \ , \ x_j^{\phi(p)} \xrightarrow{TR} x^j \text{ for some } x^j \in [-M, M]
\]

Show the existence of a subsequence \((y_{\psi(p)})_{p \geq 1}\) of \((y_p)_{p \geq 1}\) such that \(y_1^{k+1} \xrightarrow{TR} x^{k+1}\) for some \(x^{k+1} \in [-M, M]\).

4. Show that \(\phi \circ \psi : \mathbb{N}^* \to \mathbb{N}^*\) is strictly increasing.
5. Show that \((x_{\phi \psi(p)})_{p \geq 1}\) is a subsequence of \((x_p)_{p \geq 1}\) such that:
\[
\forall j = 1, \ldots, k + 1, \quad x_j^j \overset{T_E}{\longrightarrow} x_j \in [-M, M]
\]

6. Show the existence of a subsequence \((x_{\phi(p)})_{p \geq 1}\) of \((x_p)_{p \geq 1}\), and \(x \in E\), such that \(x_{\phi(p)} \overset{T_E}{\longrightarrow} x\)

7. Show that \((E, T_E)\) is a compact topological space.

Exercise 8. Let \(A\) be a closed subset of \(\mathbb{R}^n\), \(n \geq 1\), which is bounded with respect to the usual metric of \(\mathbb{R}^n\).

1. Show that \(A \subseteq E = [-M, M] \times \ldots \times [-M, M]\), for some \(M \in \mathbb{R}^+\).

2. Show from \(E \setminus A = E \cap A^c\) that \(A\) is closed in \(E\).

3. Show \((A, (T_{\mathbb{R}^n})|_A)\) is a compact topological space.
4. Conversely, let A is a compact subset of \mathbb{R}^n. Show that A is closed and bounded.

Theorem 48 A subset of \mathbb{R}^n is compact if and only if it is closed and bounded with respect to its usual metric.

Exercise 9. Let $n \geq 1$. Consider the map:

$$\phi : \begin{cases}
\mathbb{C}^n &\rightarrow & \mathbb{R}^{2n} \\
(a_1 + ib_1, \ldots, a_n + ib_n) &\rightarrow & (a_1, b_1, \ldots, a_n, b_n)
\end{cases}$$

1. Recall the expressions of the usual metrics $d_{\mathbb{C}^n}$ and $d_{\mathbb{R}^{2n}}$ of \mathbb{C}^n and \mathbb{R}^{2n} respectively.

2. Show that for all $z, z' \in \mathbb{C}^n$, $d_{\mathbb{C}^n}(z, z') = d_{\mathbb{R}^{2n}}(\phi(z), \phi(z'))$.

3. Show that ϕ is a homeomorphism from \mathbb{C}^n to \mathbb{R}^{2n}.

www.probability.net
4. Show that a subset K of C^n is compact, if and only if $\phi(K)$ is a compact subset of \mathbb{R}^{2n}.

5. Show that K is closed, if and only if $\phi(K)$ is closed.

6. Show that K is bounded, if and only if $\phi(K)$ is bounded.

7. Show that a subset K of C^n is compact, if and only if it is closed and bounded with respect to its usual metric.

Definition 79 Let (E,d) be a metric space. A sequence $(x_n)_{n\geq 1}$ in E is said to be a **Cauchy sequence** with respect to the metric d, if and only if for all $\epsilon > 0$, there exists $n_0 \geq 1$ such that:

$$n, m \geq n_0 \Rightarrow d(x_n, x_m) \leq \epsilon$$

Definition 80 We say that a metric space (E,d) is **complete**, if and only if for any Cauchy sequence $(x_n)_{n\geq 1}$ in E, there exists $x \in E$ such that $(x_n)_{n\geq 1}$ converges to x.
Exercise 10.

1. Explain why strictly speaking, given $p \in [1, +\infty[$, definition (77) of Cauchy sequences in $L^p_C(\Omega, \mathcal{F}, \mu)$ is not covered by definition (79).

