3. Stieltjes-Lebesgue Measure

Definition 12 Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ and $\mu: \mathcal{A} \rightarrow[0,+\infty]$ be a map. We say that μ is finitely additive if and only if, given $n \geq 1$:

$$
A \in \mathcal{A}, A_{i} \in \mathcal{A}, A=\biguplus_{i=1}^{n} A_{i} \Rightarrow \mu(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

We say that μ is finitely sub-additive if and only if, given $n \geq 1$:

$$
A \in \mathcal{A}, A_{i} \in \mathcal{A}, A \subseteq \bigcup_{i=1}^{n} A_{i} \Rightarrow \mu(A) \leq \sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

ExErcise 1. Let $\mathcal{S} \triangleq] a, b], a, b \in \mathbf{R}\}$ be the set of all intervals $] a, b]$, defined as $] a, b]=\{x \in \mathbf{R}, a<x \leq b\}$.

1. Show that $] a, b] \cap] c, d]=] a \vee c, b \wedge d]$
2. Show that $] a, b] \backslash] c, d]=] a, b \wedge c] \cup] a \vee d, b]$

Tutorial 3: Stieltjes-Lebesgue Measure
3. Show that $c \leq d \Rightarrow b \wedge c \leq a \vee d$.
4. Show that \mathcal{S} is a semi-ring on \mathbf{R}.

Exercise 2. Suppose \mathcal{S} is a semi-ring in Ω and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ is finitely additive. Show that μ can be extended to a finitely additive $\operatorname{map} \bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$, with $\bar{\mu}_{\mid \mathcal{S}}=\mu$.

Exercise 3. Everything being as before, Let $A \in \mathcal{R}(\mathcal{S}), A_{i} \in \mathcal{R}(\mathcal{S})$, $A \subseteq \cup_{i=1}^{n} A_{i}$ where $n \geq 1$. Define $B_{1}=A_{1} \cap A$ and for $i=1, \ldots, n-1$:

$$
B_{i+1} \triangleq\left(A_{i+1} \cap A\right) \backslash\left(\left(A_{1} \cap A\right) \cup \ldots \cup\left(A_{i} \cap A\right)\right)
$$

1. Show that B_{1}, \ldots, B_{n} are pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$ such that $A=\uplus_{i=1}^{n} B_{i}$.
2. Show that for all $i=1, \ldots, n$, we have $\bar{\mu}\left(B_{i}\right) \leq \bar{\mu}\left(A_{i}\right)$.
3. Show that $\bar{\mu}$ is finitely sub-additive.
4. Show that μ is finitely sub-additive.

Exercise 4. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Let \mathcal{S} be the semi-ring on $\mathbf{R}, \mathcal{S}=\{] a, b], a, b \in \mathbf{R}\}$. Define the map $\mu: \mathcal{S} \rightarrow[0,+\infty]$ by $\mu(\emptyset)=0$, and:

$$
\begin{equation*}
\forall a \leq b, \mu(] a, b]) \triangleq F(b)-F(a) \tag{1}
\end{equation*}
$$

Let $a<b$ and $a_{i}<b_{i}$ for $i=1, \ldots, n$ and $n \geq 1$, with :

$$
] a, b]=\biguplus_{i=1}^{n}\right] a_{i}, b_{i}\right]
$$

1. Show that there is $i_{1} \in\{1, \ldots, n\}$ such that $a_{i_{1}}=a$.
2. Show that $\left.\left.\left.] b_{i_{1}}, b\right]=\uplus_{i \in\{1, \ldots, n\} \backslash\left\{i_{1}\right\}}\right] a_{i}, b_{i}\right]$
3. Show the existence of a permutation $\left(i_{1}, \ldots, i_{n}\right)$ of $\{1, \ldots, n\}$ such that $a=a_{i_{1}}<b_{i_{1}}=a_{i_{2}}<\ldots<b_{i_{n}}=b$.
4. Show that μ is finitely additive and finitely sub-additive.

ExERCISE 5. μ being defined as before, suppose $a<b$ and $a_{n}<b_{n}$ for $n \geq 1$ with:

$$
] a, b]=\biguplus_{n=1}^{+\infty}\right] a_{n}, b_{n}\right]
$$

Given $N \geq 1$, let $\left(i_{1}, \ldots, i_{N}\right)$ be a permutation of $\{1, \ldots, N\}$ with:

$$
a \leq a_{i_{1}}<b_{i_{1}} \leq a_{i_{2}}<\ldots<b_{i_{N}} \leq b
$$

1. Show that $\sum_{k=1}^{N} F\left(b_{i_{k}}\right)-F\left(a_{i_{k}}\right) \leq F(b)-F(a)$.
2. Show that $\left.\left.\left.\left.\sum_{n=1}^{+\infty} \mu(] a_{n}, b_{n}\right]\right) \leq \mu(] a, b\right]\right)$
3. Given $\epsilon>0$, show that there is $\eta \in] 0, b-a[$ such that:

$$
0 \leq F(a+\eta)-F(a) \leq \epsilon
$$

Tutorial 3: Stieltjes-Lebesgue Measure
4. For $n \geq 1$, show that there is $\eta_{n}>0$ such that:

$$
0 \leq F\left(b_{n}+\eta_{n}\right)-F\left(b_{n}\right) \leq \frac{\epsilon}{2^{n}}
$$

5. Show that $\left.[a+\eta, b] \subseteq \cup_{n=1}^{+\infty}\right] a_{n}, b_{n}+\eta_{n}[$.
6. Explain why there exist $p \geq 1$ and integers n_{1}, \ldots, n_{p} such that:

$$
] a+\eta, b] \subseteq \cup_{k=1}^{p}\right] a_{n_{k}}, b_{n_{k}}+\eta_{n_{k}}\right]
$$

7. Show that $F(b)-F(a) \leq 2 \epsilon+\sum_{n=1}^{+\infty} F\left(b_{n}\right)-F\left(a_{n}\right)$
8. Show that $\mu: \mathcal{S} \rightarrow[0,+\infty]$ is a measure.

Definition $13 A$ topology on Ω is a subset \mathcal{T} of the power set $\mathcal{P}(\Omega)$, with the following properties:

$$
\begin{array}{ll}
\text { (i) } & \Omega, \emptyset \in \mathcal{T} \\
\text { (ii) } & A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T} \\
\text { (iii) } & A_{i} \in \mathcal{T}, \forall i \in I \Rightarrow \bigcup_{i \in I} A_{i} \in \mathcal{T}
\end{array}
$$

Property (iii) of definition (13) can be translated as: for any family $\left(A_{i}\right)_{i \in I}$ of elements of \mathcal{T}, the union $\cup_{i \in I} A_{i}$ is still an element of \mathcal{T}. Hence, a topology on Ω, is a set of subsets of Ω containing Ω and the empty set, which is closed under finite intersection and arbitrary union.

Definition $14 A$ topological space is an ordered pair (Ω, \mathcal{T}), where Ω is a set and \mathcal{T} is a topology on Ω.

Definition 15 Let (Ω, \mathcal{T}) be a topological space. We say that $A \subseteq \Omega$ is an open set in Ω, if and only if it is an element of the topology \mathcal{T}. We say that $A \subseteq \Omega$ is a closed set in Ω, if and only if its complement A^{c} is an open set in Ω.

Definition 16 Let (Ω, \mathcal{T}) be a topological space. We define the Borel σ-algebra on Ω, denoted $\mathcal{B}(\Omega)$, as the σ-algebra on Ω, generated by the topology \mathcal{T}. In other words, $\mathcal{B}(\Omega)=\sigma(\mathcal{T})$

Definition 17 We define the usual topology on \mathbf{R}, denoted $\mathcal{T}_{\mathbf{R}}$, as the set of all $U \subseteq \mathbf{R}$ such that:

$$
\forall x \in U, \exists \epsilon>0,] x-\epsilon, x+\epsilon[\subseteq U
$$

ExERCISE 6. Show that $\mathcal{T}_{\mathbf{R}}$ is indeed a topology on \mathbf{R}.
EXERCISE 7. Consider the semi-ring $\mathcal{S} \triangleq] a, b], a, b \in \mathbf{R}\}$. Let $\mathcal{T}_{\mathbf{R}}$ be the usual topology on \mathbf{R}, and $\mathcal{B}(\mathbf{R})$ be the Borel σ-algebra on \mathbf{R}.

1. Let $a \leq b$. Show that $\left.] a, b]=\cap_{n=1}^{+\infty}\right] a, b+1 / n[$.
2. Show that $\sigma(\mathcal{S}) \subseteq \mathcal{B}(\mathbf{R})$.
3. Let U be an open subset of \mathbf{R}. Show that for all $x \in U$, there exist $a_{x}, b_{x} \in \mathbf{Q}$ such that $\left.\left.x \in\right] a_{x}, b_{x}\right] \subseteq U$.
4. Show that $\left.\left.U=\cup_{x \in U}\right] a_{x}, b_{x}\right]$.
5. Show that the set $\left.I \triangleq\left] a_{x}, b_{x}\right], x \in U\right\}$ is countable.
6. Show that U can be written $U=\cup_{i \in I} A_{i}$ with $A_{i} \in \mathcal{S}$.
7. Show that $\sigma(\mathcal{S})=\mathcal{B}(\mathbf{R})$.

Theorem 6 Let \mathcal{S} be the semi-ring $\mathcal{S}=\{] a, b], a, b \in \mathbf{R}\}$. Then, the Borel σ-algebra $\mathcal{B}(\mathbf{R})$ on \mathbf{R}, is generated by \mathcal{S}, i.e. $\mathcal{B}(\mathbf{R})=\sigma(\mathcal{S})$.

Definition 18 A measurable space is an ordered pair (Ω, \mathcal{F}) where Ω is a set and \mathcal{F} is a σ-algebra on Ω.

Tutorial 3: Stieltjes-Lebesgue Measure
Definition $19 \quad A$ measure space is a triple $(\Omega, \mathcal{F}, \mu)$ where (Ω, \mathcal{F}) is a measurable space and $\mu: \mathcal{F} \rightarrow[0,+\infty]$ is a measure on \mathcal{F}.

ExERCISE 8.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of elements of \mathcal{F} such that $A_{n} \subseteq A_{n+1}$ for all $n \geq 1$, and let $A=\cup_{n=1}^{+\infty} A_{n}$ (we write $A_{n} \uparrow A$). Define $B_{1}=A_{1}$ and for all $n \geq 1$, $B_{n+1}=A_{n+1} \backslash A_{n}$.

1. Show that $\left(B_{n}\right)$ is a sequence of pairwise disjoint elements of \mathcal{F} such that $A=\uplus_{n=1}^{+\infty} B_{n}$.
2. Given $N \geq 1$ show that $A_{N}=\uplus_{n=1}^{N} B_{n}$.
3. Show that $\mu\left(A_{N}\right) \rightarrow \mu(A)$ as $N \rightarrow+\infty$
4. Show that $\mu\left(A_{n}\right) \leq \mu\left(A_{n+1}\right)$ for all $n \geq 1$.

Theorem 7 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then if $\left(A_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{F}, such that $A_{n} \uparrow A$, we have $\mu\left(A_{n}\right) \uparrow \mu(A)^{1}$.

Exercise 9.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of elements of \mathcal{F} such that $A_{n+1} \subseteq A_{n}$ for all $n \geq 1$, and let $A=\cap_{n=1}^{+\infty} A_{n}$ (we write $A_{n} \downarrow A$). We assume that $\mu\left(A_{1}\right)<+\infty$.

1. Define $B_{n} \triangleq A_{1} \backslash A_{n}$ and show that $B_{n} \in \mathcal{F}, B_{n} \uparrow A_{1} \backslash A$.
2. Show that $\mu\left(B_{n}\right) \uparrow \mu\left(A_{1} \backslash A\right)$
3. Show that $\mu\left(A_{n}\right)=\mu\left(A_{1}\right)-\mu\left(A_{1} \backslash A_{n}\right)$
4. Show that $\mu(A)=\mu\left(A_{1}\right)-\mu\left(A_{1} \backslash A\right)$
5. Why is $\mu\left(A_{1}\right)<+\infty$ important in deriving those equalities.
6. Show that $\mu\left(A_{n}\right) \rightarrow \mu(A)$ as $n \rightarrow+\infty$
${ }^{1}$ i.e. the sequence $\left(\mu\left(A_{n}\right)\right)_{n \geq 1}$ is non-decreasing and converges to $\mu(A)$.
7. Show that $\mu\left(A_{n+1}\right) \leq \mu\left(A_{n}\right)$ for all $n \geq 1$.

Theorem 8 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then if $\left(A_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{F}, such that $A_{n} \downarrow A$ and $\mu\left(A_{1}\right)<+\infty$, we have $\mu\left(A_{n}\right) \downarrow \mu(A)$.

Exercise 10.Take $\Omega=\mathbf{R}$ and $\mathcal{F}=\mathcal{B}(\mathbf{R})$. Suppose μ is a measure on $\mathcal{B}(\mathbf{R})$ such that $\mu(] a, b])=b-a$, for $a<b$. Take $\left.A_{n}=\right] n,+\infty[$.

