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9.

LP-spaces, p € [1, +o0]

In the following, (2, F, ) is a measure space.

EXERCISE 1. Let f,g : (,F) — [0,+0o0] be non-negative and mea-
surable maps. Let p,q € R, such that 1/p +1/¢ = 1.

1

2.

. Show that 1 < p < +00 and 1 < ¢ < +00.
For all a €]0, +oc[, we define ¢ : [0, +00] — [0, +0o0] by:

¢a()é z* if zeR'
V=Y 400 if =400

Show that ¢“ is a continuous map.

. Define A = ([ frdu)'/?, B = ([ g%dp)'/? and C = [ fgdp.
Explain why A, B and C' are well defined elements of [0, 4+o00].

. Show that if A =0 or B =0 then C < AB.
. Show that if A = 400 or B = +o0o then C < AB.
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6. We assume from now on that 0 < A < +o0c and 0 < B < +00.
Define F' = f/A and G = ¢g/B. Show that:

/de,uz/Gpduzl
Q Q

7. Let a,b €]0, +oc[. Show that:

In(a) + In(b) < In <la” + 1bq>
p q

and: 1 .
ab < —aP + —b?
p q

Prove this last inequality for all a,b € [0, +o0].

8. Show that for all w € ), we have:

Fw)G(w) <
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9. Show that C < AB.

Theorem 41 (Holder’s inequality) Let (Q,F,u) be a measure
space and f, g : (Q,F) — [0, +00] be two non-negative and measurable
maps. Let p,q € R be such that 1/p+1/q=1. Then:

oo (L)’ ()

Theorem 42 (Cauchy-Schwarz’s inequality:first)
Let (Q,F, ) be a measure space and f,g: (2, F) — [0,+0o0] be two
non-negative and measurable maps. Then:

oo (L)’ (o)’

EXERCISE 2. Let f,g : (Q,F) — [0,+00] be two non-negative and
measurable maps. Let p €]1,+oc[. Define A = ([ fPdu)'/? and
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B = ([ g"dp)"/? and C = ([(f + g)Pdp)'/7.
1. Explain why A, B and C' are well defined elements of [0, +00].
2. Show that for all a, b €]0, +oo[, we have:
(a+b)P < 2P~ (a? 4 bP)
Prove this inequality for all a,b € [0, +o0].
3. Show that if A = 400 or B=+ococ or C =0 then C < A+ B.
4. Show that if A < 400 and B < 400 then C < +o0.

5. We assume from now that A4, B € [0,+oo[ and C' €]0, +o0].
Show the existence of some ¢ € R™ such that 1/p+1/q=1.

6. Show that for all a,b € [0, +00], we have:
(a+b)P = (a+b).(a+b)P!
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7. Show that:
| rusartan < act
/Qg-(f+g>”*1du < BCu
8. Show that:

/Q(f +g)Pdp < O (A+ B)

9. Show that C < A + B.

10. Show that the inequality still holds if we assume that p = 1.
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Theorem 43 (Minkowski’s inequality) Let (2, F,u) be a mea-

sure space and f,g: (Q,F) — [0, +00] be two non-negative and mea-
surable maps. Let p € [1, +oo[ Then:

(o7 < (o) (L)

Definition 73 The LP-spaces, p € [1,400[, on (Q, F, ), are:
LR (Q, F, ,u)é{f:(ﬂ,}")—%R,B(R)) measumble,/ﬂ|f\pdu <+oo}

L% (Q, F, ,u)é{f:(ﬂ,}")—%C,B(C)) measumble,/ |fIPdp <—|—oo}
Q

For all f € L%(Q, F, i), we put:

T ( / fl”du>p

EXERCISE 3. Let p € [1,+00[. Let f,g € LL(Q, F, p).

www.probability.net


http://www.probability.net

Tutorial 9: LP-spaces, p € [1, +o0] 7

1. Show that Ly (Q, F,pu) = {f € LL(Q, F,p) , f(2) CR}.

2. Show that L% (2, F, p) is closed under R-linear combinations.
Show that Lg(Q, F, p) is closed under C-linear combinations.
Show that [1£ + glly < 1£llp + lgll-

5. Show that || f||l, =0 < f =0 p-as.

6. Show that for all a € C, ||af|, = ||-|[f]lp-

7. Explain why (f,g) — || — g|l, is not a metric on L%(Q, F, u)

Definition 74 For all f : (Q,F) — (C,B(C)) measurable, Let:

[flloc S inf{M € R* | |f| <M p-a.s.}
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The L*>-spaces on a measure space (2, F,u) are:

Ly (Q,F, u)é{f:(ﬂ,]-') — (R, B(R)) measurable, || f||oc < +00}
LE(Q,F, u)é{f:(fl,}") — (C, B(C)) measurable, || f]|c < +o0}

EXERCISE 4. Let f,g € LZ(Q, F, ).
1. Show that L (Q, F.pn) ={f € LZ(Q, F,un) , f(2) CR}.
2. Show that |f| < ||f]lec p-a.s.

Show that ||f + gllce < [|fllee + [lgllco-

-~ W

Show that LY (2, F, u) is closed under R-linear combinations.

ot

Show that LE (€2, F, i) is closed under C-linear combinations.
6. Show that ||f]lcc =0 < f =0 p-a.s..
7. Show that for all a € C, [|af]leo = ||| flso-
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8. Explain why (f,9) — ||f — 9/l is not a metric on L (2, F, p)

Definition 75 Letp € [1,400]. Let K =R or C. For alle > 0 and
f e Ly (Q,F,n), we define the so-called open ball in L (Q, F, p):

A
B(f,¢e) = {g ‘g€ LII)((Qv]:nu)v ”f_g”p < 6}
We call usual topology in LY (Q, F, p), the set T defined by:
TE{U U CLE(Q,F,p),¥f €U, 3 > 0,B(f,¢) C U}

Note that if (f,g) — [|f — gll, was a metric, the usual topology in
LY (2, F, 1), would be nothing but the metric topology.