2. Explain why $L^p_C(\Omega, \mathcal{F}, \mu)$ is not a complete metric space, despite theorem (46) and definition (80).

Exercise 11. Let $(z_k)_{k \geq 1}$ be a Cauchy sequence in \mathbb{C}^n, $n \geq 1$, with respect to the usual metric $d(z, z') = \|z - z'\|$, where:

$$
\|z\| \triangleq \sqrt{\sum_{i=1}^{n} |z_i|^2}
$$

1. Show that the sequence $(z_k)_{k \geq 1}$ is bounded, i.e. that there exists $M \in \mathbb{R}^+$ such that $\|z_k\| \leq M$, for all $k \geq 1$.
2. Define $B = \{ z \in \mathbb{C}^n, \|z\| \leq M \}$. Show that $\delta(B) < +\infty$, and that B is closed in \mathbb{C}^n.

3. Show the existence of a subsequence $(z_{k_p})_{p \geq 1}$ of $(z_k)_{k \geq 1}$ such that $z_{k_p} \xrightarrow{C^n} z$ for some $z \in B$.

4. Show that for all $\epsilon > 0$, there exists $p_0 \geq 1$ and $n_0 \geq 1$ such that $d(z, z_{k_{p_0}}) \leq \epsilon/2$ and:
 \[k \geq n_0 \Rightarrow d(z_k, z_{k_{p_0}}) \leq \epsilon/2 \]

5. Show that $z_k \xrightarrow{C^n} z$.

6. Conclude that \mathbb{C}^n is complete with respect to its usual metric.

7. For which theorem of Tutorial 9 was the completeness of \mathbb{C} used?

Exercise 12. Let $(x_k)_{k \geq 1}$ be a sequence in \mathbb{R}^n such that $x_k \xrightarrow{C^n} z$, for some $z \in \mathbb{C}^n$.

www.probability.net
1. Show that $z \in \mathbb{R}^n$.

2. Show that \mathbb{R}^n is complete with respect to its usual metric.

Theorem 49 \(C^n \) and \(\mathbb{R}^n \) are complete w.r. to their usual metrics.

Exercise 13. Let \((E, d)\) be a metric space, with metric topology \(\mathcal{T} \). Let \(F \subseteq E \), and \(\bar{F} \) denote the closure of \(F \).

1. Explain why, for all \(x \in \bar{F} \) and \(n \geq 1 \), we have \(F \cap B(x, 1/n) \neq \emptyset \).

2. Show that for all \(x \in \bar{F} \), there exists a sequence \((x_n)_{n \geq 1}\) in \(F \), such that \(x_n \xrightarrow{\mathcal{T}} x \).

3. Show conversely that if there is a sequence \((x_n)_{n \geq 1}\) in \(F \) with \(x_n \xrightarrow{\mathcal{T}} x \), then \(x \in \bar{F} \).
4. Show that F is closed if and only if for all sequence $(x_n)_{n \geq 1}$ in F such that $x_n \xrightarrow{T} x$ for some $x \in E$, we have $x \in F$.

5. Explain why $(F, T_{|F})$ is metrizable.

6. Show that if F is complete with respect to the metric $d_{|F \times F}$, then F is closed in E.

7. Let $d_{\mathbb{R}}$ be a metric on \mathbb{R}, inducing the usual topology $T_{\mathbb{R}}$. Show that $d' = (d_{\mathbb{R}})_{|\mathbb{R} \times \mathbb{R}}$ is a metric on \mathbb{R}, inducing the topology $T_{\mathbb{R}}$.

8. Find a metric on $[-1, 1]$ which induces its usual topology.

9. Show that $\{-1, 1\}$ is not open in $[-1, 1]$.

10. Show that $\{-\infty, +\infty\}$ is not open in \mathbb{R}.

11. Show that \mathbb{R} is not closed in $\overline{\mathbb{R}}$.

12. Let $d_{\mathbb{R}}$ be the usual metric of \mathbb{R}. Show that $d' = (d_{\mathbb{R}})_{|\mathbb{R} \times \mathbb{R}}$ and $d_{\mathbb{R}}$ induce the same topology on \mathbb{R}, but that however, \mathbb{R}
is complete with respect to $d_{\mathbb{R}}$, whereas it cannot be complete with respect to d'.

