
Tutorial 9: Lp-spaces, p ∈ [1, +∞] 1

9. Lp-spaces, p ∈ [1, +∞]

In the following, (Ω,F , μ) is a measure space.

Exercise 1. Let f, g : (Ω,F) → [0, +∞] be non-negative and mea-
surable maps. Let p, q ∈ R+, such that 1/p + 1/q = 1.

1. Show that 1 < p < +∞ and 1 < q < +∞.

2. For all α ∈]0, +∞[, we define φα : [0, +∞] → [0, +∞] by:

φα(x)
�
=
{

xα if x ∈ R+

+∞ if x = +∞
Show that φα is a continuous map.

3. Define A = (
∫

fpdμ)1/p, B = (
∫

gqdμ)1/q and C =
∫

fgdμ.
Explain why A, B and C are well defined elements of [0, +∞].

4. Show that if A = 0 or B = 0 then C ≤ AB.

5. Show that if A = +∞ or B = +∞ then C ≤ AB.
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6. We assume from now on that 0 < A < +∞ and 0 < B < +∞.
Define F = f/A and G = g/B. Show that:∫

Ω

F pdμ =
∫

Ω

Gpdμ = 1

7. Let a, b ∈]0, +∞[. Show that:

ln(a) + ln(b) ≤ ln
(

1
p
ap +

1
q
bq

)
and:

ab ≤ 1
p
ap +

1
q
bq

Prove this last inequality for all a, b ∈ [0, +∞].

8. Show that for all ω ∈ Ω, we have:

F (ω)G(ω) ≤ 1
p
(F (ω))p +

1
q
(G(ω))q
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9. Show that C ≤ AB.

Theorem 41 (Hölder’s inequality) Let (Ω,F , μ) be a measure
space and f, g : (Ω,F) → [0, +∞] be two non-negative and measurable
maps. Let p, q ∈ R+ be such that 1/p + 1/q = 1. Then:∫

Ω

fgdμ ≤
(∫

Ω

fpdμ

) 1
p
(∫

Ω

gqdμ

) 1
q

Theorem 42 (Cauchy-Schwarz’s inequality:first)
Let (Ω,F , μ) be a measure space and f, g : (Ω,F) → [0, +∞] be two
non-negative and measurable maps. Then:∫

Ω

fgdμ ≤
(∫

Ω

f2dμ

) 1
2
(∫

Ω

g2dμ

) 1
2

Exercise 2. Let f, g : (Ω,F) → [0, +∞] be two non-negative and
measurable maps. Let p ∈]1, +∞[. Define A = (

∫
fpdμ)1/p and
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B = (
∫

gpdμ)1/p and C = (
∫

(f + g)pdμ)1/p.

1. Explain why A, B and C are well defined elements of [0, +∞].

2. Show that for all a, b ∈]0, +∞[, we have:

(a + b)p ≤ 2p−1(ap + bp)

Prove this inequality for all a, b ∈ [0, +∞].

3. Show that if A = +∞ or B = +∞ or C = 0 then C ≤ A + B.

4. Show that if A < +∞ and B < +∞ then C < +∞.

5. We assume from now that A, B ∈ [0, +∞[ and C ∈]0, +∞[.
Show the existence of some q ∈ R+ such that 1/p + 1/q = 1.

6. Show that for all a, b ∈ [0, +∞], we have:

(a + b)p = (a + b).(a + b)p−1
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7. Show that: ∫
Ω

f.(f + g)p−1dμ ≤ AC
p
q

∫
Ω

g.(f + g)p−1dμ ≤ BC
p
q

8. Show that: ∫
Ω

(f + g)pdμ ≤ C
p
q (A + B)

9. Show that C ≤ A + B.

10. Show that the inequality still holds if we assume that p = 1.
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Theorem 43 (Minkowski’s inequality) Let (Ω,F , μ) be a mea-
sure space and f, g : (Ω,F) → [0, +∞] be two non-negative and mea-
surable maps. Let p ∈ [1, +∞[. Then:(∫

Ω

(f + g)pdμ

) 1
p

≤
(∫

Ω

fpdμ

) 1
p

+
(∫

Ω

gpdμ

) 1
p

Definition 73 The Lp-spaces, p ∈ [1, +∞[, on (Ω,F , μ), are:

Lp
R(Ω,F , μ)

�
=
{

f : (Ω,F)→(R,B(R)) measurable,
∫

Ω

|f |pdμ <+∞
}

Lp
C(Ω,F , μ)

�
=
{

f : (Ω,F)→(C,B(C)) measurable,
∫

Ω

|f |pdμ <+∞
}

For all f ∈ Lp
C(Ω,F , μ), we put:

‖f‖p
�
=
(∫

Ω

|f |pdμ

) 1
p

Exercise 3. Let p ∈ [1, +∞[. Let f, g ∈ Lp
C(Ω,F , μ).
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1. Show that Lp
R(Ω,F , μ) = {f ∈ Lp

C(Ω,F , μ) , f(Ω) ⊆ R}.

2. Show that Lp
R(Ω,F , μ) is closed under R-linear combinations.

3. Show that Lp
C(Ω,F , μ) is closed under C-linear combinations.

4. Show that ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

5. Show that ‖f‖p = 0 ⇔ f = 0 μ-a.s.

6. Show that for all α ∈ C, ‖αf‖p = |α|.‖f‖p.

7. Explain why (f, g) → ‖f − g‖p is not a metric on Lp
C(Ω,F , μ)

Definition 74 For all f : (Ω,F) → (C,B(C)) measurable, Let:

‖f‖∞
�
= inf{M ∈ R+ , |f | ≤ M μ-a.s.}
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The L∞-spaces on a measure space (Ω,F , μ) are:

L∞
R (Ω,F , μ)

�
={f : (Ω,F) → (R,B(R)) measurable, ‖f‖∞ < +∞}

L∞
C (Ω,F , μ)

�
={f : (Ω,F) → (C,B(C)) measurable, ‖f‖∞ < +∞}

Exercise 4. Let f, g ∈ L∞
C (Ω,F , μ).

1. Show that L∞
R (Ω,F , μ) = {f ∈ L∞

C (Ω,F , μ) , f(Ω) ⊆ R}.

2. Show that |f | ≤ ‖f‖∞ μ-a.s.

3. Show that ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

4. Show that L∞
R (Ω,F , μ) is closed under R-linear combinations.

5. Show that L∞
C (Ω,F , μ) is closed under C-linear combinations.

6. Show that ‖f‖∞ = 0 ⇔ f = 0 μ-a.s..

7. Show that for all α ∈ C, ‖αf‖∞ = |α|.‖f‖∞.
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8. Explain why (f, g) → ‖f − g‖∞ is not a metric on L∞
C (Ω,F , μ)

Definition 75 Let p ∈ [1, +∞]. Let K = R or C. For all ε > 0 and
f ∈ Lp

K(Ω,F , μ), we define the so-called open ball in Lp
K(Ω,F , μ):

B(f, ε)
�
= {g : g ∈ Lp

K(Ω,F , μ), ‖f − g‖p < ε}

We call usual topology in Lp
K(Ω,F , μ), the set T defined by:

T �
= {U : U ⊆ Lp

K(Ω,F , μ), ∀f ∈ U, ∃ε > 0, B(f, ε) ⊆ U}

Note that if (f, g) → ‖f − g‖p was a metric, the usual topology in
Lp

K(Ω,F , μ), would be nothing but the metric topology.