1. Show that $A_{n} \downarrow \emptyset$.
2. Show that $\mu\left(A_{n}\right)=+\infty$, for all $n \geq 1$.
3. Conclude that $\mu\left(A_{n}\right) \downarrow \mu(\emptyset)$ fails to be true.

Exercise 11. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Show the existence of a measure $\mu: \mathcal{B}(\mathbf{R}) \rightarrow[0,+\infty]$ such that:

$$
\begin{equation*}
\forall a, b \in \mathbf{R}, a \leq b, \mu(] a, b])=F(b)-F(a) \tag{2}
\end{equation*}
$$

Tutorial 3: Stieltjes-Lebesgue Measure
Exercise 12.Let μ_{1}, μ_{2} be two measures on $\mathcal{B}(\mathbf{R})$ with property (2). For $n \geq 1$, we define:

$$
\left.\left.\left.\left.\mathcal{D}_{n} \triangleq\left\{B \in \mathcal{B}(\mathbf{R}), \mu_{1}(B \cap]-n, n\right]\right)=\mu_{2}(B \cap]-n, n\right]\right)\right\}
$$

1. Show that \mathcal{D}_{n} is a Dynkin system on \mathbf{R}.
2. Explain why $\left.\left.\mu_{1}(]-n, n\right]\right)<+\infty$ and $\left.\left.\mu_{2}(]-n, n\right]\right)<+\infty$ is needed when proving 1 .
3. Show that $\mathcal{S} \triangleq] a, b], a, b \in \mathbf{R}\} \subseteq \mathcal{D}_{n}$.
4. Show that $\mathcal{B}(\mathbf{R}) \subseteq \mathcal{D}_{n}$.
5. Show that $\mu_{1}=\mu_{2}$.
6. Prove the following theorem.

Theorem 9 Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. There exists a unique measure $\mu: \mathcal{B}(\mathbf{R}) \rightarrow[0,+\infty]$ such that:

$$
\forall a, b \in \mathbf{R}, a \leq b, \mu(] a, b])=F(b)-F(a)
$$

Definition 20 Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. We call $\mathbf{S t i e l t j e s ~ m e a s u r e ~ o n ~} \mathbf{R}$ associated with F, the unique measure on $\mathcal{B}(\mathbf{R})$, denoted $d F$, such that:

$$
\forall a, b \in \mathbf{R}, a \leq b, d F(] a, b])=F(b)-F(a)
$$

Definition 21 We call Lebesgue measure on \mathbf{R}, the unique measure on $\mathcal{B}(\mathbf{R})$, denoted $d x$, such that:

$$
\forall a, b \in \mathbf{R}, a \leq b, d x(] a, b])=b-a
$$

Exercise 13. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Let $x_{0} \in \mathbf{R}$.

1. Show that the limit $F\left(x_{0}-\right)=\lim _{x<x_{0}, x \rightarrow x_{0}} F(x)$ exists and is an element of \mathbf{R}.

Tutorial 3: Stieltjes-Lebesgue Measure
2. Show that $\left.\left.\left\{x_{0}\right\}=\cap_{n=1}^{+\infty}\right] x_{0}-1 / n, x_{0}\right]$.
3. Show that $\left\{x_{0}\right\} \in \mathcal{B}(\mathbf{R})$
4. Show that $d F\left(\left\{x_{0}\right\}\right)=F\left(x_{0}\right)-F\left(x_{0}-\right)$

Exercise 14.Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Let $a \leq b$.

1. Show that $] a, b] \in \mathcal{B}(\mathbf{R})$ and $d F(] a, b])=F(b)-F(a)$
2. Show that $[a, b] \in \mathcal{B}(\mathbf{R})$ and $d F([a, b])=F(b)-F(a-)$
3. Show that $] a, b[\in \mathcal{B}(\mathbf{R})$ and $d F(] a, b[)=F(b-)-F(a)$
4. Show that $[a, b[\in \mathcal{B}(\mathbf{R})$ and $d F([a, b[)=F(b-)-F(a-)$

Exercise 15 . Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Let $\Omega^{\prime} \subseteq \Omega$. Define:

$$
\mathcal{A}_{\mid \Omega^{\prime}} \triangleq\left\{A \cap \Omega^{\prime}, A \in \mathcal{A}\right\}
$$

1. Show that if \mathcal{A} is a topology on $\Omega, \mathcal{A}_{\mid \Omega^{\prime}}$ is a topology on Ω^{\prime}.
2. Show that if \mathcal{A} is a σ-algebra on $\Omega, \mathcal{A}_{\mid \Omega^{\prime}}$ is a σ-algebra on Ω^{\prime}.

Definition 22 Let Ω be a set, and $\Omega^{\prime} \subseteq \Omega$. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. We call trace of \mathcal{A} on Ω^{\prime}, the subset $\mathcal{A}_{\mid \Omega^{\prime}}$ of the power set $\mathcal{P}\left(\Omega^{\prime}\right)$ defined by:

$$
\mathcal{A}_{\mid \Omega^{\prime}} \triangleq\left\{A \cap \Omega^{\prime}, A \in \mathcal{A}\right\}
$$

Definition 23 Let (Ω, \mathcal{T}) be a topological space and $\Omega^{\prime} \subseteq \Omega$. We call induced topology on Ω^{\prime}, denoted $\mathcal{T}_{\mid \Omega^{\prime}}$, the topology on Ω^{\prime} defined by:

$$
\mathcal{T}_{\mid \Omega^{\prime}} \triangleq\left\{A \cap \Omega^{\prime}, A \in \mathcal{T}\right\}
$$

In other words, the induced topology $\mathcal{T}_{\mid \Omega^{\prime}}$ is the trace of \mathcal{T} on Ω^{\prime}.
ExERCISE 16.Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Let $\Omega^{\prime} \subseteq \Omega$, and $\mathcal{A}_{\mid \Omega^{\prime}}$ be the trace of \mathcal{A} on Ω^{\prime}. Define:

$$
\Gamma \triangleq\left\{A \in \sigma(\mathcal{A}), A \cap \Omega^{\prime} \in \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)\right\}
$$

where $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$ refers to the σ-algebra generated by $\mathcal{A}_{\mid \Omega^{\prime}}$ on Ω^{\prime}.

1. Explain why the notation $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$ by itself is ambiguous.
2. Show that $\mathcal{A} \subseteq \Gamma$.
3. Show that Γ is a σ-algebra on Ω.
4. Show that $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)=\sigma(\mathcal{A})_{\mid \Omega^{\prime}}$

Theorem 10 Let $\Omega^{\prime} \subseteq \Omega$ and \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Then, the trace on Ω^{\prime} of the σ-algebra $\sigma(\mathcal{A})$ generated by \mathcal{A}, is equal to the σ-algebra on Ω^{\prime} generated by the trace of \mathcal{A} on Ω^{\prime}. In other words, $\sigma(\mathcal{A})_{\mid \Omega^{\prime}}=\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$.

ExERCISE 17.Let (Ω, \mathcal{T}) be a topological space and $\Omega^{\prime} \subseteq \Omega$ with its induced topology $\mathcal{T}_{\mid \Omega^{\prime}}$.

1. Show that $\mathcal{B}(\Omega)_{\mid \Omega^{\prime}}=\mathcal{B}\left(\Omega^{\prime}\right)$.
2. Show that if $\Omega^{\prime} \in \mathcal{B}(\Omega)$ then $\mathcal{B}\left(\Omega^{\prime}\right) \subseteq \mathcal{B}(\Omega)$.
3. Show that $\mathcal{B}\left(\mathbf{R}^{+}\right)=\left\{A \cap \mathbf{R}^{+}, A \in \mathcal{B}(\mathbf{R})\right\}$.
4. Show that $\mathcal{B}\left(\mathbf{R}^{+}\right) \subseteq \mathcal{B}(\mathbf{R})$.

ExERCISE 18 .Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Omega^{\prime} \subseteq \Omega$

1. Show that $\left(\Omega^{\prime}, \mathcal{F}_{\mid \Omega^{\prime}}\right)$ is a measurable space.
2. If $\Omega^{\prime} \in \mathcal{F}$, show that $\mathcal{F}_{\mid \Omega^{\prime}} \subseteq \mathcal{F}$.
3. If $\Omega^{\prime} \in \mathcal{F}$, show that $\left(\Omega^{\prime}, \mathcal{F}_{\mid \Omega^{\prime}}, \mu_{\mid \Omega^{\prime}}\right)$ is a measure space, where $\mu_{\mid \Omega^{\prime}}$ is defined as $\mu_{\mid \Omega^{\prime}}=\mu_{\mid\left(\mathcal{F}_{\mid \Omega^{\prime}}\right)}$.

Exercise 19. Let $F: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. Define:

$$
\bar{F}(x) \triangleq\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
F(x) & \text { if } & x \geq 0
\end{array}\right.
$$

1. Show that $\bar{F}: \mathbf{R} \rightarrow \mathbf{R}$ is right-continuous and non-decreasing.
2. Show that $\mu: \mathcal{B}\left(\mathbf{R}^{+}\right) \rightarrow[0,+\infty]$ defined by $\mu=d \bar{F}_{\mid \mathcal{B}\left(\mathbf{R}^{+}\right)}$, is a measure on $\mathcal{B}\left(\mathbf{R}^{+}\right)$with the properties:

$$
\begin{align*}
& \mu(\{0\})=F(0) \tag{i}\\
& \forall 0 \leq a \leq b, \mu(] a, b])=F(b)-F(a) \tag{ii}
\end{align*}
$$

Tutorial 3: Stieltjes-Lebesgue Measure

Exercise 20. Define: $\mathcal{C}=\{\{0\}\} \cup\{] a, b], 0 \leq a \leq b\}$

1. Show that $\mathcal{C} \subseteq \mathcal{B}\left(\mathbf{R}^{+}\right)$
2. Let U be open in \mathbf{R}^{+}. Show that U is of the form:

$$
\left.\left.U=\bigcup_{i \in I}\left(\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right]\right)
$$

where I is a countable set and $a_{i}, b_{i} \in \mathbf{R}$ with $a_{i} \leq b_{i}$.
3. For all $i \in I$, show that $\left.\left.\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right] \in \sigma(\mathcal{C})$.
4. Show that $\sigma(\mathcal{C})=\mathcal{B}\left(\mathbf{R}^{+}\right)$

EXERCISE 21.Let μ_{1} and μ_{2} be two measures on $\mathcal{B}\left(\mathbf{R}^{+}\right)$with:

$$
\begin{array}{ll}
(i) & \mu_{1}(\{0\})=\mu_{2}(\{0\})=F(0) \\
(i i) & \left.\left.\left.\left.\mu_{1}(] a, b\right]\right)=\mu_{2}(] a, b\right]\right)=F(b)-F(a)
\end{array}
$$

for all $0 \leq a \leq b$. For $n \geq 1$, we define:

$$
\mathcal{D}_{n}=\left\{B \in \mathcal{B}\left(\mathbf{R}^{+}\right), \mu_{1}(B \cap[0, n])=\mu_{2}(B \cap[0, n])\right\}
$$

1. Show that \mathcal{D}_{n} is a Dynkin system on \mathbf{R}^{+}with $\mathcal{C} \subseteq \mathcal{D}_{n}$, where the set \mathcal{C} is defined as in exercise (20).
2. Explain why $\mu_{1}([0, n])<+\infty$ and $\mu_{2}([0, n])<+\infty$ is important when proving 1.
3. Show that $\mu_{1}=\mu_{2}$.
4. Prove the following theorem.

Theorem 11 Let $F: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. There exists a unique $\mu: \mathcal{B}\left(\mathbf{R}^{+}\right) \rightarrow[0,+\infty]$ measure on $\mathcal{B}\left(\mathbf{R}^{+}\right)$such that:
(i) $\quad \mu(\{0\})=F(0)$
(ii) $\quad \forall 0 \leq a \leq b, \mu(] a, b])=F(b)-F(a)$

Definition 24 Let $F: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. We call Stieltjes measure on \mathbf{R}^{+}associated with F, the unique measure on $\mathcal{B}\left(\mathbf{R}^{+}\right)$, denoted $d F$, such that:

$$
\begin{array}{ll}
(i) & d F(\{0\})=F(0) \\
(i i) & \forall 0 \leq a \leq b, d F(] a, b])=F(b)-F(a)
\end{array}
$$

Solutions to Exercises

Exercise 1.