Definition 81 Let H be a K-vector space, where $K = \mathbb{R}$ or \mathbb{C}. We call **inner-product** on H, any map $\langle \cdot, \cdot \rangle : H \times H \to K$ with the following properties:

1. $\forall x, y \in H, \; \langle x, y \rangle = \langle y, x \rangle$
2. $\forall x, y, z \in H, \; \langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$
3. $\forall x, y \in H, \forall \alpha \in K, \; \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
4. $\forall x \in H, \; \langle x, x \rangle \geq 0$
5. $\forall x \in H, \; (\langle x, x \rangle = 0 \iff x = 0)$

where for all $z \in \mathbb{C}$, \bar{z} denotes the complex conjugate of z. For all $x \in H$, we call **norm** of x, denoted $\|x\|$, the number defined by:

$$\|x\| \triangleq \sqrt{\langle x, x \rangle}$$

www.probability.net
Exercise 14. Let $\langle \cdot, \cdot \rangle$ be an inner-product on a K-vector space \mathcal{H}.

1. Show that for all $y \in \mathcal{H}$, the map $x \rightarrow \langle x, y \rangle$ is linear.

2. Show that for all $x \in \mathcal{H}$, the map $y \rightarrow \langle x, y \rangle$ is linear if $K = \mathbb{R}$, and conjugate-linear if $K = \mathbb{C}$.

Exercise 15. Let $\langle \cdot, \cdot \rangle$ be an inner-product on a K-vector space \mathcal{H}.

Let $x, y \in \mathcal{H}$. Let $A = \|x\|^2$, $B = |\langle x, y \rangle|$ and $C = \|y\|^2$. Let $\alpha \in K$ be such that $|\alpha| = 1$ and:

$$B = \alpha \langle x, y \rangle$$

1. Show that $A, B, C \in \mathbb{R}^+$.

2. For all $t \in \mathbb{R}$, show that $\langle x - t\alpha y, x - t\alpha y \rangle = A - 2tB + t^2C$.

3. Show that if $C = 0$ then $B^2 \leq AC$.

www.probability.net
4. Suppose that $C \neq 0$. Show that $P(t) = A - 2tB + t^2C$ has a minimal value which is in \mathbb{R}^+, and conclude that $B^2 \leq AC$.

5. Conclude with the following:

Theorem 50 (Cauchy-Schwarz’s inequality:second) Let \mathcal{H} be a K-vector space, where $K = \mathbb{R}$ or \mathbb{C}, and $\langle \cdot, \cdot \rangle$ be an inner-product on \mathcal{H}. Then, for all $x, y \in \mathcal{H}$, we have:

$$|\langle x, y \rangle| \leq \|x\| \|y\|$$

Exercise 16. For all $f, g \in L^2_\mathbb{C}(\Omega, \mathcal{F}, \mu)$, we define:

$$\langle f, g \rangle \triangleq \int_{\Omega} f \overline{g} \, d\mu$$

1. Use the first Cauchy-Schwarz inequality (42) to prove that for all $f, g \in L^2_\mathbb{C}(\Omega, \mathcal{F}, \mu)$, we have $fg \in L^1_\mathbb{C}(\Omega, \mathcal{F}, \mu)$. Conclude that $\langle f, g \rangle$ is a well-defined complex number.
2. Show that for all \(f \in L^2_\mathcal{C}(\Omega, \mathcal{F}, \mu) \), we have \(\|f\|_2 = \sqrt{\langle f, f \rangle} \).

3. Make another use of the first Cauchy-Schwarz inequality to show that for all \(f, g \in L^2_\mathcal{C}(\Omega, \mathcal{F}, \mu) \), we have:
\[
|\langle f, g \rangle| \leq \|f\|_2 \|g\|_2
\]

4. Go through definition (81), and indicate which of the properties (i) – (v) fails to be satisfied by \(\langle \cdot, \cdot \rangle \). Conclude that \(\langle \cdot, \cdot \rangle \) is not an inner-product on \(L^2_\mathcal{C}(\Omega, \mathcal{F}, \mu) \), and therefore that inequality (*) is not a particular case of the second Cauchy-Schwarz inequality (50).

