13. Regular Measure

In the following, \mathbf{K} denotes \mathbf{R} or \mathbf{C}.
Definition 99 Let (Ω, \mathcal{F}) be a measurable space. We say that a map $s: \Omega \rightarrow \mathbf{C}$ is a complex simple function on (Ω, \mathcal{F}), if and only if it is of the form:

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $n \geq 1, \alpha_{i} \in \mathbf{C}$ and $A_{i} \in \mathcal{F}$ for all $i \in \mathbf{N}_{n}$. The set of all complex simple functions on (Ω, \mathcal{F}) is denoted $S_{\mathbf{C}}(\Omega, \mathcal{F})$. The set of all \mathbf{R}-valued complex simple functions in (Ω, \mathcal{F}) is denoted $S_{\mathbf{R}}(\Omega, \mathcal{F})$.

Recall that a simple function on (Ω, \mathcal{F}), as defined in (40), is just a non-negative element of $S_{\mathbf{R}}(\Omega, \mathcal{F})$.

Exercise 1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in[1,+\infty[$.

1. Suppose $s: \Omega \rightarrow \mathbf{C}$ is of the form

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $n \geq 1, \alpha_{i} \in \mathbf{C}, A_{i} \in \mathcal{F}$ and $\mu\left(A_{i}\right)<+\infty$ for all $i \in \mathbf{N}_{n}$. Show that $s \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$.
2. Show that any $s \in S_{\mathbf{C}}(\Omega, \mathcal{F})$ can be written as:

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $n \geq 1, \alpha_{i} \in \mathbf{C} \backslash\{0\}, A_{i} \in \mathcal{F}$ and $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$.
3. Show that any $s \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$ is of the form:

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $n \geq 1, \alpha_{i} \in \mathbf{C}, A_{i} \in \mathcal{F}$ and $\mu\left(A_{i}\right)<+\infty$, for all $i \in \mathbf{N}_{n}$.
4. Show that $L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})=S_{\mathbf{C}}(\Omega, \mathcal{F})$.

Exercise 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in[1,+\infty[$. Let f be a non-negative element of $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$.

1. Show the existence of a sequence $\left(s_{n}\right)_{n \geq 1}$ of non-negative functions in $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $s_{n} \uparrow f$.
2. Show that:

$$
\lim _{n \rightarrow+\infty} \int\left|s_{n}-f\right|^{p} d \mu=0
$$

3. Show that there exists $s \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $\|f-s\|_{p} \leq \epsilon$, for all $\epsilon>0$.
4. Show that $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$ is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$.

Exercise 3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let f be a nonnegative element of $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$. For all $n \geq 1$, we define:

$$
s_{n} \triangleq \sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} 1_{\left\{k / 2^{n} \leq f<(k+1) / 2^{n}\right\}}+n 1_{\{n \leq f\}}
$$

1. Show that for all $n \geq 1, s_{n}$ is a simple function.
2. Show there exists $n_{0} \geq 1$ and $N \in \mathcal{F}$ with $\mu(N)=0$, such that:

$$
\forall \omega \in N^{c}, 0 \leq f(\omega)<n_{0}
$$

3. Show that for all $n \geq n_{0}$ and $\omega \in N^{c}$, we have:

$$
0 \leq f(\omega)-s_{n}(\omega)<\frac{1}{2^{n}}
$$

4. Conclude that:

$$
\lim _{n \rightarrow+\infty}\left\|f-s_{n}\right\|_{\infty}=0
$$

5. Show the following:

Theorem 67 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in[1,+\infty]$. Then, $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$ is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$.

ExERCISE 4. Let (Ω, \mathcal{T}) be a metrizable topological space, and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. We define Σ as the set of all $B \in \mathcal{B}(\Omega)$ such that for all $\epsilon>0$, there exist F closed and G open in Ω, with:

$$
F \subseteq B \subseteq G, \mu(G \backslash F) \leq \epsilon
$$

Given a metric d on (Ω, \mathcal{T}) inducing the topology \mathcal{T}, we define:

$$
d(x, A) \triangleq \inf \{d(x, y): y \in A\}
$$

for all $A \subseteq \Omega$ and $x \in \Omega$.

1. Show that $x \rightarrow d(x, A)$ from Ω to $\overline{\mathbf{R}}$ is continuous for all $A \subseteq \Omega$.
2. Show that if F is closed in $\Omega, x \in F$ is equivalent to $d(x, F)=0$.

Exercise 5. Further to exercise (4), we assume that F is a closed subset of Ω. For all $n \geq 1$, we define:

$$
G_{n} \triangleq\left\{x \in \Omega: d(x, F)<\frac{1}{n}\right\}
$$

1. Show that G_{n} is open for all $n \geq 1$.
2. Show that $G_{n} \downarrow F$.
3. Show that $F \in \Sigma$.
4. Was it important to assume that μ is finite?
5. Show that $\Omega \in \Sigma$.
6. Show that if $B \in \Sigma$, then $B^{c} \in \Sigma$.

ExERCISE 6. Further to exercise (5), let $\left(B_{n}\right)_{n \geq 1}$ be a sequence in Σ. Define $B=\cup_{n=1}^{+\infty} B_{n}$ and let $\epsilon>0$.