1. $x \in] a, b] \cap] c, d]$ is equivalent to $a<x \leq b$ and $c<x \leq d$. This is in turn equivalent to:

$$
a \vee c \triangleq \max (a, c)<x \leq \min (b, d) \triangleq b \wedge d
$$

We have proved that:

$$
] a, b] \cap] c, d]=] a \vee c, b \wedge d]
$$

2. Suppose $x \in] a, b] \backslash] c, d]$. Then, either $x \leq c$ or $d<x$. In the first case, $x \in] a, b \wedge c]$. In the second, $x \in] a \vee d, b]$. Conversely, if $x \in] a, b \wedge c] \cup] a \vee d, b]$, then $a<x \leq b$ is true. Moreover, $x \leq c$ or $d<x$. In any case, $x \notin] c, d]$. So $x \in] a, b] \backslash] c, d]$. We have proved that:

$$
] a, b] \backslash] c, d]=] a, b \wedge c] \cup] a \vee d, b]
$$

3. If $c \leq d$, then in particular:

$$
b \wedge c \leq c \leq d \leq a \vee d
$$

4. \mathcal{S} is a set of subsets of \mathbf{R} which obviously contains the empty set. From 1., it is also closed under finite intersection. Let]a, b] and $] c, d]$ be two elements of \mathcal{S}. If $c>d$, then $] c, d]=\emptyset$ and we have $] a, b] \backslash] c, d]=] a, b]$. If $c \leq d$, then it follows from 3. that $b \wedge c \leq a \vee d$. We conclude from 2. that:

$$
] a, b] \backslash] c, d]=] a, b \wedge c] \uplus] a \vee d, b]
$$

In any case, $] a, b] \backslash] c, d]$ can be written as a finite union of pairwise disjoint elements of \mathcal{S}. We have proved that \mathcal{S} is indeed a semi-ring on \mathbf{R}, as defined in definition (6).

Exercise 1

Exercise 2. The solution to this exercise is very similar to the proof of theorem (2) : a measure defined on a semi-ring can be extended to a measure defined on the ring generated by this semi-ring. In this case, we are dealing with a finitely additive map which is not exactly a measure, but the techniques involved are almost the same. We know from the previous tutorial that the $\operatorname{ring} \mathcal{R}(\mathcal{S})$ generated by the semiring \mathcal{S}, is the set of all finite unions of pairwise disjoint elements of \mathcal{S}. It is tempting to define $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$, by:

$$
\begin{equation*}
\forall A=\uplus_{i=1}^{n} A_{i} \in \mathcal{R}(\mathcal{S}) \quad, \quad \bar{\mu}(A) \triangleq \sum_{i=1}^{n} \mu\left(A_{i}\right) \tag{3}
\end{equation*}
$$

However, such definition may not be valid, unless the sum involved in equation (3), is independent of the particular representation of $A \in \mathcal{R}(\mathcal{S})$ as a finite union of pairwise disjoint elements of \mathcal{S}. Suppose that $A=\uplus_{j=1}^{p} B_{j}$ is another such representation of A. Then, for all $i=1, \ldots, n$, we have:

$$
A_{i}=A_{i} \cap A=\uplus_{j=1}^{p} A_{i} \cap B_{j}
$$

Since each $A_{i} \cap B_{j}$ is an element of \mathcal{S}, and μ is finitely additive, for all $i=1, \ldots, n$, we have:

$$
\mu\left(A_{i}\right)=\sum_{j=1}^{p} \mu\left(A_{i} \cap B_{j}\right)
$$

and similarly for all $j=1, \ldots, p$:

$$
\mu\left(B_{j}\right)=\sum_{i=1}^{n} \mu\left(A_{i} \cap B_{j}\right)
$$

from which we conclude that:

$$
\sum_{i=1}^{n} \mu\left(A_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{p} \mu\left(A_{i} \cap B_{j}\right)=\sum_{j=1}^{p} \mu\left(B_{j}\right)
$$

It follows that the map $\bar{\mu}$ as defined by equation (3), is perfectly well defined. Let A_{1}, \ldots, A_{n} be n pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$, $n \geq 1$, each A_{i} having the representation:

$$
A_{i}=\uplus_{k=1}^{p_{i}} A_{i}^{k} \quad, \quad i=1, \ldots, n
$$

as a finite union of pairwise disjoint elements of \mathcal{S}. Suppose moreover that $A=\uplus_{i=1}^{n} A_{i}$ (which is an element of $\mathcal{R}(\mathcal{S})$ since a ring is closed under finite union). Then A has a representation:

$$
A=\bigcup_{i=1}^{n} \bigcup_{k=1}^{p_{i}} A_{i}^{k}
$$

where the A_{i}^{k} 's are pairwise disjoint. From the very definition of $\bar{\mu}$:

$$
\bar{\mu}(A)=\sum_{i=1}^{n} \sum_{k=1}^{p_{i}} \mu\left(A_{i}^{k}\right)
$$

and furthermore for all $i=1, \ldots, n$:

$$
\bar{\mu}\left(A_{i}\right)=\sum_{k=1}^{p_{i}} \mu\left(A_{i}^{k}\right)
$$

So we conclude that:

$$
\bar{\mu}(A)=\sum_{i=1}^{n} \bar{\mu}\left(A_{i}\right)
$$

We have proved that $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ is a finitely additive map. Finally, if $A \in \mathcal{S}$, taking $n=1$ and $A_{1}=A, A=\uplus_{i=1}^{n} A_{i}$ is a representation of A as a finite union of pairwise disjoint elements of \mathcal{S}. By definition of $\bar{\mu}, \bar{\mu}(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)=\mu(A)$. Hence, we see that $\bar{\mu}_{\mid \mathcal{S}}=\mu$. We have proved the existence of a finitely additive map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$, such that $\bar{\mu}_{\mid \mathcal{S}}=\mu$.

Exercise 3.

1. A ring being closed under finite union, intersection and difference, each B_{i} is an element of $\mathcal{R}(\mathcal{S})$. Suppose $B_{i} \cap B_{j} \neq \emptyset$ for some $i, j=1, \ldots, n$. Without loss of generality we can assume that $i \leq j$. Suppose that $i<j$ and let $x \in B_{i} \cap B_{j}$. From $x \in B_{i}$ we have $x \in A_{i} \cap A$. From $x \in B_{j}$, we have $x \notin\left(A_{1} \cap A\right) \cup \ldots \cup\left(A_{j-1} \cap A\right)$. In particular $x \notin A_{i} \cap A$. This is a contradiction, and it follows that $i=j$. The B_{i} 's are therefore pairwise disjoint. For all $i=1, \ldots, n$ we have $B_{i} \subseteq A_{i} \cap A \subseteq A$. hence $\uplus_{i=1}^{n} B_{i} \subseteq A$. Conversely, suppose $x \in A \subseteq \cup_{i=1}^{n} A_{i}$. There exists $i \in\{1, \ldots, n\}$ such that $x \in A_{i}$. Let i be the smallest of such integer. If $i=1$, then $x \in A_{1} \cap A=B_{1}$. If $i>1$, then $x \in A_{i} \cap A$ and $x \notin A_{j} \cap A$ for all $j<i$. So $x \in B_{i}$. In any case, $x \in B_{i}$. It follows that $A \subseteq \uplus_{i=1}^{n} B_{i}$. We have proved that B_{1}, \ldots, B_{n} are pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$ with $A=\uplus_{i=1}^{n} B_{i}$.
2. $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ being defined as in exercise (2), it is a
finitely additive map. We have $B_{i} \subseteq A_{i} \cap A \subseteq A_{i}$, for all $i=1, \ldots, n$. It follows that $A_{i}=B_{i} \uplus\left(A_{i} \backslash B_{i}\right)$, from which we conclude that :

$$
\bar{\mu}\left(A_{i}\right)=\bar{\mu}\left(B_{i}\right)+\bar{\mu}\left(A_{i} \backslash B_{i}\right) \geq \bar{\mu}\left(B_{i}\right)
$$

3. From $A=\uplus_{i=1}^{n} B_{i}$ and $\bar{\mu}$ being finitely additive, we have:

$$
\bar{\mu}(A)=\sum_{i=1}^{n} \bar{\mu}\left(B_{i}\right)
$$

Using 2., we obtain:

$$
\bar{\mu}(A) \leq \sum_{i=1}^{n} \bar{\mu}\left(A_{i}\right)
$$

This is true for all $A \in \mathcal{R}(\mathcal{S})$ and A_{1}, \ldots, A_{n} in $\mathcal{R}(\mathcal{S})$ such that $A \subseteq \cup_{i=1}^{n} A_{i}$. It follows from definition (12) that $\bar{\mu}$ is indeed a finitely sub-additive map.
4. Suppose $A \in \mathcal{S}$ and $A_{1}, \ldots, A_{n} \in \mathcal{S},(n \geq 1)$, with $A \subseteq \cup_{i=1}^{n} A_{i}$. Since $\bar{\mu}_{\mid \mathcal{S}}=\mu$, and $\bar{\mu}$ is finitely sub-additive (from 3.), we have:

$$
\mu(A)=\bar{\mu}(A) \leq \sum_{i=1}^{n} \bar{\mu}\left(A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

It follows from definition (12) that μ is indeed finitely subadditive. The purpose of this exercise is to show that any finitely additive map defined on a semi-ring \mathcal{S}, is in fact also finitely sub-additive. Note that proving that $\bar{\mu}$ is finitely sub-additive is pretty straightforward. This is because $\bar{\mu}$ is defined on a ring, which is closed under various finite operations (union, intersection, difference). However, μ being defined on a semi-ring only, it is impossible to apply the same line of argument as the one used for $\bar{\mu}$. It is in fact necessary for us to initially extend μ from \mathcal{S} to $\mathcal{R}(\mathcal{S})$, then prove the finite sub-additivity on $\mathcal{R}(\mathcal{S})$, and conclude with the finite sub-additivity of μ on \mathcal{S}.

Exercise 4.

1. Take i_{1} such that $a_{i_{1}}=\min \left(a_{1}, \ldots, a_{n}\right)$. From $\left.\left.\left.] a_{i_{1}}, b_{i_{1}}\right] \subseteq\right] a, b\right]$ and $a_{i_{1}}<b_{i_{1}}$, we see that $a \leq a_{i_{1}}<b_{i_{1}} \leq b$. Suppose that $a<a_{i_{1}}$, and let x be such that $a<x<a_{i_{1}} \leq b$. Since $\left.\left.x \in\right] a, b\right]$, there is $j \in\{1, \ldots, n\}$ such that $\left.x \in] a_{j}, b_{j}\right]$. By definition of i_{1}, we have $a_{i_{1}} \leq a_{j}<x$. This is a contradiction, and it follows that $a_{i_{1}}=a$. We have proved the existence of $i_{1} \in\{1, \ldots, n\}$ such that $a_{i_{1}}=a$.
2. Suppose $\left.x \in] a_{i}, b_{i}\right]$ for some $i \in\{1, \ldots, n\}, i \neq i_{1}$. Since $\left.\left.\left.\left.\left.] a_{i}, b_{i}\right] \subseteq\right] a, b\right], x \in\right] a, b\right]$ and $x \leq b$. Also, $a \leq a_{i}$. From 1., $a_{i_{1}}=a$. It follows that $a_{i_{1}} \leq a_{i}<x$. However, the $] a_{i}, b_{i}$]'s being pairwise disjoint and $\left.\left.i \neq i_{1}, x \notin\right] a_{i_{1}}, b_{i_{1}}\right]$. Therefore $x>b_{i_{1}}$. We have proved that $\left.x \in] b_{i_{1}}, b\right]$ and consequently:

$$
\left.\left.\left.\left.\biguplus_{i=1, i \neq i_{1}}^{n}\right] a_{i}, b_{i}\right] \subseteq\right] b_{i_{1}}, b\right]
$$

Conversely, let $\left.\left.\left.x \in] b_{i_{1}}, b\right] \subseteq\right] a, b\right]$. There exists $i \in\{1, \ldots, n\}$ such that $\left.x \in] a_{i}, b_{i}\right]$. If $i=i_{1}$, then $\left.\left.x \in\right] a_{i_{1}}, b_{i_{1}}\right]$ which contradicts $b_{i_{1}}<x$. It follows that $i \neq i_{1}$ and:

$$
] b_{i_{1}}, b\right] \subseteq \biguplus_{i=1, i \neq i_{1}}\right] a_{i}, b_{i}\right]
$$

3. Using 1. and 2., starting from:

$$
] a, b]=\biguplus_{i=1}^{n}\right] a_{i}, b_{i}\right]
$$

we have $i_{1} \in\{1, \ldots, n\}$ such that $a=a_{i_{1}}<b_{i_{1}}$ and:

$$
] b_{i_{1}}, b\right]=\biguplus_{i=1, i \neq i_{1}}^{n}\right] a_{i}, b_{i}\right]
$$

Going one step further, there exists $i_{2} \in\{1, \ldots, n\} \backslash\left\{i_{1}\right\}$ such
that $b_{i_{1}}=a_{i_{2}}<b_{i_{2}}$ and:

$$
] b_{i_{2}}, b\right]=\biguplus_{i=1, i \neq i_{1}, i_{2}}^{n}\right] a_{i}, b_{i}\right]
$$

