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3. Stieltjes-Lebesgue Measure
Definition 12 Let A ⊆ P(Ω) and μ : A → [0,+∞] be a map. We
say that μ is finitely additive if and only if, given n ≥ 1:

A ∈ A, Ai ∈ A, A =
n⊎

i=1

Ai ⇒ μ(A) =
n∑

i=1

μ(Ai)

We say that μ is finitely sub-additive if and only if, given n ≥ 1 :

A ∈ A, Ai ∈ A, A ⊆
n⋃

i=1

Ai ⇒ μ(A) ≤
n∑

i=1

μ(Ai)

Exercise 1. Let S �
= {]a, b] , a, b ∈ R} be the set of all intervals

]a, b], defined as ]a, b] = {x ∈ R, a < x ≤ b}.

1. Show that ]a, b]∩]c, d] =]a ∨ c, b ∧ d]

2. Show that ]a, b]\]c, d] =]a, b ∧ c]∪]a ∨ d, b]
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3. Show that c ≤ d ⇒ b ∧ c ≤ a ∨ d.

4. Show that S is a semi-ring on R.

Exercise 2. Suppose S is a semi-ring in Ω and μ : S → [0,+∞] is
finitely additive. Show that μ can be extended to a finitely additive
map μ̄ : R(S) → [0,+∞], with μ̄|S = μ.

Exercise 3. Everything being as before, Let A ∈ R(S), Ai ∈ R(S),
A ⊆ ∪n

i=1Ai where n ≥ 1. Define B1 = A1∩A and for i = 1, . . . , n−1:

Bi+1
�
= (Ai+1 ∩A) \ ((A1 ∩A) ∪ . . . ∪ (Ai ∩A))

1. Show that B1, . . . , Bn are pairwise disjoint elements of R(S)
such that A = n

i=1Bi.

2. Show that for all i = 1, . . . , n, we have μ̄(Bi) ≤ μ̄(Ai).

3. Show that μ̄ is finitely sub-additive.
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4. Show that μ is finitely sub-additive.

Exercise 4. Let F : R → R be a right-continuous, non-decreasing
map. Let S be the semi-ring on R, S = {]a, b] , a, b ∈ R}. Define the
map μ : S → [0,+∞] by μ(∅) = 0, and:

∀a ≤ b , μ(]a, b])
�
= F (b) − F (a) (1)

Let a < b and ai < bi for i = 1, . . . , n and n ≥ 1, with :

]a, b] =
n⊎

i=1

]ai, bi]

1. Show that there is i1 ∈ {1, . . . , n} such that ai1 = a.

2. Show that ]bi1 , b] = i∈{1,...,n}\{i1}]ai, bi]

3. Show the existence of a permutation (i1, . . . , in) of {1, . . . , n}
such that a = ai1 < bi1 = ai2 < . . . < bin = b.
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4. Show that μ is finitely additive and finitely sub-additive.

Exercise 5. μ being defined as before, suppose a < b and an < bn
for n ≥ 1 with:

]a, b] =
+∞⊎
n=1

]an, bn]

Given N ≥ 1, let (i1, . . . , iN) be a permutation of {1, . . . , N} with:

a ≤ ai1 < bi1 ≤ ai2 < . . . < biN ≤ b

1. Show that
∑N

k=1 F (bik
) − F (aik

) ≤ F (b) − F (a).

2. Show that
∑+∞

n=1 μ(]an, bn]) ≤ μ(]a, b])

3. Given ε > 0, show that there is η ∈]0, b− a[ such that:

0 ≤ F (a+ η) − F (a) ≤ ε
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4. For n ≥ 1, show that there is ηn > 0 such that:

0 ≤ F (bn + ηn) − F (bn) ≤ ε

2n

5. Show that [a+ η, b] ⊆ ∪+∞
n=1]an, bn + ηn[.

6. Explain why there exist p ≥ 1 and integers n1, . . . , np such that:

]a+ η, b] ⊆ ∪p
k=1]ank

, bnk
+ ηnk

]

7. Show that F (b) − F (a) ≤ 2ε+
∑+∞

n=1 F (bn) − F (an)

8. Show that μ : S → [0,+∞] is a measure.
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Definition 13 A topology on Ω is a subset T of the power set
P(Ω), with the following properties:

(i) Ω, ∅ ∈ T
(ii) A,B ∈ T ⇒ A ∩B ∈ T

(iii) Ai ∈ T , ∀i ∈ I ⇒
⋃
i∈I

Ai ∈ T

Property (iii) of definition (13) can be translated as: for any family
(Ai)i∈I of elements of T , the union ∪i∈IAi is still an element of T .
Hence, a topology on Ω, is a set of subsets of Ω containing Ω and
the empty set, which is closed under finite intersection and arbitrary
union.

Definition 14 A topological space is an ordered pair (Ω, T ), where
Ω is a set and T is a topology on Ω.
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Definition 15 Let (Ω, T ) be a topological space. We say that A ⊆ Ω
is an open set in Ω, if and only if it is an element of the topology T .
We say that A ⊆ Ω is a closed set in Ω, if and only if its complement
Ac is an open set in Ω.

Definition 16 Let (Ω, T ) be a topological space. We define the
Borel σ-algebra on Ω, denoted B(Ω), as the σ-algebra on Ω, gener-
ated by the topology T . In other words, B(Ω) = σ(T )

Definition 17 We define the usual topology on R, denoted TR,
as the set of all U ⊆ R such that:

∀x ∈ U , ∃ε > 0 , ]x− ε, x+ ε[⊆ U

Exercise 6.Show that TR is indeed a topology on R.

Exercise 7. Consider the semi-ring S �
= {]a, b] , a, b ∈ R}. Let TR

be the usual topology on R, and B(R) be the Borel σ-algebra on R.

1. Let a ≤ b. Show that ]a, b] = ∩+∞
n=1]a, b+ 1/n[.
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2. Show that σ(S) ⊆ B(R).

3. Let U be an open subset of R. Show that for all x ∈ U , there
exist ax, bx ∈ Q such that x ∈]ax, bx] ⊆ U .

4. Show that U = ∪x∈U ]ax, bx].

5. Show that the set I
�
= {]ax, bx] , x ∈ U} is countable.

6. Show that U can be written U = ∪i∈IAi with Ai ∈ S.

7. Show that σ(S) = B(R).

Theorem 6 Let S be the semi-ring S = {]a, b] , a, b ∈ R}. Then,
the Borel σ-algebra B(R) on R, is generated by S, i.e. B(R) = σ(S).

Definition 18 A measurable space is an ordered pair (Ω,F) where
Ω is a set and F is a σ-algebra on Ω.
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Definition 19 A measure space is a triple (Ω,F , μ) where (Ω,F)
is a measurable space and μ : F → [0,+∞] is a measure on F .

Exercise 8.Let (Ω,F , μ) be a measure space. Let (An)n≥1 be a
sequence of elements of F such that An ⊆ An+1 for all n ≥ 1, and let
A = ∪+∞

n=1An (we write An ↑ A). Define B1 = A1 and for all n ≥ 1,
Bn+1 = An+1 \An.

1. Show that (Bn) is a sequence of pairwise disjoint elements of F
such that A = +∞

n=1Bn.

2. Given N ≥ 1 show that AN = N
n=1Bn.

3. Show that μ(AN ) → μ(A) as N → +∞

4. Show that μ(An) ≤ μ(An+1) for all n ≥ 1.
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Theorem 7 Let (Ω,F , μ) be a measure space. Then if (An)n≥1 is a
sequence of elements of F , such that An ↑ A, we have μ(An) ↑ μ(A)1.

Exercise 9.Let (Ω,F , μ) be a measure space. Let (An)n≥1 be a
sequence of elements of F such that An+1 ⊆ An for all n ≥ 1, and let
A = ∩+∞

n=1An (we write An ↓ A). We assume that μ(A1) < +∞.

1. Define Bn
�
= A1 \An and show that Bn ∈ F , Bn ↑ A1 \A.

2. Show that μ(Bn) ↑ μ(A1 \A)

3. Show that μ(An) = μ(A1) − μ(A1 \An)

4. Show that μ(A) = μ(A1) − μ(A1 \A)

5. Why is μ(A1) < +∞ important in deriving those equalities.

6. Show that μ(An) → μ(A) as n→ +∞
1i.e. the sequence (µ(An))n≥1 is non-decreasing and converges to µ(A).
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7. Show that μ(An+1) ≤ μ(An) for all n ≥ 1.