5. Let \(f, g \in L^2_\mathcal{C}(\Omega, \mathcal{F}, \mu) \). By considering \(\int (|f|+|t|g|^2) d\mu \) for \(t \in \mathbb{R} \), imitate the proof of the second Cauchy-Schwarz inequality to show that:
\[
\int_\Omega |fg| d\mu \leq \left(\int_\Omega |f|^2 d\mu \right)^{\frac{1}{2}} \left(\int_\Omega |g|^2 d\mu \right)^{\frac{1}{2}}
\]
6. Let \(f, g : (\Omega, \mathcal{F}) \to [0, +\infty] \) non-negative and measurable. Show that if \(\int f^2 \, d\mu \) and \(\int g^2 \, d\mu \) are finite, then \(f \) and \(g \) are \(\mu \)-almost surely equal to elements of \(L^2_{\mu}(\Omega, \mathcal{F}, \mu) \). Deduce from 5. a new proof of the first Cauchy-Schwarz inequality:
\[
\int_\Omega f g \, d\mu \leq \left(\int_\Omega f^2 \, d\mu \right)^{\frac{1}{2}} \left(\int_\Omega g^2 \, d\mu \right)^{\frac{1}{2}}
\]

Exercise 17. Let \(\langle \cdot, \cdot \rangle \) be an inner-product on a \(\mathbb{K} \)-vector space \(\mathcal{H} \).

1. Show that for all \(x, y \in \mathcal{H} \), we have:
\[
\|x + y\|^2 = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle
\]
2. Using the second Cauchy-Schwarz inequality (50), show that:
\[
\|x + y\| \leq \|x\| + \|y\|
\]
3. Show that \(d_{\langle \cdot, \cdot \rangle}(x, y) = \|x - y\| \) defines a metric on \(\mathcal{H} \).
Definition 82 Let H be a K-vector space, where $K = \mathbb{R}$ or \mathbb{C}, and $\langle \cdot, \cdot \rangle$ be an inner-product on H. We call **norm topology** on H, denoted $T_{\langle \cdot, \cdot \rangle}$, the metric topology associated with $d_{\langle \cdot, \cdot \rangle}(x, y) = \|x - y\|$.

Definition 83 We call **Hilbert space** over K where $K = \mathbb{R}$ or \mathbb{C}, any ordered pair $(H, \langle \cdot, \cdot \rangle)$ where $\langle \cdot, \cdot \rangle$ is an inner-product on a K-vector space H, which is complete w.r. to $d_{\langle \cdot, \cdot \rangle}(x, y) = \|x - y\|$.

Exercise 18. Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space over K and let M be a closed linear subspace of H, (closed with respect to the norm topology $T_{\langle \cdot, \cdot \rangle}$). Define $[\cdot, \cdot] = \langle \cdot, \cdot \rangle|_{M \times M}$.

1. Show that $[\cdot, \cdot]$ is an inner-product on the K-vector space M.
2. With obvious notations, show that $d_{[\cdot, \cdot]} = (d_{\langle \cdot, \cdot \rangle})|_{M \times M}$.
3. Deduce that $T_{[\cdot, \cdot]} = (T_{\langle \cdot, \cdot \rangle})|_{M}$.

www.probability.net
Exercise 19. Further to ex. (18), Let \((x_n)_{n \geq 1}\) be a Cauchy sequence in \(M\), with respect to the metric \(d_{[,]}\).

1. Show that \((x_n)_{n \geq 1}\) is a Cauchy sequence in \(H\).
2. Explain why there exists \(x \in H\) such that \(x_n \xrightarrow{T_{[,]}^*}} x\).
3. Explain why \(x \in M\).
4. Explain why we also have \(x_n \xrightarrow{T_{[,]}^*}} x\).
5. Explain why \((M, \langle \cdot , \cdot \rangle|_{M \times M})\) is a Hilbert space over \(K\).