Exercise 5. Let p ∈ [1, +∞]. Suppose there exists N ∈ F with
μ(N) = 0 and N �= ∅. Put f = 1N and g = 0

1. Show that f, g ∈ Lp
C(Ω,F , μ) and f �= g.
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2. Show that any open set containing f also contains g.

3. Show that Lp
C(Ω,F , μ) and Lp

R(Ω,F , μ) are not Hausdorff.

Exercise 6. Show that the usual topology on Lp
R(Ω,F , μ) is induced

by the usual topology on Lp
C(Ω,F , μ), where p ∈ [1, +∞].

Definition 76 Let (E, T ) be a topological space. A sequence (xn)n≥1

in E is said to converge to x ∈ E, and we write xn
T→ x, if and only

if, for all U ∈ T such that x ∈ U , there exists n0 ≥ 1 such that:

n ≥ n0 ⇒ xn ∈ U

When E = Lp
C(Ω,F , μ) or E = Lp

R(Ω,F , μ), we write xn
Lp

→ x.

Exercise 7. Let (E, T ) be a topological space and E′ ⊆ E. Let
T ′ = T|E′ be the induced topology on E′. Show that if (xn)n≥1 is a

sequence in E′ and x ∈ E′, then xn
T→ x is equivalent to xn

T ′
→ x.

Exercise 8. Let f, g, (fn)n≥1 be in Lp
C(Ω,F , μ) and p ∈ [1, +∞].
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1. Recall what the notation fn → f means.

2. Show that fn
Lp

→ f is equivalent to ‖fn − f‖p → 0.

3. Show that if fn
Lp

→ f and fn
Lp

→ g then f = g μ-a.s.

Exercise 9. Let p ∈ [1, +∞]. Suppose there exists some N ∈ F such
that μ(N) = 0 and N �= ∅. Find a sequence (fn)n≥1 in Lp

C(Ω,F , μ)

and f, g in Lp
C(Ω,F , μ), f �= g such that fn

Lp

→ f and fn
Lp

→ g.

Definition 77 Let (fn)n≥1 be a sequence in Lp
C(Ω,F , μ), where

(Ω,F , μ) is a measure space and p ∈ [1, +∞]. We say that (fn)n≥1 is
a Cauchy sequence, if and only if, for all ε > 0, there exists n0 ≥ 1
such that:

n, m ≥ n0 ⇒ ‖fn − fm‖p ≤ ε
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Exercise 10. Let f, (fn)n≥1 be in Lp
C(Ω,F , μ) and p ∈ [1, +∞].

Show that if fn
Lp

→ f , then (fn)n≥1 is a Cauchy sequence.

Exercise 11. Let (fn)n≥1 be Cauchy in Lp
C(Ω,F , μ), p ∈ [1, +∞].

1. Show the existence of n1 ≥ 1 such that:

n ≥ n1 ⇒ ‖fn − fn1‖p ≤ 1
2

2. Suppose we have found n1 < n2 < . . . < nk, k ≥ 1, such that:

∀j ∈ {1, . . . , k} , n ≥ nj ⇒ ‖fn − fnj‖p ≤ 1
2j

Show the existence of nk+1, nk < nk+1 such that:

n ≥ nk+1 ⇒ ‖fn − fnk+1‖p ≤ 1
2k+1
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3. Show that there exists a subsequence (fnk
)k≥1 of (fn)n≥1 with:

+∞∑
k=1

‖fnk+1 − fnk
‖p < +∞

Exercise 12. Let p ∈ [1, +∞], and (fn)n≥1 be in Lp
C(Ω,F , μ), with:

+∞∑
n=1

‖fn+1 − fn‖p < +∞

We define:

g
�
=

+∞∑
n=1

|fn+1 − fn|

1. Show that g : (Ω,F) → [0, +∞] is non-negative and measurable.

2. If p = +∞, show that g ≤
∑+∞

n=1 ‖fn+1 − fn‖∞ μ-a.s.
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3. If p ∈ [1, +∞[, show that for all N ≥ 1, we have:∥∥∥∥∥
N∑

n=1

|fn+1 − fn|
∥∥∥∥∥

p

≤
+∞∑
n=1

‖fn+1 − fn‖p

4. If p ∈ [1, +∞[, show that:(∫
Ω

gpdμ

) 1
p

≤
+∞∑
n=1

‖fn+1 − fn‖p

5. Show that for p ∈ [1, +∞], we have g < +∞ μ-a.s.

6. Define A = {g < +∞}. Show that for all ω ∈ A, (fn(ω))n≥1 is
a Cauchy sequence in C. We denote z(ω) its limit.

7. Define f : (Ω,F) → (C,B(C)), by:

f(ω)
�
=
{

z(ω) if ω ∈ A
0 if ω �∈ A
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Show that f is measurable and fn → f μ-a.s.

8. if p = +∞, show that for all n ≥ 1, |fn| ≤ |f1|+ g and conclude
that f ∈ L∞

C (Ω,F , μ).

9. If p ∈ [1, +∞[, show the existence of n0 ≥ 1, such that:

n ≥ n0 ⇒
∫

Ω

|fn − fn0 |pdμ ≤ 1

Deduce from Fatou’s lemma that f − fn0 ∈ Lp
C(Ω,F , μ).

10. Show that for p ∈ [1, +∞], f ∈ Lp
C(Ω,F , μ).

11. Suppose that fn ∈ Lp
R(Ω,F , μ), for all n ≥ 1. Show the exis-

tence of f ∈ Lp
R(Ω,F , μ), such that fn → f μ-a.s.
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Exercise 13. Let p ∈ [1, +∞], and (fn)n≥1 be in Lp
C(Ω,F , μ), with:

+∞∑
n=1

‖fn+1 − fn‖p < +∞

1. Does there exist f ∈ Lp
C(Ω,F , μ) such that fn → f μ-a.s.

2. Suppose p = +∞. Show that for all n < m, we have:

|fm+1 − fn| ≤
m∑

k=n

‖fk+1 − fk‖∞ μ-a.s.

