3. Stieltjes-Lebesgue Measure

Definition 12 Let $A \subseteq \mathcal{P}(\Omega)$ and $\mu : A \to [0, +\infty]$ be a map. We say that μ is **finitely additive** if and only if, given $n \ge 1$:

$$A \in \mathcal{A}, A_i \in \mathcal{A}, A = \biguplus_{i=1}^n A_i \Rightarrow \mu(A) = \sum_{i=1}^n \mu(A_i)$$

We say that μ is **finitely sub-additive** if and only if, given $n \ge 1$:

$$A \in \mathcal{A}, A_i \in \mathcal{A}, A \subseteq \bigcup_{i=1}^n A_i \Rightarrow \mu(A) \le \sum_{i=1}^n \mu(A_i)$$

EXERCISE 1. Let $S \stackrel{\triangle}{=} \{ [a,b] \ , \ a,b \in \mathbf{R} \}$ be the set of all intervals [a,b], defined as $[a,b] = \{ x \in \mathbf{R}, a < x \le b \}$.

- 1. Show that $[a, b] \cap [c, d] = [a \lor c, b \land d]$
- 2. Show that $]a,b]\setminus]c,d]=]a,b\wedge c]\cup]a\vee d,b]$

- 3. Show that $c \leq d \implies b \wedge c \leq a \vee d$.
- 4. Show that S is a semi-ring on \mathbb{R} .

EXERCISE 2. Suppose S is a semi-ring in Ω and $\mu: S \to [0, +\infty]$ is finitely additive. Show that μ can be extended to a finitely additive map $\bar{\mu}: \mathcal{R}(S) \to [0, +\infty]$, with $\bar{\mu}_{|S} = \mu$.

EXERCISE 3. Everything being as before, Let $A \in \mathcal{R}(\mathcal{S})$, $A_i \in \mathcal{R}(\mathcal{S})$, $A \subseteq \bigcup_{i=1}^n A_i$ where $n \geq 1$. Define $B_1 = A_1 \cap A$ and for $i = 1, \ldots, n-1$:

$$B_{i+1} \stackrel{\triangle}{=} (A_{i+1} \cap A) \setminus ((A_1 \cap A) \cup \ldots \cup (A_i \cap A))$$

- 1. Show that B_1, \ldots, B_n are pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$ such that $A = \bigoplus_{i=1}^n B_i$.
- 2. Show that for all i = 1, ..., n, we have $\bar{\mu}(B_i) \leq \bar{\mu}(A_i)$.
- 3. Show that $\bar{\mu}$ is finitely sub-additive.

4. Show that μ is finitely sub-additive.

EXERCISE 4. Let $F: \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. Let \mathcal{S} be the semi-ring on \mathbf{R} , $\mathcal{S} = \{]a,b]$, $a,b \in \mathbf{R}\}$. Define the map $\mu: \mathcal{S} \to [0,+\infty]$ by $\mu(\emptyset) = 0$, and:

$$\forall a \le b \ , \ \mu(]a,b]) \stackrel{\triangle}{=} F(b) - F(a) \tag{1}$$

Let a < b and $a_i < b_i$ for i = 1, ..., n and $n \ge 1$, with :

$$]a,b] = \biguplus_{i=1}^{n}]a_i,b_i]$$

- 1. Show that there is $i_1 \in \{1, ..., n\}$ such that $a_{i_1} = a$.
- 2. Show that $]b_{i_1}, b] = \bigcup_{i \in \{1, ..., n\} \setminus \{i_1\}}]a_i, b_i]$
- 3. Show the existence of a permutation (i_1, \ldots, i_n) of $\{1, \ldots, n\}$ such that $a = a_{i_1} < b_{i_1} = a_{i_2} < \ldots < b_{i_n} = b$.

4. Show that μ is finitely additive and finitely sub-additive.

EXERCISE 5. μ being defined as before, suppose a < b and $a_n < b_n$ for $n \ge 1$ with:

$$]a,b] = \biguplus_{n=1}^{+\infty}]a_n,b_n]$$

Given $N \geq 1$, let (i_1, \ldots, i_N) be a permutation of $\{1, \ldots, N\}$ with:

$$a \le a_{i_1} < b_{i_1} \le a_{i_2} < \ldots < b_{i_N} \le b$$

- 1. Show that $\sum_{k=1}^{N} F(b_{i_k}) F(a_{i_k}) \leq F(b) F(a)$.
- 2. Show that $\sum_{n=1}^{+\infty} \mu(|a_n, b_n|) \le \mu(|a, b|)$
- 3. Given $\epsilon > 0$, show that there is $\eta \in]0, b-a[$ such that:

$$0 \le F(a+\eta) - F(a) \le \epsilon$$

4. For $n \ge 1$, show that there is $\eta_n > 0$ such that:

$$0 \le F(b_n + \eta_n) - F(b_n) \le \frac{\epsilon}{2^n}$$

- 5. Show that $[a+\eta,b] \subseteq \bigcup_{n=1}^{+\infty} [a_n,b_n+\eta_n]$.
- 6. Explain why there exist $p \ge 1$ and integers n_1, \ldots, n_p such that:

$$]a+\eta,b] \subseteq \cup_{k=1}^p]a_{n_k},b_{n_k}+\eta_{n_k}]$$

- 7. Show that $F(b) F(a) \le 2\epsilon + \sum_{n=1}^{+\infty} F(b_n) F(a_n)$
- 8. Show that $\mu: \mathcal{S} \to [0, +\infty]$ is a measure.

Definition 13 A **topology** on Ω is a subset \mathcal{T} of the power set $\mathcal{P}(\Omega)$, with the following properties:

- (i) $\Omega, \emptyset \in \mathcal{T}$
- (ii) $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$
- (iii) $A_i \in \mathcal{T}, \forall i \in I \Rightarrow \bigcup_{i \in I} A_i \in \mathcal{T}$

Property (iii) of definition (13) can be translated as: for any family $(A_i)_{i\in I}$ of elements of \mathcal{T} , the union $\bigcup_{i\in I} A_i$ is still an element of \mathcal{T} . Hence, a topology on Ω , is a set of subsets of Ω containing Ω and the empty set, which is closed under finite intersection and arbitrary union.

Definition 14 A **topological space** is an ordered pair (Ω, \mathcal{T}) , where Ω is a set and \mathcal{T} is a topology on Ω .

Definition 15 Let (Ω, \mathcal{T}) be a topological space. We say that $A \subseteq \Omega$ is an **open set** in Ω , if and only if it is an element of the topology \mathcal{T} . We say that $A \subseteq \Omega$ is a **closed set** in Ω , if and only if its complement A^c is an open set in Ω .

Definition 16 Let (Ω, \mathcal{T}) be a topological space. We define the **Borel** σ -algebra on Ω , denoted $\mathcal{B}(\Omega)$, as the σ -algebra on Ω , generated by the topology \mathcal{T} . In other words, $\mathcal{B}(\Omega) = \sigma(\mathcal{T})$

Definition 17 We define the **usual topology** on \mathbb{R} , denoted $\mathcal{T}_{\mathbb{R}}$, as the set of all $U \subseteq \mathbb{R}$ such that:

$$\forall x \in U , \exists \epsilon > 0 ,]x - \epsilon, x + \epsilon \subseteq U$$

EXERCISE 6.Show that $\mathcal{T}_{\mathbf{R}}$ is indeed a topology on \mathbf{R} .

EXERCISE 7. Consider the semi-ring $\mathcal{S} \stackrel{\triangle}{=} \{ [a,b] \ , \ a,b \in \mathbf{R} \}$. Let $\mathcal{T}_{\mathbf{R}}$ be the usual topology on \mathbf{R} , and $\mathcal{B}(\mathbf{R})$ be the Borel σ -algebra on \mathbf{R} .

1. Let
$$a \le b$$
. Show that $]a, b] = \bigcap_{n=1}^{+\infty}]a, b + 1/n[$.

- 2. Show that $\sigma(\mathcal{S}) \subseteq \mathcal{B}(\mathbf{R})$.
- 3. Let U be an open subset of \mathbf{R} . Show that for all $x \in U$, there exist $a_x, b_x \in \mathbf{Q}$ such that $x \in]a_x, b_x] \subseteq U$.
- 4. Show that $U = \bigcup_{x \in U} [a_x, b_x]$.
- 5. Show that the set $I \stackrel{\triangle}{=} \{ [a_x, b_x], x \in U \}$ is countable.
- 6. Show that U can be written $U = \bigcup_{i \in I} A_i$ with $A_i \in \mathcal{S}$.
- 7. Show that $\sigma(S) = \mathcal{B}(\mathbf{R})$.

Theorem 6 Let S be the semi-ring $S = \{[a,b], a,b \in \mathbf{R}\}$. Then, the Borel σ -algebra $\mathcal{B}(\mathbf{R})$ on \mathbf{R} , is generated by S, i.e. $\mathcal{B}(\mathbf{R}) = \sigma(S)$.

Definition 18 A measurable space is an ordered pair (Ω, \mathcal{F}) where Ω is a set and \mathcal{F} is a σ -algebra on Ω .

Definition 19 A measure space is a triple $(\Omega, \mathcal{F}, \mu)$ where (Ω, \mathcal{F}) is a measurable space and $\mu : \mathcal{F} \to [0, +\infty]$ is a measure on \mathcal{F} .

EXERCISE 8.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $(A_n)_{n\geq 1}$ be a sequence of elements of \mathcal{F} such that $A_n \subseteq A_{n+1}$ for all $n \geq 1$, and let $A = \bigcup_{n=1}^{+\infty} A_n$ (we write $A_n \uparrow A$). Define $B_1 = A_1$ and for all $n \geq 1$, $B_{n+1} = A_{n+1} \setminus A_n$.

- 1. Show that (B_n) is a sequence of pairwise disjoint elements of \mathcal{F} such that $A = \bigoplus_{n=1}^{+\infty} B_n$.
- 2. Given $N \ge 1$ show that $A_N = \bigcup_{n=1}^N B_n$.
- 3. Show that $\mu(A_N) \to \mu(A)$ as $N \to +\infty$
- 4. Show that $\mu(A_n) \leq \mu(A_{n+1})$ for all $n \geq 1$.

Theorem 7 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then if $(A_n)_{n\geq 1}$ is a sequence of elements of \mathcal{F} , such that $A_n \uparrow A$, we have $\mu(A_n) \uparrow \mu(A)^1$.

EXERCISE 9.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $(A_n)_{n\geq 1}$ be a sequence of elements of \mathcal{F} such that $A_{n+1} \subseteq A_n$ for all $n \geq 1$, and let $A = \bigcap_{n=1}^{+\infty} A_n$ (we write $A_n \downarrow A$). We assume that $\mu(A_1) < +\infty$.

- 1. Define $B_n \stackrel{\triangle}{=} A_1 \setminus A_n$ and show that $B_n \in \mathcal{F}, B_n \uparrow A_1 \setminus A$.
- 2. Show that $\mu(B_n) \uparrow \mu(A_1 \setminus A)$
- 3. Show that $\mu(A_n) = \mu(A_1) \mu(A_1 \setminus A_n)$
- 4. Show that $\mu(A) = \mu(A_1) \mu(A_1 \setminus A)$
- 5. Why is $\mu(A_1) < +\infty$ important in deriving those equalities.
- 6. Show that $\mu(A_n) \to \mu(A)$ as $n \to +\infty$

¹i.e. the sequence $(\mu(A_n))_{n\geq 1}$ is non-decreasing and converges to $\mu(A)$.