Theorem 8 Let (Ω,F , μ) be a measure space. Then if (An)n≥1 is
a sequence of elements of F , such that An ↓ A and μ(A1) < +∞, we
have μ(An) ↓ μ(A).

Exercise 10.Take Ω = R and F = B(R). Suppose μ is a measure
on B(R) such that μ(]a, b]) = b− a, for a < b. Take An =]n,+∞[.

1. Show that An ↓ ∅.

2. Show that μ(An) = +∞, for all n ≥ 1.

3. Conclude that μ(An) ↓ μ(∅) fails to be true.

Exercise 11. Let F : R → R be a right-continuous, non-decreasing
map. Show the existence of a measure μ : B(R) → [0,+∞] such that:

∀a, b ∈ R , a ≤ b , μ(]a, b]) = F (b) − F (a) (2)
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Exercise 12.Let μ1, μ2 be two measures on B(R) with property (2).
For n ≥ 1, we define:

Dn
�
= {B ∈ B(R) , μ1(B∩] − n, n]) = μ2(B∩] − n, n])}

1. Show that Dn is a Dynkin system on R.

2. Explain why μ1(] − n, n]) < +∞ and μ2(] − n, n]) < +∞ is
needed when proving 1.

3. Show that S �
= {]a, b] , a, b ∈ R} ⊆ Dn.

4. Show that B(R) ⊆ Dn.

5. Show that μ1 = μ2.

6. Prove the following theorem.
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Theorem 9 Let F : R → R be a right-continuous, non-decreasing
map. There exists a unique measure μ : B(R) → [0,+∞] such that:

∀a, b ∈ R , a ≤ b , μ(]a, b]) = F (b) − F (a)

Definition 20 Let F : R → R be a right-continuous, non-decreasing
map. We call Stieltjes measure on R associated with F , the unique
measure on B(R), denoted dF , such that:

∀a, b ∈ R , a ≤ b , dF (]a, b]) = F (b) − F (a)

Definition 21 We call Lebesgue measure on R, the unique mea-
sure on B(R), denoted dx, such that:

∀a, b ∈ R , a ≤ b , dx(]a, b]) = b− a

Exercise 13. Let F : R → R be a right-continuous, non-decreasing
map. Let x0 ∈ R.

1. Show that the limit F (x0−) = limx<x0,x→x0 F (x) exists and is
an element of R.
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2. Show that {x0} = ∩+∞
n=1]x0 − 1/n, x0].

3. Show that {x0} ∈ B(R)

4. Show that dF ({x0}) = F (x0) − F (x0−)

Exercise 14.Let F : R → R be a right-continuous, non-decreasing
map. Let a ≤ b.

1. Show that ]a, b] ∈ B(R) and dF (]a, b]) = F (b) − F (a)

2. Show that [a, b] ∈ B(R) and dF ([a, b]) = F (b) − F (a−)

3. Show that ]a, b[∈ B(R) and dF (]a, b[) = F (b−) − F (a)

4. Show that [a, b[∈ B(R) and dF ([a, b[) = F (b−) − F (a−)
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Exercise 15. Let A be a subset of the power set P(Ω). Let Ω′ ⊆ Ω.
Define:

A|Ω′
�
= {A ∩ Ω′ , A ∈ A}

1. Show that if A is a topology on Ω, A|Ω′ is a topology on Ω′.

2. Show that if A is a σ-algebra on Ω, A|Ω′ is a σ-algebra on Ω′.

Definition 22 Let Ω be a set, and Ω′ ⊆ Ω. Let A be a subset of
the power set P(Ω). We call trace of A on Ω′, the subset A|Ω′ of the
power set P(Ω′) defined by:

A|Ω′
�
= {A ∩ Ω′ , A ∈ A}
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Definition 23 Let (Ω, T ) be a topological space and Ω′ ⊆ Ω. We call
induced topology on Ω′, denoted T|Ω′ , the topology on Ω′ defined
by:

T|Ω′
�
= {A ∩ Ω′ , A ∈ T }

In other words, the induced topology T|Ω′ is the trace of T on Ω′.

Exercise 16.Let A be a subset of the power set P(Ω). Let Ω′ ⊆ Ω,
and A|Ω′ be the trace of A on Ω′. Define:

Γ
�
= {A ∈ σ(A) , A ∩ Ω′ ∈ σ(A|Ω′ )}

where σ(A|Ω′ ) refers to the σ-algebra generated by A|Ω′ on Ω′.

1. Explain why the notation σ(A|Ω′) by itself is ambiguous.

2. Show that A ⊆ Γ.

3. Show that Γ is a σ-algebra on Ω.

4. Show that σ(A|Ω′) = σ(A)|Ω′
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Theorem 10 Let Ω′ ⊆ Ω and A be a subset of the power set P(Ω).
Then, the trace on Ω′ of the σ-algebra σ(A) generated by A, is equal
to the σ-algebra on Ω′ generated by the trace of A on Ω′. In other
words, σ(A)|Ω′ = σ(A|Ω′).

Exercise 17.Let (Ω, T ) be a topological space and Ω′ ⊆ Ω with its
induced topology T|Ω′ .

1. Show that B(Ω)|Ω′ = B(Ω′).

2. Show that if Ω′ ∈ B(Ω) then B(Ω′) ⊆ B(Ω).

3. Show that B(R+) = {A ∩ R+ , A ∈ B(R)}.

4. Show that B(R+) ⊆ B(R).

Exercise 18.Let (Ω,F , μ) be a measure space and Ω′ ⊆ Ω
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1. Show that (Ω′,F|Ω′) is a measurable space.

2. If Ω′ ∈ F , show that F|Ω′ ⊆ F .

3. If Ω′ ∈ F , show that (Ω′,F|Ω′ , μ|Ω′) is a measure space, where
μ|Ω′ is defined as μ|Ω′ = μ|(F|Ω′).

Exercise 19. Let F : R+ → R be a right-continuous, non-decreasing
map with F (0) ≥ 0. Define:

F̄ (x)
�
=
{

0 if x < 0
F (x) if x ≥ 0

1. Show that F̄ : R → R is right-continuous and non-decreasing.

2. Show that μ : B(R+) → [0,+∞] defined by μ = dF̄|B(R+), is a
measure on B(R+) with the properties:

(i) μ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , μ(]a, b]) = F (b) − F (a)
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Exercise 20. Define: C = {{0}} ∪ {]a, b] , 0 ≤ a ≤ b}

1. Show that C ⊆ B(R+)

2. Let U be open in R+. Show that U is of the form:

U =
⋃
i∈I

(R+∩]ai, bi])

where I is a countable set and ai, bi ∈ R with ai ≤ bi.

3. For all i ∈ I, show that R+∩]ai, bi] ∈ σ(C).

4. Show that σ(C) = B(R+)

Exercise 21.Let μ1 and μ2 be two measures on B(R+) with:

(i) μ1({0}) = μ2({0}) = F (0)
(ii) μ1(]a, b]) = μ2(]a, b]) = F (b) − F (a)

www.probability.net

http://www.probability.net


Tutorial 3: Stieltjes-Lebesgue Measure 20

for all 0 ≤ a ≤ b. For n ≥ 1, we define:

Dn = {B ∈ B(R+) , μ1(B ∩ [0, n]) = μ2(B ∩ [0, n])}
1. Show that Dn is a Dynkin system on R+ with C ⊆ Dn, where

the set C is defined as in exercise (20).

2. Explain why μ1([0, n]) < +∞ and μ2([0, n]) < +∞ is important
when proving 1.

3. Show that μ1 = μ2.

4. Prove the following theorem.

Theorem 11 Let F : R+→ R be a right-continuous, non-decreasing
map with F (0) ≥ 0. There exists a unique μ : B(R+) → [0,+∞]
measure on B(R+) such that:

(i) μ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , μ(]a, b]) = F (b) − F (a)
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Definition 24 Let F : R+→R be a right-continuous, non-decreasing
map with F (0) ≥ 0. We call Stieltjes measure on R+ associated
with F , the unique measure on B(R+), denoted dF , such that:

(i) dF ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , dF (]a, b]) = F (b) − F (a)
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Solutions to Exercises
Exercise 1.