By induction, we define $i_{1} \ldots, i_{n}$ distinct integers in $\{1, \ldots, n\}$, (hence a permutation on $\{1, \ldots, n\}$), such that:

$$
a=a_{i_{1}}<b_{i_{1}}=a_{i_{2}}<\ldots<b_{i_{n}}
$$

and $\left.] b_{i_{n}}, b\right]=\emptyset$. Since $\left.\left.\left.] a_{i_{n}}, b_{i_{n}}\right] \subseteq\right] a, b\right]$ and $a_{i_{n}}<b_{i_{n}}$, we have $b_{i_{n}} \leq b$. From $\left.] b_{i_{n}}, b\right]=\emptyset$, we conclude that $b_{i_{n}}=b$.
4. Let $\left(i_{1}, \ldots, i_{n}\right)$ be a permutation of $\{1, \ldots, n\}$, such that:

$$
a=a_{i_{1}}<b_{i_{1}}=a_{i_{2}}<\ldots<b_{i_{n}}=b
$$

We have:

$$
F(b)-F(a)=\sum_{k=1}^{n} F\left(b_{i_{k}}\right)-F\left(a_{i_{k}}\right)
$$

from which we see that:

$$
\left.\left.\left.\left.\mu(] a, b])=\sum_{k=1}^{n} \mu(] a_{i_{k}}, b_{i_{k}}\right]\right)=\sum_{i=1}^{n} \mu(] a_{i}, b_{i}\right]\right)
$$

This is true for all $a<b, n \geq 1$ and $a_{i}<b_{i}$ for $i=1, \ldots, n$, such that:

$$
] a, b]=\biguplus_{i=1}^{n}\right] a_{i}, b_{i}\right]
$$

Suppose $A \in \mathcal{S}, n \geq 1$ and $A_{1}, \ldots, A_{n} \in \mathcal{S}$, with $A=\uplus_{i=1}^{n} A_{i}$. If $A=\emptyset$, then for all $i=1, \ldots, n$, we have $A_{i}=\emptyset$. In particular, $\mu(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$ is obviously satisfied. If $A \neq \emptyset$, then A is of the form $A=] a, b]$ for some $a<b$ in \mathbf{R}. If we consider $J=\left\{i=1, \ldots, n, A_{i} \neq \emptyset\right\}$, then $J \neq \emptyset$, and for all $i \in J, A_{i}$ is of the form $\left.\left.A_{i}=\right] a_{i}, b_{i}\right]$ with $a_{i}<b_{i}$. Moreover, $A=\uplus_{i \in J} A_{i}$ and it follows from our previous developments that $\mu(A)=\sum_{i \in J} \mu\left(A_{i}\right)$. However, for all $i=1, \ldots, n$, if $i \notin J$, then
$A_{i}=\emptyset$ and $\mu\left(A_{i}\right)=0$. Consequently:

$$
\mu(A)=\sum_{i \in J} \mu\left(A_{i}\right)+\sum_{i \notin J} \mu\left(A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

We have proved that $\mu: \mathcal{S} \rightarrow[0,+\infty]$ as defined by (1) is finitely additive. From exercise (3), it is also finitely sub-additive.

Exercise 4

Exercise 5.

1. The sum $\sum_{k=1}^{N} F\left(b_{i_{k}}\right)-F\left(a_{i_{k}}\right)$ can be written as:

$$
F\left(b_{i_{N}}\right)-F\left(a_{i_{1}}\right)+\sum_{k=1}^{N-1} F\left(b_{i_{k}}\right)-F\left(a_{i_{k+1}}\right)
$$

F being non-decreasing, with $b_{i_{N}} \leq b$ and $a \leq a_{i_{1}}$, we have $F\left(b_{i_{N}}\right) \leq F(b)$ and $F(a) \leq F\left(a_{i_{1}}\right)$. Moreover, since $b_{i_{k}} \leq a_{i_{k+1}}$ for all $k=1, \ldots, N-1$, we have $F\left(b_{i_{k}}\right) \leq F\left(a_{i_{k+1}}\right)$. It follows that:

$$
\sum_{k=1}^{N} F\left(b_{i_{k}}\right)-F\left(a_{i_{k}}\right) \leq F(b)-F(a)
$$

2. Let $N \geq 1$, and $\left(i_{1}, \ldots, i_{N}\right)$ be a permutation of $\{1, \ldots, N\}$ such that $a_{i_{1}} \leq a_{i_{2}} \leq \ldots \leq a_{i_{N}}$. Since $\left.\left.\left.] a_{i_{1}}, b_{i_{1}}\right] \subseteq\right] a, b\right]$ (and the fact that $a_{i_{1}}<b_{i_{1}}$), we have $a \leq a_{i_{1}}<b_{i_{1}}$. We also have $\left.\left.\left.] a_{i_{N}}, b_{i_{N}}\right] \subseteq\right] a, b\right]$ with $a_{i_{N}}<b_{i_{N}}$. Hence, $a_{i_{N}}<b_{i_{N}} \leq b$. Let $k \in\{1, \ldots, N-1\}$. Since the $\left.] a_{n}, b_{n}\right]$'s are pairwise disjoint,
in particular, $\left.\left.\left.] a_{i_{k}}, b_{i_{k}}\right] \cap\right] a_{i_{k+1}}, b_{i_{k+1}}\right]=\emptyset$. Let $\epsilon>0$ be such that $\left.\left.a_{i_{k+1}}+\epsilon \in\right] a_{i_{k+1}}, b_{i_{k+1}}\right]$. Then $a_{i_{k}} \leq a_{i_{k+1}}<a_{i_{k+1}}+\epsilon$, and $a_{i_{k+1}}+\epsilon$ cannot be an element of $\left.] a_{i_{k}}, b_{i_{k}}\right]$. Hence, $b_{i_{k}}<a_{i_{k+1}}+\epsilon$. Taking the limit as $\epsilon \rightarrow 0$, we have $b_{i_{k}} \leq a_{i_{k+1}}$. It follows that the permutation $\left(i_{1}, \ldots, i_{N}\right)$ of $\{1, \ldots, N\}$ is such that:

$$
a \leq a_{i_{1}}<b_{i_{1}} \leq a_{i_{2}}<\ldots<b_{i_{N}} \leq b
$$

From 1., we obtain:

$$
\sum_{k=1}^{N} F\left(b_{i_{k}}\right)-F\left(a_{i_{k}}\right) \leq F(b)-F(a)
$$

and consequently:

$$
\begin{equation*}
\left.\left.\left.\left.\left.\left.\sum_{n=1}^{N} \mu(] a_{n}, b_{n}\right]\right)=\sum_{k=1}^{N} \mu(] a_{i_{k}}, b_{i_{k}}\right]\right) \leq \mu(] a, b\right]\right) \tag{4}
\end{equation*}
$$

Taking the supremum over all $N \geq 1$ (or the limit as $N \rightarrow+\infty$)
in the left-hand side of (4), we obtain:

$$
\left.\left.\left.\left.\sum_{n=1}^{+\infty} \mu(] a_{n}, b_{n}\right]\right) \leq \mu(] a, b\right]\right)
$$

3. F being right-continuous, it is right-continuous in $a \in \mathbf{R}$. Given $\epsilon>0$, there exists $\eta^{\prime}>0$ such that:

$$
\forall x \in\left[a, a+\eta^{\prime}[\quad, \quad|F(x)-F(a)| \leq \epsilon\right.
$$

Take $\eta=\min \left(b-a, \eta^{\prime}\right) / 2$. Then $\left.\eta \in\right] 0, b-a[$, and we have $a+\eta \in\left[a, a+\eta^{\prime}[\right.$. Therefore, $|F(a+\eta)-F(a)| \leq \epsilon$, and F being non-decreasing, we finally have:

$$
0 \leq F(a+\eta)-F(a) \leq \epsilon
$$

4. Given $n \geq 1, F$ is right-continuous in $b_{n} \in \mathbf{R}$. Given $\epsilon>0$ and $\epsilon^{\prime}=\epsilon / 2^{n}$, there exists $\eta_{n}^{\prime}>0$ such that:

$$
\forall x \in\left[b_{n}, b_{n}+\eta_{n}^{\prime}\left[\quad, \quad\left|F(x)-F\left(b_{n}\right)\right| \leq \epsilon^{\prime}\right.\right.
$$

Take $\eta_{n}=\eta_{n}^{\prime} / 2$. Then $b_{n}+\eta_{n} \in\left[b_{n}, b_{n}+\eta_{n}^{\prime}[\right.$, and we have $\left|F\left(b_{n}+\eta_{n}\right)-F\left(b_{n}\right)\right| \leq \epsilon / 2^{n}$. F being non-decreasing, we finally have:

$$
0 \leq F\left(b_{n}+\eta_{n}\right)-F\left(b_{n}\right) \leq \frac{\epsilon}{2^{n}}
$$

5. Let $x \in[a+\eta, b]$. Then $x \in] a, b]$, and there exists $n \geq 1$ such that $\left.x \in] a_{n}, b_{n}\right]$. In particular, $\left.x \in\right] a_{n}, b_{n}+\eta_{n}[$. It follows that:

$$
\begin{equation*}
\left.[a+\eta, b] \subseteq \bigcup_{n=1}^{+\infty}\right] a_{n}, b_{n}+\eta_{n}[\tag{5}
\end{equation*}
$$

6. We see from (5) that the closed interval $[a+\eta, b]$ of \mathbf{R}, is covered by the family of open sets (]$a_{n}, b_{n}+\eta_{n}[)_{n \geq 1}$ in \mathbf{R}. Since $[a+\eta, b]$ is a compact subset of \mathbf{R}^{2}, we can extract a finite sub-covering

[^0]of $[a+\eta, b]$. In other words, there exist $p \geq 1$, and integers n_{1}, \ldots, n_{p} such that:
$$
\left.[a+\eta, b] \subseteq \bigcup_{k=1}^{p}\right] a_{n_{k}}, b_{n_{k}}+\eta_{n_{k}}[
$$

In particular:

$$
\begin{equation*}
] a+\eta, b] \subseteq \bigcup_{k=1}^{p}\right] a_{n_{k}}, b_{n_{k}}+\eta_{n_{k}}\right] \tag{6}
\end{equation*}
$$

7. From exercise (4), we know that μ as defined in (1), is finitely sub-additive. It follows from (6):

$$
\begin{equation*}
\left.\left.\mu(] a+\eta, b]) \leq \sum_{k=1}^{p} \mu(] a_{n_{k}}, b_{n_{k}}+\eta_{n_{k}}\right]\right) \tag{7}
\end{equation*}
$$

Since $a+\eta<b$ and $a_{n}<b_{n}<b_{n}+\eta_{n}$ for all $n \geq 1$, inequality (7)
can be written as:

$$
F(b)-F(a+\eta) \leq \sum_{k=1}^{p} F\left(b_{n_{k}}+\eta_{n_{k}}\right)-F\left(a_{n_{k}}\right)
$$

Using 3. and 4., we obtain:

$$
F(b)-F(a) \leq \epsilon+\sum_{k=1}^{p}\left(F\left(b_{n_{k}}\right)-F\left(a_{n_{k}}\right)+\frac{\epsilon}{2^{n_{k}}}\right)
$$

and since F is non-decreasing, we finally have:

$$
\begin{equation*}
F(b)-F(a) \leq 2 \epsilon+\sum_{n=1}^{+\infty} F\left(b_{n}\right)-F\left(a_{n}\right) \tag{8}
\end{equation*}
$$

8. Taking the limit as $\epsilon \rightarrow 0$ in (8), we obtain:

$$
F(b)-F(a) \leq \sum_{n=1}^{+\infty} F\left(b_{n}\right)-F\left(a_{n}\right)
$$

Since $a<b$ and $a_{n}<b_{n}$ for all $n \geq 1$, we have:

$$
\left.\left.\mu(] a, b]) \leq \sum_{n=1}^{+\infty} \mu(] a_{n}, b_{n}\right]\right)
$$

From 2., we conclude that:

$$
\begin{equation*}
\left.\left.\mu(] a, b])=\sum_{n=1}^{+\infty} \mu(] a_{n}, b_{n}\right]\right) \tag{9}
\end{equation*}
$$

It follows that if $A \in \mathcal{S}$ and $\left(A_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{S}, such that $A=\uplus_{n=1}^{+\infty} A_{n}$, we have:

$$
\begin{equation*}
\mu(A)=\sum_{n=1}^{+\infty} \mu\left(A_{n}\right) \tag{10}
\end{equation*}
$$

Indeed, if $A=\emptyset$, then all A_{n} 's are empty and (10) is obviously satisfied. If $A \neq \emptyset$, then $A=] a, b]$ for some $a<b$. Moreover, if we define $J=\left\{n \geq 1, A_{n} \neq \emptyset\right\}$, then $A=\uplus_{n \in J} A_{n}$, and the
following holds,

$$
\begin{equation*}
\mu(A)=\sum_{n \in J} \mu\left(A_{n}\right) \tag{11}
\end{equation*}
$$

either as a consequence of (9), in the case when J is infinite, or as a consequence of μ being finitely additive (exercise (4)), in the case when J is finite. In any case, (10) follows immediately from (11) and the fact that $\mu(\emptyset)=0$. Having proved (10), we conclude that $\mu: \mathcal{S} \rightarrow[0,+\infty]$ as defined in (1) is indeed a measure on the semi-ring \mathcal{S}.