3. Suppose p = +∞. Show that for all n ≥ 1, we have:

‖f − fn‖∞ ≤
+∞∑
k=n

‖fk+1 − fk‖∞
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4. Suppose p ∈ [1, +∞[. Show that for all n < m, we have:(∫
Ω

|fm+1 − fn|pdμ

) 1
p

≤
m∑

k=n

‖fk+1 − fk‖p

5. Suppose p ∈ [1, +∞[. Show that for all n ≥ 1, we have:

‖f − fn‖p ≤
+∞∑
k=n

‖fk+1 − fk‖p

6. Show that for p ∈ [1, +∞], we also have fn
Lp

→ f .

7. Suppose conversely that g ∈ Lp
C(Ω,F , μ) is such that fn

Lp

→ g.
Show that f = g μ-a.s.. Conclude that fn → g μ-a.s..
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Theorem 44 Let (Ω,F , μ) be a measure space. Let p ∈ [1, +∞],
and (fn)n≥1 be a sequence in Lp

C(Ω,F , μ) such that:

+∞∑
n=1

‖fn+1 − fn‖p < +∞

Then, there exists f ∈ Lp
C(Ω,F , μ) such that fn → f μ-a.s. Moreover,

for all g ∈ Lp
C(Ω,F , μ), the convergence fn → g μ-a.s. and fn

Lp

→ g
are equivalent.

Exercise 14. Let f, (fn)n≥1 be in Lp
C(Ω,F , μ) such that fn

Lp

→ f ,
where p ∈ [1, +∞].

1. Show that there exists a sub-sequence (fnk
)k≥1 of (fn)n≥1, with:

+∞∑
k=1

‖fnk+1 − fnk
‖p < +∞
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2. Show that there exists g ∈ Lp
C(Ω,F , μ) such that fnk

→ g μ-a.s.

3. Show that fnk

Lp

→ g and g = f μ-a.s.

4. Conclude with the following:

Theorem 45 Let (fn)n≥1 be in Lp
C(Ω,F , μ) and f ∈ Lp

C(Ω,F , μ)

such that fn
Lp

→ f , where p ∈ [1, +∞]. Then, we can extract a sub-
sequence (fnk

)k≥1 of (fn)n≥1 such that fnk
→ f μ-a.s.

Exercise 15. Prove the last theorem for Lp
R(Ω,F , μ).

Exercise 16. Let (fn)n≥1 be Cauchy in Lp
C(Ω,F , μ), p ∈ [1, +∞].

1. Show that there exists a subsequence (fnk
)k≥1 of (fn)n≥1 and

f belonging to Lp
C(Ω,F , μ), such that fnk

Lp

→ f .

www.probability.net

http://www.probability.net


Tutorial 9: Lp-spaces, p ∈ [1, +∞] 20

2. Using the fact that (fn)n≥1 is Cauchy, show that fn
Lp

→ f .

Theorem 46 Let p ∈ [1, +∞]. Let (fn)n≥1 be a Cauchy sequence in

Lp
C(Ω,F , μ). Then, there exists f ∈ Lp

C(Ω,F , μ) such that fn
Lp

→ f .

Exercise 17. Prove the last theorem for Lp
R(Ω,F , μ).
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Solutions to Exercises
Exercise 1.

1. Since p, q ∈ R+, we have p < +∞ and q < +∞. From the
inequality 1/p ≤ 1/p + 1/q = 1, we obtain p ≥ 1. If p = 1, then
1/q = 0, contradicting q < +∞. So p > 1, and similarly q > 1.
We have proved that 1 < p < +∞ and 1 < q < +∞.

2. Let α ∈]0, +∞[ and φ = φα. We want to prove that φ is contin-
uous. For all a ∈ R+, it is clear that limx→a φ(x) = φ(a). So φ
is continuous at x = a. Furthermore, limx→+∞ φ(x) = φ(+∞).
So φ is also continuous at +∞. For many of us, this is sufficient
proof of the fact that φ is a continuous map. However, for those
who want to apply definition (27), the following can be said: let
V be open in [0, +∞]. We want to show that φ−1(V ) is open
in [0, +∞]. Let a ∈ φ−1(V ). Then φ(a) ∈ V . Since φ is con-
tinuous at x = a, there exists Ua open in [0, +∞], containing
a, such that φ(Ua) ⊆ V . So a ∈ Ua ⊆ φ−1(V ). It follows that
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φ−1(V ) can be written as φ−1(V ) = ∪a∈φ−1(V )Ua, and φ−1(V )
is therefore open in [0, +∞]. From definition (27), we conclude
that φ : [0, +∞] → [0, +∞] is a continuous map.

3. fp can be viewed as fp = φp ◦ f , where φp is defined as in 2.
We proved that φp is a continuous map. It is therefore measur-
able with respect to the Borel σ-algebra B([0, +∞]) on [0, +∞].
It follows that fp : (Ω,F) → [0, +∞] is a measurable map,
which is also non-negative. Hence, the integral

∫
fpdμ is a

well-defined element of [0, +∞], and A = (
∫

fpdμ)1/p is also
well-defined, being understood that (+∞)1/p = +∞. Similarly,
B = (

∫
f qdμ)1/q is a well-defined element of [0, +∞]. Finally,

the map fg : (Ω,F) → [0, +∞] is non-negative and measurable,
and C =

∫
fgdμ is a well-defined element of [0 + ∞].

4. Suppose A = 0. Then
∫

fpdμ = 0, and since fp is non-negative,
we see that fp = 0 μ-a.s., and consequently f = 0 μ-a.s. So
fg = 0 μ-a.s., and finally C =

∫
fgdμ = 0. So C ≤ AB.

Similarly, B = 0 implies C = 0, and therefore C ≤ AB.
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5. Suppose A = +∞. Then, either B = 0 or B > 0. If B = 0,
then C ≤ AB is true from 4. If B > 0, then AB = +∞, and
consequently C ≤ AB. In any case, we see that C ≤ AB.
Similarly, B = +∞ implies C ≤ AB.

6. Suppose A, B ∈]0, +∞[. Let F = f/A and G = g/B. We have:∫
F pdμ =

∫
(f/A)pdμ =

1
Ap

∫
fpdμ = 1

and similarly,
∫

Gpdμ = 1.

7. Let a, b ∈]0, +∞[. The map x → − ln(x) being convex on
]0, +∞[, since 1/p + 1/q = 1, we have:

− ln(
1
p
ap +

1
q
bq) ≤ −1

p
ln(ap) − 1

q
ln(bq) = − ln(ab)

and consequently ln(ab) ≤ ln(ap/p + bq/q). The map x → ex
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being non-decreasing, we conclude that:

ab ≤ 1
p
ap +

1
q
bq (1)

It is easy to check that inequality (1) is in fact true for all
a, b ∈ [0, +∞].