EXERCISE 5. Let p € [1,+00]. Suppose there exists N € F with
w(N)=0and N # (. Put f=1x5 and g =0

1. Show that f,g € LL(Q, F,p) and f # g.
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2. Show that any open set containing f also contains g.

3. Show that LL(Q, F, p) and L (Q, F, i) are not Hausdorff.

EXERCISE 6. Show that the usual topology on L% (2, F, p) is induced
by the usual topology on L%(Q, F, i), where p € [1, +o0].

Definition 76 Let (E,T) be a topological space. A sequence (zy)n>1

i E is said to converge to x € E, and we write T, 7 x, if and only
if, for allU € T such that © € U, there exists ng > 1 such that:

n>nyg = x, €U
When E = LL(Q, F,pu) or E = Ly (2, F, 1), we write z, L .

EXERCISE 7. Let (E,7) be a topological space and E' C E. Let
T' = 7| be the induced topology on E’. Show that if (z,,)n>1 is a

. T . . T’
sequence in £’ and z € F’, then x,, — x is equivalent to x,, — .

EXERCISE 8. Let f, g, (fn)n>1 be in L% (Q, F, ) and p € [1, +o0].
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1. Recall what the notation f,, — f means.
2. Show that f, = f is equivalent to || f,, — f]l, — O.

3. Show that if f, L fand f, L g then f =g p-a.s.

EXERCISE 9. Let p € [1, +00]. Suppose there exists some N € F such
that w(N) = 0 and N # (. Find a sequence (f,)n>1 in L&(Q2, F, 1)

and f,g in LL(Q, F, p), f # g such that f, 22 fand f, L qg.

Definition 77 Let (fn)n>1 be a sequence in LE&(QY,F,p), where
(Q,F, u) is a measure space and p € [1,+00]. We say that (fn)n>1 is
a Cauchy sequence, if and only if, for all € > 0, there exists ng > 1
such that:

n,m>ng = ||[fo— fmlp <e
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EXERCISE 10. Let f, (fn)n>1 be in LG (Q,F,pn) and p € [1,400].
Show that if f, = f, then (fn)n>1 is a Cauchy sequence.

EXERCISE 11. Let (fy)n>1 be Cauchy in LE (2, F, 1), p € [1,400].

1. Show the existence of n; > 1 such that:
1
nzmn = an _mep < 5
2. Suppose we have found ny < ng < ... <ng, k> 1, such that:

. 1
Ve (L ikl nzng S Ifa— fully < 5

Show the existence of niy1, ng < nr41 such that:

1
n2Ngp1 = an_fnk-HHPSW
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3. Show that there exists a subsequence (fy, )k>1 of (fn)n>1 with:

—+oo
Z ||fnk.+1 - fnk”l’ < +o0
k=1

EXERCISE 12. Let p € [1,400], and (fy)n>1 be in LG (Q, F, p), with:

—+o0
D lfnsr = fallp < +00
n=1

We define: N
A
9= | fat1 = fal
n=1

1. Show that ¢ : (2, F) — [0, +00] is non-negative and measurable.

2. If p = +o0, show that g < :i'i I fns1 — falloo pra.s.
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3. If p € [1,400[, show that for all N > 1, we have:
N “+00
Slnir = Fal || < 1fnsr = fullo
n=1 p n=1
4. If p € [1,400[, show that:
=
</Qgpd/1') SZanJrl_fn”p
n=1

5. Show that for p € [1,4+00], we have g < +00 p-a.s.

6. Define A = {g < 4+o00}. Show that for all w € A, (fr(w))n>1 1S
a Cauchy sequence in C. We denote z(w) its limit.

7. Define f: (2,F) — (C,B(C)), by:

{7 L
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Show that f is measurable and f,, — f p-a.s.

8. if p = 400, show that for all n > 1, | f,,| < |f1|+ ¢ and conclude
that f € LE(Q, F, ).

9. If p € [1, +00[, show the existence of ng > 1, such that:
nzno = [ 1f- fuPdu<
Q
Deduce from Fatou’s lemma that f — f,, € LG (Q, F, p).

10. Show that for p € [1,4o0|, f € LL(Q,F, p).

11. Suppose that f, € L% (Q, F, u), for all n > 1. Show the exis-
tence of f € L{(Q, F,u), such that f, — f p-a.s.
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EXERCISE 13. Let p € [1,+00], and (fn)n>1 be in LL(Q, F, ), with:

+oo
Z ||fn+1 - anP < +00

n=1
1. Does there exist f € L4 (2, F, p) such that f, — f p-a.s.