1. x ∈]a, b]∩]c, d] is equivalent to a < x ≤ b and c < x ≤ d. This is
in turn equivalent to:

a ∨ c �
= max(a, c) < x ≤ min(b, d)

�
= b ∧ d

We have proved that:

]a, b]∩]c, d] =]a ∨ c, b ∧ d]

2. Suppose x ∈]a, b]\]c, d]. Then, either x ≤ c or d < x. In the
first case, x ∈]a, b ∧ c]. In the second, x ∈]a ∨ d, b]. Conversely,
if x ∈]a, b∧ c]∪]a∨d, b], then a < x ≤ b is true. Moreover, x ≤ c
or d < x. In any case, x �∈]c, d]. So x ∈]a, b]\]c, d]. We have
proved that:

]a, b]\]c, d] =]a, b ∧ c]∪]a ∨ d, b]
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3. If c ≤ d, then in particular:

b ∧ c ≤ c ≤ d ≤ a ∨ d

4. S is a set of subsets of R which obviously contains the empty
set. From 1., it is also closed under finite intersection. Let ]a, b]
and ]c, d] be two elements of S. If c > d, then ]c, d] = ∅ and
we have ]a, b]\]c, d] =]a, b]. If c ≤ d, then it follows from 3. that
b ∧ c ≤ a ∨ d. We conclude from 2. that:

]a, b]\]c, d] =]a, b ∧ c]]a ∨ d, b]
In any case, ]a, b]\]c, d] can be written as a finite union of pair-
wise disjoint elements of S. We have proved that S is indeed a
semi-ring on R, as defined in definition (6).

Exercise 1
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Exercise 2. The solution to this exercise is very similar to the proof
of theorem (2) : a measure defined on a semi-ring can be extended
to a measure defined on the ring generated by this semi-ring. In this
case, we are dealing with a finitely additive map which is not exactly
a measure, but the techniques involved are almost the same. We know
from the previous tutorial that the ring R(S) generated by the semi-
ring S, is the set of all finite unions of pairwise disjoint elements of
S. It is tempting to define μ̄ : R(S) → [0,+∞], by:

∀A = n
i=1Ai ∈ R(S) , μ̄(A)

�
=

n∑
i=1

μ(Ai) (3)

However, such definition may not be valid, unless the sum involved
in equation (3), is independent of the particular representation of
A ∈ R(S) as a finite union of pairwise disjoint elements of S. Suppose
that A = p

j=1Bj is another such representation of A. Then, for all
i = 1, . . . , n, we have:

Ai = Ai ∩A = p
j=1Ai ∩Bj
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Since each Ai ∩ Bj is an element of S, and μ is finitely additive, for
all i = 1, . . . , n, we have:

μ(Ai) =
p∑

j=1

μ(Ai ∩Bj)

and similarly for all j = 1, . . . , p:

μ(Bj) =
n∑

i=1

μ(Ai ∩Bj)

from which we conclude that:
n∑

i=1

μ(Ai) =
n∑

i=1

p∑
j=1

μ(Ai ∩Bj) =
p∑

j=1

μ(Bj)

It follows that the map μ̄ as defined by equation (3), is perfectly
well defined. Let A1, . . . , An be n pairwise disjoint elements of R(S),
n ≥ 1, each Ai having the representation:

Ai = pi

k=1A
k
i , i = 1, . . . , n
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as a finite union of pairwise disjoint elements of S. Suppose moreover
that A = n

i=1Ai (which is an element of R(S) since a ring is closed
under finite union). Then A has a representation:

A =
n⋃

i=1

pi⋃
k=1

Ak
i

where the Ak
i ’s are pairwise disjoint. From the very definition of μ̄:

μ̄(A) =
n∑

i=1

pi∑
k=1

μ(Ak
i )

and furthermore for all i = 1, . . . , n:

μ̄(Ai) =
pi∑

k=1

μ(Ak
i )

So we conclude that:

μ̄(A) =
n∑

i=1

μ̄(Ai)
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We have proved that μ̄ : R(S) → [0,+∞] is a finitely additive map.
Finally, if A ∈ S, taking n = 1 and A1 = A, A = n

i=1Ai is a
representation of A as a finite union of pairwise disjoint elements of
S. By definition of μ̄, μ̄(A) =

∑n
i=1 μ(Ai) = μ(A). Hence, we see

that μ̄|S = μ. We have proved the existence of a finitely additive map
μ̄ : R(S) → [0,+∞], such that μ̄|S = μ.

Exercise 2
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Exercise 3.

1. A ring being closed under finite union, intersection and differ-
ence, each Bi is an element of R(S). Suppose Bi ∩ Bj �= ∅
for some i, j = 1, . . . , n. Without loss of generality we can as-
sume that i ≤ j. Suppose that i < j and let x ∈ Bi ∩ Bj .
From x ∈ Bi we have x ∈ Ai ∩ A. From x ∈ Bj , we have
x �∈ (A1∩A)∪ . . .∪(Aj−1∩A). In particular x �∈ Ai∩A. This is
a contradiction, and it follows that i = j. The Bi’s are therefore
pairwise disjoint. For all i = 1, . . . , n we have Bi ⊆ Ai ∩A ⊆ A.
hence n

i=1Bi ⊆ A. Conversely, suppose x ∈ A ⊆ ∪n
i=1Ai.

There exists i ∈ {1, . . . , n} such that x ∈ Ai. Let i be the small-
est of such integer. If i = 1, then x ∈ A1 ∩ A = B1. If i > 1,
then x ∈ Ai ∩ A and x �∈ Aj ∩ A for all j < i. So x ∈ Bi.
In any case, x ∈ Bi. It follows that A ⊆ n

i=1Bi. We have
proved that B1, . . . , Bn are pairwise disjoint elements of R(S)
with A = n

i=1Bi.

2. μ̄ : R(S) → [0,+∞] being defined as in exercise (2), it is a
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finitely additive map. We have Bi ⊆ Ai ∩ A ⊆ Ai, for all
i = 1, . . . , n. It follows that Ai = Bi  (Ai \Bi), from which we
conclude that :

μ̄(Ai) = μ̄(Bi) + μ̄(Ai \Bi) ≥ μ̄(Bi)

3. From A = n
i=1Bi and μ̄ being finitely additive, we have:

μ̄(A) =
n∑

i=1

μ̄(Bi)

Using 2., we obtain:

μ̄(A) ≤
n∑

i=1

μ̄(Ai)

This is true for all A ∈ R(S) and A1, . . . , An in R(S) such that
A ⊆ ∪n

i=1Ai. It follows from definition (12) that μ̄ is indeed a
finitely sub-additive map.
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4. Suppose A ∈ S and A1, . . . , An ∈ S, (n ≥ 1), with A ⊆ ∪n
i=1Ai.

Since μ̄|S = μ, and μ̄ is finitely sub-additive (from 3.), we have:

μ(A) = μ̄(A) ≤
n∑

i=1

μ̄(Ai) =
n∑

i=1

μ(Ai)

It follows from definition (12) that μ is indeed finitely sub-
additive. The purpose of this exercise is to show that any finitely
additive map defined on a semi-ring S, is in fact also finitely
sub-additive. Note that proving that μ̄ is finitely sub-additive
is pretty straightforward. This is because μ̄ is defined on a ring,
which is closed under various finite operations (union, intersec-
tion, difference). However, μ being defined on a semi-ring only,
it is impossible to apply the same line of argument as the one
used for μ̄. It is in fact necessary for us to initially extend μ
from S to R(S), then prove the finite sub-additivity on R(S),
and conclude with the finite sub-additivity of μ on S.

Exercise 3
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Exercise 4.

1. Take i1 such that ai1 = min(a1, . . . , an). From ]ai1 , bi1 ] ⊆]a, b]
and ai1 < bi1 , we see that a ≤ ai1 < bi1 ≤ b. Suppose that
a < ai1 , and let x be such that a < x < ai1 ≤ b. Since x ∈]a, b],
there is j ∈ {1, . . . , n} such that x ∈]aj , bj]. By definition of i1,
we have ai1 ≤ aj < x. This is a contradiction, and it follows
that ai1 = a. We have proved the existence of i1 ∈ {1, . . . , n}
such that ai1 = a.