Exercise 5

Exercise 6. Any statement of the form $\forall x \in \emptyset \ldots{ }^{3}$ is true. $\mathrm{So} \emptyset \in \mathcal{T}_{\mathbf{R}}$, and it is clear that $\mathbf{R} \in \mathcal{T}_{\mathbf{R}}$. So (i) of definition (13) is satisfied for $\mathcal{T}_{\mathbf{R}}$. Let $A, B \in \mathcal{T}_{\mathbf{R}}$. Let $x \in A \cap B$. Since $x \in A$, from definition (17), there exists $\epsilon_{1}>0$ such that $] x-\epsilon_{1}, x+\epsilon_{1}[\subseteq A$. Since $x \in B$, there exists $\epsilon_{2}>0$ such that $] x-\epsilon_{2}, x+\epsilon_{2}[\subseteq B$. It follows that if ϵ is defined as $\epsilon=\min \left(\epsilon_{1}, \epsilon_{2}\right)$, then $] x-\epsilon, x+\epsilon\left[\subseteq A \cap B\right.$. Hence $A \cap B \in \mathcal{T}_{\mathbf{R}}$, and (ii) of definition (13) is satisfied for $\mathcal{T}_{\mathbf{R}}$. Let $\left(A_{i}\right)_{i \in I}$ be a family of elements of $\mathcal{T}_{\mathbf{R}}$. Let $x \in \cup_{i \in I} A_{i}$. There exists $i \in I$ such that $x \in A_{i}$. Since by assumption $A_{i} \in \mathcal{T}_{\mathbf{R}}$, there exists $\epsilon>0$ such that $] x-\epsilon, x+\epsilon\left[\subseteq A_{i}\right.$. In particular, $] x-\epsilon, x+\epsilon\left[\subseteq \cup_{i \in I} A_{i}\right.$. It follows that $\cup_{i \in I} A_{i} \in \mathcal{T}_{\mathbf{R}}$, and (iii) of definition (13) is satisfied for $\mathcal{T}_{\mathbf{R}}$. We have proved that $\mathcal{T}_{\mathbf{R}}$ is indeed a topology on \mathbf{R}.

Exercise 6
${ }^{3}$ Recall that $\forall x \in \emptyset, H$ is equivalent to $x \in \emptyset \Rightarrow H$, and $G \Rightarrow H$ is equivalent to (G is false) or (both G and H are true).

Exercise 7.

1. For all $n \geq 1$, we have $] a, b] \subseteq] a, b+1 / n[$. Hence, we have $\left.] a, b] \subseteq \cap_{n=1}^{+\infty}\right] a, b+1 / n\left[\right.$. Conversely, if $\left.x \in \cap_{n=1}^{+\infty}\right] a, b+1 / n[$, then for all $n \geq 1$, we have $a<x<b+1 / n$. Taking the limit as $n \rightarrow+\infty$, we obtain $a<x \leq b$. It follows that $x \in] a, b]$ and $\left.\left.\cap_{n=1}^{+\infty}\right] a, b+1 / n[\subseteq] a, b\right]$. Finally, $\left.\left.] a, b\right]=\cap_{n=1}^{+\infty}\right] a, b+1 / n[$.
2. Let $a, b \in \mathbf{R}, a \leq b$. For all $n \geq 1$, the interval $] a, b+1 / n[$ is an open set in \mathbf{R}, (i.e. an element of $\mathcal{T}_{\mathbf{R}}$). Indeed, if $\left.x \in\right] a, b+1 / n[$, take $\epsilon=\min (b+1 / n-x, x-a)$, then $] x-\epsilon, x+\epsilon[\subseteq] a, b+1 / n[$. Since $\left.\mathcal{T}_{\mathbf{R}} \subseteq \sigma\left(\mathcal{T}_{\mathbf{R}}\right)=\mathcal{B}(\mathbf{R}),\right] a, b+1 / n[$ is also a Borel set in \mathbf{R}, (i.e. an element of $\mathcal{B}(\mathbf{R})$). From 1., we have:

$$
] a, b]=\bigcap_{n=1}^{+\infty}\right] a, b+1 / n\left[=\left(\bigcup_{n=1}^{+\infty}\right] a, b+1 / n\left[^{c}\right)^{c}\right.
$$

$\mathcal{B}(\mathbf{R})$ being a σ-algebra, it is closed under complementation and countable union. It follows that $] a, b] \in \mathcal{B}(\mathbf{R})$. This being true
for all $a \leq b$, we have proved that $\mathcal{S} \subseteq \mathcal{B}(\mathbf{R})$. The σ-algebra $\sigma(\mathcal{S})$ generated by \mathcal{S} being the smallest σ-algebra on \mathbf{R} containing \mathcal{S}, we finally have $\sigma(\mathcal{S}) \subseteq \mathcal{B}(\mathbf{R})$.
3. Let $U \in \mathcal{T}_{\mathbf{R}}$ and $x \in U$. From definition (17), there exists $\epsilon>0$ such that $] x-\epsilon, x+\epsilon[\subseteq U$. Q being the set of all rational numbers, it is dense in \mathbf{R} : in other words, for all $a<b, \mathbf{Q} \cap] a, b[$ is a non-empty set ${ }^{4}$. In particular, there exist $\left.a_{x} \in \mathbf{Q} \cap\right] x-\epsilon, x[$ and $\left.b_{x} \in \mathbf{Q} \cap\right] x, x+\epsilon[$. We have $\left.x \in] a_{x}, b_{x}\right] \subseteq U$.
4. Since for all $\left.x \in U,] a_{x}, b_{x}\right] \subseteq U$, we have $\left.\left.\cup_{x \in U}\right] a_{x}, b_{x}\right] \subseteq U$. If $x \in U$, then $\left.x \in] a_{x}, b_{x}\right]$. So $\left.\left.U \subseteq \cup_{x \in U}\right] a_{x}, b_{x}\right]$. We have proved that $\left.\left.U=\cup_{x \in U}\right] a_{x}, b_{x}\right]$.
5. Let $\left.\left.I=\{] a_{x}, b_{x}\right], x \in U\right\}$. Since \mathbf{Q} is a countable set, the product $\mathbf{Q}^{2}=\mathbf{Q} \times \mathbf{Q}$ is also countable. There exists a one-to-one map $\phi: \mathbf{Q}^{2} \rightarrow \mathbf{N}$. Consider $\psi: I \rightarrow \mathbf{N}$ defined by
${ }^{4}$ This density property of \mathbf{Q} in \mathbf{R} is not proved anywhere in these tutorials. Please refer to any textbook containing a formal construction of the field \mathbf{R}.
$\left.\left.\psi(] a_{x}, b_{x}\right]\right)=\phi\left(a_{x}, b_{x}\right)$. Then if $\left.\left.\left.\left.\psi(] a_{x^{\prime}}, b_{x^{\prime}}\right]\right)=\psi(] a_{x}, b_{x}\right]\right)$, we have $\phi\left(a_{x^{\prime}}, b_{x^{\prime}}\right)=\phi\left(a_{x}, b_{x}\right)$, and thus, $\left(a_{x^{\prime}}, b_{x^{\prime}}\right)=\left(a_{x}, b_{x}\right)$. Hence, $\left.\left.\left.] a_{x^{\prime}}, b_{x^{\prime}}\right]=\right] a_{x}, b_{x}\right]$. It follows that the map $\psi: I \rightarrow \mathbf{N}$ is an injective map. We have proved that I is a countable set.
6. For all $\left.i \in I, i=] a_{x}, b_{x}\right]$ for some $x \in U$. So $i \in \mathcal{S}$. Define $A_{i}=i$. Then $A_{i} \in \mathcal{S}$ for all $i \in I$, and we have:

$$
\left.\left.U=\bigcup_{x \in U}\right] a_{x}, b_{x}\right]=\bigcup_{i \in I} A_{i}
$$

7. Since I is a countable set, and $A_{i} \in \mathcal{S}$ for all $i \in I$, we have $U=\cup_{i \in I} A_{i} \in \sigma(\mathcal{S})$. This being true for all $U \in \mathcal{T}_{\mathbf{R}}$, we have proved that $\mathcal{T}_{\mathbf{R}} \subseteq \sigma(\mathcal{S})$. The Borel σ-algebra $\mathcal{B}(\mathbf{R})$ generated by $\mathcal{T}_{\mathbf{R}}$ being the smallest σ-algebra on \mathbf{R} containing $\mathcal{T}_{\mathbf{R}}$, we have $\mathcal{B}(\mathbf{R}) \subseteq \sigma(\mathcal{S})$. From 2., we conclude that $\mathcal{B}(\mathbf{R})=\sigma(\mathcal{S})$. The purpose of this exercise is to show theorem (6).

Exercise 7

Exercise 8.

1. A σ-algebra being closed under difference, $\left(B_{n}\right)_{n \geq 1}$ is indeed a sequence of elements of \mathcal{F}. Suppose $B_{n} \cap B_{p} \neq \emptyset$. Without loss of generality, we can assume that $n \leq p$. Suppose $n<p$ and let $x \in B_{n} \cap B_{p}$. From $x \in B_{n}$, we have $x \in A_{n}$. From $x \in B_{p}$, we have $x \notin A_{p-1}$. However, $A_{n} \subseteq A_{p-1}$. This is a contradiction, and it follows that $n=p$. We have proved that the B_{n} 's are pairwise disjoint. Since $B_{n} \subseteq A_{n}$ for all $n \geq 1$, we have $\uplus_{n=1}^{+\infty} B_{n} \subseteq A$. Conversely, let $x \in A$. There exists $n \geq 1$ such that $x \in A_{n}$. Let n be the smallest integer such that $x \in$ A_{n}. Then if $n=1, x \in B_{1}$. If $n>1$, then $x \in A_{n} \backslash A_{n-1}=B_{n}$. In any case $x \in B_{n}$ and $A \subseteq \uplus_{n=1}^{+\infty} B_{n}$. We have proved that $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{F}, such that $A=\uplus_{n=1}^{+\infty} B_{n}$.
2. Let $N \geq 1$. For all $n=1, \ldots, N$, we have $B_{n} \subseteq A_{n} \subseteq A_{N}$. So $\uplus_{n=1}^{N} B_{n} \subseteq A_{N}$. Conversely, let $x \in A_{N}$. Let n be the smallest integer such that $x \in A_{n}$. Then $1 \leq n \leq N$. If $n=1$, then
$x \in B_{1}$. If $n>1$, then $x \in A_{n} \backslash A_{n-1}=B_{n}$. In any case, $x \in B_{n}$ and $A_{N} \subseteq \uplus_{n=1}^{N} B_{n}$. We have proved that $A_{N}=\uplus_{n=1}^{N} B_{n}$.
3. μ being a measure on \mathcal{F}, from 1 . we obtain:

$$
\lim _{N \rightarrow+\infty} \sum_{n=1}^{N} \mu\left(B_{n}\right) \triangleq \sum_{n=1}^{+\infty} \mu\left(B_{n}\right)=\mu(A)
$$

However, it follows from 2.

$$
\sum_{n=1}^{N} \mu\left(B_{n}\right)=\mu\left(A_{N}\right)
$$

Hence:

$$
\lim _{N \rightarrow+\infty} \mu\left(A_{N}\right)=\mu(A)
$$

4. Since $A_{n} \subseteq A_{n+1}$, we have $\mu\left(A_{n}\right) \leq \mu\left(A_{n+1}\right)$ for all $n \geq 1$. The purpose of this exercise is to prove theorem (7).

Exercise 8

Exercise 9.