8. For all ω ∈ Ω, F (ω) and G(ω) are elements of [0, +∞]. From 7.:

F (ω)G(ω) ≤ 1
p
F (ω)p +

1
q
G(ω)q

9. Integrating on both side of 8., we obtain:∫
FGdμ ≤ 1

p

∫
F pdμ +

1
q

∫
Gqdμ = 1

where we have used the fact that
∫

F pdμ =
∫

Gqdμ = 1. Since∫
FGdμ = (

∫
fgdμ)/AB = C/AB, we conclude that C ≤ AB.

Exercise 1
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Exercise 2.

1. fp, gp and (f + g)p are all non-negative and measurable. All
three integrals

∫
fpdμ,

∫
gpdμ and

∫
(f + g)pdμ are therefore

well-defined. It follows that A, B and C are well-defined ele-
ments of [0, +∞].

2. Since p > 1, the map x → xp is convex on ]0, +∞[. In particular,
for all a, b ∈]0, +∞[, we have ((a + b)/2)p ≤ (ap + bp)/2. We
conclude that:

(a + b)p ≤ 2p−1(ap + bp) (2)
In fact, it is easy to check that (2) holds for all a, b ∈ [0, +∞].

3. If A = +∞ or B = +∞, then A + B = +∞, and C ≤ A + B. If
C = 0, then clearly C ≤ A + B.

4. Using 2., for all ω ∈ Ω, we have:

(f(ω) + g(ω))p ≤ 2p−1(f(ω)p + g(ω)p)
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Integrating on both side of the inequality, we obtain:∫
(f + g)pdμ ≤ 2p−1

(∫
fpdμ +

∫
gpdμ

)
(3)

If A < +∞ and B < +∞, then both integrals
∫

fpdμ and∫
gpdμ are finite, and we see from (3) that

∫
(f + g)pdμ is itself

finite. So C < +∞.

5. Take q = p/(p−1). Since p ∈]1, +∞[, q is a well-defined element
of R+, and 1/p + 1/q = 1.

6. Let a, b ∈ [0, +∞]. If a, b ∈ R+, then:

(a + b)p = (a + b).(a + b)p−1 (4)

If a = +∞ or b = +∞, then a + b = +∞ and both sides of (4)
are equal to +∞. So (4) is true for all a, b ∈ [0, +∞].
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7. Using holder’s inequality (41), since q(p − 1) = p, we have:∫
f.(f+g)p−1dμ ≤

(∫
fpdμ

) 1
p
(∫

(f + g)q(p−1)dμ

) 1
q

= AC
p
q

and:∫
g.(f+g)p−1dμ ≤

(∫
gpdμ

) 1
p
(∫

(f + g)q(p−1)dμ

) 1
q

= BC
p
q

8. From 6., we have:∫
(f + g)pdμ =

∫
f.(f + g)p−1dμ +

∫
g.(f + g)p−1dμ

and using 7., we obtain:∫
(f + g)pdμ ≤ C

p
q (A + B)

9. From 8., we have Cp ≤ C
p
q (A + B). Having assumed in 5. that

C ∈]0, +∞[, we can divide both side of this inequality by C
p
q ,
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to obtain Cp− p
q ≤ A + B. Since p − p/q = 1, we conclude that

C ≤ A + B.

10. If p = 1, then C = A + B is equivalent to:∫
(f + g)dμ =

∫
fdμ +

∫
gdμ

which is true by linearity. In particular, C ≤ A + B. The
purpose of this exercise is to prove minkowski’s inequality (43).

Exercise 2
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Exercise 3.

1. Let f : (Ω,F) → (C,B(C)) be a map. Then, if f has values
in R, i.e. f(Ω) ⊆ R, then the measurability of f with respect
to (C,B(C)) is equivalent to its measurability with respect to
(R,B(R)). Hence:

Lp
R(Ω,F , μ) = {f ∈ Lp

C(Ω,F , μ) , f(Ω) ⊆ R}
The equivalence of measurability with respect to B(C) and B(R)
may be taken for granted by many. It is easily proved from the
fact that B(R) = B(C)|R, i.e. the Borel σ-algebra on R is
the trace on R, of the Borel σ-algebra on C. This fact can be
seen from the trace theorem (10), and the fact that the usual
topology on R is induced on R, by the usual topology on C.

2. Let f, g ∈ Lp
R(Ω,F , μ) and α ∈ R. The map f +αg is R-valued

and measurable. Moreover, we have |f + αg| ≤ |f | + |α|.|g|.
Since p ≥ 1, (and in particular p ≥ 0), the map x → xp is
non-decreasing on R+, so |f + αg|p ≤ (|f | + |α|.|g|)p. Hence,
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we see that
∫
|f + αg|pdμ ≤

∫
(|f |+ |α|.|g|)pdμ. However, using

minkowski’s inequality (43), we have:(∫
(|f | + |α|.|g|)pdμ

) 1
p

≤
(∫

|f |pdμ

) 1
p

+ |α|.
(∫

|g|pdμ

) 1
p

We conclude that
∫
|f+αg|pdμ < +∞. So f+αg ∈ Lp

R(Ω,F , μ),
and we have proved that Lp

R(Ω,F , μ) is closed under R-linear
combinations.

3. The fact that Lp
C(Ω,F , μ) is closed under C-linear combinations,

is proved identically to 2., replacing R by C.

4. Using |f + g|p ≤ (|f | + |g|)p and minkowski’s inequality (43):(∫
(|f | + |g|)pdμ

) 1
p

≤
(∫

|f |pdμ

) 1
p

+
(∫

|g|pdμ

) 1
p

we see that ‖f + g‖p ≤ ‖f‖p + ‖g‖p.
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5. Suppose ‖f‖p = 0. Then
∫
|f |pdμ = 0. Since |f |p is non-

negative, |f |p = 0 μ-a.s., and consequently f = 0 μ-a.s. Con-
versely, if f = 0 μ-a.s., then |f |p = 0 μ-a.s., so

∫
|f |pdμ = 0 and

finally ‖f‖p = 0.

6. Let α ∈ C. We have:

‖αf‖p =
(∫

|αf |p
) 1

p

= |α|.
(∫

|f |p
) 1

p

= |α|.‖f‖p

7. ‖f−g‖p = 0 only implies f = g μ-.a.s, and not necessarily f = g.
So (f, g) → ‖f − g‖p , may not be a metric on Lp

C(Ω,F , μ).

Exercise 3
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Exercise 4.