7. Show that $\mu(A_{n+1}) \leq \mu(A_n)$ for all $n \geq 1$.

Theorem 8 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then if $(A_n)_{n\geq 1}$ is a sequence of elements of \mathcal{F} , such that $A_n \downarrow A$ and $\mu(A_1) < +\infty$, we have $\mu(A_n) \downarrow \mu(A)$.

EXERCISE 10.Take $\Omega = \mathbf{R}$ and $\mathcal{F} = \mathcal{B}(\mathbf{R})$. Suppose μ is a measure on $\mathcal{B}(\mathbf{R})$ such that $\mu(|a,b|) = b - a$, for a < b. Take $A_n = |n, +\infty[$.

- 1. Show that $A_n \downarrow \emptyset$.
- 2. Show that $\mu(A_n) = +\infty$, for all n > 1.
- 3. Conclude that $\mu(A_n) \downarrow \mu(\emptyset)$ fails to be true.

EXERCISE 11. Let $F : \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. Show the existence of a measure $\mu : \mathcal{B}(\mathbf{R}) \to [0, +\infty]$ such that:

$$\forall a, b \in \mathbf{R} , a \le b , \mu(|a,b|) = F(b) - F(a)$$
 (2)

EXERCISE 12.Let μ_1 , μ_2 be two measures on $\mathcal{B}(\mathbf{R})$ with property (2). For $n \geq 1$, we define:

$$\mathcal{D}_n \stackrel{\triangle}{=} \{ B \in \mathcal{B}(\mathbf{R}) , \ \mu_1(B \cap] - n, n]) = \mu_2(B \cap] - n, n]) \}$$

- 1. Show that \mathcal{D}_n is a Dynkin system on **R**.
- 2. Explain why $\mu_1(]-n,n])<+\infty$ and $\mu_2(]-n,n])<+\infty$ is needed when proving 1.
- 3. Show that $\mathcal{S} \stackrel{\triangle}{=} \{ [a,b] , a,b \in \mathbf{R} \} \subseteq \mathcal{D}_n$.
- 4. Show that $\mathcal{B}(\mathbf{R}) \subseteq \mathcal{D}_n$.
- 5. Show that $\mu_1 = \mu_2$.
- 6. Prove the following theorem.

Theorem 9 Let $F: \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. There exists a unique measure $\mu: \mathcal{B}(\mathbf{R}) \to [0, +\infty]$ such that:

$$\forall a,b \in \mathbf{R} \ , \ a \le b \ , \ \mu(]a,b]) = F(b) - F(a)$$

Definition 20 Let $F : \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. We call **Stieltjes measure** on \mathbf{R} associated with F, the unique measure on $\mathcal{B}(\mathbf{R})$, denoted dF, such that:

$$\forall a, b \in \mathbf{R} , a \le b , dF(]a, b]) = F(b) - F(a)$$

Definition 21 We call **Lebesgue measure** on \mathbb{R} , the unique measure on $\mathcal{B}(\mathbb{R})$, denoted dx, such that:

$$\forall a, b \in \mathbf{R} , a \le b , dx(]a, b]) = b - a$$

EXERCISE 13. Let $F: \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. Let $x_0 \in \mathbf{R}$.

1. Show that the limit $F(x_0-) = \lim_{x < x_0, x \to x_0} F(x)$ exists and is an element of **R**.

- 2. Show that $\{x_0\} = \bigcap_{n=1}^{+\infty} |x_0 1/n, x_0|$.
- 3. Show that $\{x_0\} \in \mathcal{B}(\mathbf{R})$
- 4. Show that $dF({x_0}) = F(x_0) F(x_0)$

EXERCISE 14.Let $F: \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. Let a < b.

- 1. Show that $[a,b] \in \mathcal{B}(\mathbf{R})$ and dF([a,b]) = F(b) F(a)
- 2. Show that $[a,b] \in \mathcal{B}(\mathbf{R})$ and dF([a,b]) = F(b) F(a-)
- 3. Show that $a, b \in \mathcal{B}(\mathbf{R})$ and dF(a, b) = F(b-) F(a)
- 4. Show that $[a, b[\in \mathcal{B}(\mathbf{R}) \text{ and } dF([a, b[) = F(b-) F(a-)$

EXERCISE 15. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Let $\Omega' \subseteq \Omega$. Define:

$$\mathcal{A}_{|\Omega'} \stackrel{\triangle}{=} \{ A \cap \Omega' , A \in \mathcal{A} \}$$

- 1. Show that if \mathcal{A} is a topology on Ω , $\mathcal{A}_{|\Omega'}$ is a topology on Ω' .
- 2. Show that if \mathcal{A} is a σ -algebra on Ω , $\mathcal{A}_{|\Omega'}$ is a σ -algebra on Ω' .

Definition 22 Let Ω be a set, and $\Omega' \subseteq \Omega$. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. We call **trace** of \mathcal{A} on Ω' , the subset $\mathcal{A}_{|\Omega'}$ of the power set $\mathcal{P}(\Omega')$ defined by:

$$\mathcal{A}_{|\Omega'} \stackrel{\triangle}{=} \{A \cap \Omega', A \in \mathcal{A}\}$$

Definition 23 Let (Ω, \mathcal{T}) be a topological space and $\Omega' \subseteq \Omega$. We call **induced topology** on Ω' , denoted $\mathcal{T}_{|\Omega'}$, the topology on Ω' defined by:

$$\mathcal{T}_{|\Omega'} \stackrel{\triangle}{=} \{ A \cap \Omega' \ , \ A \in \mathcal{T} \}$$

In other words, the induced topology $\mathcal{T}_{|\Omega'}$ is the trace of \mathcal{T} on Ω' .

EXERCISE 16.Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Let $\Omega' \subseteq \Omega$, and $\mathcal{A}_{|\Omega'|}$ be the trace of \mathcal{A} on Ω' . Define:

$$\Gamma \stackrel{\triangle}{=} \{ A \in \sigma(\mathcal{A}) , A \cap \Omega' \in \sigma(\mathcal{A}_{|\Omega'}) \}$$

where $\sigma(\mathcal{A}_{|\Omega'})$ refers to the σ -algebra generated by $\mathcal{A}_{|\Omega'}$ on Ω' .

- 1. Explain why the notation $\sigma(\mathcal{A}_{|\Omega'})$ by itself is ambiguous.
- 2. Show that $A \subseteq \Gamma$.
- 3. Show that Γ is a σ -algebra on Ω .
- 4. Show that $\sigma(\mathcal{A}_{|\Omega'}) = \sigma(\mathcal{A})_{|\Omega'}$

Theorem 10 Let $\Omega' \subseteq \Omega$ and A be a subset of the power set $\mathcal{P}(\Omega)$. Then, the trace on Ω' of the σ -algebra $\sigma(A)$ generated by A, is equal to the σ -algebra on Ω' generated by the trace of A on Ω' . In other words, $\sigma(A)_{|\Omega'} = \sigma(A_{|\Omega'})$.

EXERCISE 17.Let (Ω, \mathcal{T}) be a topological space and $\Omega' \subseteq \Omega$ with its induced topology $\mathcal{T}_{|\Omega'}$.

- 1. Show that $\mathcal{B}(\Omega)|_{\Omega'} = \mathcal{B}(\Omega')$.
- 2. Show that if $\Omega' \in \mathcal{B}(\Omega)$ then $\mathcal{B}(\Omega') \subseteq \mathcal{B}(\Omega)$.
- 3. Show that $\mathcal{B}(\mathbf{R}^+) = \{A \cap \mathbf{R}^+, A \in \mathcal{B}(\mathbf{R})\}.$
- 4. Show that $\mathcal{B}(\mathbf{R}^+) \subseteq \mathcal{B}(\mathbf{R})$.

EXERCISE 18.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Omega' \subseteq \Omega$

- 1. Show that $(\Omega', \mathcal{F}_{|\Omega'})$ is a measurable space.
- 2. If $\Omega' \in \mathcal{F}$, show that $\mathcal{F}_{|\Omega'} \subseteq \mathcal{F}$.
- 3. If $\Omega' \in \mathcal{F}$, show that $(\Omega', \mathcal{F}_{|\Omega'}, \mu_{|\Omega'})$ is a measure space, where $\mu_{|\Omega'}$ is defined as $\mu_{|\Omega'} = \mu_{|(\mathcal{F}_{|\Omega'})}$.

EXERCISE 19. Let $F : \mathbf{R}^+ \to \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. Define:

$$\bar{F}(x) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} 0 & \text{if} & x < 0 \\ F(x) & \text{if} & x \ge 0 \end{array} \right.$$

- 1. Show that $\bar{F}: \mathbf{R} \to \mathbf{R}$ is right-continuous and non-decreasing.
- 2. Show that $\mu : \mathcal{B}(\mathbf{R}^+) \to [0, +\infty]$ defined by $\mu = d\bar{F}_{|\mathcal{B}(\mathbf{R}^+)}$, is a measure on $\mathcal{B}(\mathbf{R}^+)$ with the properties:

(i)
$$\mu(\{0\}) = F(0)$$

(ii) $\forall 0 \le a \le b , \ \mu([a, b]) = F(b) - F(a)$

EXERCISE 20. Define: $C = \{\{0\}\} \cup \{|a,b|, 0 \le a \le b\}$

- 1. Show that $\mathcal{C} \subseteq \mathcal{B}(\mathbf{R}^+)$
- 2. Let U be open in \mathbb{R}^+ . Show that U is of the form:

$$U = \bigcup_{i \in I} (\mathbf{R}^+ \cap]a_i, b_i])$$

where I is a countable set and $a_i, b_i \in \mathbf{R}$ with $a_i \leq b_i$.

- 3. For all $i \in I$, show that $\mathbf{R}^+ \cap [a_i, b_i] \in \sigma(\mathcal{C})$.
- 4. Show that $\sigma(\mathcal{C}) = \mathcal{B}(\mathbf{R}^+)$

EXERCISE 21.Let μ_1 and μ_2 be two measures on $\mathcal{B}(\mathbf{R}^+)$ with:

(i)
$$\mu_1(\{0\}) = \mu_2(\{0\}) = F(0)$$

(ii)
$$\mu_1(]a,b]) = \mu_2(]a,b]) = F(b) - F(a)$$

for all $0 \le a \le b$. For $n \ge 1$, we define:

$$\mathcal{D}_n = \{ B \in \mathcal{B}(\mathbf{R}^+) , \ \mu_1(B \cap [0, n]) = \mu_2(B \cap [0, n]) \}$$

- 1. Show that \mathcal{D}_n is a Dynkin system on \mathbf{R}^+ with $\mathcal{C} \subseteq \mathcal{D}_n$, where the set \mathcal{C} is defined as in exercise (20).
- 2. Explain why $\mu_1([0,n]) < +\infty$ and $\mu_2([0,n]) < +\infty$ is important when proving 1.
- 3. Show that $\mu_1 = \mu_2$.
- 4. Prove the following theorem.