Exercise 20. For all \(z, z' \in \mathbb{C}^n, n \geq 1\), we define:

\[
\langle z, z' \rangle \triangleq \sum_{i=1}^{n} z_i z_i'
\]

www.probability.net
1. Show that $\langle \cdot, \cdot \rangle$ is an inner-product on \mathbb{C}^n.
2. Show that the metric $d_{\langle \cdot, \cdot \rangle}$ is equal to the usual metric of \mathbb{C}^n.
3. Conclude that $(\mathbb{C}^n, \langle \cdot, \cdot \rangle)$ is a Hilbert space over \mathbb{C}.
4. Show that \mathbb{R}^n is a closed subset of \mathbb{C}^n.
5. Show however that \mathbb{R}^n is not a linear subspace of \mathbb{C}^n.
6. Show that $(\mathbb{R}^n, \langle \cdot, \cdot \rangle|_{\mathbb{R}^n \times \mathbb{R}^n})$ is a Hilbert space over \mathbb{R}.

Definition 84 We call usual inner-product in K^n, where $K = \mathbb{R}$ or \mathbb{C}, the inner-product denoted $\langle \cdot, \cdot \rangle$ and defined by:

$$\forall x, y \in K^n, \quad \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$
Theorem 51 \(\mathbb{C}^n \) and \(\mathbb{R}^n \) together with their usual inner-products, are Hilbert spaces over \(\mathbb{C} \) and \(\mathbb{R} \) respectively.

Definition 85 Let \(\mathcal{H} \) be a \(K \)-vector space, where \(K = \mathbb{R} \) or \(\mathbb{C} \). Let \(\mathcal{C} \subseteq \mathcal{H} \). We say that \(\mathcal{C} \) is a **convex subset** of \(\mathcal{H} \), if and only if, for all \(x, y \in \mathcal{C} \) and \(t \in [0, 1] \), we have \(tx + (1 - t)y \in \mathcal{C} \).

Exercise 21. Let \((\mathcal{H}, \langle \cdot, \cdot \rangle) \) be a Hilbert space over \(K \). Let \(\mathcal{C} \subseteq \mathcal{H} \) be a non-empty closed convex subset of \(\mathcal{H} \). Let \(x_0 \in \mathcal{H} \). Define:

\[\delta_{\text{min}} = \inf \{ \|x - x_0\| : x \in \mathcal{C} \} \]

1. Show the existence of a sequence \((x_n)_{n \geq 1} \) in \(\mathcal{C} \) such that \(\|x_n - x_0\| \to \delta_{\text{min}} \).

2. Show that for all \(x, y \in \mathcal{H} \), we have:

\[\|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2 - 4 \left\| \frac{x + y}{2} \right\|^2 \]
3. Explain why for all $n, m \geq 1$, we have:
\[\delta_{\text{min}} \leq \left\| \frac{x_n + x_m}{2} - x_0 \right\| \]

4. Show that for all $n, m \geq 1$, we have:
\[\|x_n - x_m\|^2 \leq 2\|x_n - x_0\|^2 + 2\|x_m - x_0\|^2 - 4\delta^2_{\text{min}} \]

5. Show the existence of some $x^* \in \mathcal{H}$, such that $x_n \xrightarrow{\mathcal{H}} x^*$.

6. Explain why $x^* \in C$

7. Show that for all $x, y \in \mathcal{H}$, we have $|\|x\| - \|y\| | \leq \|x - y\|$.

8. Show that $\|x_n - x_0\| \rightarrow \|x^* - x_0\|$.

9. Conclude that we have found $x^* \in C$ such that:
\[\|x^* - x_0\| = \inf\{\|x - x_0\| : x \in C\} \]
10. Let y^* be another element of C with such property. Show that:

$$\|x^* - y^*\|^2 \leq 2\|x^* - x_0\|^2 + 2\|y^* - x_0\|^2 - 4\delta_{\min}^2$$

11. Conclude that $x^* = y^*$.

Theorem 52 Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space over K, where $K = \mathbb{R}$ or \mathbb{C}. Let C be a non-empty, closed and convex subset of H. For all $x_0 \in H$, there exists a unique $x^* \in C$ such that:

$$\|x^* - x_0\| = \inf \{\|x - x_0\| : x \in C\}$$

Definition 86 Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space over K, where $K = \mathbb{R}$ or \mathbb{C}. Let $G \subseteq H$. We call **orthogonal** of G, the subset of H denoted G^\perp and defined by:

$$G^\perp \triangleq \{ x \in H : \langle x, y \rangle = 0, \forall y \in G \}$$

Exercise 22. Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space over K and $G \subseteq H$.

www.probability.net
1. Show that \mathcal{G}^\perp is a linear subspace of \mathcal{H}, even if \mathcal{G} isn’t.

2. Show that $\phi_y : \mathcal{H} \to K$ defined by $\phi_y(x) = \langle x, y \rangle$ is continuous.

3. Show that $\mathcal{G}^\perp = \cap_{y \in \mathcal{G}} \phi_y^{-1}(\{0\})$.

4. Show that \mathcal{G}^\perp is a closed subset of \mathcal{H}, even if \mathcal{G} isn’t.

5. Show that $\emptyset^\perp = \{0\}^\perp = \mathcal{H}$.

6. Show that $\mathcal{H}^\perp = \{0\}$.

Exercise 23. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbb{K}. Let \mathcal{M} be a closed linear subspace of \mathcal{H}, and $x_0 \in \mathcal{H}$.

1. Explain why there exists $x^* \in \mathcal{M}$ such that:

 $$\|x^* - x_0\| = \inf \{ \|x - x_0\| : x \in \mathcal{M} \}$$

 www.probability.net
2. Define $y^* = x_0 - x^* \in \mathcal{H}$. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$:

$$\|y^*\|^2 \leq \|y^* - \alpha y\|^2$$

3. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$, we have:

$$0 \leq -\alpha \langle y, y^* \rangle - \overline{\alpha} \langle y, y^* \rangle + |\alpha|^2 \|y\|^2$$

4. For all $y \in \mathcal{M} \setminus \{0\}$, taking $\alpha = \overline{\langle y, y^* \rangle} / \|y\|^2$, show that:

$$0 \leq -\|\langle y, y^* \rangle\|^2 / \|y\|^2$$

5. Conclude that $x^* \in \mathcal{M}$, $y^* \in \mathcal{M}^\perp$ and $x_0 = x^* + y^*$.

6. Show that $\mathcal{M} \cap \mathcal{M}^\perp = \{0\}$

7. Show that $x^* \in \mathcal{M}$ and $y^* \in \mathcal{M}^\perp$ with $x_0 = x^* + y^*$, are unique.
Theorem 53 Let \((\mathcal{H}, \langle \cdot, \cdot \rangle)\) be a Hilbert space over \(K\), where \(K = \mathbb{R}\) or \(\mathbb{C}\). Let \(M\) be a closed linear subspace of \(\mathcal{H}\). Then, for all \(x_0 \in \mathcal{H}\), there is a unique decomposition:

\[x_0 = x^* + y^* \]

where \(x^* \in M\) and \(y^* \in M^\perp\).

Definition 87 Let \(\mathcal{H}\) be a \(K\)-vector space, where \(K = \mathbb{R}\) or \(\mathbb{C}\). We call linear functional, any map \(\lambda : \mathcal{H} \to K\), such that for all \(x, y \in \mathcal{H}\) and \(\alpha \in K\):

\[\lambda(x + \alpha y) = \lambda(x) + \alpha \lambda(y) \]

Exercise 24. Let \(\lambda\) be a linear functional on a \(K\)-Hilbert\(^1\) space \(\mathcal{H}\).