1. For all f : (Ω,F) → (C,B(C)) with values in R, the measura-
bility of f with respect to B(C) is equivalent to its measurability
with respect to B(R). Hence:

L∞
R (Ω,F , μ) = {f ∈ L∞

C (Ω,F , μ) , f(Ω) ⊆ R}

2. Since ‖f‖∞ < +∞, for all n ≥ 1, we have ‖f‖∞ < ‖f‖∞ + 1/n.
‖f‖∞ being the greatest lower bound of all μ-almost sure upper
bounds of |f |, ‖f‖∞ + 1/n cannot be such lower bound. There
exists M ∈ R+, such that |f | ≤ M μ-a.s., and M < ‖f‖∞+1/n.
In particular, |f | < ‖f‖∞+1/n μ-a.s. Let An be the set defined
by An = {‖f‖∞ + 1/n ≤ |f |}. Then An ∈ F and μ(An) = 0.
Moreover, An ⊆ An+1 and ∪+∞

n=1An = {‖f‖∞ < |f |}. It follows
that An ↑ {‖f‖∞ < |f |}, and from theorem (7), we see that:

μ({‖f‖∞ < |f |}) = lim
n→+∞

μ(An) = 0

We conclude that |f | ≤ ‖f‖∞ μ-a.s.
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3. Since |f + g| ≤ |f | + |g|, using 2., we have:

|f + g| ≤ ‖f‖∞ + ‖g‖∞ μ-a.s.

Hence, ‖f‖∞ + ‖g‖∞ is a μ-almost sure upper bound of |f + g|.
‖f +g‖∞ being a lower bound of all such upper bounds, we have
‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

4. Let f, g ∈ L∞
R (Ω,F , μ) and α ∈ R. Then f + αg is R-valued

and measurable. Furthermore, using 2., we have:

|f + αg| ≤ |f | + |α|.|g| ≤ ‖f‖∞ + |α|.‖g‖∞ μ-a.s.

It follows that ‖f + αg‖∞ ≤ ‖f‖∞ + |α|.‖g‖∞ < +∞. We
conclude that f + αg ∈ L∞

R (Ω,F , μ), and we have proved that
L∞

R (Ω,F , μ) is closed under R-linear combinations.

5. The fact that L∞
C (Ω,F , μ) is closed under C-linear combinations

can be proved identically, replacing R by C.

6. Suppose ‖f‖∞ = 0. Then |f | ≤ 0 μ-a.s., and consequently f = 0
μ-a.s. Conversely, if f = 0 μ-a.s., then |f | ≤ 0 μ-a.s., and 0 is
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therefore a μ-almost sure upper bound of |f |. So ‖f‖∞ ≤ 0.
Since ‖f‖∞ is an infimum of a subset of R+, it is either +∞
(when such subset is empty), or lies in R+. So ‖f‖∞ ≥ 0 and
finally ‖f‖∞ = 0.

7. We have |αf | ≤ |α|.‖f‖∞ μ-a.s., and hence ‖αf‖∞ ≤ |α|.‖f‖∞.
if α �= 0, we have:

‖f‖∞ = ‖ 1
α

.(αf)‖∞ ≤ 1
|α| ‖αf‖∞

It follows that ‖αf‖∞ = |α|.‖f‖∞, (also true if α = 0).

8. ‖f − g‖∞ = 0 implies f = g μ-a.s., but not f = g. It follows
that (f, g) → ‖f − g‖∞ may not be a metric on L∞

C (Ω,F , μ).

Exercise 4
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Exercise 5.

1. Since N �= ∅, 1N �= 0, so f �= g. Since N ∈ F , the map f = 1N is
measurable, and being R-valued, it is also C-valued. Moreover,
since μ(N) = 0, ‖f‖p = 0 < +∞ (whether p = +∞ or lies in
[1, +∞[), and we see that f ∈ Lp

C(Ω,F , μ). Since g = 0, it is
C-valued, measurable and ‖g‖p = 0 < +∞, so g ∈ Lp

C(Ω,F , μ).

2. Let U be open in Lp
C(Ω,F , μ), such that f ∈ U . By defini-

tion (75), there exists ε > 0, such that B(f, ε) ⊆ U . However,
‖f − g‖p = ‖f‖p = 0 (p = +∞ or p ∈ [1, +∞[). So in particular
‖f − g‖p < ε. So g ∈ B(f, ε) and finally g ∈ U .

3. If Lp
C(Ω,F , μ) was Hausdorff, since f �= g, there would exist

U, V open sets in Lp
C(Ω,F , μ) such that f ∈ U , g ∈ V and

U ∩ V = ∅. However from 2., this is impossible, as g would
always be an element of U as well as V . We conclude similarly
that Lp

R(Ω,F , μ) is not Hausdorff.

Exercise 5
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Exercise 6. Let Lp
R and Lp

C denote Lp
R(Ω,F , μ) and Lp

C(Ω,F , μ)
respectively. Let T be the usual topology on Lp

C and T ′ be the usual
topology on Lp

R. We want to prove that T ′ = T|Lp
R
, i.e. that T ′ is the

topology on Lp
R induced by T . Given f ∈ Lp

R and ε > 0, let B(f, ε)
denote the open ball in Lp

C and B′(f, ε) denote the open ball the Lp
R.

Then B′(f, ε) = B(f, ε) ∩ Lp
R. It is a simple exercise to show that

any open ball in Lp
R or Lp

C, is in fact open with respect to their usual
topology. Let U ′ ∈ T ′. For all f ∈ U ′, there exists εf > 0 such that
f ∈ B′(f, εf ) ⊆ U ′. It follows that:

U ′ = ∪f∈U ′B′(f, εf ) = (∪f∈U ′B(f, εf )) ∩ Lp
R

and we see that U ′ ∈ T|Lp
R
. So T ′ ⊆ T|Lp

R
. Conversely, let U ′ ∈ T|Lp

R
.

There exists U ∈ T such that U ′ = U ∩ Lp
R. Let f ∈ U ′. Then

f ∈ U . There exists ε > 0 such that B(f, ε) ⊆ U . It follows that
B′(f, ε) = B(f, ε)∩Lp

R ⊆ U ′. So U ′ is open with respect to the usual
topology in Lp

R, i.e. U ′ ∈ T ′. We have proved that T|Lp
R
⊆ T ′, and

finally T ′ = T|Lp
R
.

Exercise 6
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Exercise 7. let (E, T ) be a topological space and E′ ⊆ E. Let
T ′ = T|E′ be the induced topology on E′. We assume that (xn)n≥1 is

a sequence in E′, and that x ∈ E′. Suppose that xn
T→ x. Let U ′ ∈ T ′

be such that x ∈ U ′. There exists U ∈ T such that U ′ = U ∩ E′.
Since x ∈ U and xn

T→ x, there exists n0 ≥ 1 such that xn ∈ U
for all n ≥ n0. But xn ∈ E′ for all n ≥ 1. So xn ∈ U ∩ E′ = U ′

for all n ≥ n0, and we see that xn
T ′
→ x. Conversely, suppose that

xn
T ′
→ x. Let U ∈ T be such that x ∈ U . Then U ∩ E′ ∈ T ′ and

x ∈ U ∩E′. There exists n0 ≥ 1, such that xn ∈ U ∩E′ for all n ≥ n0.
In particular, xn ∈ U for all n ≥ n0, and we see that xn

T→ x. We

have proved that xn
T ′
→ x and xn

T→ x are equivalent.
Exercise 7
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Exercise 8.