Theorem 11 Let $F: \mathbf{R}^+ \to \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. There exists a unique $\mu: \mathcal{B}(\mathbf{R}^+) \to [0, +\infty]$ measure on $\mathcal{B}(\mathbf{R}^+)$ such that:

(i)
$$\mu(\{0\}) = F(0)$$

(ii) $\forall 0 \le a \le b, \ \mu([a,b]) = F(b) - F(a)$

Definition 24 Let $F: \mathbf{R}^+ \to \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. We call **Stieltjes measure** on \mathbf{R}^+ associated with F, the unique measure on $\mathcal{B}(\mathbf{R}^+)$, denoted dF, such that:

(i)
$$dF(\{0\}) = F(0)$$

(ii) $\forall 0 \le a \le b$, $dF([a, b]) = F(b) - F(a)$

Solutions to Exercises

Exercise 1.

1. $x \in]a,b] \cap]c,d]$ is equivalent to $a < x \le b$ and $c < x \le d$. This is in turn equivalent to:

$$a \lor c \stackrel{\triangle}{=} \max(a, c) < x \le \min(b, d) \stackrel{\triangle}{=} b \land d$$

We have proved that:

$$]a,b]\cap]c,d]=]a\vee c,b\wedge d]$$

2. Suppose $x \in]a,b]\setminus [c,d]$. Then, either $x \leq c$ or d < x. In the first case, $x \in]a,b \wedge c]$. In the second, $x \in]a \vee d,b]$. Conversely, if $x \in]a,b \wedge c] \cup [a \vee d,b]$, then $a < x \leq b$ is true. Moreover, $x \leq c$ or d < x. In any case, $x \notin]c,d]$. So $x \in]a,b]\setminus [c,d]$. We have proved that:

$$]a,b]\backslash]c,d]=]a,b\wedge c]\cup]a\vee d,b]$$

3. If $c \leq d$, then in particular:

$$b \wedge c \leq c \leq d \leq a \vee d$$

4. S is a set of subsets of \mathbf{R} which obviously contains the empty set. From 1., it is also closed under finite intersection. Let]a,b] and]c,d] be two elements of S. If c>d, then $]c,d]=\emptyset$ and we have $]a,b]\setminus]c,d]=]a,b]$. If $c\leq d$, then it follows from 3. that $b\wedge c\leq a\vee d$. We conclude from 2. that:

$$]a,b]\backslash]c,d]=]a,b\wedge c]\uplus]a\vee d,b]$$

In any case, $]a, b] \setminus]c, d]$ can be written as a finite union of pairwise disjoint elements of S. We have proved that S is indeed a semi-ring on \mathbf{R} , as defined in definition (6).

Exercise 1

Exercise 2. The solution to this exercise is very similar to the proof of theorem (2): a measure defined on a semi-ring can be extended to a measure defined on the ring generated by this semi-ring. In this case, we are dealing with a finitely additive map which is not exactly a measure, but the techniques involved are almost the same. We know from the previous tutorial that the ring $\mathcal{R}(\mathcal{S})$ generated by the semi-ring \mathcal{S} , is the set of all finite unions of pairwise disjoint elements of \mathcal{S} . It is tempting to define $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$, by:

$$\forall A = \bigoplus_{i=1}^{n} A_i \in \mathcal{R}(\mathcal{S}) \quad , \quad \bar{\mu}(A) \stackrel{\triangle}{=} \sum_{i=1}^{n} \mu(A_i)$$
 (3)

However, such definition may not be valid, unless the sum involved in equation (3), is independent of the particular representation of $A \in \mathcal{R}(\mathcal{S})$ as a finite union of pairwise disjoint elements of \mathcal{S} . Suppose that $A = \bigoplus_{j=1}^{p} B_j$ is another such representation of A. Then, for all $i = 1, \ldots, n$, we have:

$$A_i = A_i \cap A = \uplus_{j=1}^p A_i \cap B_j$$

Since each $A_i \cap B_j$ is an element of S, and μ is finitely additive, for all i = 1, ..., n, we have:

$$\mu(A_i) = \sum_{j=1}^p \mu(A_i \cap B_j)$$

and similarly for all j = 1, ..., p:

$$\mu(B_j) = \sum_{i=1}^n \mu(A_i \cap B_j)$$

from which we conclude that:

$$\sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{n} \sum_{j=1}^{p} \mu(A_i \cap B_j) = \sum_{j=1}^{p} \mu(B_j)$$

It follows that the map $\bar{\mu}$ as defined by equation (3), is perfectly well defined. Let A_1, \ldots, A_n be n pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$, $n \geq 1$, each A_i having the representation:

$$A_i = \bigoplus_{k=1}^{p_i} A_i^k$$
 , $i = 1, \dots, n$

as a finite union of pairwise disjoint elements of S. Suppose moreover that $A = \bigcup_{i=1}^{n} A_i$ (which is an element of $\mathcal{R}(S)$ since a ring is closed under finite union). Then A has a representation:

$$A = \bigcup_{i=1}^{n} \bigcup_{k=1}^{p_i} A_i^k$$

where the A_i^k 's are pairwise disjoint. From the very definition of $\bar{\mu}$:

$$\bar{\mu}(A) = \sum_{i=1}^{n} \sum_{k=1}^{p_i} \mu(A_i^k)$$

and furthermore for all i = 1, ..., n:

$$\bar{\mu}(A_i) = \sum_{k=1}^{p_i} \mu(A_i^k)$$

So we conclude that:

$$\bar{\mu}(A) = \sum_{i=1}^{n} \bar{\mu}(A_i)$$

We have proved that $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ is a finitely additive map. Finally, if $A \in \mathcal{S}$, taking n = 1 and $A_1 = A$, $A = \bigcup_{i=1}^n A_i$ is a representation of A as a finite union of pairwise disjoint elements of \mathcal{S} . By definition of $\bar{\mu}$, $\bar{\mu}(A) = \sum_{i=1}^n \mu(A_i) = \mu(A)$. Hence, we see that $\bar{\mu}_{|\mathcal{S}} = \mu$. We have proved the existence of a finitely additive map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$, such that $\bar{\mu}_{|\mathcal{S}} = \mu$.

Exercise 2

Exercise 3.

ence, each B_i is an element of $\mathcal{R}(\mathcal{S})$. Suppose $B_i \cap B_i \neq \emptyset$ for some i, j = 1, ..., n. Without loss of generality we can assume that $i \leq j$. Suppose that i < j and let $x \in B_i \cap B_j$. From $x \in B_i$ we have $x \in A_i \cap A$. From $x \in B_i$, we have $x \notin (A_1 \cap A) \cup \ldots \cup (A_{i-1} \cap A)$. In particular $x \notin A_i \cap A$. This is a contradiction, and it follows that i = j. The B_i 's are therefore pairwise disjoint. For all i = 1, ..., n we have $B_i \subseteq A_i \cap A \subseteq A$. hence $\bigcup_{i=1}^n B_i \subseteq A$. Conversely, suppose $x \in A \subseteq \bigcup_{i=1}^n A_i$. There exists $i \in \{1, ..., n\}$ such that $x \in A_i$. Let i be the smallest of such integer. If i=1, then $x\in A_1\cap A=B_1$. If i>1, then $x \in A_i \cap A$ and $x \notin A_j \cap A$ for all j < i. So $x \in B_i$. In any case, $x \in B_i$. It follows that $A \subseteq \bigcup_{i=1}^n B_i$. We have proved that B_1, \ldots, B_n are pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$ with $A = \bigoplus_{i=1}^n B_i$.

1. A ring being closed under finite union, intersection and differ-

2. $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ being defined as in exercise (2), it is a

finitely additive map. We have $B_i \subseteq A_i \cap A \subseteq A_i$, for all i = 1, ..., n. It follows that $A_i = B_i \uplus (A_i \setminus B_i)$, from which we conclude that:

$$\bar{\mu}(A_i) = \bar{\mu}(B_i) + \bar{\mu}(A_i \setminus B_i) \ge \bar{\mu}(B_i)$$

3. From $A = \bigoplus_{i=1}^{n} B_i$ and $\bar{\mu}$ being finitely additive, we have:

$$\bar{\mu}(A) = \sum_{i=1}^{n} \bar{\mu}(B_i)$$

Using 2., we obtain:

$$\bar{\mu}(A) \le \sum_{i=1}^{n} \bar{\mu}(A_i)$$

This is true for all $A \in \mathcal{R}(\mathcal{S})$ and A_1, \ldots, A_n in $\mathcal{R}(\mathcal{S})$ such that $A \subseteq \bigcup_{i=1}^n A_i$. It follows from definition (12) that $\bar{\mu}$ is indeed a finitely sub-additive map.

4. Suppose $A \in \mathcal{S}$ and $A_1, \ldots, A_n \in \mathcal{S}$, $(n \ge 1)$, with $A \subseteq \bigcup_{i=1}^n A_i$. Since $\bar{\mu}_{|\mathcal{S}} = \mu$, and $\bar{\mu}$ is finitely sub-additive (from 3.), we have:

$$\mu(A) = \bar{\mu}(A) \le \sum_{i=1}^{n} \bar{\mu}(A_i) = \sum_{i=1}^{n} \mu(A_i)$$

It follows from definition (12) that μ is indeed finitely sub-additive. The purpose of this exercise is to show that any finitely additive map defined on a semi-ring \mathcal{S} , is in fact also finitely sub-additive. Note that proving that $\bar{\mu}$ is finitely sub-additive is pretty straightforward. This is because $\bar{\mu}$ is defined on a ring, which is closed under various finite operations (union, intersection, difference). However, μ being defined on a semi-ring only, it is impossible to apply the same line of argument as the one used for $\bar{\mu}$. It is in fact necessary for us to initially extend μ from \mathcal{S} to $\mathcal{R}(\mathcal{S})$, then prove the finite sub-additivity on $\mathcal{R}(\mathcal{S})$, and conclude with the finite sub-additivity of μ on \mathcal{S} .

Exercise 3

Exercise 4.