1. A σ-algebra being closed under difference, each B_{n} is an element of \mathcal{F}. For all $n \geq 1$, we have:

$$
B_{n}=A_{1} \cap A_{n}^{c} \subseteq A_{1} \cap A_{n+1}^{c}=B_{n+1}
$$

Moreover:

$$
\bigcup_{n=1}^{+\infty} B_{n}=A_{1} \cap\left(\bigcup_{n=1}^{+\infty} A_{n}^{c}\right)=A_{1} \cap\left(\bigcap_{n=1}^{+\infty} A_{n}\right)^{c}=A_{1} \backslash A
$$

We have proved that $B_{n} \uparrow A_{1} \backslash A$.
2. $\mu\left(B_{n}\right) \uparrow \mu\left(A_{1} \backslash A\right)$ is a direct application of theorem (7).
3. Since $A_{n} \subseteq A_{1}$, we have $A_{1}=A_{n} \uplus\left(A_{1} \backslash A_{n}\right)$. μ being a measure on \mathcal{F}, we obtain $\mu\left(A_{1}\right)=\mu\left(A_{n}\right)+\mu\left(A_{1} \backslash A_{n}\right)$. Since $\mu\left(A_{1}\right)<+\infty$, all the terms involved in this equality are finite. Hence, it is legitimate to write:

$$
\mu\left(A_{n}\right)=\mu\left(A_{1}\right)-\mu\left(A_{1} \backslash A_{n}\right)
$$

4. Since $A \subseteq A_{1}$, we have $A_{1}=A \uplus\left(A_{1} \backslash A\right)$. μ being a measure on \mathcal{F}, we obtain $\mu\left(A_{1}\right)=\mu(A)+\mu\left(A_{1} \backslash A\right)$. Since $\mu\left(A_{1}\right)<+\infty$, all the terms involved in this equality are finite. Hence, it is legitimate to write:

$$
\mu(A)=\mu\left(A_{1}\right)-\mu\left(A_{1} \backslash A\right)
$$

5. Since for all $n \geq 1, A \subseteq A_{n} \subseteq A_{1}, \mu$ being a measure on $\mathcal{F}, \mu(A) \leq \mu\left(A_{n}\right) \leq \mu\left(A_{1}\right)$. Similarly, $A_{1} \backslash A \subseteq A_{1}$ implies that $\mu\left(A_{1} \backslash A\right) \leq \mu\left(A_{1}\right)$. Having $\mu\left(A_{1}\right)<+\infty$ ensures that all the terms involved in say $\mu\left(A_{1}\right)=\mu(A)+\mu\left(A_{1} \backslash A\right)$ are finite, allowing to subtract $\mu\left(A_{1} \backslash A\right)$ on both side of such equality. One common mistake to make is to get involved in algebra with non-finite terms, ending up with meaningless expressions of the form $+\infty-(+\infty) \ldots$
6. Using 2., 3., 4. and the fact that $\mu\left(A_{1}\right)<+\infty^{5}$:

$$
\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)=\mu\left(A_{1}\right)-\lim _{n \rightarrow+\infty} \mu\left(B_{n}\right)=\mu\left(A_{1}\right)-\mu\left(A_{1} \backslash A\right)=\mu(A)
$$

7. For all $n \geq 1, A_{n+1} \subseteq A_{n}$, and therefore $\mu\left(A_{n+1}\right) \leq \mu\left(A_{n}\right)$. The purpose of this exercise is to prove theorem (8).

Exercise 9
${ }^{5} \lim _{n \rightarrow+\infty}(+\infty-n)=+\infty$, whereas $+\infty-\lim _{n \rightarrow+\infty} n$ is meaningless. .

Exercise 10.

1. For all $n \geq 1$, we have $A_{n+1} \subseteq A_{n}$, and:

$$
\left.\bigcap_{n=1}^{+\infty} A_{n}=\bigcap_{n=1}^{+\infty}\right] n,+\infty[=\emptyset
$$

It follows that $A_{n} \downarrow \emptyset$.
2. Let $n \geq 1$. Given $p \geq n$, define $\left.\left.A_{n}^{p}=\right] n, p\right]$. Then $A_{n}^{p} \uparrow A_{n}$ as $p \rightarrow+\infty$, and from theorem (7), we have:

$$
\mu\left(A_{n}\right)=\lim _{p \rightarrow+\infty} \mu\left(A_{n}^{p}\right)=\lim _{p \rightarrow+\infty} p-n=+\infty
$$

3. Since $\mu\left(A_{n}\right)=+\infty$ for all $n \geq 1, \mu\left(A_{n}\right) \rightarrow+\infty$ as $n \rightarrow+\infty$. Since $\mu(\emptyset)=0, \mu\left(A_{n}\right) \downarrow \mu(\emptyset)$ fails to be true. The purpose of this exercise is to serve as counter example to theorem (8), if the condition $\mu\left(A_{1}\right)<+\infty$ is relaxed. Indeed, $A_{n} \downarrow \emptyset$, yet we do not have $\mu\left(A_{n}\right) \downarrow \mu(\emptyset)$. Note however that to apply
theorem (8), $\mu\left(A_{1}\right)<+\infty$ is not strictly speaking necessary: if a slightly weaker assumption is made that $\mu\left(A_{p}\right)<+\infty$ for some $p \geq 1$, one can always apply theorem (8) to the sequence $\left(A_{n}^{\prime}\right)_{n \geq 1}=\left(A_{n+p-1}\right)_{n \geq 1} \ldots$

Exercise 10

Exercise 11. Let \mathcal{S} be the semi-ring $\mathcal{S}=\{] a, b], a, b \in \mathbf{R}\}$, and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be the map defined by equation (2). We know from exercise (5) that μ is in fact a measure on \mathcal{S}. From theorem (5), μ can be extended to a measure defined on the σ-algebra $\sigma(\mathcal{S})$ generated by \mathcal{S}. In other words, there exists a measure $\bar{\mu}: \sigma(\mathcal{S}) \rightarrow[0,+\infty]$, such that $\bar{\mu}_{\mid \mathcal{S}}=\mu$. From theorem (6), we know that the σ-algebra $\sigma(\mathcal{S})$ is in fact equal to the Borel σ-algebra $\mathcal{B}(\mathbf{R})$ on \mathbf{R}. Hence, we have found a measure $\bar{\mu}: \mathcal{B}(\mathbf{R}) \rightarrow[0,+\infty]$ such that $\bar{\mu}_{\mid \mathcal{S}}=\mu$. In particular, we have:

$$
\forall a, b \in \mathbf{R}, a \leq b, \bar{\mu}(] a, b])=F(b)-F(a)
$$

The purpose of this exercise is to prove the existence of the so called Stieltjes measure on \mathbf{R}, stated in theorem (9). This is a vitally important result, as most other measures ever encountered, are derived one way or another from the Stieltjes measure on \mathbf{R}.

Exercise 11

Exercise 12.

1. Since $\left.\left.\left.\left.\mu_{1}(]-n, n\right]\right)=F(n)-F(-n)=\mu_{2}(]-n, n\right]\right), \Omega \in \mathcal{D}_{n}$. Suppose $A, B \in \mathcal{D}_{n}$, with $A \subseteq B$. We have:

$$
\begin{align*}
& \left.\left.\left.\left.\mu_{1}(B \cap]-n, n\right]\right)=\mu_{2}(B \cap]-n, n\right]\right) \tag{12}\\
& \left.\left.\left.\left.\mu_{1}(A \cap]-n, n\right]\right)=\mu_{2}(A \cap]-n, n\right]\right) \tag{13}
\end{align*}
$$

Moreover, since $B=A \uplus(B \backslash A)$, for $i=1,2$, we have:

$$
\begin{equation*}
\left.\left.\left.\left.\left.\left.\mu_{i}(B \cap]-n, n\right]\right)=\mu_{i}(A \cap]-n, n\right]\right)+\mu_{i}((B \backslash A) \cap]-n, n\right]\right) \tag{14}
\end{equation*}
$$

All terms involved in (12), (13) and (14) being finite, subtracting (13) from (12), and using (14), we obtain:

$$
\left.\left.\left.\left.\mu_{1}((B \backslash A) \cap]-n, n\right]\right)=\mu_{2}((B \backslash A) \cap]-n, n\right]\right)
$$

This shows that $B \backslash A \in \mathcal{D}_{n}$. Let $\left(A_{p}\right)_{p \geq 1}$ be a sequence of elements of \mathcal{D}_{n} such that $A_{p} \uparrow A$. Then $\left.\left.\left.\left.A_{p} \cap\right]-n, n\right] \uparrow A \cap\right]-n, n\right]$, and from theorem (7), $\left.\left.\left.\left.\mu_{i}\left(A_{p} \cap\right]-n, n\right]\right) \uparrow \mu_{i}(A \cap]-n, n\right]\right)$ for all
$i=1,2$. However, since $A_{p} \in \mathcal{D}_{n}$ for all $p \geq 1$, we have:

$$
\left.\left.\left.\left.\mu_{1}\left(A_{p} \cap\right]-n, n\right]\right)=\mu_{2}\left(A_{p} \cap\right]-n, n\right]\right)
$$

Taking the limit as $p \rightarrow+\infty$, we obtain:

$$
\left.\left.\left.\left.\mu_{1}(A \cap]-n, n\right]\right)=\mu_{2}(A \cap]-n, n\right]\right)
$$

So $A \in \mathcal{D}_{n}$. Having checked (i), (ii) and (iii) of definition (1), we have proved that \mathcal{D}_{n} is indeed a Dynkin system on \mathbf{R}.
2. A crucial step in proving that \mathcal{D}_{n} is a Dynkin system on \mathbf{R}, consists in subtracting (13) from (12). One has to be very careful in avoiding meaningless expressions of the form $+\infty-(+\infty)$. Having $\left.\left.\mu_{1}(]-n, n\right]\right)<+\infty$ and $\left.\left.\mu_{2}(]-n, n\right]\right)<+\infty$ ensures that all terms involved be finite.
3. Since $\left.\left.\left.\left.\mu_{1}(\emptyset \cap]-n, n\right]\right)=0=\mu_{2}(\emptyset \cap]-n, n\right]\right)$, we have $\emptyset \in \mathcal{D}_{n}$. Let $a<b$. From exercise (1), $] a, b] \cap]-n, n]$ is an interval of the form $\left.] a^{\prime}, b^{\prime}\right]$. If $a^{\prime}<b^{\prime}$, then:

$$
\left.\left.\left.\left.\mu_{1}(] a^{\prime}, b^{\prime}\right]\right)=F\left(b^{\prime}\right)-F\left(a^{\prime}\right)=\mu_{2}(] a^{\prime}, b^{\prime}\right]\right)
$$

Otherwise, $\left.\left.\left.\left.\mu_{1}(] a^{\prime}, b^{\prime}\right]\right)=0=\mu_{2}(] a^{\prime}, b^{\prime}\right]\right)$. In any case, we have $\left.\left.\left.\left.\mu_{1}(] a^{\prime}, b^{\prime}\right]\right)=\mu_{2}(] a^{\prime}, b^{\prime}\right]\right)$, and $\left.] a, b\right] \in \mathcal{D}_{n}$. We have proved that $\mathcal{S} \subseteq \mathcal{D}_{n}$.
4. \mathcal{S} being a semi-ring on \mathbf{R}, from definition (6), it is closed under finite intersection. Since $\mathcal{S} \subseteq \mathcal{D}_{n}, \mathcal{D}_{n}$ is a Dynkin system containing a set of subsets of \mathbf{R}, which is closed under finite intersection. According to theorem (1), \mathcal{D}_{n} also contains the σ-algebra generated by \mathcal{S}. In other words, $\sigma(\mathcal{S}) \subseteq \mathcal{D}_{n}$. However, from theorem (6), the σ-algebra generated by \mathcal{S}, coincide with the Borel σ-algebra on \mathbf{R}, i.e. $\sigma(\mathcal{S})=\mathcal{B}(\mathbf{R})$. It follows that $\mathcal{B}(\mathbf{R}) \subseteq \mathcal{D}_{n}$.
5. Let $A \in \mathcal{B}(\mathbf{R})$. from 4., we have $A \in \mathcal{D}_{n}$. In other words:

$$
\left.\left.\left.\left.\mu_{1}(A \cap]-n, n\right]\right)=\mu_{2}(A \cap]-n, n\right]\right)
$$

This being true for all $n \geq 1$, using theorem (7) and taking the limit as $n \rightarrow+\infty$, we obtain: $\mu_{1}(A)=\mu_{2}(A)$. This being true for all $A \in \mathcal{B}(\mathbf{R}), \mu_{1}=\mu_{2}$.
6. Uniqueness follows from 5 . Existence is proved in exercise (11). Exercise 12

Exercise 13.