2. Suppose x ∈]ai, bi] for some i ∈ {1, . . . , n}, i �= i1. Since
]ai, bi] ⊆]a, b], x ∈]a, b] and x ≤ b. Also, a ≤ ai. From 1.,
ai1 = a. It follows that ai1 ≤ ai < x. However, the ]ai, bi]’s be-
ing pairwise disjoint and i �= i1, x �∈]ai1 , bi1 ]. Therefore x > bi1 .
We have proved that x ∈]bi1 , b] and consequently:

n⊎
i=1,i�=i1

]ai, bi] ⊆]bi1 , b]
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Conversely, let x ∈]bi1 , b] ⊆]a, b]. There exists i ∈ {1, . . . , n}
such that x ∈]ai, bi]. If i = i1, then x ∈]ai1 , bi1 ] which contra-
dicts bi1 < x. It follows that i �= i1 and:

]bi1 , b] ⊆
⊎

i=1,i�=i1

]ai, bi]

3. Using 1. and 2., starting from:

]a, b] =
n⊎

i=1

]ai, bi]

we have i1 ∈ {1, . . . , n} such that a = ai1 < bi1 and:

]bi1 , b] =
n⊎

i=1,i�=i1

]ai, bi]

Going one step further, there exists i2 ∈ {1, . . . , n} \ {i1} such
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that bi1 = ai2 < bi2 and:

]bi2 , b] =
n⊎

i=1,i�=i1,i2

]ai, bi]

By induction, we define i1 . . . , in distinct integers in {1, . . . , n},
(hence a permutation on {1, . . . , n}), such that:

a = ai1 < bi1 = ai2 < . . . < bin

and ]bin , b] = ∅. Since ]ain , bin ] ⊆]a, b] and ain < bin , we have
bin ≤ b. From ]bin , b] = ∅, we conclude that bin = b.

4. Let (i1, . . . , in) be a permutation of {1, . . . , n}, such that:

a = ai1 < bi1 = ai2 < . . . < bin = b

We have:

F (b) − F (a) =
n∑

k=1

F (bik
) − F (aik

)

www.probability.net

http://www.probability.net


Solutions to Exercises 34

from which we see that:

μ(]a, b]) =
n∑

k=1

μ(]aik
, bik

]) =
n∑

i=1

μ(]ai, bi])

This is true for all a < b, n ≥ 1 and ai < bi for i = 1, . . . , n,
such that:

]a, b] =
n⊎

i=1

]ai, bi]

Suppose A ∈ S, n ≥ 1 and A1, . . . , An ∈ S, with A = n
i=1Ai.

If A = ∅, then for all i = 1, . . . , n, we have Ai = ∅. In par-
ticular, μ(A) =

∑n
i=1 μ(Ai) is obviously satisfied. If A �= ∅,

then A is of the form A =]a, b] for some a < b in R. If we
consider J = {i = 1, . . . , n, Ai �= ∅}, then J �= ∅, and for all
i ∈ J , Ai is of the form Ai =]ai, bi] with ai < bi. Moreover,
A = i∈JAi and it follows from our previous developments that
μ(A) =

∑
i∈J μ(Ai). However, for all i = 1, . . . , n, if i �∈ J , then
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Ai = ∅ and μ(Ai) = 0. Consequently:

μ(A) =
∑
i∈J

μ(Ai) +
∑
i�∈J

μ(Ai) =
n∑

i=1

μ(Ai)

We have proved that μ : S → [0,+∞] as defined by (1) is finitely
additive. From exercise (3), it is also finitely sub-additive.

Exercise 4
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Exercise 5.

1. The sum
∑N

k=1 F (bik
) − F (aik

) can be written as:

F (biN ) − F (ai1) +
N−1∑
k=1

F (bik
) − F (aik+1)

F being non-decreasing, with biN ≤ b and a ≤ ai1 , we have
F (biN ) ≤ F (b) and F (a) ≤ F (ai1). Moreover, since bik

≤ aik+1

for all k = 1, . . . , N − 1, we have F (bik
) ≤ F (aik+1). It follows

that:
N∑

k=1

F (bik
) − F (aik

) ≤ F (b) − F (a)

2. Let N ≥ 1, and (i1, . . . , iN ) be a permutation of {1, . . . , N}
such that ai1 ≤ ai2 ≤ . . . ≤ aiN . Since ]ai1 , bi1 ] ⊆]a, b] (and
the fact that ai1 < bi1), we have a ≤ ai1 < bi1 . We also have
]aiN , biN ] ⊆]a, b] with aiN < biN . Hence, aiN < biN ≤ b. Let
k ∈ {1, . . . , N − 1}. Since the ]an, bn]’s are pairwise disjoint,
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in particular, ]aik
, bik

]∩]aik+1 , bik+1 ] = ∅. Let ε > 0 be such
that aik+1 + ε ∈]aik+1 , bik+1 ]. Then aik

≤ aik+1 < aik+1 + ε, and
aik+1+ε cannot be an element of ]aik

, bik
]. Hence, bik

< aik+1+ε.
Taking the limit as ε → 0, we have bik

≤ aik+1 . It follows that
the permutation (i1, . . . , iN) of {1, . . . , N} is such that:

a ≤ ai1 < bi1 ≤ ai2 < . . . < biN ≤ b

From 1., we obtain:
N∑

k=1

F (bik
) − F (aik

) ≤ F (b) − F (a)

and consequently:
N∑

n=1

μ(]an, bn]) =
N∑

k=1

μ(]aik
, bik

]) ≤ μ(]a, b]) (4)

Taking the supremum over all N ≥ 1 (or the limit as N → +∞)
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in the left-hand side of (4), we obtain:
+∞∑
n=1

μ(]an, bn]) ≤ μ(]a, b])

3. F being right-continuous, it is right-continuous in a ∈ R. Given
ε > 0, there exists η′ > 0 such that:

∀x ∈ [a, a+ η′[ , |F (x) − F (a)| ≤ ε

Take η = min(b − a, η′)/2. Then η ∈]0, b − a[, and we have
a+η ∈ [a, a+η′[. Therefore, |F (a+η)−F (a)| ≤ ε, and F being
non-decreasing, we finally have:

0 ≤ F (a+ η) − F (a) ≤ ε

4. Given n ≥ 1, F is right-continuous in bn ∈ R. Given ε > 0 and
ε′ = ε/2n, there exists η′n > 0 such that:

∀x ∈ [bn, bn + η′n[ , |F (x) − F (bn)| ≤ ε′
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Take ηn = η′n/2. Then bn + ηn ∈ [bn, bn + η′n[, and we have
|F (bn +ηn)−F (bn)| ≤ ε/2n. F being non-decreasing, we finally
have:

0 ≤ F (bn + ηn) − F (bn) ≤ ε

2n

5. Let x ∈ [a + η, b]. Then x ∈]a, b], and there exists n ≥ 1 such
that x ∈]an, bn]. In particular, x ∈]an, bn + ηn[. It follows that:

[a+ η, b] ⊆
+∞⋃
n=1

]an, bn + ηn[ (5)

6. We see from (5) that the closed interval [a+η, b] of R, is covered
by the family of open sets (]an, bn+ηn[)n≥1 in R. Since [a+η, b]
is a compact subset of R2, we can extract a finite sub-covering

2Note that the notion of compact subsets and the fact that any closed interval
[a, b] in R is indeed a compact subset of R, has not been approached so far in these
tutorials. This seems to contradict our promise that no results in these tutorials
should be used without proof. In fact, Tutorial 8 will give you ample reminders
on compactness. Just be a little patient.
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of [a + η, b]. In other words, there exist p ≥ 1, and integers
n1, . . . , np such that:

[a+ η, b] ⊆
p⋃

k=1

]ank
, bnk

+ ηnk
[

In particular:

]a+ η, b] ⊆
p⋃

k=1

]ank
, bnk

+ ηnk
] (6)

7. From exercise (4), we know that μ as defined in (1), is finitely
sub-additive. It follows from (6):

μ(]a+ η, b]) ≤
p∑

k=1

μ(]ank
, bnk

+ ηnk
]) (7)

Since a+η < b and an < bn < bn+ηn for all n ≥ 1, inequality (7)
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can be written as:

F (b) − F (a+ η) ≤
p∑

k=1

F (bnk
+ ηnk

) − F (ank
)

Using 3. and 4., we obtain:

F (b) − F (a) ≤ ε+
p∑

k=1

(F (bnk
) − F (ank

) +
ε

2nk
)

and since F is non-decreasing, we finally have:

F (b) − F (a) ≤ 2ε+
+∞∑
n=1

F (bn) − F (an) (8)

8. Taking the limit as ε→ 0 in (8), we obtain:

F (b) − F (a) ≤
+∞∑
n=1

F (bn) − F (an)
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Since a < b and an < bn for all n ≥ 1, we have:

μ(]a, b]) ≤
+∞∑
n=1

μ(]an, bn])

From 2., we conclude that:

μ(]a, b]) =
+∞∑
n=1

μ(]an, bn]) (9)

It follows that if A ∈ S and (An)n≥1 is a sequence of pairwise
disjoint elements of S, such that A = +∞

n=1An, we have:

μ(A) =
+∞∑
n=1

μ(An) (10)

Indeed, if A = ∅, then all An’s are empty and (10) is obviously
satisfied. If A �= ∅, then A =]a, b] for some a < b. Moreover,
if we define J = {n ≥ 1, An �= ∅}, then A = n∈JAn, and the
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following holds,
μ(A) =

∑
n∈J

μ(An) (11)

either as a consequence of (9), in the case when J is infinite, or
as a consequence of μ being finitely additive (exercise (4)), in
the case when J is finite. In any case, (10) follows immediately
from (11) and the fact that μ(∅) = 0. Having proved (10), we
conclude that μ : S → [0,+∞] as defined in (1) is indeed a
measure on the semi-ring S.

Exercise 5
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Exercise 6. Any statement of the form ∀x ∈ ∅ . . .3 is true. So ∅ ∈ TR,
and it is clear that R ∈ TR. So (i) of definition (13) is satisfied for
TR. Let A,B ∈ TR. Let x ∈ A∩B. Since x ∈ A, from definition (17),
there exists ε1 > 0 such that ]x − ε1, x + ε1[⊆ A. Since x ∈ B, there
exists ε2 > 0 such that ]x−ε2, x+ε2[⊆ B. It follows that if ε is defined
as ε = min(ε1, ε2), then ]x − ε, x + ε[⊆ A ∩ B. Hence A ∩ B ∈ TR,
and (ii) of definition (13) is satisfied for TR. Let (Ai)i∈I be a family
of elements of TR. Let x ∈ ∪i∈IAi. There exists i ∈ I such that
x ∈ Ai. Since by assumption Ai ∈ TR, there exists ε > 0 such that
]x− ε, x+ ε[⊆ Ai. In particular, ]x− ε, x+ ε[⊆ ∪i∈IAi. It follows that
∪i∈IAi ∈ TR, and (iii) of definition (13) is satisfied for TR. We have
proved that TR is indeed a topology on R.

Exercise 6

3 Recall that ∀x ∈ ∅, H is equivalent to x ∈ ∅ ⇒ H, and G ⇒ H is equivalent
to (G is false) or (both G and H are true).
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Exercise 7.

1. For all n ≥ 1, we have ]a, b] ⊆]a, b + 1/n[. Hence, we have
]a, b] ⊆ ∩+∞

n=1]a, b + 1/n[. Conversely, if x ∈ ∩+∞
n=1]a, b + 1/n[,

then for all n ≥ 1, we have a < x < b + 1/n. Taking the limit
as n → +∞, we obtain a < x ≤ b. It follows that x ∈]a, b] and
∩+∞

n=1]a, b+ 1/n[⊆]a, b]. Finally, ]a, b] = ∩+∞
n=1]a, b+ 1/n[.

2. Let a, b ∈ R, a ≤ b. For all n ≥ 1, the interval ]a, b+ 1/n[ is an
open set in R, (i.e. an element of TR). Indeed, if x ∈]a, b+1/n[,
take ε = min(b+ 1/n− x, x− a), then ]x− ε, x+ ε[⊆]a, b+ 1/n[.
Since TR ⊆ σ(TR) = B(R), ]a, b+ 1/n[ is also a Borel set in R,
(i.e. an element of B(R)). From 1., we have:

]a, b] =
+∞⋂
n=1

]a, b+ 1/n[=

(
+∞⋃
n=1

]a, b+ 1/n[c
)c

B(R) being a σ-algebra, it is closed under complementation and
countable union. It follows that ]a, b] ∈ B(R). This being true
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for all a ≤ b, we have proved that S ⊆ B(R). The σ-algebra
σ(S) generated by S being the smallest σ-algebra on R contain-
ing S, we finally have σ(S) ⊆ B(R).

3. Let U ∈ TR and x ∈ U . From definition (17), there exists ε > 0
such that ]x − ε, x + ε[⊆ U . Q being the set of all rational
numbers, it is dense in R: in other words, for all a < b, Q∩]a, b[
is a non-empty set4. In particular, there exist ax ∈ Q∩]x− ε, x[
and bx ∈ Q∩]x, x+ ε[. We have x ∈]ax, bx] ⊆ U .

4. Since for all x ∈ U , ]ax, bx] ⊆ U , we have ∪x∈U ]ax, bx] ⊆ U . If
x ∈ U , then x ∈]ax, bx]. So U ⊆ ∪x∈U ]ax, bx]. We have proved
that U = ∪x∈U ]ax, bx].

5. Let I = {]ax, bx], x ∈ U}. Since Q is a countable set, the
product Q2 = Q × Q is also countable. There exists a one-
to-one map φ : Q2 → N. Consider ψ : I → N defined by

4This density property of Q in R is not proved anywhere in these tutorials.
Please refer to any textbook containing a formal construction of the field R.
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ψ(]ax, bx]) = φ(ax, bx). Then if ψ(]ax′ , bx′]) = ψ(]ax, bx]), we
have φ(ax′ , bx′) = φ(ax, bx), and thus, (ax′ , bx′) = (ax, bx).
Hence, ]ax′ , bx′ ] =]ax, bx]. It follows that the map ψ : I → N is
an injective map. We have proved that I is a countable set.

6. For all i ∈ I, i =]ax, bx] for some x ∈ U . So i ∈ S. Define
Ai = i. Then Ai ∈ S for all i ∈ I, and we have:

U =
⋃

x∈U

]ax, bx] =
⋃
i∈I

Ai

7. Since I is a countable set, and Ai ∈ S for all i ∈ I, we have
U = ∪i∈IAi ∈ σ(S). This being true for all U ∈ TR, we have
proved that TR ⊆ σ(S). The Borel σ-algebra B(R) generated
by TR being the smallest σ-algebra on R containing TR, we have
B(R) ⊆ σ(S). From 2., we conclude that B(R) = σ(S). The
purpose of this exercise is to show theorem (6).

Exercise 7
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Exercise 8.

1. A σ-algebra being closed under difference, (Bn)n≥1 is indeed a
sequence of elements of F . Suppose Bn ∩ Bp �= ∅. Without
loss of generality, we can assume that n ≤ p. Suppose n < p
and let x ∈ Bn ∩ Bp. From x ∈ Bn, we have x ∈ An. From
x ∈ Bp, we have x �∈ Ap−1. However, An ⊆ Ap−1. This is a
contradiction, and it follows that n = p. We have proved that
the Bn’s are pairwise disjoint. Since Bn ⊆ An for all n ≥ 1, we
have +∞

n=1Bn ⊆ A. Conversely, let x ∈ A. There exists n ≥ 1
such that x ∈ An. Let n be the smallest integer such that x ∈
An. Then if n = 1, x ∈ B1. If n > 1, then x ∈ An \An−1 = Bn.
In any case x ∈ Bn and A ⊆ +∞

n=1Bn. We have proved that
(Bn)n≥1 is a sequence of pairwise disjoint elements of F , such
that A = +∞

n=1Bn.

2. Let N ≥ 1. For all n = 1, . . . , N , we have Bn ⊆ An ⊆ AN . So
N

n=1Bn ⊆ AN . Conversely, let x ∈ AN . Let n be the smallest
integer such that x ∈ An. Then 1 ≤ n ≤ N . If n = 1, then
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x ∈ B1. If n > 1, then x ∈ An\An−1 = Bn. In any case, x ∈ Bn

and AN ⊆ N
n=1Bn. We have proved that AN = N

n=1Bn.