- 1. Take i_1 such that $a_{i_1} = \min(a_1, \ldots, a_n)$. From $]a_{i_1}, b_{i_1}] \subseteq]a, b]$ and $a_{i_1} < b_{i_1}$, we see that $a \leq a_{i_1} < b_{i_1} \leq b$. Suppose that $a < a_{i_1}$, and let x be such that $a < x < a_{i_1} \leq b$. Since $x \in]a, b]$, there is $j \in \{1, \ldots, n\}$ such that $x \in]a_j, b_j]$. By definition of i_1 , we have $a_{i_1} \leq a_j < x$. This is a contradiction, and it follows that $a_{i_1} = a$. We have proved the existence of $i_1 \in \{1, \ldots, n\}$ such that $a_{i_1} = a$.
- 2. Suppose $x \in]a_i, b_i]$ for some $i \in \{1, \ldots, n\}, i \neq i_1$. Since $[a_i, b_i] \subseteq]a, b], x \in]a, b]$ and $x \leq b$. Also, $a \leq a_i$. From 1., $a_{i_1} = a$. It follows that $a_{i_1} \leq a_i < x$. However, the $[a_i, b_i]$'s being pairwise disjoint and $i \neq i_1, x \notin]a_{i_1}, b_{i_1}]$. Therefore $x > b_{i_1}$. We have proved that $x \in]b_{i_1}, b]$ and consequently:

$$\biguplus_{i=1,i\neq i_1}^n]a_i,b_i] \subseteq]b_{i_1},b]$$

Conversely, let $x \in]b_{i_1}, b] \subseteq]a, b]$. There exists $i \in \{1, \ldots, n\}$ such that $x \in]a_i, b_i]$. If $i = i_1$, then $x \in]a_{i_1}, b_{i_1}]$ which contradicts $b_{i_1} < x$. It follows that $i \neq i_1$ and:

$$]b_{i_1},b]\subseteq \biguplus_{i=1,i\neq i_1}]a_i,b_i]$$

3. Using 1. and 2., starting from:

$$[a,b] = \biguplus_{i=1}^{n} [a_i,b_i]$$

we have $i_1 \in \{1, ..., n\}$ such that $a = a_{i_1} < b_{i_1}$ and:

$$]b_{i_1},b] = \biguplus_{i=1,i\neq i_1}^n]a_i,b_i]$$

Going one step further, there exists $i_2 \in \{1, ..., n\} \setminus \{i_1\}$ such

that $b_{i_1} = a_{i_2} < b_{i_2}$ and:

$$]b_{i_2}, b] = \biguplus_{i=1, i \neq i_1, i_2}^n]a_i, b_i]$$

By induction, we define $i_1 \ldots, i_n$ distinct integers in $\{1, \ldots, n\}$, (hence a permutation on $\{1, \ldots, n\}$), such that:

$$a = a_{i_1} < b_{i_1} = a_{i_2} < \ldots < b_{i_n}$$

and $]b_{i_n}, b] = \emptyset$. Since $]a_{i_n}, b_{i_n}] \subseteq]a, b]$ and $a_{i_n} < b_{i_n}$, we have $b_{i_n} \le b$. From $]b_{i_n}, b] = \emptyset$, we conclude that $b_{i_n} = b$.

4. Let (i_1, \ldots, i_n) be a permutation of $\{1, \ldots, n\}$, such that:

$$a = a_{i_1} < b_{i_1} = a_{i_2} < \ldots < b_{i_n} = b$$

We have:

$$F(b) - F(a) = \sum_{k=1}^{n} F(b_{i_k}) - F(a_{i_k})$$

from which we see that:

$$\mu(]a,b]) = \sum_{k=1}^{n} \mu(]a_{i_k},b_{i_k}]) = \sum_{i=1}^{n} \mu(]a_i,b_i])$$

This is true for all $a < b, n \ge 1$ and $a_i < b_i$ for i = 1, ..., n, such that:

$$[a,b] = \biguplus_{i=1}^{n} [a_i,b_i]$$

Suppose $A \in \mathcal{S}$, $n \geq 1$ and $A_1, \ldots, A_n \in \mathcal{S}$, with $A = \bigoplus_{i=1}^n A_i$. If $A = \emptyset$, then for all $i = 1, \ldots, n$, we have $A_i = \emptyset$. In particular, $\mu(A) = \sum_{i=1}^n \mu(A_i)$ is obviously satisfied. If $A \neq \emptyset$, then A is of the form A =]a,b] for some a < b in \mathbf{R} . If we consider $J = \{i = 1, \ldots, n, A_i \neq \emptyset\}$, then $J \neq \emptyset$, and for all $i \in J$, A_i is of the form $A_i =]a_i,b_i]$ with $a_i < b_i$. Moreover, $A = \bigoplus_{i \in J} A_i$ and it follows from our previous developments that $\mu(A) = \sum_{i \in J} \mu(A_i)$. However, for all $i = 1, \ldots, n$, if $i \notin J$, then

 $A_i = \emptyset$ and $\mu(A_i) = 0$. Consequently:

$$\mu(A) = \sum_{i \in J} \mu(A_i) + \sum_{i \notin J} \mu(A_i) = \sum_{i=1}^{n} \mu(A_i)$$

We have proved that $\mu: \mathcal{S} \to [0, +\infty]$ as defined by (1) is finitely additive. From exercise (3), it is also finitely sub-additive.

Exercise 4

Exercise 5.

1. The sum $\sum_{k=1}^{N} F(b_{i_k}) - F(a_{i_k})$ can be written as:

$$F(b_{i_N}) - F(a_{i_1}) + \sum_{k=1}^{N-1} F(b_{i_k}) - F(a_{i_{k+1}})$$

F being non-decreasing, with $b_{i_N} \leq b$ and $a \leq a_{i_1}$, we have $F(b_{i_N}) \leq F(b)$ and $F(a) \leq F(a_{i_1})$. Moreover, since $b_{i_k} \leq a_{i_{k+1}}$ for all $k = 1, \ldots, N-1$, we have $F(b_{i_k}) \leq F(a_{i_{k+1}})$. It follows that:

$$\sum_{k=1}^{N} F(b_{i_k}) - F(a_{i_k}) \le F(b) - F(a)$$

2. Let $N \geq 1$, and (i_1, \ldots, i_N) be a permutation of $\{1, \ldots, N\}$ such that $a_{i_1} \leq a_{i_2} \leq \ldots \leq a_{i_N}$. Since $]a_{i_1}, b_{i_1}] \subseteq]a, b]$ (and the fact that $a_{i_1} < b_{i_1}$), we have $a \leq a_{i_1} < b_{i_1}$. We also have $]a_{i_N}, b_{i_N}] \subseteq]a, b]$ with $a_{i_N} < b_{i_N}$. Hence, $a_{i_N} < b_{i_N} \leq b$. Let $k \in \{1, \ldots, N-1\}$. Since the $]a_n, b_n]$'s are pairwise disjoint,

in particular, $]a_{i_k},b_{i_k}]\cap]a_{i_{k+1}},b_{i_{k+1}}]=\emptyset$. Let $\epsilon>0$ be such that $a_{i_{k+1}}+\epsilon\in]a_{i_{k+1}},b_{i_{k+1}}]$. Then $a_{i_k}\leq a_{i_{k+1}}< a_{i_{k+1}}+\epsilon$, and $a_{i_{k+1}}+\epsilon$ cannot be an element of $]a_{i_k},b_{i_k}]$. Hence, $b_{i_k}< a_{i_{k+1}}+\epsilon$. Taking the limit as $\epsilon\to 0$, we have $b_{i_k}\leq a_{i_{k+1}}$. It follows that the permutation (i_1,\ldots,i_N) of $\{1,\ldots,N\}$ is such that:

$$a \le a_{i_1} < b_{i_1} \le a_{i_2} < \ldots < b_{i_N} \le b$$

From 1., we obtain:

$$\sum_{k=1}^{N} F(b_{i_k}) - F(a_{i_k}) \le F(b) - F(a)$$

and consequently:

$$\sum_{n=1}^{N} \mu(]a_n, b_n]) = \sum_{k=1}^{N} \mu(]a_{i_k}, b_{i_k}]) \le \mu(]a, b]) \tag{4}$$

Taking the supremum over all $N \geq 1$ (or the limit as $N \to +\infty$)

in the left-hand side of (4), we obtain:

$$\sum_{n=1}^{+\infty} \mu(]a_n, b_n]) \le \mu(]a, b])$$

3. F being right-continuous, it is right-continuous in $a \in \mathbf{R}$. Given $\epsilon > 0$, there exists $\eta' > 0$ such that:

$$\forall x \in [a, a + \eta'] \quad , \quad |F(x) - F(a)| \le \epsilon$$

Take $\eta = \min(b - a, \eta')/2$. Then $\eta \in]0, b - a[$, and we have $a + \eta \in [a, a + \eta'[$. Therefore, $|F(a + \eta) - F(a)| \le \epsilon$, and F being non-decreasing, we finally have:

$$0 \le F(a+\eta) - F(a) \le \epsilon$$

4. Given $n \ge 1$, F is right-continuous in $b_n \in \mathbf{R}$. Given $\epsilon > 0$ and $\epsilon' = \epsilon/2^n$, there exists $\eta'_n > 0$ such that:

$$\forall x \in [b_n, b_n + \eta'_n[, |F(x) - F(b_n)| \le \epsilon'$$

Take $\eta_n = \eta'_n/2$. Then $b_n + \eta_n \in [b_n, b_n + \eta'_n]$, and we have $|F(b_n + \eta_n) - F(b_n)| \le \epsilon/2^n$. F being non-decreasing, we finally have:

$$0 \le F(b_n + \eta_n) - F(b_n) \le \frac{\epsilon}{2^n}$$

5. Let $x \in [a + \eta, b]$. Then $x \in]a, b]$, and there exists $n \ge 1$ such that $x \in]a_n, b_n]$. In particular, $x \in]a_n, b_n + \eta_n[$. It follows that:

$$[a+\eta,b] \subseteq \bigcup_{n=1}^{+\infty}]a_n, b_n + \eta_n [$$
 (5)

6. We see from (5) that the closed interval $[a+\eta, b]$ of \mathbf{R} , is covered by the family of open sets $(]a_n, b_n + \eta_n[)_{n\geq 1}$ in \mathbf{R} . Since $[a+\eta, b]$ is a compact subset of \mathbf{R}^2 , we can extract a finite sub-covering

²Note that the notion of *compact* subsets and the fact that any closed interval [a,b] in $\mathbf R$ is indeed a compact subset of $\mathbf R$, has not been approached so far in these tutorials. This seems to contradict our promise that no results in these tutorials should be used without proof. In fact, Tutorial 8 will give you ample reminders on compactness. Just be a little patient.

of $[a+\eta,b]$. In other words, there exist $p\geq 1$, and integers n_1,\ldots,n_p such that:

$$[a+\eta,b] \subseteq \bigcup_{k=1}^{p}]a_{n_k}, b_{n_k} + \eta_{n_k}[$$

In particular:

$$]a + \eta, b] \subseteq \bigcup_{k=1}^{p}]a_{n_k}, b_{n_k} + \eta_{n_k}]$$
 (6)

7. From exercise (4), we know that μ as defined in (1), is finitely sub-additive. It follows from (6):

$$\mu(]a + \eta, b]) \le \sum_{k=1}^{p} \mu(]a_{n_k}, b_{n_k} + \eta_{n_k}])$$
 (7)

Since $a+\eta < b$ and $a_n < b_n < b_n + \eta_n$ for all $n \ge 1$, inequality (7)

can be written as:

$$F(b) - F(a + \eta) \le \sum_{k=1}^{p} F(b_{n_k} + \eta_{n_k}) - F(a_{n_k})$$

Using 3. and 4., we obtain:

$$F(b) - F(a) \le \epsilon + \sum_{k=1}^{p} (F(b_{n_k}) - F(a_{n_k}) + \frac{\epsilon}{2^{n_k}})$$

and since F is non-decreasing, we finally have:

$$F(b) - F(a) \le 2\epsilon + \sum_{n=1}^{\infty} F(b_n) - F(a_n)$$
 (8)

8. Taking the limit as $\epsilon \to 0$ in (8), we obtain:

$$F(b) - F(a) \le \sum_{n=1}^{+\infty} F(b_n) - F(a_n)$$

Since a < b and $a_n < b_n$ for all $n \ge 1$, we have:

$$\mu(]a,b]) \le \sum_{n=1}^{+\infty} \mu(]a_n,b_n])$$

From 2., we conclude that:

$$\mu(]a,b]) = \sum_{n=1}^{+\infty} \mu(]a_n,b_n]) \tag{9}$$

It follows that if $A \in \mathcal{S}$ and $(A_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{S} , such that $A = \bigoplus_{n=1}^{+\infty} A_n$, we have:

$$\mu(A) = \sum_{n=1}^{+\infty} \mu(A_n) \tag{10}$$

Indeed, if $A = \emptyset$, then all A_n 's are empty and (10) is obviously satisfied. If $A \neq \emptyset$, then A =]a, b] for some a < b. Moreover, if we define $J = \{n \geq 1, A_n \neq \emptyset\}$, then $A = \bigcup_{n \in J} A_n$, and the

following holds,

$$\mu(A) = \sum_{n \in J} \mu(A_n) \tag{11}$$

either as a consequence of (9), in the case when J is infinite, or as a consequence of μ being finitely additive (exercise (4)), in the case when J is finite. In any case, (10) follows immediately from (11) and the fact that $\mu(\emptyset) = 0$. Having proved (10), we conclude that $\mu : \mathcal{S} \to [0, +\infty]$ as defined in (1) is indeed a measure on the semi-ring \mathcal{S} .