1. F being non-decreasing, for all $x<x_{0}, F(x) \leq F\left(x_{0}\right)$. Define:

$$
\alpha \triangleq \sup _{x<x_{0}} F(x)
$$

Then $\alpha \leq F\left(x_{0}\right)$ and in particular $\alpha<+\infty$. It follows that given $\epsilon>0, \alpha-\epsilon<\alpha$. Being a supremum, α is the smallest upper-bound of all $F(x)$'s for $x<x_{0}$. Hence, we see that $\alpha-\epsilon$ cannot be such upper-bound. There exists $x_{1}<x_{0}$ such that $\alpha-\epsilon<F\left(x_{1}\right)$. Since F is non-decreasing, for all $\left.x \in\right] x_{1}, x_{0}[$, we have $\alpha-\epsilon<F\left(x_{1}\right) \leq F(x) \leq \alpha \leq \alpha+\epsilon$. We conclude that for all $\epsilon>0$, there exists $x_{1}<x_{0}$ such that:

$$
\forall x \in] x_{1}, x_{0}[\quad, \quad|F(x)-\alpha| \leq \epsilon
$$

We have proved the existence of the left limit:

$$
F\left(x_{0}-\right) \triangleq \lim _{x<x_{0}, x \rightarrow x_{0}} F(x)=\alpha \in \mathbf{R}
$$

2. It is clear that $\left.\left.\left\{x_{0}\right\} \subseteq \cap_{n=1}^{+\infty}\right] x_{0}-1 / n, x_{0}\right]$. Conversely, suppose that $\left.\left.x \in \cap_{n=1}^{+\infty}\right] x_{0}-1 / n, x_{0}\right]$. Then for all $n \geq 1$, we have $x_{0}-1 / n<x \leq x_{0}$. Taking the limit as $n \rightarrow+\infty$, we obtain $x_{0} \leq x \leq x_{0}$, i.e. $x=x_{0}$. So $\left.\left.\cap_{n=1}^{+\infty}\right] x_{0}-1 / n, x_{0}\right] \subseteq\left\{x_{0}\right\}$. We have proved that $\left.\left.\left\{x_{0}\right\}=\cap_{n=1}^{+\infty}\right] x_{0}-1 / n, x_{0}\right]$.
3. We have $\left\{x_{0}\right\}=(]-\infty, x_{0}[\cup] x_{0},+\infty[)^{c}$. Open intervals being open sets for the usual topology on \mathbf{R}, they are also Borel sets. A σ-algebra being closed under finite union and complementation, we conclude that $\left\{x_{0}\right\} \in \mathcal{B}(\mathbf{R})$.
4. Given $n \geq 1$, let $\left.\left.A_{n}=\right] x_{0}-1 / n, x_{0}\right]$. Since $A_{n+1} \subseteq A_{n}$, from 2., we have $A_{n} \downarrow\left\{x_{0}\right\}$. Also, $d F\left(A_{1}\right)=F\left(x_{0}\right)-F\left(x_{0}-1\right) \in \mathbf{R}$. In particular, $d F\left(A_{1}\right)<+\infty$. Applying theorem (8), we obtain:

$$
d F\left(\left\{x_{0}\right\}\right)=\lim _{n \rightarrow+\infty} d F\left(A_{n}\right)=F\left(x_{0}\right)-F\left(x_{0}-\right)
$$

Exercise 13

Exercise 14.

1. $] a, b]=] a,+\infty\left[\cap(] b,+\infty[)^{c}\right.$. Open intervals being Borel sets, and a σ-algebra being closed under finite intersection and complementation, we have $] a, b] \in \mathcal{B}(\mathbf{R})$. In virtue of definition (20), $d F(] a, b])=F(b)-F(a)$.
2. $[a, b]=(]-\infty, a[\cup] b,+\infty[)^{c}$ and is therefore a Borel set. Moreover, using exercise (13):

$$
d F([a, b])=d F(\{a\})+d F(] a, b])=F(b)-F(a-)
$$

3.] $a, b[$ being open is a Borel set. Moreover, using exercise (13):

$$
d F(] a, b[)=d F(] a, b])-d F(\{b\})=F(b-)-F(a)
$$

4. $\left[a, b[=]-\infty, b\left[\cap(]-\infty, a[)^{c}\right.\right.$ and is therefore a Borel set. Moreover, using exercise (13):

$$
d F([a, b[)=d F(\{a\})+d F(] a, b])-d F(\{b\})=F(b-)-F(a-)
$$

Exercise 14

Exercise 15.

1. Suppose \mathcal{A} is a topology on Ω. Then \emptyset and Ω are elements of \mathcal{A}. It follows that that $\emptyset \cap \Omega^{\prime}=\emptyset$ and $\Omega \cap \Omega^{\prime}=\Omega^{\prime}$ are both elements of $\mathcal{A}_{\mid \Omega^{\prime}}$. So (i) of definition (13) is satisfied for $\mathcal{A}_{\mid \Omega^{\prime}}$. Let $A^{\prime}, B^{\prime} \in \mathcal{A}_{\mid \Omega^{\prime}}$. There exist $A, B \in \mathcal{A}$ such that $A^{\prime}=A \cap \Omega^{\prime}$ and $B^{\prime}=B \cap \Omega^{\prime}$. Hence, $A^{\prime} \cap B^{\prime}=(A \cap B) \cap \Omega^{\prime}$. Since \mathcal{A} is a topology, $A \cap B \in \mathcal{A}$. It follows that $A^{\prime} \cap B^{\prime} \in \mathcal{A}_{\mid \Omega^{\prime}}$, and (ii) of definition (13) is satisfied for $\mathcal{A}_{\mid \Omega^{\prime}}$. Let $\left(A_{i}^{\prime}\right)_{i \in I}$ be a family of elements of $\mathcal{A}_{\mid \Omega^{\prime}}$. There exists a family $\left(A_{i}\right)_{i \in I}$ of elements of \mathcal{A}, such that $A_{i}^{\prime}=A_{i} \cap \Omega^{\prime}$, for all $i \in I$. In particular, $\cup_{i \in I} A_{i}^{\prime}=\left(\cup_{i \in I} A_{i}\right) \cap \Omega^{\prime}$. Since \mathcal{A} is a topology, $\cup_{i \in I} A_{i} \in \mathcal{A}$. It follows that $\cup_{i \in I} A_{i}^{\prime} \in \mathcal{A}_{\mid \Omega^{\prime}}$ and (iii) of definition (13) is satisfied for $\mathcal{A}_{\mid \Omega^{\prime}}$. We have proved that $\mathcal{A}_{\mid \Omega^{\prime}}$ is indeed a topology on Ω^{\prime}.
2. Suppose \mathcal{A} is a σ-algebra on Ω. Then $\Omega \in \mathcal{A}$, and we have $\Omega^{\prime}=\Omega \cap \Omega^{\prime} \in \mathcal{A}_{\mid \Omega^{\prime}}$. Let $A^{\prime} \in \mathcal{A}_{\mid \Omega^{\prime}}$. There exists $A \in \mathcal{A}$ such that $A^{\prime}=A \cap \Omega^{\prime}$. Hence ${ }^{6}, \Omega^{\prime} \backslash A^{\prime}=\Omega^{\prime} \cap\left(A^{\prime}\right)^{c}=\Omega^{\prime} \cap A^{c}$. Since
${ }^{6}$ The notation $\left(A^{\prime}\right)^{c}$ refers to the complement of A^{\prime} in Ω, i.e. $\left(A^{\prime}\right)^{c}=\Omega \backslash A^{\prime}$.
\mathcal{A} is a σ-algebra, $A^{c} \in \mathcal{A}$. It follows that $\Omega^{\prime} \backslash A^{\prime} \in \mathcal{A}_{\mid \Omega^{\prime}}$, and $\mathcal{A}_{\mid \Omega^{\prime}}$ is closed under complementation in Ω^{\prime}. let $\left(A_{n}^{\prime}\right)_{n \geq 1}$ be a sequence of elements of $\mathcal{A}_{\mid \Omega^{\prime}}$. There exists a sequence $\left(A_{n}\right)_{n \geq 1}$ of elements of \mathcal{A}, such that $A_{n}^{\prime}=A_{n} \cap \Omega^{\prime}$, for all $n \geq 1$. In particular, $\cup_{n=1}^{+\infty} A_{n}^{\prime}=\left(\cup_{n=1}^{+\infty} A_{n}\right) \cap \Omega^{\prime}$. Since \mathcal{A} is a σ-algebra, $\cup_{n=1}^{+\infty} A_{n} \in \mathcal{A}$. It follows that $\cup_{n=1}^{+\infty} A_{n}^{\prime} \in \mathcal{A}_{\mid \Omega^{\prime}}$, and $\mathcal{A}_{\mid \Omega^{\prime}}$ is closed under countable union. We have proved that $\mathcal{A}_{\mid \Omega^{\prime}}$ is indeed a σ-algebra on Ω^{\prime}.

Exercise 15

The complement of A^{\prime} in Ω^{\prime} is denoted $\Omega^{\prime} \backslash A^{\prime}$.

Exercise 16.

1. When working in the context of two reference sets Ω^{\prime} and Ω where $\Omega^{\prime} \subseteq \Omega$, given $A \subseteq \Omega^{\prime}$, the notation A^{c} and the notion of complementation can be confusing: does it refer to the complement of A in Ω, or the complement of A in $\Omega^{\prime} \ldots$ Unless otherwise specified, it is customary to keep the notation A^{c} for the complement of A relative to the large set $\left(A^{c}=\Omega \backslash A\right)$. The complement of A relative to the smaller set Ω^{\prime} can still be denoted $\Omega^{\prime} \backslash A$. Similarly, whenever \mathcal{A}^{\prime} is a set of subsets of Ω^{\prime} (like $\mathcal{A}_{\mid \Omega^{\prime}}$), then it is also a set of subsets of Ω. Hence, a notation such as $\sigma\left(\mathcal{A}^{\prime}\right)$ can be ambiguous and confusing. One the one hand, $\sigma\left(\mathcal{A}^{\prime}\right)$ could be referring to the σ-algebra generated by \mathcal{A}^{\prime} on Ω. One the other hand, $\sigma\left(\mathcal{A}^{\prime}\right)$ could be referring to the σ-algebra generated by \mathcal{A}^{\prime} on Ω^{\prime}. Hence, it is very important to specify clearly what is meant, when using a notation such as $\sigma\left(\mathcal{A}^{\prime}\right)$. In this exercise, $\sigma(\mathcal{A})$ is a σ-algebra on Ω, whereas $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$ is a σ-algebra on Ω^{\prime}.
2. Let $A \in \mathcal{A}$. Then $A \in \sigma(\mathcal{A})$ and $A \cap \Omega^{\prime} \in \mathcal{A}_{\mid \Omega^{\prime}} \subseteq \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$. It follows that $A \in \Gamma$, and $\mathcal{A} \subseteq \Gamma$.
3. $\sigma(\mathcal{A})$ being a σ-algebra on $\Omega, \Omega \in \sigma(\mathcal{A})$. $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$ being a σ-algebra on $\Omega^{\prime}, \Omega \cap \Omega^{\prime}=\Omega^{\prime} \in \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$. It follows that $\Omega \in \Gamma$. Let $A \in \Gamma$. Then $A \in \sigma(\mathcal{A})$ and $A \cap \Omega^{\prime} \in \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$. Hence, $A^{c} \in \sigma(\mathcal{A})$ and $A^{c} \cap \Omega^{\prime}=\Omega^{\prime} \backslash\left(A \cap \Omega^{\prime}\right) \in \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$. So $A^{c} \in \Gamma$. It follows that Γ is closed under complementation. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of elements of Γ. Then for all $n \geq 1, A_{n} \in \sigma(\mathcal{A})$ and $A_{n} \cap \Omega^{\prime} \in \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$. It follows that $\cup_{n=1}^{+\infty} A_{n} \in \sigma(\mathcal{A})$, and $\left(\cup_{n=1}^{+\infty} A_{n}\right) \cap \Omega^{\prime}=\cup_{n=1}^{+\infty}\left(A_{n} \cap \Omega^{\prime}\right) \in \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$. So $\cup_{n=1}^{+\infty} A_{n} \in \Gamma$. It follows that Γ is closed under countable union. We have proved that Γ is indeed a σ-algebra on Ω.
4. The σ-algebra $\sigma(\mathcal{A})$ on Ω generated by \mathcal{A}, being the smallest σ-algebra on Ω containing \mathcal{A}, from $\mathcal{A} \subseteq \Gamma$, and the fact that Γ is σ-algebra on Ω, we have $\sigma(\mathcal{A}) \subseteq \Gamma$. In particular, for all $A \in \sigma(\mathcal{A})$, we have $A \cap \Omega^{\prime} \in \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$. Hence, we see that $\sigma(\mathcal{A})_{\mid \Omega^{\prime}} \subseteq \sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$. However, for all $A \in \mathcal{A}$, since $A \in \sigma(\mathcal{A})$,
we have $A \cap \Omega^{\prime} \in \sigma(\mathcal{A})_{\mid \Omega^{\prime}}$. It follows that $\mathcal{A}_{\mid \Omega^{\prime}} \subseteq \sigma(\mathcal{A})_{\mid \Omega^{\prime}}$. From exercise (15), $\sigma(\mathcal{A})_{\mid \Omega^{\prime}}$ is a σ-algebra on Ω^{\prime}. The σ-algebra $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$ being the smallest σ-algebra on Ω^{\prime} containing $\mathcal{A}_{\mid \Omega^{\prime}}$, we conclude that $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right) \subseteq \sigma(\mathcal{A})_{\mid \Omega^{\prime}}$. We have proved that $\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)=\sigma(\mathcal{A})_{\mid \Omega^{\prime}}$. The purpose of this exercise is to prove theorem (10).

Exercise 16

Exercise 17.