1. The notation fn → f has been used throughout these tutorials,
to refer to a simple convergence, i.e. fn(ω) → f(ω) as n → +∞,
for all ω ∈ Ω.

2. Suppose fn
Lp

→ f . Let ε > 0. The open ball B(f, ε) being open
with respect to the usual topology in Lp

C(Ω,F , μ), there exists
n0 ≥ 1, such that fn ∈ B(f, ε) for all n ≥ n0, i.e.:

n ≥ n0 ⇒ ‖fn − f‖p < ε

So ‖fn − f‖p → 0. Conversely, suppose ‖fn − f‖p → 0. Let U
be open in Lp

C(Ω,F , μ), such that f ∈ U . From definition (75),
there exists ε > 0 such that B(f, ε) ⊆ U . By assumption, there
exists n0 ≥ 0, such that ‖fn − f‖p < ε for all n ≥ n0. So
fn ∈ B(f, ε) for all n ≥ n0. Hence, we see that fn ∈ U for all

n ≥ n0, and we have proved that fn
Lp

→ f . We conclude that
fn

Lp

→ f and ‖fn − f‖p → 0 are equivalent.
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3. Suppose fn
Lp

→ f and fn
Lp

→ g. From 2., we have ‖fn − f‖p → 0
and ‖fn − g‖p → 0. Using the triangle inequality (ex. (3) for
p ∈ [1, +∞[ and ex. (4) for p = +∞):

‖f − g‖p ≤ ‖fn − f‖p + ‖fn − g‖p

for all n ≥ 1. It follows that we have ‖f − g‖p < ε for all ε > 0,
and consequently ‖f − g‖p = 0. From ex. (3) and ex. (4) we
conclude that f = g μ-a.s.

Exercise 8
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Exercise 9. Take fn = 1N = f for all n ≥ 1. Take g = 0. Then fn, f
and g are all elements of Lp

C(Ω,F , μ), and f �= g. Moreover, for all

n ≥ 1, we have ‖fn − f‖p = ‖fn − g‖p = 0. So fn
Lp

→ f and fn
Lp

→ g.
The purpose of this exercise is to show that a limit in Lp may not be
unique (f �= g). However, it is unique, up to μ-almost sure equality
(See exercise (8)).

Exercise 9
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Exercise 10. Suppose fn
Lp

→ f . Let ε > 0. There exists n0 ≥ 1, with:

n ≥ n0 ⇒ ‖fn − f‖p ≤ ε/2

From the triangle inequality, for all n, m ≥ 1:

‖fn − fm‖p ≤ ‖fn − f‖p + ‖fm − f‖p

It follows that we have:

n, m ≥ n0 ⇒ ‖fn − fm‖p ≤ ε

We conclude that (fn)n≥1 is a Cauchy sequence in Lp
C(Ω,F , μ).

Exercise 10
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Exercise 11.

1. Take ε = 1/2. There exists n1 ≥ 1, such that:

n, m ≥ n1 ⇒ ‖fn − fm‖p ≤ 1
2

In particular, we have:

n ≥ n1 ⇒ ‖fn − fn1‖p ≤ 1
2

2. Let k ≥ 1. We have n1 < . . . < nk, such that for all j = 1, . . . , k:

n ≥ nj ⇒ ‖fn − fnj‖p ≤ 1
2j

Take ε = 1/2k+1. There exists n′
k+1 ≥ 1, such that:

n, m ≥ n′
k+1 ⇒ ‖fn − fm‖p ≤ 1

2k+1
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Take nk+1 = max(nk + 1, n′
k+1). Then nk < nk+1, and:

n ≥ nk+1 ⇒ ‖fn − fnk+1‖p ≤ 1
2k+1

3. By induction from 2., we can construct a strictly increasing
sequence of integers (nk)k≥1, such that for all k ≥ 1:

n ≥ nk ⇒ ‖fn − fnk
‖p ≤ 1

2k

In particular, ‖fnk+1−fnk
‖p ≤ 1/2k for all k ≥ 1. It follows that

we have found a subsequence (fnk
)k≥1 of (fn)n≥1, such that:

+∞∑
k=1

‖fnk+1 − fnk
‖p < +∞

Exercise 11
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Exercise 12.

1. Each finite sum gN =
∑N

n=1 |fn+1−fn| is well-defined and mea-
surable. It follows that g = supN≥1 gN is itself measurable. It
is obviously non-negative.

2. Suppose p = +∞. From exercise (4), for all n ≥ 1, we have:

|fn+1 − fn| ≤ ‖fn+1 − fn‖∞ , μ-a.s.

The set Nn = {|fn+1 − fn| > ‖fn+1 − fn‖∞} which lies in F ,
is such that μ(Nn) = 0. It follows that if N = ∪n≥1Nn, then
μ(N) = 0. However, for all ω ∈ N c, we have:

g(ω) =
+∞∑
n=1

|fn+1(ω) − fn(ω)| ≤
+∞∑
n=1

‖fn+1 − fn‖∞

We conclude that g ≤
∑∞

n=1 ‖fn+1 − fn‖∞ μ-a.s.
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3. Let p ∈ [1, +∞[ and N ≥ 1. By the triangle inequality (ex. (3)):∥∥∥∥∥
N∑

n=1

|fn+1 − fn|
∥∥∥∥∥

p

≤
N∑

n=1

‖fn+1 − fn‖p ≤
+∞∑
n=1

‖fn+1 − fn‖p

4. Let p ∈ [1, +∞[. Given N ≥ 1, let gN =
∑N

n=1 |fn+1 − fn|.
Then gN → g as N → +∞. The map x → xp being continuous
on [0, +∞], we have gp

N → gp, and in particular gp = lim inf gp
N

as N → +∞. Using Fatou’s lemma (20), we see that:∫
gpdμ ≤ lim inf

N≥1

∫
gp

Ndμ (5)

However, from 3., we have ‖gN‖p ≤
∑+∞

n=1 ‖fn+1 − fn‖p, for all
N ≥ 1. Since p ≥ 0, the map x → xp is non-decreasing on
[0, +∞], and therefore:∫

gp
Ndμ ≤

(
+∞∑
n=1

‖fn+1 − fn‖p

)p

(6)
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From inequalities (5) and (6), we conclude that:∫
gpdμ ≤

(
+∞∑
n=1

‖fn+1 − fn‖p

)p

and finally: (∫
gpdμ

) 1
p

≤
+∞∑
n=1

‖fn+1 − fn‖p

5. Let p ∈ [1, +∞]. If p = +∞, from 2. we have:

g ≤
+∞∑
n=1

‖fn+1 − fn‖p , μ-a.s. (7)

By assumption, the series in (7) is finite. So g < +∞ μ-a.s.
If p ∈ [1, +∞[, from 4. we have:(∫

gpdμ

) 1
p

≤
+∞∑
n=1

‖fn+1 − fn‖p
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So
∫

gpdμ < +∞. Since (+∞)μ({gp = +∞}) ≤
∫

gpdμ, we see
that μ({gp = +∞}) = 0 and finally g < +∞ μ-a.s.