Exercise 6. Any statement of the form $\forall x \in \emptyset \dots^3$ is true. So $\emptyset \in \mathcal{T}_{\mathbf{R}}$, and it is clear that $\mathbf{R} \in \mathcal{T}_{\mathbf{R}}$. So (i) of definition (13) is satisfied for $\mathcal{T}_{\mathbf{B}}$. Let $A, B \in \mathcal{T}_{\mathbf{B}}$. Let $x \in A \cap B$. Since $x \in A$, from definition (17), there exists $\epsilon_1 > 0$ such that $|x - \epsilon_1, x + \epsilon_1| \subseteq A$. Since $x \in B$, there exists $\epsilon_2 > 0$ such that $|x - \epsilon_2| < B$. It follows that if ϵ is defined as $\epsilon = \min(\epsilon_1, \epsilon_2)$, then $|x - \epsilon, x + \epsilon| \subseteq A \cap B$. Hence $A \cap B \in \mathcal{T}_{\mathbf{R}}$, and (ii) of definition (13) is satisfied for $\mathcal{T}_{\mathbf{R}}$. Let $(A_i)_{i\in I}$ be a family of elements of $\mathcal{T}_{\mathbf{R}}$. Let $x \in \bigcup_{i \in I} A_i$. There exists $i \in I$ such that $x \in A_i$. Since by assumption $A_i \in \mathcal{T}_{\mathbf{R}}$, there exists $\epsilon > 0$ such that $|x-\epsilon,x+\epsilon| \subseteq A_i$. In particular, $|x-\epsilon,x+\epsilon| \subseteq \bigcup_{i\in I} A_i$. It follows that $\bigcup_{i\in I} A_i \in \mathcal{T}_{\mathbf{R}}$, and (iii) of definition (13) is satisfied for $\mathcal{T}_{\mathbf{R}}$. We have proved that $\mathcal{T}_{\mathbf{R}}$ is indeed a topology on \mathbf{R} .

³ Recall that $\forall x \in \emptyset, H$ is equivalent to $x \in \emptyset \Rightarrow H$, and $G \Rightarrow H$ is equivalent to (G is false) or (both G and H are true).

Exercise 7.

- 1. For all $n \geq 1$, we have $]a,b] \subseteq]a,b+1/n[$. Hence, we have $]a,b] \subseteq \cap_{n=1}^{+\infty}]a,b+1/n[$. Conversely, if $x \in \cap_{n=1}^{+\infty}]a,b+1/n[$, then for all $n \geq 1$, we have a < x < b+1/n. Taking the limit as $n \to +\infty$, we obtain $a < x \leq b$. It follows that $x \in]a,b]$ and $\cap_{n=1}^{+\infty}]a,b+1/n[\subseteq]a,b]$. Finally, $]a,b] = \cap_{n=1}^{+\infty}]a,b+1/n[$.
- 2. Let $a, b \in \mathbf{R}$, $a \leq b$. For all $n \geq 1$, the interval]a, b + 1/n[is an open set in \mathbf{R} , (i.e. an element of $\mathcal{T}_{\mathbf{R}}$). Indeed, if $x \in]a, b+1/n[$, take $\epsilon = \min(b+1/n-x, x-a)$, then $]x \epsilon, x + \epsilon[\subseteq]a, b+1/n[$. Since $\mathcal{T}_{\mathbf{R}} \subseteq \sigma(\mathcal{T}_{\mathbf{R}}) = \mathcal{B}(\mathbf{R})$,]a, b+1/n[is also a Borel set in \mathbf{R} , (i.e. an element of $\mathcal{B}(\mathbf{R})$). From 1., we have:

$$[a,b] = \bigcap_{n=1}^{+\infty} [a,b+1/n] = \left(\bigcup_{n=1}^{+\infty} [a,b+1/n]^c\right)^c$$

 $\mathcal{B}(\mathbf{R})$ being a σ -algebra, it is closed under complementation and countable union. It follows that $[a, b] \in \mathcal{B}(\mathbf{R})$. This being true

for all $a \leq b$, we have proved that $S \subseteq \mathcal{B}(\mathbf{R})$. The σ -algebra $\sigma(S)$ generated by S being the smallest σ -algebra on \mathbf{R} containing S, we finally have $\sigma(S) \subseteq \mathcal{B}(\mathbf{R})$.

- 3. Let $U \in \mathcal{T}_{\mathbf{R}}$ and $x \in U$. From definition (17), there exists $\epsilon > 0$ such that $]x \epsilon, x + \epsilon [\subseteq U. \mathbf{Q}]$ being the set of all rational numbers, it is dense in \mathbf{R} : in other words, for all a < b, $\mathbf{Q} \cap]a, b[$ is a non-empty set⁴. In particular, there exist $a_x \in \mathbf{Q} \cap]x \epsilon, x[$ and $b_x \in \mathbf{Q} \cap]x, x + \epsilon[$. We have $x \in]a_x, b_x] \subseteq U$.
- 4. Since for all $x \in U$, $]a_x, b_x] \subseteq U$, we have $\bigcup_{x \in U}]a_x, b_x] \subseteq U$. If $x \in U$, then $x \in]a_x, b_x]$. So $U \subseteq \bigcup_{x \in U}]a_x, b_x]$. We have proved that $U = \bigcup_{x \in U}]a_x, b_x]$.
- 5. Let $I = \{ [a_x, b_x], x \in U \}$. Since **Q** is a countable set, the product $\mathbf{Q}^2 = \mathbf{Q} \times \mathbf{Q}$ is also countable. There exists a one-to-one map $\phi : \mathbf{Q}^2 \to \mathbf{N}$. Consider $\psi : I \to \mathbf{N}$ defined by

 $^{^4}$ This density property of ${f Q}$ in ${f R}$ is not proved anywhere in these tutorials. Please refer to any textbook containing a formal construction of the field ${f R}$.

 $\psi(]a_x,b_x]) = \phi(a_x,b_x)$. Then if $\psi(]a_{x'},b_{x'}]) = \psi(]a_x,b_x])$, we have $\phi(a_{x'},b_{x'}) = \phi(a_x,b_x)$, and thus, $(a_{x'},b_{x'}) = (a_x,b_x)$. Hence, $]a_{x'},b_{x'}] =]a_x,b_x]$. It follows that the map $\psi:I\to \mathbf{N}$ is an injective map. We have proved that I is a countable set.

6. For all $i \in I$, $i =]a_x, b_x]$ for some $x \in U$. So $i \in \mathcal{S}$. Define $A_i = i$. Then $A_i \in \mathcal{S}$ for all $i \in I$, and we have:

$$U = \bigcup_{x \in U} \left[a_x, b_x \right] = \bigcup_{i \in I} A_i$$

7. Since I is a countable set, and $A_i \in \mathcal{S}$ for all $i \in I$, we have $U = \bigcup_{i \in I} A_i \in \sigma(\mathcal{S})$. This being true for all $U \in \mathcal{T}_{\mathbf{R}}$, we have proved that $\mathcal{T}_{\mathbf{R}} \subseteq \sigma(\mathcal{S})$. The Borel σ -algebra $\mathcal{B}(\mathbf{R})$ generated by $\mathcal{T}_{\mathbf{R}}$ being the smallest σ -algebra on \mathbf{R} containing $\mathcal{T}_{\mathbf{R}}$, we have $\mathcal{B}(\mathbf{R}) \subseteq \sigma(\mathcal{S})$. From 2., we conclude that $\mathcal{B}(\mathbf{R}) = \sigma(\mathcal{S})$. The purpose of this exercise is to show theorem (6).

Exercise 8.

sequence of elements of \mathcal{F} . Suppose $B_n \cap B_n \neq \emptyset$. Without loss of generality, we can assume that $n \leq p$. Suppose n < pand let $x \in B_n \cap B_n$. From $x \in B_n$, we have $x \in A_n$. From $x \in B_p$, we have $x \notin A_{p-1}$. However, $A_n \subseteq A_{p-1}$. This is a contradiction, and it follows that n = p. We have proved that the B_n 's are pairwise disjoint. Since $B_n \subseteq A_n$ for all $n \ge 1$, we have $\biguplus_{n=1}^{+\infty} B_n \subseteq A$. Conversely, let $x \in A$. There exists $n \ge 1$ such that $x \in A_n$. Let n be the smallest integer such that $x \in$ A_n . Then if $n=1, x \in B_1$. If n>1, then $x \in A_n \setminus A_{n-1}=B_n$. In any case $x \in B_n$ and $A \subseteq \bigoplus_{n=1}^{+\infty} B_n$. We have proved that $(B_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{F} , such that $A = \bigoplus_{n=1}^{+\infty} B_n$.

1. A σ -algebra being closed under difference, $(B_n)_{n\geq 1}$ is indeed a

2. Let $N \ge 1$. For all n = 1, ..., N, we have $B_n \subseteq A_n \subseteq A_N$. So $\bigcup_{n=1}^N B_n \subseteq A_N$. Conversely, let $x \in A_N$. Let n be the smallest integer such that $x \in A_n$. Then $1 \le n \le N$. If n = 1, then

 $x \in B_1$. If n > 1, then $x \in A_n \setminus A_{n-1} = B_n$. In any case, $x \in B_n$ and $A_N \subseteq \bigcup_{n=1}^N B_n$. We have proved that $A_N = \bigcup_{n=1}^N B_n$.

3. μ being a measure on \mathcal{F} , from 1. we obtain:

$$\lim_{N \to +\infty} \sum_{n=1}^{N} \mu(B_n) \stackrel{\triangle}{=} \sum_{n=1}^{+\infty} \mu(B_n) = \mu(A)$$

However, it follows from 2.

$$\sum_{n=1}^{N} \mu(B_n) = \mu(A_N)$$

Hence:

$$\lim_{N \to +\infty} \mu(A_N) = \mu(A)$$

4. Since $A_n \subseteq A_{n+1}$, we have $\mu(A_n) \le \mu(A_{n+1})$ for all $n \ge 1$. The purpose of this exercise is to prove theorem (7).