3. μ being a measure on F , from 1. we obtain:

lim
N→+∞

N∑
n=1

μ(Bn)
�
=

+∞∑
n=1

μ(Bn) = μ(A)

However, it follows from 2.
N∑

n=1

μ(Bn) = μ(AN )

Hence:
lim

N→+∞
μ(AN ) = μ(A)

4. Since An ⊆ An+1, we have μ(An) ≤ μ(An+1) for all n ≥ 1. The
purpose of this exercise is to prove theorem (7).

Exercise 8
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Exercise 9.

1. A σ-algebra being closed under difference, each Bn is an element
of F . For all n ≥ 1, we have:

Bn = A1 ∩Ac
n ⊆ A1 ∩Ac

n+1 = Bn+1

Moreover:
+∞⋃
n=1

Bn = A1 ∩
(

+∞⋃
n=1

Ac
n

)
= A1 ∩

(
+∞⋂
n=1

An

)c

= A1 \A

We have proved that Bn ↑ A1 \A.

2. μ(Bn) ↑ μ(A1 \A) is a direct application of theorem (7).

3. Since An ⊆ A1, we have A1 = An  (A1 \ An). μ being a
measure on F , we obtain μ(A1) = μ(An) + μ(A1 \ An). Since
μ(A1) < +∞, all the terms involved in this equality are finite.
Hence, it is legitimate to write:

μ(An) = μ(A1) − μ(A1 \An)
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4. Since A ⊆ A1, we have A1 = A  (A1 \ A). μ being a measure
on F , we obtain μ(A1) = μ(A)+μ(A1 \A). Since μ(A1) < +∞,
all the terms involved in this equality are finite. Hence, it is
legitimate to write:

μ(A) = μ(A1) − μ(A1 \A)

5. Since for all n ≥ 1, A ⊆ An ⊆ A1, μ being a measure on
F , μ(A) ≤ μ(An) ≤ μ(A1). Similarly, A1 \ A ⊆ A1 implies
that μ(A1 \ A) ≤ μ(A1). Having μ(A1) < +∞ ensures that all
the terms involved in say μ(A1) = μ(A) + μ(A1 \ A) are finite,
allowing to subtract μ(A1 \ A) on both side of such equality.
One common mistake to make is to get involved in algebra with
non-finite terms, ending up with meaningless expressions of the
form +∞− (+∞). . .

www.probability.net

http://www.probability.net


Solutions to Exercises 52

6. Using 2., 3., 4. and the fact that μ(A1) < +∞5:

lim
n→+∞μ(An) = μ(A1)− lim

n→+∞μ(Bn) = μ(A1)−μ(A1\A) = μ(A)

7. For all n ≥ 1, An+1 ⊆ An, and therefore μ(An+1) ≤ μ(An).
The purpose of this exercise is to prove theorem (8).

Exercise 9

5 limn→+∞(+∞− n) = +∞, whereas +∞− limn→+∞ n is meaningless. . .
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Exercise 10.

1. For all n ≥ 1, we have An+1 ⊆ An, and:
+∞⋂
n=1

An =
+∞⋂
n=1

]n,+∞[= ∅

It follows that An ↓ ∅.

2. Let n ≥ 1. Given p ≥ n, define Ap
n =]n, p]. Then Ap

n ↑ An as
p→ +∞, and from theorem (7), we have:

μ(An) = lim
p→+∞μ(Ap

n) = lim
p→+∞ p− n = +∞

3. Since μ(An) = +∞ for all n ≥ 1, μ(An) → +∞ as n → +∞.
Since μ(∅) = 0, μ(An) ↓ μ(∅) fails to be true. The purpose
of this exercise is to serve as counter example to theorem (8),
if the condition μ(A1) < +∞ is relaxed. Indeed, An ↓ ∅, yet
we do not have μ(An) ↓ μ(∅). Note however that to apply
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theorem (8), μ(A1) < +∞ is not strictly speaking necessary:
if a slightly weaker assumption is made that μ(Ap) < +∞ for
some p ≥ 1, one can always apply theorem (8) to the sequence
(A′

n)n≥1 = (An+p−1)n≥1. . .

Exercise 10
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Exercise 11. Let S be the semi-ring S = {]a, b], a, b ∈ R}, and
μ : S → [0,+∞] be the map defined by equation (2). We know from
exercise (5) that μ is in fact a measure on S. From theorem (5) , μ can
be extended to a measure defined on the σ-algebra σ(S) generated by
S. In other words, there exists a measure μ̄ : σ(S) → [0,+∞], such
that μ̄|S = μ. From theorem (6), we know that the σ-algebra σ(S) is
in fact equal to the Borel σ-algebra B(R) on R. Hence, we have found
a measure μ̄ : B(R) → [0,+∞] such that μ̄|S = μ. In particular, we
have:

∀a, b ∈ R , a ≤ b , μ̄(]a, b]) = F (b) − F (a)
The purpose of this exercise is to prove the existence of the so called
Stieltjes measure on R, stated in theorem (9). This is a vitally im-
portant result, as most other measures ever encountered, are derived
one way or another from the Stieltjes measure on R.

Exercise 11
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Exercise 12.

1. Since μ1(]−n, n]) = F (n)−F (−n) = μ2(]−n, n]), Ω ∈ Dn.
Suppose A,B ∈ Dn, with A ⊆ B. We have:

μ1(B∩]−n, n]) = μ2(B∩]−n, n]) (12)

μ1(A∩]−n, n]) = μ2(A∩]−n, n]) (13)
Moreover, since B = A  (B \A), for i = 1, 2, we have:

μi(B∩]−n, n]) = μi(A∩]−n, n]) + μi((B \A)∩]−n, n]) (14)

All terms involved in (12), (13) and (14) being finite, subtract-
ing (13) from (12), and using (14), we obtain:

μ1((B \A)∩]−n, n]) = μ2((B \A)∩]−n, n])

This shows that B \ A ∈ Dn. Let (Ap)p≥1 be a sequence of
elements of Dn such thatAp ↑ A. Then Ap∩]−n, n] ↑ A∩]−n, n],
and from theorem (7), μi(Ap∩]−n, n]) ↑ μi(A∩]−n, n]) for all
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i = 1, 2. However, since Ap ∈ Dn for all p ≥ 1, we have:

μ1(Ap∩]−n, n]) = μ2(Ap∩]−n, n])

Taking the limit as p→ +∞, we obtain:

μ1(A∩]−n, n]) = μ2(A∩]−n, n])

So A ∈ Dn. Having checked (i), (ii) and (iii) of definition (1),
we have proved that Dn is indeed a Dynkin system on R.

2. A crucial step in proving that Dn is a Dynkin system on R,
consists in subtracting (13) from (12). One has to be very careful
in avoiding meaningless expressions of the form +∞ − (+∞).
Having μ1(]−n, n]) < +∞ and μ2(]−n, n]) < +∞ ensures that
all terms involved be finite.

3. Since μ1(∅∩]−n, n]) = 0 = μ2(∅∩]−n, n]), we have ∅ ∈ Dn. Let
a < b. From exercise (1), ]a, b]∩]−n, n] is an interval of the form
]a′, b′]. If a′ < b′, then:

μ1(]a′, b′]) = F (b′) − F (a′) = μ2(]a′, b′])
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Otherwise, μ1(]a′, b′]) = 0 = μ2(]a′, b′]). In any case, we have
μ1(]a′, b′]) = μ2(]a′, b′]), and ]a, b] ∈ Dn. We have proved that
S ⊆ Dn.

4. S being a semi-ring on R, from definition (6), it is closed un-
der finite intersection. Since S ⊆ Dn, Dn is a Dynkin system
containing a set of subsets of R, which is closed under finite
intersection. According to theorem (1), Dn also contains the
σ-algebra generated by S. In other words, σ(S) ⊆ Dn. How-
ever, from theorem (6), the σ-algebra generated by S, coincide
with the Borel σ-algebra on R, i.e. σ(S) = B(R). It follows
that B(R) ⊆ Dn.

5. Let A ∈ B(R). from 4., we have A ∈ Dn. In other words:

μ1(A∩]−n, n]) = μ2(A∩]−n, n])

This being true for all n ≥ 1, using theorem (7) and taking the
limit as n → +∞, we obtain: μ1(A) = μ2(A). This being true
for all A ∈ B(R), μ1 = μ2.
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6. Uniqueness follows from 5. Existence is proved in exercise (11).

Exercise 12
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Exercise 13.