6. Let A = {g < +∞}. Let ω ∈ A. Then g(ω) < +∞. The series∑+∞
n=1 |fn+1(ω) − fn(ω)| is therefore finite. Let ε > 0. There

exists n0 ≥ 1, such that:

n ≥ n0 ⇒
+∞∑
k=n

|fk+1(ω) − fk(ω)| ≤ ε

Given m > n ≥ n0, we have:

|fm(ω) − fn(ω)| ≤
m−1∑
k=n

|fk+1(ω) − fk(ω)| ≤ ε

We conclude that the sequence (fn(ω))n≥1 is Cauchy in C. It
therefore has a limit1, denoted z(ω).

1The completeness of C is proved in the next Tutorial.
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7. From 6., fn(ω) → z(ω) = f(ω) for all ω ∈ A. Since by definition,
f(ω) = 0 for all ω ∈ Ac, we see that fn(ω)1A(ω) → f(ω) for all
ω ∈ Ω. Hence, we have fn1A → f , and since fn1A is measurable
for all n ≥ 1, we see from theorem (17) that f = lim fn1A is
itself measurable. Since μ(Ac) = 0 and fn(ω) → f(ω) on A, we
have fn → f μ-a.s.

8. Suppose p = +∞. For all n ≥ 1, we have:

|fn − f1| ≤
n−1∑
k=1

|fk+1 − fk| ≤ g

So |fn| ≤ |f1| + g. Taking the limit as n → +∞, we obtain
|f | ≤ |f1| + g μ-a.s. Let M =

∑+∞
n=1 ‖fn+1 − fn‖∞. Then

by assumption, M < +∞ and from 2. we have g ≤ M μ-a.s.
Moreover, since f1 ∈ L∞

C (Ω,F , μ), using exercise (4), we have
|f1| ≤ ‖f1‖∞ μ-a.s. with ‖f1‖∞ < +∞. Hence, we see that
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|f | ≤ ‖f1‖∞ + M μ-a.s., and consequently:

‖f‖∞ ≤ ‖f1‖∞ +
+∞∑
n=1

‖fn+1 − fn‖∞ < +∞

f is therefore C-valued, measurable and with ‖f‖∞ < +∞. We
have proved that f ∈ L∞

C (Ω,F , μ).

9. Let p ∈ [1, +∞[. The series
∑+∞

n=1 ‖fn+1 − fn‖p being finite,
there exists n0 ≥ 1, such that:

n ≥ n0 ⇒
+∞∑
k=n

‖fk+1 − fk‖p ≤ 1

Let n ≥ n0. By the triangle inequality:

‖fn − fn0‖p ≤
n−1∑
k=n0

‖fk+1 − fk‖p ≤ 1
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Hence, we see that:

n ≥ n0 ⇒
∫

|fn − fn0 |pdμ ≤ 1p = 1 (8)

From 6., fn(ω) → f(ω) as n → +∞, for all ω ∈ A, where
μ(Ac) = 0. In particular:

1A|f − fn0 |p = lim inf
n≥1

1A|fn − fn0 |p

Using inequality (8) and Fatou’s lemma (20), we obtain:2∫
|f − fn0 |pdμ ≤ lim inf

n≥1

∫
|fn − fn0 |pdμ ≤ 1

In particular,
∫
|f − fn0 |pdμ < +∞. Since f − fn0 is C-valued

and measurable, we conclude that f − fn0 ∈ Lp
C(Ω,F , μ).

10. Let p ∈ [1, +∞]. If p = +∞, then f ∈ L∞
C (Ω,F , μ) was proved

in 8. If p ∈ [1, +∞[, we saw in 9. that f − fn0 ∈ Lp
C(Ω,F , μ) for

2Note that n ≥ n0 ⇒ un ≤ 1 is enough to ensure lim infn≥1 un ≤ 1.
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some n0 ≥ 1. Since fn0 is itself an element of Lp
C(Ω,F , μ), we

conclude from exercise (3) that f = (f − fn0) + fn0 is also an
element of Lp

C(Ω,F , μ).

11. The purpose of this exercise is to prove that given a sequence
(fn)n≥1 in Lp

C(Ω,F , μ) such that
∑+∞

n=1 ‖fn+1 − fn‖p < +∞,
there exists f ∈ Lp

C(Ω,F , μ), such that fn → f μ-a.s. We now
assume that all fn’s are in fact R-valued, i.e. fn ∈ Lp

R(Ω,F , μ).
There exists f∗ ∈ Lp

C(Ω,F , μ) such that fn → f∗ μ-a.s. How-
ever, f∗(ω) may not be R-valued for all ω ∈ Ω. Yet, if N ∈ F
is such that μ(N) = 0 and fn(ω) → f∗(ω) for all ω ∈ N c, then
f∗ is R-valued on N c (as a limit of an R-valued sequence). If
we define f = f∗1Nc , then f is R-valued and measurable, with
‖f‖p = ‖f∗‖p < +∞. So f ∈ Lp

R(Ω,F , μ) and furthermore
since f = f∗ μ-a.s., fn → f μ-a.s.

Exercise 12
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Exercise 13.

1. Yes, there does exist f ∈ Lp
C(Ω,F , μ) such that fn → f μ-a.s.

This was precisely the object of the previous exercise.

2. Suppose p = +∞, and let n < m. From exercise (4), we have
|fm+1 − fn| ≤ ‖fm+1 − fn‖∞ μ-a.s. Furthermore, from the
triangle inequality, ‖fm+1 − fn‖∞ ≤

∑m
k=n ‖fk+1 − fk‖∞. It

follows that:

|fm+1 − fn| ≤
m∑

k=n

‖fk+1 − fk‖∞ , μ-a.s. (9)

3. Suppose p = +∞ and let n ≥ 1. For all m > n, let Nm ∈ F be
such that μ(Nm) = 0, and inequality (9) holds for all ω ∈ N c

m.
Furthermore, since fm+1 → f μ-a.s., let M ∈ F be such that
μ(M) = 0, and fm+1(ω) → f(ω) for all ω ∈ M c. Then, if
N = M ∪ (∪m>nNm), we have N ∈ F , μ(N) = 0 and for all
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ω ∈ N c, fm+1(ω) → f(ω), together with, for all m > n:

|fm+1(ω) − fn(ω)| ≤
m∑

k=n

‖fk+1 − fk‖∞

Taking the limit as m → +∞, we obtain:

|f(ω) − fn(ω)| ≤
+∞∑
k=n

‖fk+1 − fk‖∞

This being true for all ω ∈ N c, we have proved that:

|f − fn| ≤
+∞∑
k=n

‖fk+1 − fk‖∞ , μ-a.s.