Exercise 9.

1. A σ -algebra being closed under difference, each B_n is an element of \mathcal{F} . For all $n \geq 1$, we have:

$$B_n = A_1 \cap A_n^c \subseteq A_1 \cap A_{n+1}^c = B_{n+1}$$

Moreover:

$$\bigcup_{n=1}^{+\infty} B_n = A_1 \cap \left(\bigcup_{n=1}^{+\infty} A_n^c\right) = A_1 \cap \left(\bigcap_{n=1}^{+\infty} A_n\right)^c = A_1 \setminus A$$

We have proved that $B_n \uparrow A_1 \setminus A$.

- 2. $\mu(B_n) \uparrow \mu(A_1 \setminus A)$ is a direct application of theorem (7).
- 3. Since $A_n \subseteq A_1$, we have $A_1 = A_n \uplus (A_1 \setminus A_n)$. μ being a measure on \mathcal{F} , we obtain $\mu(A_1) = \mu(A_n) + \mu(A_1 \setminus A_n)$. Since $\mu(A_1) < +\infty$, all the terms involved in this equality are finite. Hence, it is legitimate to write:

$$\mu(A_n) = \mu(A_1) - \mu(A_1 \setminus A_n)$$

4. Since $A \subseteq A_1$, we have $A_1 = A \uplus (A_1 \setminus A)$. μ being a measure on \mathcal{F} , we obtain $\mu(A_1) = \mu(A) + \mu(A_1 \setminus A)$. Since $\mu(A_1) < +\infty$, all the terms involved in this equality are finite. Hence, it is legitimate to write:

$$\mu(A) = \mu(A_1) - \mu(A_1 \setminus A)$$

5. Since for all $n \geq 1$, $A \subseteq A_n \subseteq A_1$, μ being a measure on \mathcal{F} , $\mu(A) \leq \mu(A_n) \leq \mu(A_1)$. Similarly, $A_1 \setminus A \subseteq A_1$ implies that $\mu(A_1 \setminus A) \leq \mu(A_1)$. Having $\mu(A_1) < +\infty$ ensures that all the terms involved in say $\mu(A_1) = \mu(A) + \mu(A_1 \setminus A)$ are finite, allowing to subtract $\mu(A_1 \setminus A)$ on both side of such equality. One common mistake to make is to get involved in algebra with non-finite terms, ending up with meaningless expressions of the form $+\infty - (+\infty)...$

6. Using 2., 3., 4. and the fact that $\mu(A_1) < +\infty^5$:

$$\lim_{n \to +\infty} \mu(A_n) = \mu(A_1) - \lim_{n \to +\infty} \mu(B_n) = \mu(A_1) - \mu(A_1 \setminus A) = \mu(A)$$

7. For all $n \geq 1$, $A_{n+1} \subseteq A_n$, and therefore $\mu(A_{n+1}) \leq \mu(A_n)$. The purpose of this exercise is to prove theorem (8).

⁵ $\lim_{n\to+\infty}(+\infty-n)=+\infty$, whereas $+\infty-\lim_{n\to+\infty}n$ is meaningless...

Exercise 10.

1. For all $n \geq 1$, we have $A_{n+1} \subseteq A_n$, and:

$$\bigcap_{n=1}^{+\infty} A_n = \bigcap_{n=1}^{+\infty}]n, +\infty[=\emptyset]$$

It follows that $A_n \downarrow \emptyset$.

2. Let $n \ge 1$. Given $p \ge n$, define $A_n^p =]n, p]$. Then $A_n^p \uparrow A_n$ as $p \to +\infty$, and from theorem (7), we have:

$$\mu(A_n) = \lim_{p \to +\infty} \mu(A_n^p) = \lim_{p \to +\infty} p - n = +\infty$$

3. Since $\mu(A_n) = +\infty$ for all $n \ge 1$, $\mu(A_n) \to +\infty$ as $n \to +\infty$. Since $\mu(\emptyset) = 0$, $\mu(A_n) \downarrow \mu(\emptyset)$ fails to be true. The purpose of this exercise is to serve as counter example to theorem (8), if the condition $\mu(A_1) < +\infty$ is relaxed. Indeed, $A_n \downarrow \emptyset$, yet we do not have $\mu(A_n) \downarrow \mu(\emptyset)$. Note however that to apply theorem (8), $\mu(A_1) < +\infty$ is not strictly speaking necessary: if a slightly weaker assumption is made that $\mu(A_p) < +\infty$ for some $p \ge 1$, one can always apply theorem (8) to the sequence $(A'_n)_{n\ge 1} = (A_{n+p-1})_{n\ge 1}\dots$

Exercise 11. Let S be the semi-ring $S = \{]a,b], a,b \in \mathbf{R}\}$, and $\mu: S \to [0,+\infty]$ be the map defined by equation (2). We know from exercise (5) that μ is in fact a measure on S. From theorem (5), μ can be extended to a measure defined on the σ -algebra $\sigma(S)$ generated by S. In other words, there exists a measure $\bar{\mu}: \sigma(S) \to [0,+\infty]$, such that $\bar{\mu}_{|S} = \mu$. From theorem (6), we know that the σ -algebra $\sigma(S)$ is in fact equal to the Borel σ -algebra $\mathcal{B}(\mathbf{R})$ on \mathbf{R} . Hence, we have found a measure $\bar{\mu}: \mathcal{B}(\mathbf{R}) \to [0,+\infty]$ such that $\bar{\mu}_{|S} = \mu$. In particular, we have:

$$\forall a, b \in \mathbf{R}$$
, $a \leq b$, $\bar{\mu}(|a, b|) = F(b) - F(a)$

The purpose of this exercise is to prove the existence of the so called Stieltjes measure on \mathbf{R} , stated in theorem (9). This is a vitally important result, as most other measures ever encountered, are derived one way or another from the Stieltjes measure on \mathbf{R} .

Exercise 12.

1. Since $\mu_1(]-n,n]) = F(n)-F(-n) = \mu_2(]-n,n]), \Omega \in \mathcal{D}_n$. Suppose $A,B \in \mathcal{D}_n$, with $A \subseteq B$. We have:

$$\mu_1(B \cap]-n,n]) = \mu_2(B \cap]-n,n])$$
 (12)

$$\mu_1(A \cap]-n,n]) = \mu_2(A \cap]-n,n])$$
 (13)

Moreover, since $B = A \uplus (B \setminus A)$, for i = 1, 2, we have:

$$\mu_i(B \cap]-n, n]) = \mu_i(A \cap]-n, n]) + \mu_i((B \setminus A) \cap]-n, n]) \quad (14)$$

All terms involved in (12), (13) and (14) being finite, subtracting (13) from (12), and using (14), we obtain:

$$\mu_1((B \setminus A) \cap]-n,n]) = \mu_2((B \setminus A) \cap]-n,n])$$

This shows that $B \setminus A \in \mathcal{D}_n$. Let $(A_p)_{p \geq 1}$ be a sequence of elements of \mathcal{D}_n such that $A_p \uparrow A$. Then $A_p \cap]-n, n] \uparrow A \cap]-n, n]$, and from theorem (7), $\mu_i(A_p \cap]-n, n]) \uparrow \mu_i(A \cap]-n, n])$ for all

i=1,2. However, since $A_p \in \mathcal{D}_n$ for all $p \geq 1$, we have:

$$\mu_1(A_p \cap]-n,n]) = \mu_2(A_p \cap]-n,n])$$

Taking the limit as $p \to +\infty$, we obtain:

$$\mu_1(A \cap]-n,n]) = \mu_2(A \cap]-n,n])$$

So $A \in \mathcal{D}_n$. Having checked (i), (ii) and (iii) of definition (1), we have proved that \mathcal{D}_n is indeed a Dynkin system on \mathbf{R} .

- 2. A crucial step in proving that \mathcal{D}_n is a Dynkin system on \mathbf{R} , consists in subtracting (13) from (12). One has to be very careful in avoiding meaningless expressions of the form $+\infty (+\infty)$. Having $\mu_1(]-n,n]) < +\infty$ and $\mu_2(]-n,n]) < +\infty$ ensures that all terms involved be finite.
- 3. Since $\mu_1(\emptyset \cap]-n, n]) = 0 = \mu_2(\emptyset \cap]-n, n])$, we have $\emptyset \in \mathcal{D}_n$. Let a < b. From exercise (1), $]a, b] \cap]-n, n]$ is an interval of the form [a', b']. If a' < b', then:

$$\mu_1(]a',b']) = F(b') - F(a') = \mu_2(]a',b'])$$

Otherwise, $\mu_1([a',b']) = 0 = \mu_2([a',b'])$. In any case, we have $\mu_1([a',b']) = \mu_2([a',b'])$, and $[a,b] \in \mathcal{D}_n$. We have proved that $S \subseteq \mathcal{D}_n$.

- 4. S being a semi-ring on \mathbf{R} , from definition (6), it is closed under finite intersection. Since $S \subseteq \mathcal{D}_n$, \mathcal{D}_n is a Dynkin system containing a set of subsets of \mathbf{R} , which is closed under finite intersection. According to theorem (1), \mathcal{D}_n also contains the σ -algebra generated by S. In other words, $\sigma(S) \subseteq \mathcal{D}_n$. However, from theorem (6), the σ -algebra generated by S, coincide with the Borel σ -algebra on \mathbf{R} , i.e. $\sigma(S) = \mathcal{B}(\mathbf{R})$. It follows that $\mathcal{B}(\mathbf{R}) \subseteq \mathcal{D}_n$.
- 5. Let $A \in \mathcal{B}(\mathbf{R})$. from 4., we have $A \in \mathcal{D}_n$. In other words:

$$\mu_1(A \cap]-n,n]) = \mu_2(A \cap]-n,n])$$

This being true for all $n \ge 1$, using theorem (7) and taking the limit as $n \to +\infty$, we obtain: $\mu_1(A) = \mu_2(A)$. This being true for all $A \in \mathcal{B}(\mathbf{R})$, $\mu_1 = \mu_2$.

6. Uniqueness follows from 5. Existence is proved in exercise (11).

Exercise 13.