2. Suppose p = +o00. Show that for all n < m, we have:

|fmt1 — ful < Z | frosr1 — frlloo p-a.s.

k=n

3. Suppose p = +o0o. Show that for all n > 1, we have:

o0
1f = Falloo < D Ifrsr — Frlloo

k=n
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4. Suppose p € [1,400[. Show that for all n < m, we have:

(/Q |fm+1 - fn|pdlff) ’ < Z ka+1 - kap
k=n

5. Suppose p € [1, +oo[. Show that for all n > 1, we have:

“+o0
If = fallp < D7 I fiesr = Filly
k=n
6. Show that for p € [1, +00], we also have f, =t I

7. Suppose conversely that g € LE(Q, F, p) is such that f, L—p> g.
Show that f = g p-a.s.. Conclude that f, — g p-a.s..
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Theorem 44 Let (2, F, ) be a measure space. Let p € [1,+0o0],
and (fn)n>1 be a sequence in LL(Q, F, ) such that:

+oo
Z ||fn+1 - anP < +00

n=1
Then, there exists f € L (Q, F, p) such that f, — f p-a.s. Moreover,

for all g € LL(Q,F,p), the convergence fn — g p-a.s. and fy L—p> g
are equivalent.

EXERCISE 14. Let f, (fn)n>1 be in LE(Q, F, 1) such that f, 2 f,
where p € [1, +00].

1. Show that there exists a sub-sequence (fy, )k>1 of (fn)n>1, with:

+oo
Z ||f7lk+1 - fnk”P < +oo
k=1
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2. Show that there exists g € L (2, F, ) such that f,, — g p-a.s.

3. Show that f,, = g and g = f p-a.s.

4. Conclude with the following:

Theorem 45 Let (fn)n>1 be in LL(Q,F, 1) and f € LG(Q, F, p)

such that fp 2 f, where p € [1,400]. Then, we can extract a sub-
sequence (fn, )k>1 Of (fu)n>1 such that fn, — f p-a.s.

EXERCISE 15. Prove the last theorem for L% (Q, F, p1).
EXERCISE 16. Let (f,)n>1 be Cauchy in L%(Q, F, u), p € [1, +00].

1. Show that there exists a subsequence (fy, )g>1 of (fn)n>1 and
f belonging to L%(Q, F, i), such that f,, =i f.
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2. Using the fact that (f,,),>1 is Cauchy, show that f, 2 I
Theorem 46 Let p € [1,400]. Let (fn)n>1 be a Cauchy sequence in
L%(Q, F, ). Then, there exists f € LL(Q,F, ) such that f, = I

EXERCISE 17. Prove the last theorem for L% (€, F, u).
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Solutions to Exercises

Exercise 1.

1. Since p,q € RT, we have p < +oo and ¢ < +oo. From the
inequality 1/p < 1/p+1/g =1, we obtain p > 1. If p = 1, then
1/q = 0, contradicting ¢ < +o00. So p > 1, and similarly ¢ > 1.
We have proved that 1 <p < 4+ooand 1 < ¢ < +00.

2. Let a €]0, 4+00[ and ¢ = ¢*. We want to prove that ¢ is contin-
uous. For all a € R, it is clear that lim,_., ¢(x) = ¢(a). So ¢
is continuous at & = a. Furthermore, lim,_ . ¢(x) = ¢(+00).
So ¢ is also continuous at +00. For many of us, this is sufficient
proof of the fact that ¢ is a continuous map. However, for those
who want to apply definition (27), the following can be said: let
V be open in [0, +oc]. We want to show that ¢—*(V) is open
in [0, +oc]. Let a € $~*(V). Then ¢(a) € V. Since ¢ is con-
tinuous at x = a, there exists U, open in [0, +00], containing
a, such that ¢(U,) C V. So a € U, C ¢~ (V). It follows that
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¢»~1(V) can be written as ¢~ (V) = Useg-1(v)Ua, and ¢~ (V)
is therefore open in [0, 4+o00]. From definition (27), we conclude
that ¢ : [0, 4+00] — [0, 4+00] is a continuous map.

3. fP can be viewed as fP = ¢P o f, where ¢ is defined as in 2.
We proved that ¢P is a continuous map. It is therefore measur-
able with respect to the Borel o-algebra B([0, +oc]) on [0, +00].
It follows that f? : (Q,F) — [0,4+00] is a measurable map,
which is also non-negative. Hence, the integral [ fPdu is a
well-defined element of [0, +oc], and A = ([ fPdu)'/? is also
well-defined, being understood that (+00)!/? = +o0. Similarly,
B = ([ f9du)*/? is a well-defined element of [0, +oc]. Finally,
the map fg: (2, F) — [0, +00] is non-negative and measurable,
and C = [ fgdp is a well-defined element of [0 + co].

4. Suppose A =0. Then [ fPdu = 0, and since f? is non-negative,
we see that fP = 0 p-a.s., and consequently f = 0 p-a.s. So
fg = 0 pras., and finally C = [ fgdp = 0. So C < AB.
Similarly, B = 0 implies C' = 0, and therefore C < AB.
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5. Suppose A = +o00. Then, either B =0 or B > 0. If B =0,
then C < AB is true from 4. If B > 0, then AB = +00, and
consequently C' < AB. In any case, we see that C < AB.
Similarly, B = 400 implies C < AB.

6. Suppose A, B €]0,+oo|. Let F' = f/A and G = g/B. We have:
1
[ Frau= [(rara= 5 [ rau=
and similarly, [ GPdu = 1.

7. Let a,b €]0,+o0c[. The map x — —In(z) being convex on
10, +o00[, since 1/p+ 1/q = 1, we have:

1 1 1 1
—In(=a? + =b?) < —=In(a?) — = In(b?) = — In(ab
(p . ) p (a”) . (0%) (ab)
and consequently In(ab) < In(a?/p + 0?/q). The map = — e*
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being non-decreasing, we conclude that:

1 1
ab < —af + =b? (1)
p q
It is easy to check that inequality (1) is in fact true for all

a,b e 0,+o0].
8. For allw € Q, F(w) and G(w) are elements of [0, +o00]. From 7.:

F(w)Gw) < B

p L w4
<SPy + G

9. Integrating on both side of 8., we obtain:

1 1
/FGduS}—?/deu—Fa/qu,u:l

where we have used the fact that [ FPdy = [ G%dp = 1. Since
JFGdp = ([ fgdu)/AB = C/AB, we conclude that C' < AB.