1. F being non-decreasing, for all x < x0, F (x) ≤ F (x0). Define:

α
�
= sup

x<x0

F (x)

Then α ≤ F (x0) and in particular α < +∞. It follows that
given ε > 0, α − ε < α. Being a supremum, α is the smallest
upper-bound of all F (x)’s for x < x0. Hence, we see that α− ε
cannot be such upper-bound. There exists x1 < x0 such that
α− ε < F (x1). Since F is non-decreasing, for all x ∈]x1, x0[, we
have α− ε < F (x1) ≤ F (x) ≤ α ≤ α + ε. We conclude that for
all ε > 0, there exists x1 < x0 such that:

∀x ∈]x1, x0[ , |F (x) − α| ≤ ε

We have proved the existence of the left limit:

F (x0−)
�
= lim

x<x0,x→x0
F (x) = α ∈ R
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2. It is clear that {x0} ⊆ ∩+∞
n=1]x0 − 1/n, x0]. Conversely, suppose

that x ∈ ∩+∞
n=1]x0 − 1/n, x0]. Then for all n ≥ 1, we have

x0 − 1/n < x ≤ x0. Taking the limit as n → +∞, we obtain
x0 ≤ x ≤ x0, i.e. x = x0. So ∩+∞

n=1]x0 − 1/n, x0] ⊆ {x0}. We
have proved that {x0} = ∩+∞

n=1]x0 − 1/n, x0].

3. We have {x0} = (] −∞, x0[∪]x0,+∞[)c. Open intervals being
open sets for the usual topology on R, they are also Borel sets. A
σ-algebra being closed under finite union and complementation,
we conclude that {x0} ∈ B(R).

4. Given n ≥ 1, let An =]x0 − 1/n, x0]. Since An+1 ⊆ An, from 2.,
we have An ↓ {x0}. Also, dF (A1) = F (x0)−F (x0 − 1) ∈ R. In
particular, dF (A1) < +∞. Applying theorem (8), we obtain:

dF ({x0}) = lim
n→+∞ dF (An) = F (x0) − F (x0−)

Exercise 13
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Exercise 14.

1. ]a, b] =]a,+∞[∩(]b,+∞[)c. Open intervals being Borel sets, and
a σ-algebra being closed under finite intersection and comple-
mentation, we have ]a, b] ∈ B(R). In virtue of definition (20),
dF (]a, b]) = F (b) − F (a).

2. [a, b] = (] −∞, a[∪]b,+∞[)c and is therefore a Borel set. More-
over, using exercise (13):

dF ([a, b]) = dF ({a}) + dF (]a, b]) = F (b) − F (a−)

3. ]a, b[ being open is a Borel set. Moreover, using exercise (13):

dF (]a, b[) = dF (]a, b]) − dF ({b}) = F (b−) − F (a)

4. [a, b[=] −∞, b[∩(] −∞, a[)c and is therefore a Borel set. More-
over, using exercise (13):

dF ([a, b[) = dF ({a}) + dF (]a, b]) − dF ({b}) = F (b−) − F (a−)

Exercise 14
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Exercise 15.

1. Suppose A is a topology on Ω. Then ∅ and Ω are elements of
A. It follows that that ∅ ∩ Ω′ = ∅ and Ω ∩ Ω′ = Ω′ are both
elements of A|Ω′ . So (i) of definition (13) is satisfied for A|Ω′ .
Let A′, B′ ∈ A|Ω′ . There exist A,B ∈ A such that A′ = A ∩ Ω′

and B′ = B ∩ Ω′. Hence, A′ ∩ B′ = (A ∩ B) ∩ Ω′. Since A is
a topology, A ∩ B ∈ A. It follows that A′ ∩B′ ∈ A|Ω′ , and (ii)
of definition (13) is satisfied for A|Ω′ . Let (A′

i)i∈I be a family
of elements of A|Ω′ . There exists a family (Ai)i∈I of elements
of A, such that A′

i = Ai ∩ Ω′, for all i ∈ I. In particular,
∪i∈IA

′
i = (∪i∈IAi) ∩ Ω′. Since A is a topology, ∪i∈IAi ∈ A. It

follows that ∪i∈IA
′
i ∈ A|Ω′ and (iii) of definition (13) is satisfied

for A|Ω′ . We have proved that A|Ω′ is indeed a topology on Ω′.

2. Suppose A is a σ-algebra on Ω. Then Ω ∈ A, and we have
Ω′ = Ω ∩ Ω′ ∈ A|Ω′ . Let A′ ∈ A|Ω′ . There exists A ∈ A such
that A′ = A∩Ω′. Hence6, Ω′ \A′ = Ω′ ∩ (A′)c = Ω′ ∩Ac. Since

6The notation (A′)c refers to the complement of A′ in Ω, i.e. (A′)c = Ω \ A′.
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A is a σ-algebra, Ac ∈ A. It follows that Ω′ \ A′ ∈ A|Ω′ , and
A|Ω′ is closed under complementation in Ω′. let (A′

n)n≥1 be a
sequence of elements of A|Ω′ . There exists a sequence (An)n≥1

of elements of A, such that A′
n = An ∩ Ω′, for all n ≥ 1. In

particular, ∪+∞
n=1A

′
n = (∪+∞

n=1An) ∩ Ω′. Since A is a σ-algebra,
∪+∞

n=1An ∈ A. It follows that ∪+∞
n=1A

′
n ∈ A|Ω′ , and A|Ω′ is closed

under countable union. We have proved that A|Ω′ is indeed a
σ-algebra on Ω′.

Exercise 15

The complement of A′ in Ω′ is denoted Ω′ \ A′.
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Exercise 16.

1. When working in the context of two reference sets Ω′ and Ω
where Ω′ ⊆ Ω, given A ⊆ Ω′, the notation Ac and the no-
tion of complementation can be confusing: does it refer to the
complement of A in Ω, or the complement of A in Ω′. . . Unless
otherwise specified, it is customary to keep the notation Ac for
the complement of A relative to the large set (Ac = Ω \A). The
complement of A relative to the smaller set Ω′ can still be de-
noted Ω′ \ A. Similarly, whenever A′ is a set of subsets of Ω′

(like A|Ω′), then it is also a set of subsets of Ω. Hence, a nota-
tion such as σ(A′) can be ambiguous and confusing. One the
one hand, σ(A′) could be referring to the σ-algebra generated
by A′ on Ω. One the other hand, σ(A′) could be referring to the
σ-algebra generated by A′ on Ω′. Hence, it is very important
to specify clearly what is meant, when using a notation such
as σ(A′). In this exercise, σ(A) is a σ-algebra on Ω, whereas
σ(A|Ω′) is a σ-algebra on Ω′.
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2. Let A ∈ A. Then A ∈ σ(A) and A ∩ Ω′ ∈ A|Ω′ ⊆ σ(A|Ω′ ). It
follows that A ∈ Γ, and A ⊆ Γ.

3. σ(A) being a σ-algebra on Ω, Ω ∈ σ(A). σ(A|Ω′ ) being a
σ-algebra on Ω′, Ω ∩ Ω′ = Ω′ ∈ σ(A|Ω′). It follows that Ω ∈ Γ.
Let A ∈ Γ. Then A ∈ σ(A) and A ∩ Ω′ ∈ σ(A|Ω′ ). Hence,
Ac ∈ σ(A) and Ac ∩ Ω′ = Ω′ \ (A ∩ Ω′) ∈ σ(A|Ω′ ). So Ac ∈ Γ.
It follows that Γ is closed under complementation. Let (An)n≥1

be a sequence of elements of Γ. Then for all n ≥ 1, An ∈ σ(A)
and An ∩ Ω′ ∈ σ(A|Ω′). It follows that ∪+∞

n=1An ∈ σ(A), and
(∪+∞

n=1An) ∩ Ω′ = ∪+∞
n=1(An ∩ Ω′) ∈ σ(A|Ω′ ). So ∪+∞

n=1An ∈ Γ. It
follows that Γ is closed under countable union. We have proved
that Γ is indeed a σ-algebra on Ω.