1. From theorem (10), $\mathcal{B}(\Omega)_{\mid \Omega^{\prime}}=\sigma(\mathcal{T})_{\mid \Omega^{\prime}}=\sigma\left(\mathcal{T}_{\mid \Omega^{\prime}}\right)=\mathcal{B}\left(\Omega^{\prime}\right)$.
2. Suppose $\Omega^{\prime} \in \mathcal{B}(\Omega)$. Let $A^{\prime} \in \mathcal{B}\left(\Omega^{\prime}\right)$. Since $\mathcal{B}\left(\Omega^{\prime}\right)=\mathcal{B}(\Omega)_{\mid \Omega^{\prime}}$, there exists $A \in \mathcal{B}(\Omega)$ such that $A^{\prime}=A \cap \Omega^{\prime}$. A σ-algebra being closed under finite intersection, it follows that $A^{\prime} \in \mathcal{B}(\Omega)$. We have proved that $\mathcal{B}\left(\Omega^{\prime}\right) \subseteq \mathcal{B}(\Omega)$.
3. From 1., we have $\mathcal{B}\left(\mathbf{R}^{+}\right)=\mathcal{B}(\mathbf{R})_{\mid \mathbf{R}^{+}}=\left\{A \cap \mathbf{R}^{+}, A \in \mathcal{B}(\mathbf{R})\right\}$
4. Since $\left.\mathbf{R}^{+}=\right]-\infty, 0\left[{ }^{c} \in \mathcal{B}(\mathbf{R})\right.$, from 2 . we have $\mathcal{B}\left(\mathbf{R}^{+}\right) \subseteq \mathcal{B}(\mathbf{R})$.

Exercise 17

Exercise 18.

1. From exercise (15), \mathcal{F} being a σ-algebra on $\Omega, \mathcal{F}_{\mid \Omega^{\prime}}$ is a σ-algebra on Ω^{\prime}. from definition (18), it follows that $\left(\Omega^{\prime}, \mathcal{F}_{\mid \Omega^{\prime}}\right)$ is a measurable space.
2. Suppose $\Omega^{\prime} \in \mathcal{F}$. A σ-algebra being closed under finite intersection, $\mathcal{F}_{\mid \Omega^{\prime}}=\left\{A \cap \Omega^{\prime}, A \in \mathcal{F}\right\} \subseteq \mathcal{F}$.
3. If $\Omega^{\prime} \in \mathcal{F}$, from 2., $\mathcal{F}_{\mid \Omega^{\prime}} \subseteq \mathcal{F}$. Hence, it is legitimate to consider the restriction $\mu_{\mid\left(\mathcal{F}_{\mid \Omega^{\prime}}\right)}$ of the map $\mu: \mathcal{F} \rightarrow[0,+\infty]$ to the smaller domain $\mathcal{F}_{\mid \Omega^{\prime}}$. Denoting such restriction by $\mu_{\mid \Omega^{\prime}}$, it is clearly a measure on $\mathcal{F}_{\mid \Omega^{\prime}}$ (definition (9)). From definition (19), it follows that $\left(\Omega^{\prime}, \mathcal{F}_{\mid \Omega^{\prime}}, \mu_{\mid \Omega^{\prime}}\right)$ is a measure space.

Exercise 18

Exercise 19.

1. Let $x_{0} \in \mathbf{R}$. If $x_{0}<0$, then $\bar{F}(x) \rightarrow 0=\bar{F}\left(x_{0}\right)$ as $x \rightarrow x_{0}$. If $x_{0} \geq 0$, since F is right-continuous, we have:

$$
\lim _{x_{0}<x, x \rightarrow x_{0}} \bar{F}(x)=\lim _{x_{0}<x, x \rightarrow x_{0}} F(x)=F\left(x_{0}\right)=\bar{F}\left(x_{0}\right)
$$

Hence we see that \bar{F} is itself right-continuous. Let $a \leq b$. If $0 \leq a \leq b$, then $\bar{F}(a)=F(a) \leq F(b)=\bar{F}(b)$. If $a<0 \leq b$, then $\bar{F}(a)=0 \leq F(0) \leq F(b)=\bar{F}(b)$. If $a \leq b<0$, then $\bar{F}(a)=0=\bar{F}(b)$. In any case, $\bar{F}(a) \leq \bar{F}(b)$ and \bar{F} is nondecreasing.
2. $\mathcal{B}\left(\mathbf{R}^{+}\right) \subseteq \mathcal{B}(\mathbf{R})$ and μ is well-defined. Using exercise (13):

$$
\mu(\{0\})=d \bar{F}(\{0\})=\bar{F}(0)-\bar{F}(0-)=F(0)
$$

Moreover, for all $0 \leq a \leq b$:

$$
\mu(] a, b])=d \bar{F}(] a, b])=\bar{F}(b)-\bar{F}(a)=F(b)-F(a)
$$

Exercise 19

Exercise 20.

1. For all $0 \leq a \leq b,] a, b]=] a, b] \cap \mathbf{R}^{+} \in \mathcal{B}(\mathbf{R})_{\mid \mathbf{R}^{+}}=\mathcal{B}\left(\mathbf{R}^{+}\right)$. Moreover, we have $\{0\}=]-1,0] \cap \mathbf{R}^{+} \in \mathcal{B}\left(\mathbf{R}^{+}\right)$. we have proved that $\mathcal{C} \subseteq \mathcal{B}\left(\mathbf{R}^{+}\right)$.
2. Let U be open in \mathbf{R}^{+}. By definition (23), there exists V open in \mathbf{R}, such that $U=V \cap \mathbf{R}^{+}$. For all $x \in V$, there exists $\epsilon_{x}>0$ such that $] x-\epsilon_{x}, x+\epsilon_{x}[\subseteq V$. The set of rational numbers \mathbf{Q} being dense in \mathbf{R}, we can choose $\left.p_{x} \in \mathbf{Q} \cap\right] x-\epsilon_{x}, x[$ and $\left.q_{x} \in \mathbf{Q} \cap\right] x, x+\epsilon_{x}[$. We have $\left.x \in] p_{x}, q_{x}\right] \subseteq V$. If we define $\left.\left.I=\{] p_{x}, q_{x}\right], x \in V\right\}$, then I is a countable set (see exercise (7) for more details). For all $i \in I$, let $a_{i}=p_{x}$ and $b_{i}=q_{x}$, where $x \in V$ is such that $\left.i=] p_{x}, q_{x}\right]$. From $\left.\left.V=\cup_{x \in V}\right] p_{x}, q_{x}\right]$, we obtain $\left.\left.V=\cup_{i \in I}\right] a_{i}, b_{i}\right]$, and finally $\left.\left.U=\cup_{i \in I}\left(\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right]\right)$.
3. If $0 \leq a_{i} \leq b_{i}$, then $\left.\left.\left.\left.\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right]=\right] a_{i}, b_{i}\right] \in \mathcal{C}$. If $a_{i}<0 \leq b_{i}$, then $\left.\left.\left.\left.\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right]=\left[0, b_{i}\right]=\{0\} \cup\right] 0, b_{i}\right] \in \sigma(\mathcal{C})$. If $a_{i} \leq b_{i}<0$, then $\left.\left.\left.\left.\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right]=\emptyset=\right] 1,1\right] \in \mathcal{C}$. In any case, $\left.\left.\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right] \in \sigma(\mathcal{C})$.
4. From 2. and 3., the set I being countable, we have:

$$
\left.\left.U=\cup_{i \in I}\left(\mathbf{R}^{+} \cap\right] a_{i}, b_{i}\right]\right) \in \sigma(\mathcal{C})
$$

This being true for all U open in \mathbf{R}^{+}, we have $\mathcal{T}_{\mathbf{R}^{+}} \subseteq \sigma(\mathcal{C})$. $\mathcal{B}\left(\mathbf{R}^{+}\right)$being the smallest σ-algebra on \mathbf{R}^{+}containing $\mathcal{T}_{\mathbf{R}^{+}}$, we obtain that $\mathcal{B}\left(\mathbf{R}^{+}\right) \subseteq \sigma(\mathcal{C})$. However from 1., $\mathcal{C} \subseteq \mathcal{B}\left(\mathbf{R}^{+}\right)$. $\sigma(\mathcal{C})$ being the smallest σ-algebra on \mathbf{R}^{+}containing \mathcal{C}, we have $\sigma(\mathcal{C}) \subseteq \mathcal{B}\left(\mathbf{R}^{+}\right)$. We have proved that $\sigma(\mathcal{C})=\mathcal{B}\left(\mathbf{R}^{+}\right)$.

Exercise 20

Exercise 21.

1. $\mu_{1}(\{0\} \cap[0, n])=\mu_{1}(\{0\})=\mu_{2}(\{0\})=\mu_{2}(\{0\} \cap[0, n])$. So $\{0\} \in \mathcal{D}_{n}$. For all $\left.\left.0 \leq a \leq b,\right] a, b\right] \cap[0, n]$ is either empty, or is an interval of the form $\left.] a^{\prime}, b^{\prime}\right]$ with $0 \leq a^{\prime} \leq b^{\prime}$. In any case, $\left.\left.\left.\left.\mu_{1}(] a, b\right] \cap[0, n]\right)=\mu_{2}(] a, b\right] \cap[0, n]\right)$. It follows that $\mathcal{C} \subseteq \mathcal{D}_{n}$. Since $\left.\left.\mu_{1}([0, n])=\mu_{1}(\{0\})+\mu_{1}(] 0, n\right]\right)=F(n)=\mu_{2}([0, n])$, we have $\mathbf{R}^{+} \in \mathcal{D}_{n}$ and both $\mu_{1}([0, n])$ and $\mu_{2}([0, n])$ are finite. Let $A, B \in \mathcal{D}_{n}$ with $A \subseteq B$. We have:

$$
\begin{aligned}
& \mu_{1}(A \cap[0, n])=\mu_{2}(A \cap[0, n]) \\
& \mu_{1}(B \cap[0, n])=\mu_{2}(B \cap[0, n])
\end{aligned}
$$

and for $i=1,2$:

$$
\mu_{i}(B \cap[0, n])=\mu_{i}(A \cap[0, n])+\mu_{i}((B \backslash A) \cap[0, n])
$$

All terms being finite, we obtain:

$$
\mu_{1}((B \backslash A) \cap[0, n])=\mu_{2}((B \backslash A) \cap[0, n])
$$

and it follows that $B \backslash A \in \mathcal{D}_{n}$. Let $\left(A_{p}\right)_{p \geq 1}$ be a sequence of elements of \mathcal{D}_{n}, with $A_{p} \uparrow A$. Then $A_{p} \cap[0, n] \uparrow A \cap[0, n]$. For all $p \geq 1$, we have:

$$
\mu_{1}\left(A_{p} \cap[0, n]\right)=\mu_{2}\left(A_{p} \cap[0, n]\right)
$$

Using theorem (7), taking the limit as $p \rightarrow+\infty$, we obtain:

$$
\mu_{1}(A \cap[0, n])=\mu_{2}(A \cap[0, n])
$$

and it follows that $A \in \mathcal{D}_{n}$. We have proved that \mathcal{D}_{n} is a Dynkin system on \mathbf{R}^{+}(definition (1)) with $\mathcal{C} \subseteq \mathcal{D}_{n}$.
2. $\mu_{1}([0, n])<+\infty$ and $\mu_{2}([0, n])<+\infty$ is important in ensuring that the algebra required to prove that $B \backslash A \in \mathcal{D}_{n}$, is indeed meaningful.
3. Let $0 \leq a \leq b$. Then $\{0\} \cap] a, b]=\emptyset=] 1,1] \in \mathcal{C}$. If $0 \leq c \leq d$, then $] a, b] \cap] c, d]$ can still be written as $\left.] a^{\prime}, b^{\prime}\right]$ with $0 \leq a^{\prime} \leq b^{\prime}$, and therefore lies in \mathcal{C}. It follows that \mathcal{C} is closed under finite intersection. Since \mathcal{D}_{n} is a Dynkin system on \mathbf{R}^{+}such that
$\mathcal{C} \subseteq \mathcal{D}_{n}$, using theorem (1), we see that $\sigma(\mathcal{C}) \subseteq \mathcal{D}_{n}$. However, from exercise (20), $\sigma(\mathcal{C})=\mathcal{B}\left(\mathbf{R}^{+}\right)$. It follows that $\mathcal{B}\left(\mathbf{R}^{+}\right) \subseteq \mathcal{D}_{n}$. Hence, for all $A \in \mathcal{B}\left(\mathbf{R}^{+}\right)$, we have $\mu_{1}(A \cap[0, n])=\mu_{2}(A \cap[0, n])$. Since $A \cap[0, n] \uparrow A$ as $n \rightarrow+\infty$, using theorem (7), we obtain $\mu_{1}(A)=\mu_{2}(A)$. This being true for all Borel set $A \in \mathcal{B}\left(\mathbf{R}^{+}\right)$, we have proved that $\mu_{1}=\mu_{2}$.
4. Existence follows from exercise (19). Uniqueness is a consequence of 3 .

Exercise 21

[^0]: ${ }^{2}$ Note that the notion of compact subsets and the fact that any closed interval $[a, b]$ in \mathbf{R} is indeed a compact subset of \mathbf{R}, has not been approached so far in these tutorials. This seems to contradict our promise that no results in these tutorials should be used without proof. In fact, Tutorial 8 will give you ample reminders on compactness. Just be a little patient.