Exercise 1

www.probability.net


http://www.probability.net

Solutions to Exercises 25

Exercise 2.

1. fP, g and (f + g)? are all non-negative and measurable. All
three integrals [ fPdu, [g¢Pdp and [(f + g)Pdp are therefore
well-defined. It follows that A, B and C are well-defined ele-
ments of [0, +00].

2. Since p > 1, the map  — 2P is convex on |0, +-o00[. In particular,
for all a,b €]0,+oo[, we have ((a + b)/2)P < (aP 4 bP)/2. We
conclude that:

(a+Db)P < 2P~ (aP +bP) (2)
In fact, it is easy to check that (2) holds for all a,b € [0, 4+00].

3. f A=+4+oc0or B=+4o00,then A+ B=+00,and C < A+ B. If
C =0, then clearly C < A+ B.

4. Using 2., for all w € 2, we have:
(f(w) + g(w)? <277 (f(w)P + g(w)?)
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Integrating on both side of the inequality, we obtain:

/(f +g)Pdp < 2P71 (/ fPdp+ /g”du> (3)

If A < 400 and B < 400, then both integrals [ fPdu and
J gPdu are finite, and we see from (3) that [(f + g)Pdu is itself
finite. So C < +o0.

5. Take ¢ = p/(p—1). Since p €]1, +o0], ¢ is a well-defined element
of R, and 1/p+1/q=1.

6. Let a,b € [0,+00]. If a,b € RT, then:
(a+b)” = (a+b).(a+ )" (4)

If @ = 400 or b = 400, then a + b = +o0o and both sides of (4)
are equal to +00. So (4) is true for all a,b € [0, +00].

www.probability.net


http://www.probability.net

Solutions to Exercises 27

7. Using holder’s inequality (41), since ¢(p — 1) = p, we have:

/f~(f+g)”‘1du < (/ f”du>é (/(f+g)q(”‘”du) "= ach

and:

/9~(f+g)p’1du < (/g”duy (/(f+g)q“’1)du) "= Bct

8. From 6., we have:

/(f—l—g)pdu:/f.(f+g)p*1d,u+/g.(f—i—g)p’ld,u

and using 7., we obtain:

/(f+g)”du <CH(A+B)

9. From 8., we have C? < C'7 (A + B). Having assumed in 5. that
C €0, 40|, we can divide both side of this inequality by C'7,
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to obtain C?~ ¢ < A+ B. Since p —p/q = 1, we conclude that
C<A+B.

10. If p =1, then C' = A 4+ B is equivalent to:

/(f+g)du=/fdu+/gdu

which is true by linearity. In particular, C' < A + B. The
purpose of this exercise is to prove minkowski’s inequality (43).

Exercise 2
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Exercise 3.

1. Let f: (2,F) — (C,B(C)) be a map. Then, if f has values
in R, i.e. f(©2) C R, then the measurability of f with respect
to (C,B(C)) is equivalent to its measurability with respect to
(R, B(R)). Hence:

L%(Q,f“u) :{fELICJ}(Qv]:MU) ) f(Q) QR}

The equivalence of measurability with respect to B(C) and B(R)
may be taken for granted by many. It is easily proved from the
fact that B(R) = B(C)r, i.e. the Borel o-algebra on R is
the trace on R, of the Borel g-algebra on C. This fact can be
seen from the trace theorem (10), and the fact that the usual
topology on R is induced on R, by the usual topology on C.

2. Let f,g € LR (Q, F,p) and @ € R. The map f + ag is R-valued
and measurable. Moreover, we have |f + ag| < |f| + |«/.|g]-
Since p > 1, (and in particular p > 0), the map = — zP is
non-decreasing on RT, so |f + agl? < (|f| + |a|-|g|)?. Hence,
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we see that [ |f+ ag|Pdu < [(|f]+ |al.lg])Pdp. However, using
minkowski’s inequality (45) we have:

(fas1+1ala pdu) <(/ fl”du> vl ([ Igl”du>

We conclude that [ |f+ag[Pdp < +00. So f+ag € L (Q, F, p),
and we have proved that L% (2, F, n) is closed under R-linear
combinations.

3. The fact that L§ (2, F, p) is closed under C-linear combinations,
is proved identically to 2., replacing R by C.

4. Using |f + 9P < (|f| + \g\)p and minkowski’s inequality (43):

(Jon+u ”dﬂ) <(/ mlu)é +(f |g|pdu>é

we see that [[f +gllp, <[ fllp + [lgllp-
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5. Suppose | fll, = 0. Then [|f[Pdu = 0. Since |f|P is non-
negative, |f|P = 0 p-a.s., and consequently f = 0 p-a.s. Con-
versely, if f =0 p-a.s., then |f|P = 0 p-a.s., so [|f|Pdp = 0 and
finally | ], = 0.

6. Let o € C. We have:

sl = ( | af”>% ~lal. | fl”)% ~ falI 1

7. |f—gllp = 0 only implies f = g p-.a.s, and not necessarily f = g.
So (f,9) — ||If — gl , may not be a metric on L% (Q, F, p).