4. The σ-algebra σ(A) on Ω generated by A, being the smallest
σ-algebra on Ω containing A, from A ⊆ Γ, and the fact that
Γ is σ-algebra on Ω, we have σ(A) ⊆ Γ. In particular, for
all A ∈ σ(A), we have A ∩ Ω′ ∈ σ(A|Ω′ ). Hence, we see that
σ(A)|Ω′ ⊆ σ(A|Ω′). However, for all A ∈ A, since A ∈ σ(A),
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we have A ∩ Ω′ ∈ σ(A)|Ω′ . It follows that A|Ω′ ⊆ σ(A)|Ω′ .
From exercise (15), σ(A)|Ω′ is a σ-algebra on Ω′. The σ-algebra
σ(A|Ω′) being the smallest σ-algebra on Ω′ containing A|Ω′ ,
we conclude that σ(A|Ω′) ⊆ σ(A)|Ω′ . We have proved that
σ(A|Ω′) = σ(A)|Ω′ . The purpose of this exercise is to prove
theorem (10).

Exercise 16
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Exercise 17.

1. From theorem (10), B(Ω)|Ω′ = σ(T )|Ω′ = σ(T|Ω′ ) = B(Ω′).

2. Suppose Ω′ ∈ B(Ω). Let A′ ∈ B(Ω′). Since B(Ω′) = B(Ω)|Ω′ ,
there exists A ∈ B(Ω) such that A′ = A∩Ω′. A σ-algebra being
closed under finite intersection, it follows that A′ ∈ B(Ω). We
have proved that B(Ω′) ⊆ B(Ω).

3. From 1., we have B(R+) = B(R)|R+ = {A ∩ R+ , A ∈ B(R)}

4. Since R+ =]−∞, 0[c∈ B(R), from 2. we have B(R+) ⊆ B(R).

Exercise 17
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Exercise 18.

1. From exercise (15), F being a σ-algebra on Ω, F|Ω′ is a σ-algebra
on Ω′. from definition (18), it follows that (Ω′,F|Ω′) is a mea-
surable space.

2. Suppose Ω′ ∈ F . A σ-algebra being closed under finite intersec-
tion, F|Ω′ = {A ∩ Ω′, A ∈ F} ⊆ F .

3. If Ω′ ∈ F , from 2., F|Ω′ ⊆ F . Hence, it is legitimate to consider
the restriction μ|(F|Ω′) of the map μ : F → [0,+∞] to the smaller
domain F|Ω′ . Denoting such restriction by μ|Ω′ , it is clearly a
measure on F|Ω′ (definition (9)). From definition (19), it follows
that (Ω′,F|Ω′ , μ|Ω′) is a measure space.

Exercise 18
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Exercise 19.

1. Let x0 ∈ R. If x0 < 0, then F̄ (x) → 0 = F̄ (x0) as x → x0. If
x0 ≥ 0, since F is right-continuous, we have:

lim
x0<x,x→x0

F̄ (x) = lim
x0<x,x→x0

F (x) = F (x0) = F̄ (x0)

Hence we see that F̄ is itself right-continuous. Let a ≤ b. If
0 ≤ a ≤ b, then F̄ (a) = F (a) ≤ F (b) = F̄ (b). If a < 0 ≤ b,
then F̄ (a) = 0 ≤ F (0) ≤ F (b) = F̄ (b). If a ≤ b < 0, then
F̄ (a) = 0 = F̄ (b). In any case, F̄ (a) ≤ F̄ (b) and F̄ is non-
decreasing.

2. B(R+) ⊆ B(R) and μ is well-defined. Using exercise (13):

μ({0}) = dF̄ ({0}) = F̄ (0) − F̄ (0−) = F (0)

Moreover, for all 0 ≤ a ≤ b:

μ(]a, b]) = dF̄ (]a, b]) = F̄ (b) − F̄ (a) = F (b) − F (a)

Exercise 19
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Exercise 20.

1. For all 0 ≤ a ≤ b, ]a, b] =]a, b] ∩ R+ ∈ B(R)|R+= B(R+).
Moreover, we have {0} =]−1, 0]∩R+ ∈ B(R+). we have proved
that C ⊆ B(R+).

2. Let U be open in R+. By definition (23), there exists V open
in R, such that U = V ∩R+. For all x ∈ V , there exists εx > 0
such that ]x − εx, x + εx[⊆ V . The set of rational numbers
Q being dense in R, we can choose px ∈ Q∩]x − εx, x[ and
qx ∈ Q∩]x, x + εx[. We have x ∈]px, qx] ⊆ V . If we define
I = {]px, qx], x ∈ V }, then I is a countable set (see exercise (7)
for more details). For all i ∈ I, let ai = px and bi = qx, where
x ∈ V is such that i =]px, qx]. From V = ∪x∈V ]px, qx], we
obtain V = ∪i∈I ]ai, bi], and finally U = ∪i∈I(R+∩]ai, bi]).

3. If 0 ≤ ai ≤ bi, then R+∩]ai, bi] =]ai, bi] ∈ C. If ai < 0 ≤ bi, then
R+∩]ai, bi] = [0, bi] = {0}∪]0, bi] ∈ σ(C). If ai ≤ bi < 0, then
R+∩]ai, bi] = ∅ =]1, 1] ∈ C. In any case, R+∩]ai, bi] ∈ σ(C).
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4. From 2. and 3., the set I being countable, we have:

U = ∪i∈I(R+∩]ai, bi]) ∈ σ(C)

This being true for all U open in R+, we have TR+ ⊆ σ(C).
B(R+) being the smallest σ-algebra on R+ containing TR+ , we
obtain that B(R+) ⊆ σ(C). However from 1., C ⊆ B(R+).
σ(C) being the smallest σ-algebra on R+ containing C, we have
σ(C) ⊆ B(R+). We have proved that σ(C) = B(R+).

Exercise 20
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Exercise 21.

1. μ1({0} ∩ [0, n]) = μ1({0}) = μ2({0}) = μ2({0} ∩ [0, n]). So
{0} ∈ Dn. For all 0 ≤ a ≤ b, ]a, b] ∩ [0, n] is either empty, or
is an interval of the form ]a′, b′] with 0 ≤ a′ ≤ b′. In any case,
μ1(]a, b] ∩ [0, n]) = μ2(]a, b] ∩ [0, n]). It follows that C ⊆ Dn.
Since μ1([0, n]) = μ1({0}) + μ1(]0, n]) = F (n) = μ2([0, n]), we
have R+ ∈ Dn and both μ1([0, n]) and μ2([0, n]) are finite. Let
A,B ∈ Dn with A ⊆ B. We have:

μ1(A ∩ [0, n]) = μ2(A ∩ [0, n])

μ1(B ∩ [0, n]) = μ2(B ∩ [0, n])
and for i = 1, 2:

μi(B ∩ [0, n]) = μi(A ∩ [0, n]) + μi((B \A) ∩ [0, n])

All terms being finite, we obtain:

μ1((B \A) ∩ [0, n]) = μ2((B \A) ∩ [0, n])
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and it follows that B \ A ∈ Dn. Let (Ap)p≥1 be a sequence of
elements of Dn, with Ap ↑ A. Then Ap ∩ [0, n] ↑ A ∩ [0, n]. For
all p ≥ 1, we have:

μ1(Ap ∩ [0, n]) = μ2(Ap ∩ [0, n])

Using theorem (7), taking the limit as p→ +∞, we obtain:

μ1(A ∩ [0, n]) = μ2(A ∩ [0, n])

and it follows that A ∈ Dn. We have proved that Dn is a Dynkin
system on R+ (definition (1)) with C ⊆ Dn.

2. μ1([0, n]) < +∞ and μ2([0, n]) < +∞ is important in ensuring
that the algebra required to prove that B \ A ∈ Dn, is indeed
meaningful.

3. Let 0 ≤ a ≤ b. Then {0}∩]a, b] = ∅ =]1, 1] ∈ C. If 0 ≤ c ≤ d,
then ]a, b]∩]c, d] can still be written as ]a′, b′] with 0 ≤ a′ ≤ b′,
and therefore lies in C. It follows that C is closed under finite
intersection. Since Dn is a Dynkin system on R+ such that
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C ⊆ Dn, using theorem (1), we see that σ(C) ⊆ Dn. However,
from exercise (20), σ(C) = B(R+). It follows that B(R+) ⊆ Dn.
Hence, for all A ∈ B(R+), we have μ1(A∩[0, n]) = μ2(A∩[0, n]).
Since A ∩ [0, n] ↑ A as n → +∞, using theorem (7), we obtain
μ1(A) = μ2(A). This being true for all Borel set A ∈ B(R+),
we have proved that μ1 = μ2.

4. Existence follows from exercise (19). Uniqueness is a conse-
quence of 3.

Exercise 21
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