1. Suppose that \(\lambda\) is continuous at some point \(x_0 \in \mathcal{H}\). Show the existence of \(\eta > 0\) such that:

\[\forall x \in \mathcal{H}, \|x - x_0\| \leq \eta \Rightarrow |\lambda(x) - \lambda(x_0)| \leq 1 \]

\(^1\)Norm vector spaces are introduced later in these tutorials.
Tutorial 10: Bounded Linear Functionals in L^2

Show that for all $x \in H$ with $x \neq 0$, we have $|\lambda(\eta x/\|x\|)| \leq 1$.

2. Show that if λ is continuous at x_0, there exists $M \in \mathbb{R}^+$, with:
\[
\forall x \in H, \ |\lambda(x)| \leq M\|x\| \tag{2}
\]

3. Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let $(\mathcal{H},\langle \cdot,\cdot \rangle)$ be a Hilbert space over $K = \mathbb{R}$ or \mathbb{C}. Let λ be a linear functional on \mathcal{H}. Then, the following are equivalent:

(i) $\lambda : (\mathcal{H}, T_{\langle \cdot, \cdot \rangle}) \to (K, T_K)$ is continuous

(ii) $\exists M \in \mathbb{R}^+ , \forall x \in \mathcal{H} , \ |\lambda(x)| \leq M\|x\|

In which case, we say that λ is a bounded linear functional.

2Norm vector spaces are introduced later in these tutorials.
Exercise 25. Let \((\mathcal{H}, \langle \cdot, \cdot \rangle)\) be a Hilbert space over \(K\). Let \(\lambda\) be a bounded linear functional on \(\mathcal{H}\), such that \(\lambda(x) \neq 0\) for some \(x \in \mathcal{H}\), and define \(M = \lambda^{-1}(\{0\})\).

1. Show the existence of \(x_0 \in \mathcal{H}\), such that \(x_0 \not\in M\).

2. Show the existence of \(x^* \in M\) and \(y^* \in M^\perp\) with \(x_0 = x^* + y^*\).

3. Deduce the existence of some \(z \in M^\perp\) such that \(\|z\| = 1\).

4. Show that for all \(\alpha \in K \setminus \{0\}\) and \(x \in \mathcal{H}\), we have:
 \[
 \frac{\lambda(x)}{\alpha} \langle z, \alpha z \rangle = \lambda(x)
 \]

5. Show that in order to have:
 \[
 \forall x \in \mathcal{H}, \; \lambda(x) = \langle x, \alpha z \rangle
 \]

 it is sufficient to choose \(\alpha \in K \setminus \{0\}\) such that:

 \[
 \forall x \in \mathcal{H}, \; \frac{\lambda(x) z}{\alpha} - x \in M
 \]
6. Show the existence of \(y \in \mathcal{H} \) such that:
\[
\forall x \in \mathcal{H}, \lambda(x) = \langle x, y \rangle
\]

7. Show the uniqueness of such \(y \in \mathcal{H} \).

Theorem 54 Let \((\mathcal{H}, \langle \cdot, \cdot \rangle)\) be a Hilbert space over \(K \), where \(K = \mathbb{R} \) or \(\mathbb{C} \). Let \(\lambda \) be a bounded linear functional on \(\mathcal{H} \). Then, there exists a unique \(y \in \mathcal{H} \) such that: \(\forall x \in \mathcal{H}, \lambda(x) = \langle x, y \rangle \).

Definition 89 Let \(K = \mathbb{R} \) or \(\mathbb{C} \). We call \(K \)-vector space, any set \(\mathcal{H} \), together with operators \(\oplus \) and \(\otimes \) for which there exists an element \(0_{\mathcal{H}} \in \mathcal{H} \) such that for all \(x, y, z \in \mathcal{H} \) and \(\alpha, \beta \in K \), we have:

(i) \(0_{\mathcal{H}} \oplus x = x \)
(ii) \(\exists (-x) \in \mathcal{H}, (-x) \oplus x = 0_{\mathcal{H}} \)
(iii) \(x \oplus (y \oplus z) = (x \oplus y) \oplus z \)
(iv) \(x \oplus y = y \oplus x \)
(v) \(1 \otimes x = x \)
(vi) \(\alpha \otimes (\beta \otimes x) = (\alpha \beta) \otimes x \)
(vii) \((\alpha + \beta) \otimes x = (\alpha \otimes x) \oplus (\beta \otimes x) \)
(viii) \(\alpha \otimes (x \oplus y) = (\alpha \otimes x) \oplus (\alpha \otimes y) \)