Exercise 3
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Exercise 4.

1. For all f: (Q,F) — (C,B(C)) with values in R, the measura-
bility of f with respect to B(C) is equivalent to its measurability
with respect to B(R). Hence:

L?(Q’fvu):{feLOCC(Q’fvu)’ f(Q) QR}

2. Since || flloo < +00, for all n > 1, we have || f]lco < || fllocc + 1/n.
Il /|l being the greatest lower bound of all y-almost sure upper
bounds of |f|, || f]lec + 1/n cannot be such lower bound. There
exists M € R™, such that |f| < M p-a.s., and M < ||f|lo+1/n.
In particular, |f| < || f|lcc +1/n p-a.s. Let A,, be the set defined
by A, = {|fllec + 1/n < |f|}. Then A,, € F and u(A,) = 0.
Moreover, A, C A,11 and US> A, = {||fll < |f]}. It follows
that A, T {||flls < |f|}, and from theorem (7), we see that:

B e < 111 = Tim_p(An) =0

We conclude that |f| < f|lec p-a.s.
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3. Since |f + g] < |f] + |g|, using 2., we have:

1f+ 9] < I flloo + lglloo p-aus.

Hence, ||f]lco + 1|9]|oo is a p-almost sure upper bound of | f + g|.
| f +gllco being a lower bound of all such upper bounds, we have
1+ glloe < 1flloc + 19lloo-

4. Let f,g € LF(Q,F,p) and o € R. Then f + ag is R-valued
and measurable. Furthermore, using 2., we have:
|f +agl < [fI + lallgl < [[fllec + [l llglloc p-as.
It follows that || f + agllec < [[fllee + la/-|g]lcc < +00. We

conclude that f + ag € L (2, F, 1), and we have proved that
LE (2, F, p) is closed under R-linear combinations.

5. The fact that LE (2, F, ) is closed under C-linear combinations
can be proved identically, replacing R by C.

6. Suppose || f]lco = 0. Then |f| < 0 p-a.s., and consequently f = 0
u-a.s. Conversely, if f =0 p-a.s., then |f| < 0 p-a.s., and 0 is
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therefore a p-almost sure upper bound of |f|. So ||f|le < 0.
Since || f|loo is an infimum of a subset of R™, it is either +oo
(when such subset is empty), or lies in R*. So || f||c > 0 and
finally | ]l = 0.

7. We have |af| < |a|.||f]leco p-a.s., and hence ||af]loo < |||l f|loo-
if & # 0, we have:
1 1
== o S 0o
1l = -0l < 1zl
It follows that ||af|lco = ||| f|lco, (also true if v = 0).

8. |If = glloc = 0 implies f = g p-a.s., but not f = g. It follows
that (f,g) — ||f — 9lloc may not be a metric on Lg (2, F, u).

Exercise 4
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Exercise 5.

1. Since N # 0, 1y # 0,50 f # g. Since N € F, themap f = 1y is
measurable, and being R-valued, it is also C-valued. Moreover,
since p(N) = 0, || fll, = 0 < +oo (whether p = 400 or lies in
[1,+00]), and we see that f € L&(Q,F,p). Since g = 0, it is
C-valued, measurable and [|g|, = 0 < +o0, so g € LL(Q, F, p).

2. Let U be open in LL(Q2,F,u), such that f € U. By defini-
tion (75), there exists e > 0, such that B(f,e) C U. However,
lf=gllp=fllp =0 (p=+occorpe [1,+0cc[). So in particular
|f —gllp <e Soge B(f,e) and finally g € U.

3. If LE(Q, F,u) was Hausdorff, since f # g, there would exist
U,V open sets in Lg(Q, F, ) such that f € U, g € V and
UNV = (. However from 2., this is impossible, as g would
always be an element of U as well as V. We conclude similarly
that L% (Q, F, 1) is not Hausdorff.

Exercise 5
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Exercise 6. Let L} and L{ denote L% (Q,F, ) and LE(Q, F, p)
respectively. Let 7 be the usual topology on LY, and 7" be the usual
topology on L. We want to prove that 7/ = Tipp,, i.e. that 7" is the
topology on L% induced by 7. Given f € L% and € > 0, let B(f,¢)
denote the open ball in L, and B’(f,€) denote the open ball the L.
Then B'(f,e) = B(f,e) N Lk. It is a simple exercise to show that
any open ball in L% or LY, is in fact open with respect to their usual
topology. Let U’ € 7'. For all f € U’, there exists ey > 0 such that
fe B (f,ef) CU'. It follows that:

U'=Useu B'(f,ef) = (Urev B(f,€e5)) N Ly
and we see that U’ € 7jpp. So 7" C Tp» . Conversely, let U’ € T .
There exists U € T such that U’ = UN LK. Let f € U'. Then
f € U. There exists € > 0 such that B(f,e) C U. It follows that
B'(f,e) = B(f,e)N L% CU'. So U’ is open with respect to the usual
topology in L%, ie. U’ € T'. We have proved that Tjpr, € 7', and
finally 7% = 7 .