1. F being non-decreasing, for all $x < x_0, F(x) \le F(x_0)$. Define:

$$\alpha \stackrel{\triangle}{=} \sup_{x < x_0} F(x)$$

Then $\alpha \leq F(x_0)$ and in particular $\alpha < +\infty$. It follows that given $\epsilon > 0$, $\alpha - \epsilon < \alpha$. Being a supremum, α is the smallest upper-bound of all F(x)'s for $x < x_0$. Hence, we see that $\alpha - \epsilon$ cannot be such upper-bound. There exists $x_1 < x_0$ such that $\alpha - \epsilon < F(x_1)$. Since F is non-decreasing, for all $x \in]x_1, x_0[$, we have $\alpha - \epsilon < F(x_1) \leq F(x) \leq \alpha \leq \alpha + \epsilon$. We conclude that for all $\epsilon > 0$, there exists $x_1 < x_0$ such that:

$$\forall x \in]x_1, x_0[\quad , \quad |F(x) - \alpha| \le \epsilon$$

We have proved the existence of the left limit:

$$F(x_0-) \stackrel{\triangle}{=} \lim_{x < x_0, x \to x_0} F(x) = \alpha \in \mathbf{R}$$

- 2. It is clear that $\{x_0\} \subseteq \bigcap_{n=1}^{+\infty}]x_0 1/n, x_0]$. Conversely, suppose that $x \in \bigcap_{n=1}^{+\infty}]x_0 1/n, x_0]$. Then for all $n \geq 1$, we have $x_0 1/n < x \leq x_0$. Taking the limit as $n \to +\infty$, we obtain $x_0 \leq x \leq x_0$, i.e. $x = x_0$. So $\bigcap_{n=1}^{+\infty}]x_0 1/n, x_0] \subseteq \{x_0\}$. We have proved that $\{x_0\} = \bigcap_{n=1}^{+\infty}]x_0 1/n, x_0]$.
- 3. We have $\{x_0\} = (]-\infty, x_0[\cup]x_0, +\infty[)^c$. Open intervals being open sets for the usual topology on \mathbf{R} , they are also Borel sets. A σ -algebra being closed under finite union and complementation, we conclude that $\{x_0\} \in \mathcal{B}(\mathbf{R})$.
- 4. Given $n \ge 1$, let $A_n =]x_0 1/n, x_0]$. Since $A_{n+1} \subseteq A_n$, from 2., we have $A_n \downarrow \{x_0\}$. Also, $dF(A_1) = F(x_0) F(x_0 1) \in \mathbf{R}$. In particular, $dF(A_1) < +\infty$. Applying theorem (8), we obtain:

$$dF(\{x_0\}) = \lim_{n \to +\infty} dF(A_n) = F(x_0) - F(x_0 - 1)$$

Exercise 14.

- 1. $]a,b] =]a, +\infty[\cap(]b, +\infty[)^c$. Open intervals being Borel sets, and a σ -algebra being closed under finite intersection and complementation, we have $]a,b] \in \mathcal{B}(\mathbf{R})$. In virtue of definition (20), dF(]a,b]) = F(b) F(a).
- 2. $[a,b] = (]-\infty, a[\cup]b, +\infty[)^c$ and is therefore a Borel set. Moreover, using exercise (13):

$$dF([a,b]) = dF(\{a\}) + dF([a,b]) = F(b) - F(a-)$$

3.]a, b[being open is a Borel set. Moreover, using exercise (13):

$$dF(]a,b[) = dF(]a,b]) - dF(\{b\}) = F(b-) - F(a)$$

4. $[a, b[=] - \infty, b[\cap (] - \infty, a[)^c$ and is therefore a Borel set. Moreover, using exercise (13):

$$dF([a,b]) = dF(\{a\}) + dF([a,b]) - dF(\{b\}) = F(b-) - F(a-)$$

Exercise 15.

- 1. Suppose \mathcal{A} is a topology on Ω . Then \emptyset and Ω are elements of \mathcal{A} . It follows that that $\emptyset \cap \Omega' = \emptyset$ and $\Omega \cap \Omega' = \Omega'$ are both elements of $\mathcal{A}_{|\Omega'}$. So (i) of definition (13) is satisfied for $\mathcal{A}_{|\Omega'}$. Let $A', B' \in \mathcal{A}_{|\Omega'}$. There exist $A, B \in \mathcal{A}$ such that $A' = A \cap \Omega'$ and $B' = B \cap \Omega'$. Hence, $A' \cap B' = (A \cap B) \cap \Omega'$. Since A is a topology, $A \cap B \in \mathcal{A}$. It follows that $A' \cap B' \in \mathcal{A}_{|\Omega'|}$, and (ii) of definition (13) is satisfied for $\mathcal{A}_{|\Omega'}$. Let $(A'_i)_{i\in I}$ be a family of elements of $\mathcal{A}_{|\Omega'}$. There exists a family $(A_i)_{i\in I}$ of elements of \mathcal{A} , such that $A'_i = A_i \cap \Omega'$, for all $i \in I$. In particular, $\bigcup_{i\in I} A'_i = (\bigcup_{i\in I} A_i) \cap \Omega'$. Since \mathcal{A} is a topology, $\bigcup_{i\in I} A_i \in \mathcal{A}$. It follows that $\bigcup_{i \in I} A'_i \in \mathcal{A}_{|\Omega'}$ and (iii) of definition (13) is satisfied for $\mathcal{A}_{|\Omega'}$. We have proved that $\mathcal{A}_{|\Omega'}$ is indeed a topology on Ω' .
- 2. Suppose \mathcal{A} is a σ -algebra on Ω . Then $\Omega \in \mathcal{A}$, and we have $\Omega' = \Omega \cap \Omega' \in \mathcal{A}_{|\Omega'}$. Let $A' \in \mathcal{A}_{|\Omega'}$. There exists $A \in \mathcal{A}$ such that $A' = A \cap \Omega'$. Hence⁶, $\Omega' \setminus A' = \Omega' \cap (A')^c = \Omega' \cap A^c$. Since

⁶The notation $(A')^c$ refers to the complement of A' in Ω , i.e. $(A')^c = \Omega \setminus A'$.

 \mathcal{A} is a σ -algebra, $A^c \in \mathcal{A}$. It follows that $\Omega' \setminus A' \in \mathcal{A}_{|\Omega'}$, and $\mathcal{A}_{|\Omega'}$ is closed under complementation in Ω' . let $(A'_n)_{n\geq 1}$ be a sequence of elements of $\mathcal{A}_{|\Omega'}$. There exists a sequence $(A_n)_{n\geq 1}$ of elements of \mathcal{A} , such that $A'_n = A_n \cap \Omega'$, for all $n \geq 1$. In particular, $\bigcup_{n=1}^{+\infty} A'_n = (\bigcup_{n=1}^{+\infty} A_n) \cap \Omega'$. Since \mathcal{A} is a σ -algebra, $\bigcup_{n=1}^{+\infty} A_n \in \mathcal{A}$. It follows that $\bigcup_{n=1}^{+\infty} A'_n \in \mathcal{A}_{|\Omega'}$, and $\mathcal{A}_{|\Omega'}$ is closed under countable union. We have proved that $\mathcal{A}_{|\Omega'}$ is indeed a σ -algebra on Ω' .

The complement of A' in Ω' is denoted $\Omega' \setminus A'$.

Exercise 16.

1. When working in the context of two reference sets Ω' and Ω where $\Omega' \subset \Omega$, given $A \subset \Omega'$, the notation A^c and the notion of complementation can be confusing: does it refer to the complement of A in Ω , or the complement of A in Ω' ... Unless otherwise specified, it is customary to keep the notation A^c for the complement of A relative to the large set $(A^c = \Omega \setminus A)$. The complement of A relative to the smaller set Ω' can still be denoted $\Omega' \setminus A$. Similarly, whenever A' is a set of subsets of Ω' (like $\mathcal{A}_{|\Omega'}$), then it is also a set of subsets of Ω . Hence, a notation such as $\sigma(\mathcal{A}')$ can be ambiguous and confusing. One the one hand, $\sigma(\mathcal{A}')$ could be referring to the σ -algebra generated by \mathcal{A}' on Ω . One the other hand, $\sigma(\mathcal{A}')$ could be referring to the σ -algebra generated by \mathcal{A}' on Ω' . Hence, it is very important to specify clearly what is meant, when using a notation such as $\sigma(\mathcal{A}')$. In this exercise, $\sigma(\mathcal{A})$ is a σ -algebra on Ω , whereas $\sigma(\mathcal{A}_{|\Omega'})$ is a σ -algebra on Ω' .

- 2. Let $A \in \mathcal{A}$. Then $A \in \sigma(\mathcal{A})$ and $A \cap \Omega' \in \mathcal{A}_{|\Omega'} \subseteq \sigma(\mathcal{A}_{|\Omega'})$. It follows that $A \in \Gamma$, and $\mathcal{A} \subseteq \Gamma$.
- 3. $\sigma(\mathcal{A})$ being a σ -algebra on Ω , $\Omega \in \sigma(\mathcal{A})$. $\sigma(\mathcal{A}_{|\Omega'})$ being a σ -algebra on Ω' , $\Omega \cap \Omega' = \Omega' \in \sigma(\mathcal{A}_{|\Omega'})$. It follows that $\Omega \in \Gamma$. Let $A \in \Gamma$. Then $A \in \sigma(\mathcal{A})$ and $A \cap \Omega' \in \sigma(\mathcal{A}_{|\Omega'})$. Hence, $A^c \in \sigma(\mathcal{A})$ and $A^c \cap \Omega' = \Omega' \setminus (A \cap \Omega') \in \sigma(\mathcal{A}_{|\Omega'})$. So $A^c \in \Gamma$. It follows that Γ is closed under complementation. Let $(A_n)_{n\geq 1}$ be a sequence of elements of Γ . Then for all $n \geq 1$, $A_n \in \sigma(\mathcal{A})$ and $A_n \cap \Omega' \in \sigma(\mathcal{A}_{|\Omega'})$. It follows that $\bigcup_{n=1}^{+\infty} A_n \in \sigma(\mathcal{A})$, and $(\bigcup_{n=1}^{+\infty} A_n) \cap \Omega' = \bigcup_{n=1}^{+\infty} (A_n \cap \Omega') \in \sigma(\mathcal{A}_{|\Omega'})$. So $\bigcup_{n=1}^{+\infty} A_n \in \Gamma$. It follows that Γ is closed under countable union. We have proved that Γ is indeed a σ -algebra on Ω .
- 4. The σ -algebra $\sigma(\mathcal{A})$ on Ω generated by \mathcal{A} , being the smallest σ -algebra on Ω containing \mathcal{A} , from $\mathcal{A} \subseteq \Gamma$, and the fact that Γ is σ -algebra on Ω , we have $\sigma(\mathcal{A}) \subseteq \Gamma$. In particular, for all $A \in \sigma(\mathcal{A})$, we have $A \cap \Omega' \in \sigma(\mathcal{A}_{|\Omega'})$. Hence, we see that $\sigma(\mathcal{A})_{|\Omega'} \subseteq \sigma(\mathcal{A}_{|\Omega'})$. However, for all $A \in \mathcal{A}$, since $A \in \sigma(\mathcal{A})$,

we have $A \cap \Omega' \in \sigma(A)_{|\Omega'}$. It follows that $A_{|\Omega'} \subseteq \sigma(A)_{|\Omega'}$. From exercise (15), $\sigma(A)_{|\Omega'}$ is a σ -algebra on Ω' . The σ -algebra $\sigma(A_{|\Omega'})$ being the smallest σ -algebra on Ω' containing $A_{|\Omega'}$, we conclude that $\sigma(A_{|\Omega'}) \subseteq \sigma(A)_{|\Omega'}$. We have proved that $\sigma(A_{|\Omega'}) = \sigma(A)_{|\Omega'}$. The purpose of this exercise is to prove theorem (10).

Exercise 17.