From definition (74), we conclude that:

‖f − fn‖∞ ≤
+∞∑
k=n

‖fk+1 − fk‖∞
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4. Let p ∈ [1, +∞[ and n < m. From exercise (3), we have:(∫
|fm+1 − fn|pdμ

) 1
p

= ‖fm+1 − fn‖p ≤
m∑

k=n

‖fk+1 − fk‖p

5. Let p ∈ [1, +∞[ and n ≥ 1. Let N ∈ F be such that μ(N) = 0,
and fm+1(ω) → f(ω) for all ω ∈ N c. Then, we have:

|f − fn|p1Nc = lim inf
m>n

|fm+1 − fn|p1Nc

Using Fatou’s lemma (20), we obtain:∫
|f − fn|pdμ ≤ lim inf

m>n

∫
|fm+1 − fn|pdμ

Hence, from 4. we see that:∫
|f − fn|pdμ ≤

(
+∞∑
k=n

‖fk+1 − fk‖p

)p
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and consequently:

‖f − fn‖p ≤
+∞∑
k=n

‖fk+1 − fk‖p

6. Let p ∈ [1, +∞]. whether p = +∞ or p ∈ [1, +∞[, from 3.
and 5., for all n ≥ 1, we have ‖f − fn‖p ≤

∑+∞
k=n ‖fk+1 − fk‖p.

Since by assumption, the series
∑+∞

k=1 ‖fk+1 − fk‖p is finite, we
conclude that ‖f − fn‖p → 0, as n → +∞. It follows that not

only fn → f μ-a.s., but also fn
Lp

→ f .

7. Suppose g ∈ Lp
C(Ω,F , μ) is such that fn

Lp

→ g. Then fn
Lp

→ f

together with fn
Lp

→ g. From ex. (8), f = g μ-a.s. Furthermore,
since fn → f μ-a.s., we see that fn → g μ-a.s. The purpose of
this exercise (and the previous) is to prove theorem (44).

Exercise 13
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Exercise 14.

1. Since fn
Lp

→ f , from exercise (10), (fn)n≥1 is a Cauchy sequence
in Lp

C(Ω,F , μ). Using exercise (11), there exists a sub-sequence
(fnk

)k≥1 of (fn)n≥1, such that
∑+∞

k=1 ‖fnk+1 − fnk
‖p < +∞.

2. Applying theorem (44) to the sequence (fnk
)k≥1, there exists

g ∈ Lp
C(Ω,F , μ), such that fnk

→ g μ-a.s.

3. Also from theorem (44), the convergence fnk
→ g μ-a.s. and

fnk

Lp

→ g are equivalent. Hence, we also have fnk

Lp

→ g. How-

ever, since by assumption fn
Lp

→ f , we see that fnk

Lp

→ f , and
consequently from exercise (8), f = g μ-a.s.

4. From 2., fnk
→ g μ-a.s., and from 3., f = g μ-a.s. It follows that

fnk
→ f μ-a.s. Given a sequence (fn)n≥1 and f in Lp

C(Ω,F , μ),

such that fn
Lp

→ f , we have been able to extract a sub-sequence
(fnk

)k≥1 such that fnk
→ f μ-a.s. This proves theorem (45).

Exercise 14
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Exercise 15. Suppose (fn)n≥1 is a sequence in Lp
R(Ω,F , μ), and

f ∈ Lp
R(Ω,F , μ) such that fn

Lp

→ f . Then in particular, all fn’s and f
are elements of Lp

C(Ω,F , μ) with ‖f − fn‖p → 0 as n → +∞. From
theorem (45), we can extract a sub-sequence (fnk

)k≥1 of (fn)n≥1, such
that fnk

→ f μ-a.s. This proves theorem (45), where Lp
C(Ω,F , μ) is

replaced by Lp
R(Ω,F , μ). Anyone who feels there was very little to

prove in this exercise, could make a very good point.
Exercise 15
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Exercise 16.

1. Since (fn)n≥1 is Cauchy in Lp
C(Ω,F , μ), from exercise (11), we

can extract a sub-sequence (fnk
)k≥1 of (fn)n≥1, such that:

+∞∑
k=1

‖fnk+1 − fnk
‖p < +∞

From theorem (44), there exists f ∈ Lp
C(Ω,F , μ), such that

fnk
→ f μ-a.s., as well as fnk

Lp

→ f .

2. Let ε > 0. (fn)n≥1 being Cauchy, there exists n0 ≥ 1, such that:

n, m ≥ n0 ⇒ ‖fm − fn‖p ≤ ε

2

Furthermore, since fnk

Lp

→ f , there exists k0 ≥ 1, such that:

k ≥ k0 ⇒ ‖f − fnk
‖p ≤ ε

2
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However, nk ↑ +∞ as k → +∞. There exists k′
0 ≥ 1, such that

k ≥ k′
0 ⇒ nk ≥ n0. Choose an arbitrary k ≥ max(k0, k

′
0).

Then ‖f − fnk
‖p ≤ ε/2 together with nk ≥ n0. Hence, for all

n ≥ n0, we have:

‖f − fn‖p ≤ ‖f − fnk
‖p + ‖fnk

− fn‖p ≤ ε

We have found n0 ≥ 1 such that:

n ≥ n0 ⇒ ‖f − fn‖p ≤ ε

This shows that fn
Lp

→ f . The purpose of this exercise, is to prove
theorem (46). It is customary to say in light of this theorem,
that Lp

C(Ω,F , μ) is complete, even though as defined in these
tutorials, Lp

C(Ω,F , μ) is not strictly speaking a metric space.

Exercise 16
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Exercise 17. Let (fn)n≥1 be a Cauchy sequence in Lp
R(Ω,F , μ).

Then in particular, it is a Cauchy sequence in Lp
C(Ω,F , μ). From

theorem (46), there exists f∗ ∈ Lp
C(Ω,F , μ) such that fn

Lp

→ f∗. Fur-
thermore, from theorem (45), there exists a sub-sequence (fnk

)k≥1

of (fn)n≥1, such that fnk
→ f∗ μ-a.s. It follows that f∗ is in fact

R-valued μ-almost surely. There exists N ∈ F , μ(N) = 0, such that
f∗(ω) ∈ R for all ω ∈ N c. Take f = f∗1Nc . Then f is R-valued,
measurable and ‖f‖p = ‖f∗‖p < +∞. So f ∈ Lp

R(Ω,F , μ). Further-

more, ‖f − fn‖p = ‖f∗ − fn‖p → 0, which shows that fn
Lp

→ f . This
proves theorem (46), where Lp

C(Ω,F , μ) is replaced by Lp
R(Ω,F , μ).
Exercise 17
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