Exercise 6
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Exercise 7. let (E,7) be a topological space and E/ C E. Let
T' = T)g be the induced topology on E’. We assume that (2,,)n>1 is

a sequence in E’, and that € E’. Suppose that x,, Lo LetU' €T’
be such that z € U’. 7There exists U € 7 such that U = UNE'.
Since z € U and z,, — =z, there exists ng > 1 such that z,, € U
for all n > ng. But o, € E/ foralln >1. Soz, €c UNE = U’
for all n > ng, and we see that z, Z Conversely, suppose that
T T, % Let U € T be such that z € U. Then U N E' € T’ and
x € UNE’'. There exists ng > 1, such that x,, € UNE’ for all n > ng.
In particular, z,, € U for all n > ng, and we see that x, z, z. We

T’ T .
have proved that z,, — x and x,, — x are equivalent.
Exercise 7
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Exercise 8.

1. The notation f, — f has been used throughout these tutorials,
to refer to a simple convergence, i.e. f,(w) — f(w) asn — +o0,
for all w € Q.

2. Suppose fy, = f. Let € > 0. The open ball B(f,e¢) being open
with respect to the usual topology in L (€2, F, u), there exists
ng > 1, such that f,, € B(f,¢) for all n > ng, i.e.

n>ng = ||fu—flp<e

So || fn — fllp — 0. Conversely, suppose || fr, — f|l, — 0. Let U
be open in L (2, F, p), such that f € U. From definition (75),
there exists € > 0 such that B(f,¢) C U. By assumption, there
exists ng > 0, such that ||f, — f|l, < € for all n > ng. So
fn € B(f,€) for all n > ng. Hence, we see that f,, € U for all
n > ng, and we have proved that f, = f. We conclude that

In z fand || fn — fllp — 0 are equivalent.
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3. Suppose f, = f and f, = g. From 2., we have ||f, — f|l[, — 0
and || f, — gl|[p — 0. Using the triangle inequality (ex. (3) for
p € [1,4o00[ and ex. (4) for p = +o0):

1f = gllp < W fn = Fllp + 110 = 9gllp

for all n > 1. It follows that we have || f — g||, < € for all € > 0,
and consequently ||f — g|l, = 0. From ex. (3) and ex. (4) we
conclude that f = g p-a.s.

Exercise 8
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Exercise 9. Take f, =1y = f for alln > 1. Take g = 0. Then f,, f
and g are all elements of L%(Q, F, 1), and f # g. Moreover, for all
n > 1, we have ||f,, — fll, = |fn — gl = 0. So fnL—I;fand fnL—p>g.
The purpose of this exercise is to show that a limit in L? may not be
unique (f # g). However, it is unique, up to p-almost sure equality
(See exercise (8)).

Exercise 9
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Exercise 10. Suppose f, 2 f- Let € > 0. There exists ng > 1, with:
n>ng = |fu—fllp <e€/2
From the triangle inequality, for all n,m > 1:
1fn = Fnllp < 1 fo = fllp + 1 = fllp
It follows that we have:
nmzng = |fo—fumlp <€

We conclude that (fy,),>1 is a Cauchy sequence in L (Q, F, p).
Exercise 10
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Exercise 11.
1. Take € = 1/2. There exists ny > 1, such that:
1
n,m>mn; = an - fm”p < 5

In particular, we have:

1
n>ng = an_mepS )

2. Let k> 1. We haven; < ... < ng, such that forall j =1, ...

1
nzn; = an_fnijSZ

Take € = 1/2""1. There exists nj,,,; > 1, such that:

1
nm 2 njy = = fulls < g7

42
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Take npy1 = max(ng + 1,m, ;). Then ng < ngq1, and:

1
n2Ngp1 = an_fnk-HHPSW

3. By induction from 2., we can construct a strictly increasing
sequence of integers (ny)>1, such that for all £ > 1:
1
n>ng = an_fnka < Q_k

In particular, || f,,,, — fn,|lp < 1/2F for all k > 1. It follows that
we have found a subsequence (fn, )r>1 of (fn)n>1, such that:

“+o0
Z ||fnk+1 - fnk”p < 400
k=1

Exercise 11
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Exercise 12.

1. Each finite sum gy = 25:1 | frnt1— fn] is well-defined and mea-
surable. It follows that g = supy>; gn is itself measurable. It
is obviously non-negative.

2. Suppose p = +oo. From exercise (4), for all n > 1, we have:

|fn+1 - fn| < Hf’ﬂ+1 - fn”oo ) H-a.S.

The set Ny, = {|fn+1 — ful > || fo+1 — fulloo} which lies in F,
is such that pu(N,) = 0. It follows that if N = U,>1N,, then
w(N) = 0. However, for all w € N¢, we have:

+o0 too
g(w) = Z | frs1(w) = fa(w)] < Z [ frt1 = fallso
n=1

n=1

We conclude that g < > 0% | || fat1 — falloo praus.
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3. Let p € [1,4o00[ and N > 1. By the triangle inequality (ex. (3)):

N N “+oo
S fnar = Fall| D Mfarr = Fallp < D fnsr = fallp
n=1

P n=1 n=1

4. Let p € [1,400[. Given N > 1, let gy = S0 [fur1 — ful-
Then gy — g as N — +o00. The map z — P being continuous
on [0, +00], we have gi, — ¢*, and in particular g” = liminf gk,
as N — +o00. Using Fatou’s lemma (20), we see that:

/g”du < li%i{lf/gﬁzdu (5)

However, from 3., we have |[gn|l, < 302 (| fas1 — fullp, for all
N > 1. Since p > 0, the map x — 2P is non-decreasing on
[0, 4+00], and therefore:

+o0 p
[ < (Z s — fn||p> (©)

n=1
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From inequalities (5) and (6), we conclude that:

+o0 p
/gpd.u < (Z | frt1 — fnp>
n=1

and finally:

5 Foo
(/gpdu) <Y N fosr = fullp
n=1

5. Let p € [1,+00]. If p = 400, from 2. we have:

“+o00
9= Z | frs1 = fallp » p-as. (7)
n=1

By assumption, the series in (7) is finite. So g < +00 p-a.s.
If p € [1, 400, from 4. we have:

1

5 I
(/ gpdu) < S fuer = ully
n=1
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So [ gPdu < +o00. Since (+o00)u({g? = +o0}) < [ gPdu, we see
that u({g? = 4+o00}) = 0 and finally g < 400 p-a.s.