- 1. From theorem (10), $\mathcal{B}(\Omega)|_{\Omega'} = \sigma(\mathcal{T})|_{\Omega'} = \sigma(\mathcal{T}|_{\Omega'}) = \mathcal{B}(\Omega')$.
- 2. Suppose $\Omega' \in \mathcal{B}(\Omega)$. Let $A' \in \mathcal{B}(\Omega')$. Since $\mathcal{B}(\Omega') = \mathcal{B}(\Omega)_{|\Omega'}$, there exists $A \in \mathcal{B}(\Omega)$ such that $A' = A \cap \Omega'$. A σ -algebra being closed under finite intersection, it follows that $A' \in \mathcal{B}(\Omega)$. We have proved that $\mathcal{B}(\Omega') \subseteq \mathcal{B}(\Omega)$.
- 3. From 1., we have $\mathcal{B}(\mathbf{R}^+) = \mathcal{B}(\mathbf{R})_{|\mathbf{R}^+} = \{A \cap \mathbf{R}^+, A \in \mathcal{B}(\mathbf{R})\}$
- 4. Since $\mathbf{R}^+ =]-\infty, 0[^c \in \mathcal{B}(\mathbf{R}), \text{ from 2. we have } \mathcal{B}(\mathbf{R}^+) \subseteq \mathcal{B}(\mathbf{R}).$

Exercise 18.

- 1. From exercise (15), \mathcal{F} being a σ -algebra on Ω , $\mathcal{F}_{|\Omega'}$ is a σ -algebra on Ω' . from definition (18), it follows that $(\Omega', \mathcal{F}_{|\Omega'})$ is a measurable space.
- 2. Suppose $\Omega' \in \mathcal{F}$. A σ -algebra being closed under finite intersection, $\mathcal{F}_{|\Omega'} = \{A \cap \Omega', A \in \mathcal{F}\} \subseteq \mathcal{F}$.
- 3. If $\Omega' \in \mathcal{F}$, from 2., $\mathcal{F}_{|\Omega'} \subseteq \mathcal{F}$. Hence, it is legitimate to consider the restriction $\mu_{|(\mathcal{F}_{|\Omega'})}$ of the map $\mu : \mathcal{F} \to [0, +\infty]$ to the smaller domain $\mathcal{F}_{|\Omega'}$. Denoting such restriction by $\mu_{|\Omega'}$, it is clearly a measure on $\mathcal{F}_{|\Omega'}$ (definition (9)). From definition (19), it follows that $(\Omega', \mathcal{F}_{|\Omega'}, \mu_{|\Omega'})$ is a measure space.

Exercise 19.

1. Let $x_0 \in \mathbf{R}$. If $x_0 < 0$, then $\bar{F}(x) \to 0 = \bar{F}(x_0)$ as $x \to x_0$. If $x_0 \ge 0$, since F is right-continuous, we have:

$$\lim_{x_0 < x, x \to x_0} \bar{F}(x) = \lim_{x_0 < x, x \to x_0} F(x) = F(x_0) = \bar{F}(x_0)$$

Hence we see that \bar{F} is itself right-continuous. Let $a \leq b$. If $0 \leq a \leq b$, then $\bar{F}(a) = F(a) \leq F(b) = \bar{F}(b)$. If $a < 0 \leq b$, then $\bar{F}(a) = 0 \leq F(0) \leq F(b) = \bar{F}(b)$. If $a \leq b < 0$, then $\bar{F}(a) = 0 = \bar{F}(b)$. In any case, $\bar{F}(a) \leq \bar{F}(b)$ and \bar{F} is non-decreasing.

2. $\mathcal{B}(\mathbf{R}^+) \subseteq \mathcal{B}(\mathbf{R})$ and μ is well-defined. Using exercise (13):

$$\mu(\{0\}) = d\bar{F}(\{0\}) = \bar{F}(0) - \bar{F}(0-) = F(0)$$

Moreover, for all $0 \le a \le b$:

$$\mu(|a,b|) = d\bar{F}(|a,b|) = \bar{F}(b) - \bar{F}(a) = F(b) - F(a)$$

Exercise 20.

1. For all $0 \leq a \leq b$, $]a,b] =]a,b] \cap \mathbf{R}^+ \in \mathcal{B}(\mathbf{R})_{|\mathbf{R}^+} = \mathcal{B}(\mathbf{R}^+)$. Moreover, we have $\{0\} =]-1,0] \cap \mathbf{R}^+ \in \mathcal{B}(\mathbf{R}^+)$. we have proved that $\mathcal{C} \subseteq \mathcal{B}(\mathbf{R}^+)$.

2. Let U be open in \mathbb{R}^+ . By definition (23), there exists V open

- in **R**, such that $U = V \cap \mathbf{R}^+$. For all $x \in V$, there exists $\epsilon_x > 0$ such that $]x \epsilon_x, x + \epsilon_x[\subseteq V]$. The set of rational numbers **Q** being dense in **R**, we can choose $p_x \in \mathbf{Q} \cap]x \epsilon_x, x[$ and $q_x \in \mathbf{Q} \cap]x, x + \epsilon_x[$. We have $x \in]p_x, q_x] \subseteq V$. If we define $I = \{]p_x, q_x], x \in V\}$, then I is a countable set (see exercise (7) for more details). For all $i \in I$, let $a_i = p_x$ and $b_i = q_x$, where $x \in V$ is such that $i =]p_x, q_x]$. From $V = \bigcup_{x \in V} [p_x, q_x]$, we obtain $V = \bigcup_{i \in I} [a_i, b_i]$, and finally $U = \bigcup_{i \in I} (\mathbf{R}^+ \cap]a_i, b_i]$).
- 3. If $0 \le a_i \le b_i$, then $\mathbf{R}^+ \cap]a_i, b_i] =]a_i, b_i] \in \mathcal{C}$. If $a_i < 0 \le b_i$, then $\mathbf{R}^+ \cap]a_i, b_i] = [0, b_i] = \{0\} \cup [0, b_i] \in \sigma(\mathcal{C})$. If $a_i \le b_i < 0$, then $\mathbf{R}^+ \cap [a_i, b_i] = \emptyset =]1, 1] \in \mathcal{C}$. In any case, $\mathbf{R}^+ \cap [a_i, b_i] \in \sigma(\mathcal{C})$.

4. From 2. and 3., the set I being countable, we have:

$$U = \cup_{i \in I} (\mathbf{R}^+ \cap]a_i, b_i]) \in \sigma(\mathcal{C})$$

This being true for all U open in \mathbf{R}^+ , we have $\mathcal{T}_{\mathbf{R}^+} \subseteq \sigma(\mathcal{C})$. $\mathcal{B}(\mathbf{R}^+)$ being the smallest σ -algebra on \mathbf{R}^+ containing $\mathcal{T}_{\mathbf{R}^+}$, we obtain that $\mathcal{B}(\mathbf{R}^+) \subseteq \sigma(\mathcal{C})$. However from 1., $\mathcal{C} \subseteq \mathcal{B}(\mathbf{R}^+)$. $\sigma(\mathcal{C})$ being the smallest σ -algebra on \mathbf{R}^+ containing \mathcal{C} , we have $\sigma(\mathcal{C}) \subseteq \mathcal{B}(\mathbf{R}^+)$. We have proved that $\sigma(\mathcal{C}) = \mathcal{B}(\mathbf{R}^+)$.

Exercise 21.

1. $\mu_1(\{0\} \cap [0,n]) = \mu_1(\{0\}) = \mu_2(\{0\}) = \mu_2(\{0\} \cap [0,n])$. So $\{0\} \in \mathcal{D}_n$. For all $0 \le a \le b$, $]a,b] \cap [0,n]$ is either empty, or is an interval of the form]a',b'] with $0 \le a' \le b'$. In any case, $\mu_1(]a,b] \cap [0,n]) = \mu_2(]a,b] \cap [0,n])$. It follows that $\mathcal{C} \subseteq \mathcal{D}_n$. Since $\mu_1([0,n]) = \mu_1(\{0\}) + \mu_1([0,n]) = F(n) = \mu_2([0,n])$, we have $\mathbf{R}^+ \in \mathcal{D}_n$ and both $\mu_1([0,n])$ and $\mu_2([0,n])$ are finite. Let $A,B \in \mathcal{D}_n$ with $A \subseteq B$. We have:

$$\mu_1(A \cap [0, n]) = \mu_2(A \cap [0, n])$$
$$\mu_1(B \cap [0, n]) = \mu_2(B \cap [0, n])$$

and for i = 1, 2:

$$\mu_i(B \cap [0, n]) = \mu_i(A \cap [0, n]) + \mu_i((B \setminus A) \cap [0, n])$$

All terms being finite, we obtain:

$$\mu_1((B \setminus A) \cap [0, n]) = \mu_2((B \setminus A) \cap [0, n])$$

and it follows that $B \setminus A \in \mathcal{D}_n$. Let $(A_p)_{p \geq 1}$ be a sequence of elements of \mathcal{D}_n , with $A_p \uparrow A$. Then $A_p \cap [0, n] \uparrow A \cap [0, n]$. For all $p \geq 1$, we have:

$$\mu_1(A_p \cap [0,n]) = \mu_2(A_p \cap [0,n])$$

Using theorem (7), taking the limit as $p \to +\infty$, we obtain:

$$\mu_1(A \cap [0, n]) = \mu_2(A \cap [0, n])$$

and it follows that $A \in \mathcal{D}_n$. We have proved that \mathcal{D}_n is a Dynkin system on \mathbf{R}^+ (definition (1)) with $\mathcal{C} \subseteq \mathcal{D}_n$.

- 2. $\mu_1([0,n]) < +\infty$ and $\mu_2([0,n]) < +\infty$ is important in ensuring that the algebra required to prove that $B \setminus A \in \mathcal{D}_n$, is indeed meaningful.
- 3. Let $0 \le a \le b$. Then $\{0\} \cap]a, b] = \emptyset =]1, 1] \in \mathcal{C}$. If $0 \le c \le d$, then $[a, b] \cap [c, d]$ can still be written as [a', b'] with $0 \le a' \le b'$, and therefore lies in \mathcal{C} . It follows that \mathcal{C} is closed under finite intersection. Since \mathcal{D}_n is a Dynkin system on \mathbb{R}^+ such that

 $\mathcal{C} \subseteq \mathcal{D}_n$, using theorem (1), we see that $\sigma(\mathcal{C}) \subseteq \mathcal{D}_n$. However, from exercise (20), $\sigma(\mathcal{C}) = \mathcal{B}(\mathbf{R}^+)$. It follows that $\mathcal{B}(\mathbf{R}^+) \subseteq \mathcal{D}_n$. Hence, for all $A \in \mathcal{B}(\mathbf{R}^+)$, we have $\mu_1(A \cap [0, n]) = \mu_2(A \cap [0, n])$. Since $A \cap [0, n] \uparrow A$ as $n \to +\infty$, using theorem (7), we obtain $\mu_1(A) = \mu_2(A)$. This being true for all Borel set $A \in \mathcal{B}(\mathbf{R}^+)$, we have proved that $\mu_1 = \mu_2$.

4. Existence follows from exercise (19). Uniqueness is a consequence of 3.