Exercise 26. For all \(f \in L^2_K(\Omega, \mathcal{F}, \mu) \), define:

\[\mathcal{H} \triangleq \{ [f] : f \in L^2_K(\Omega, \mathcal{F}, \mu) \} \]

where \([f] = \{ g \in L^2_K(\Omega, \mathcal{F}, \mu) : g = f, \mu\text{-a.s.} \} \). Let \(0_{\mathcal{H}} = [0] \), and for all \([f], [g] \in \mathcal{H}\), and \(\alpha \in K \), we define:

\[[f] \oplus [g] \triangleq [f + g] \]
\[\alpha \otimes [f] \triangleq [\alpha f] \]

We assume \(f, f', g \) and \(g' \) are elements of \(L^2_K(\Omega, \mathcal{F}, \mu) \).
Tutorial 10: Bounded Linear Functionals in \(L^2 \)

1. Show that for \(f = g \) \(\mu \)-a.s. is equivalent to \([f] = [g]\).
2. Show that if \([f] = [f']\) and \([g] = [g']\), then \([f + g] = [f' + g']\).
3. Conclude that \(\oplus \) is well-defined.
4. Show that \(\otimes \) is also well-defined.
5. Show that \((\mathcal{H}, \oplus, \otimes)\) is a \(\mathbb{K} \)-vector space.

Exercise 27. Further to ex. (26), we define for all \([f],[g] \in \mathcal{H}:\)

\[\langle [f],[g] \rangle_{\mathcal{H}} \triangleq \int_{\Omega} f \bar{g} \, d\mu \]

1. Show that \(\langle \cdot, \cdot \rangle_{\mathcal{H}} \) is well-defined.
2. Show that \(\langle \cdot, \cdot \rangle_{\mathcal{H}} \) is an inner-product on \(\mathcal{H} \).
3. Show that \((\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})\) is a Hilbert space over \(\mathbb{K} \).
4. Why is \(\langle f, g \rangle \triangleq \int_{\Omega} f \bar{g} d\mu \) not an inner-product on \(L_{K}^{2}(\Omega, \mathcal{F}, \mu) \)?

Exercise 28. Further to ex. (27), Let \(\lambda : L_{K}^{2}(\Omega, \mathcal{F}, \mu) \to K \) be a continuous linear functional. Define \(\Lambda : \mathcal{H} \to K \) by \(\Lambda([f]) = \lambda(f) \).

1. Show the existence of \(M \in \mathbb{R}^{+} \) such that:
 \[
 \forall f \in L_{K}^{2}(\Omega, \mathcal{F}, \mu), \quad |\lambda(f)| \leq M \|f\|_{2}
 \]

2. Show that if \([f] = [g]\) then \(\lambda(f) = \lambda(g) \).

3. Show that \(\Lambda \) is a well defined bounded linear functional on \(\mathcal{H} \).

4. Conclude with the following:

As defined in these tutorials, \(L_{K}^{2}(\Omega, \mathcal{F}, \mu) \) is not a Hilbert space (not even a norm vector space). However, both \(L_{K}^{2}(\Omega, \mathcal{F}, \mu) \) and \(K \) have natural topologies and it is therefore meaningful to speak of continuous linear functional. Note however that we are slightly outside the framework of definition (88).

www.probability.net
Theorem 55 Let $\lambda : L^2_K(\Omega, \mathcal{F}, \mu) \to K$ be a continuous linear functional, where $K = \mathbb{R}$ or \mathbb{C}. There exists $g \in L^2_K(\Omega, \mathcal{F}, \mu)$ such that:

$$\forall f \in L^2_K(\Omega, \mathcal{F}, \mu), \quad \lambda(f) = \int_{\Omega} f \bar{g} d\mu$$