6. Let A= {g < +oo}. Let w € A. Then g(w) < +oo. The series
Z:ﬁ [ frn+1(w) — fn(w)| is therefore finite. Let € > 0. There
exists ng > 1, such that:

+oo
n>ng = Y |fir1(w) = fr@)| <e

k=n
Given m > n > ng, we have:

m—1

[fin(@) = fa@)] £ D fir(w) = fulw) < €

k=n

We conclude that the sequence (f(w))n>1 is Cauchy in C. It
therefore has a limit!, denoted z(w).

1The completeness of C is proved in the next Tutorial.
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7. From6., f,(w) — z(w) = f(w) forallw € A. Since by definition,
f(w) =0 for all w € A°, we see that f,(w)la(w) — f(w) for all
w € . Hence, we have f,,14 — f, and since f,,14 is measurable
for all n > 1, we see from theorem (17) that f = lim f,14 is
itself measurable. Since pu(A¢) =0 and f,(w) — f(w) on A, we
have f,, — f p-a.s.

8. Suppose p = +o00. For all n > 1, we have:

n—1
[fn— fi] < Z [frer1 = fel < g

k=1

So |fn] < |fi] + g. Taking the limit as n — 400, we obtain

|l < |fil +g pras. Let M = S5 | fus1 — fullor Then
by assumption, M < 4oo0 and from 2. we have ¢ < M p-a.s.
Moreover, since fi € LE(Q, F, 1), using exercise (4), we have
[f1] < |[filloo pra.s. with || fi]lec < +o00. Hence, we see that
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I7] < I filloc + M p-a.s., and consequently:

+oo
[fllso < 1 f1lloo + Z [fnt1 = falloo < o0
n=1

f is therefore C-valued, measurable and with || f||s < +00. We
have proved that f € LE(Q, F, p).

9. Let p € [1,+00[. The series 3.7 || fut1 — fullp being finite,
there exists ng > 1, such that:

“+o0
n>nyg = Z | fot1 — kap <1

k=n

Let n > ng. By the triangle inequality:

n—1
1 fn = Faollo < X Mfera = frllp <1

k:ng
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Hence, we see that:

nzng = [1fu= foldp <17 =1 (8)

From 6., f,(w) — f(w) as n — 400, for all w € A, where
1w(A€) = 0. In particular:

Lalf = fuol? = Hoint Lalfo = fol”

Using inequality (8) and Fatou’s lemma (20), we obtain:?

J 18 = fuabrd < timint [ 1, = oo <1

In particular, [|f — fn,|Pdu < 4+oc. Since f — fy, is C-valued
and measurable, we conclude that f — f,, € L&(Q, F, p).

10. Let p € [1,4+00]. If p = 400, then f € LF(Q, F, u) was proved
in 8. If p € [1, 400, we saw in 9. that f — f,, € LL(Q, F, p) for

2Note that n > ng = wupn < 1 is enough to ensure lim inf,, > up < 1.

www.probability.net


http://www.probability.net

Solutions to Exercises 51

11.

some ng > 1. Since f,, is itself an element of L%(Q, F, i), we
conclude from exercise (3) that f = (f — fn,) + fn, is also an
element of L (Q, F, ).

The purpose of this exercise is to prove that given a sequence
(fa)nz1 in LG(Q, F, ) such that 0% || fasr = fallp < +00,
there exists f € LL(Q, F, p), such that f, — f p-a.s. We now
assume that all f,,’s are in fact R-valued, i.e. f,, € L{(Q, F, p).
There exists f* € LL(Q, F,p) such that f, — f* p-a.s. How-
ever, f*(w) may not be R-valued for all w € Q. Yet, if N € F
is such that u(N) =0 and f,(w) — f*(w) for all w € N¢, then
f* is R-valued on N¢ (as a limit of an R-valued sequence). If
we define f = f*1ye, then f is R-valued and measurable, with
Ifllp = [If*ll, < +o00. So f € Li(Q,F,pn) and furthermore
since f = f* p-a.s., f,, — f p-as.

Exercise 12
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Exercise 13.

1. Yes, there does exist f € L (Q, F, p) such that f, — f p-a.s.
This was precisely the object of the previous exercise.

2. Suppose p = +o0, and let n < m. From exercise (4), we have
[fm+1 — fol < Ifm+1 — falloo p-a.s. Furthermore, from the

triangle inequality, [|fmi1 — falleo < Z;gn:n [ fr1 = frlloo- It
follows that:

1 = fal <D st = frlloo » poas. 9)
k=n

3. Suppose p = +oo and let n > 1. For all m > n, let N,,, € F be
such that p(N,,) = 0, and inequality (9) holds for all w € Ng,.
Furthermore, since fp,4+1 — f p-a.s., let M € F be such that
w(M) = 0, and frt1(w) — f(w) for all w € M. Then, if
N = M U (Upn>nNp), we have N € F, u(N) = 0 and for all
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w € N frmi1(w) — f(w), together with, for all m > n:

i1 @) = Fa@)] < 3 fisr — filloo

k=n

Taking the limit as m — 400, we obtain:

+oo
F@) = @) £ 3 s — fillo
k=n

This being true for all w € N€¢, we have proved that:

“+o0o
If = ful < Z | fes1 — felloo » praus.

k=n

From definition (74), we conclude that:

400
1f = Falloo < D Ifrs1 — Frlloo

k=n
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4. Let p € [1,+o0o] and n < m. From exercise (3), we have:

(/ fer — fnpdu> " it — Fally < 3 e — il

k=n

5. Let p € [1,+oo[ and n > 1. Let N € F be such that u(N) =0,
and fr,4+1(w) — f(w) for all w € N¢. Then, we have:

|f - fn|plNC = hgln;Bf |fm+1 - fn|p]-NC
Using Fatou’s lemma (20), we obtain:
[ 15 = fupdu < timint [ s = g

Hence, from 4. we see that:

+00 p
/|f— falPdp < (Z [ fos1 — fkp>
k=n
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and consequently:

+oo
1= Fallo <D I frrr = fillp

k=n

6. Let p € [1,+00]. whether p = 400 or p € [1,+0o0], from 3.
and 5., for all n > 1, we have ||f — fullp < 020 I fer1 — frllp-
Since by assumption, the series 2% || for1 — fillp is finite, we
conclude that ||f — fullp — 0, as n — +oo. It follows that not

only f, — f p-a.s., but also f, L f.

7. Suppose g € Lg(Q, F, p) is such that f, L g. Then f, L f

together with f, = g. From ex. (8), f = g p-a.s. Furthermore,
since f,, — f p-a.s., we see that f,, — ¢ p-a.s. The purpose of
this exercise (and the previous) is to prove theorem (44).

Exercise 13
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Exercise 14.

1. Since f, = f, from exercise (10), (fn)n>1 is a Cauchy sequence
in LE(Q, F, ). Using exercise (11), there exists a sub-sequence

(Fa k=1 of (fa)ns1, such that 755 || fresy — fanllp < +oo.

2. Applying theorem (44) to the sequence (fy,)r>1, there exists
g€ L%(Qafy u)a such that fnk — g H-a.S.

3. Also from theorem (44), the convergence f,, — ¢ p-a.s. and
frn 2 g are equivalent. Hence, we also have f,, L g. How-
ever, since by assumption f, 2 f, we see that f,, L f, and
consequently from exercise (8), f = g p-a.s.

4. From 2., f,,, — g p-a.s., and from 3., f = ¢ p-a.s. It follows that
fn, — [ p-a.s. Given a sequence (f,)n>1 and f in L%(Q, F, p),

such that f, 4 f, we have been able to extract a sub-sequence
(fni)r>1 such that f,, — f p-a.s. This proves theorem (45).

Exercise 14
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Exercise 15. Suppose (fn)n>1 is a sequence in L% (Q, F,u), and

f € LR (Q, F, p) such that f, 2 f. Then in particular, all f,,’s and f
are elements of L%(Q, F, ) with ||f — fu|l, — 0 as n — +oc0. From
theorem (45), we can extract a sub-sequence (fp, )g>1 of (fn)n>1, such
that f,, — f p-a.s. This proves theorem (45), where L% (Q, F, p) is
replaced by L% (Q,F, ). Anyone who feels there was very little to
prove in this exercise, could make a very good point.

Exercise 15
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Exercise 16.

1. Since (fn)n>1 is Cauchy in L%(Q, F, ), from exercise (11), we
can extract a sub-sequence (fy, )x>1 of (fn)n>1, such that:

—+oo
Z ||fnk+1 - fnk”p < +oo
=1

From theorem (44), there exists f € L (€, F, p), such that
fre — [ p-as., as well as fi,, 2 f-

2. Let € > 0. (fn)n>1 being Cauchy, there exists ng > 1, such that:

n,mzno = Hfm fn”pf 2
P
Furthermore, since f,,, = f, there exists kg > 1, such that:

€
k‘Zko = ||f_fnkaS§
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However, nj 1 400 as k — +oo. There exists k{, > 1, such that
k >k, = np > ng. Choose an arbitrary k > max(ko, k().
Then || f — fu,llp < €/2 together with ny > ng. Hence, for all
n > ng, we have:

”f - anp < Hf - fnk”p + ank - fn”P Se

We have found ng > 1 such that:

n>ng = [[f = fallp <e€

This shows that f, = f- The purpose of this exercise, is to prove
theorem (46). It is customary to say in light of this theorem,
that LG (Q, F, p) is complete, even though as defined in these
tutorials, L (2, F, p) is not strictly speaking a metric space.

Exercise 16
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Exercise 17. Let (fn)n>1 be a Cauchy sequence in L{(Q,F, p).
Then in particular, it is a Cauchy sequence in L& (Q, F, p). From

theorem (46), there exists f* € L%(Q, F, i) such that f, 2 f*. Fur-
thermore, from theorem (45), there exists a sub-sequence (fy,)r>1
of (fn)n>1, such that f,, — f* p-a.s. It follows that f* is in fact
R-valued p-almost surely. There exists N € F, u(N) = 0, such that
f*(w) € R for all w € N¢. Take f = f*1nc. Then f is R-valued,
measurable and || f|l, = || f*|l, < +oc0. So f € L& (Q, F, u). Further-

more, ||f — fullp = [If* = fall, — 0, which shows that f, z f. This
proves theorem (46), where L (2, F, i) is replaced by L (2, F, p).
Exercise 17
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