1. Show that for all n, there is F_{n} closed and G_{n} open in Ω, with:

$$
F_{n} \subseteq B_{n} \subseteq G_{n}, \mu\left(G_{n} \backslash F_{n}\right) \leq \frac{\epsilon}{2^{n}}
$$

2. Show the existence of some $N \geq 1$ such that:

$$
\mu\left(\left(\bigcup_{n=1}^{+\infty} F_{n}\right) \backslash\left(\bigcup_{n=1}^{N} F_{n}\right)\right) \leq \epsilon
$$

3. Define $G=\cup_{n=1}^{+\infty} G_{n}$ and $F=\cup_{n=1}^{N} F_{n}$. Show that F is closed, G is open and $F \subseteq B \subseteq G$.
4. Show that:

$$
G \backslash F \subseteq G \backslash\left(\bigcup_{n=1}^{+\infty} F_{n}\right) \uplus\left(\bigcup_{n=1}^{+\infty} F_{n}\right) \backslash F
$$

5. Show that:

$$
G \backslash\left(\bigcup_{n=1}^{+\infty} F_{n}\right) \subseteq \bigcup_{n=1}^{+\infty} G_{n} \backslash F_{n}
$$

6. Show that $\mu(G \backslash F) \leq 2 \epsilon$.
7. Show that Σ is a σ-algebra on Ω, and conclude that $\Sigma=\mathcal{B}(\Omega)$.

Theorem 68 Let (Ω, \mathcal{T}) be a metrizable topological space, and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $B \in \mathcal{B}(\Omega)$ and $\epsilon>0$, there exist F closed and G open in Ω such that:

$$
F \subseteq B \subseteq G, \mu(G \backslash F) \leq \epsilon
$$

Definition 100 Let (Ω, \mathcal{T}) be a topological space. We denote $C_{\mathbf{K}}^{b}(\Omega)$ the \mathbf{K}-vector space of all continuous, bounded maps $\phi: \Omega \rightarrow \mathbf{K}$, where $\mathbf{K}=\mathbf{R}$ or $\mathbf{K}=\mathbf{C}$.

Exercise 7. Let (Ω, \mathcal{T}) be a metrizable topological space with some metric d. Let μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$ and F be a closed subset of Ω. For all $n \geq 1$, we define $\phi_{n}: \Omega \rightarrow \mathbf{R}$ by:

$$
\forall x \in \Omega, \quad \phi_{n}(x) \triangleq 1-1 \wedge(n d(x, F))
$$

1. Show that for all $p \in[1,+\infty]$, we have $C_{\mathbf{K}}^{b}(\Omega) \subseteq L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$.
2. Show that for all $n \geq 1, \phi_{n} \in C_{\mathbf{R}}^{b}(\Omega)$.
3. Show that $\phi_{n} \rightarrow 1_{F}$.
4. Show that for all $p \in[1,+\infty[$, we have:

$$
\lim _{n \rightarrow+\infty} \int\left|\phi_{n}-1_{F}\right|^{p} d \mu=0
$$

5. Show that for all $p \in\left[1,+\infty\left[\right.\right.$ and $\epsilon>0$, there exists $\phi \in C_{\mathbf{R}}^{b}(\Omega)$ such that $\left\|\phi-1_{F}\right\|_{p} \leq \epsilon$.
6. Let $\nu \in M^{1}(\Omega, \mathcal{B}(\Omega))$. Show that $C_{\mathbf{C}}^{b}(\Omega) \subseteq L_{\mathbf{C}}^{1}(\Omega, \mathcal{B}(\Omega), \nu)$ and:

$$
\nu(F)=\lim _{n \rightarrow+\infty} \int \phi_{n} d \nu
$$

7. Prove the following:

Theorem 69 Let (Ω, \mathcal{T}) be a metrizable topological space and μ, ν be two complex measures on $(\Omega, \mathcal{B}(\Omega))$ such that:

$$
\forall \phi \in C_{\mathbf{R}}^{b}(\Omega), \int \phi d \mu=\int \phi d \nu
$$

Then $\mu=\nu$.

Exercise 8. Let (Ω, \mathcal{T}) be a metrizable topological space and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega))$ be a complex

Tutorial 13: Regular Measure
simple function:

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $n \geq 1, \alpha_{i} \in \mathbf{C}, A_{i} \in \mathcal{B}(\Omega)$ for all $i \in \mathbf{N}_{n}$. Let $p \in[1,+\infty[$.

1. Show that given $\epsilon>0$, for all $i \in \mathbf{N}_{n}$ there is a closed subset F_{i} of Ω such that $F_{i} \subseteq A_{i}$ and $\mu\left(A_{i} \backslash F_{i}\right) \leq \epsilon$. Let:

$$
s^{\prime} \triangleq \sum_{i=1}^{n} \alpha_{i} 1_{F_{i}}
$$

2. Show that:

$$
\left\|s-s^{\prime}\right\|_{p} \leq\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\right) \epsilon^{\frac{1}{p}}
$$

3. Conclude that given $\epsilon>0$, there exists $\phi \in C_{\mathbf{C}}^{b}(\Omega)$ such that:

$$
\|\phi-s\|_{p} \leq \epsilon
$$

4. Prove the following:

Theorem 70 Let (Ω, \mathcal{T}) be a metrizable topological space and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $p \in\left[1,+\infty\left[, C_{\mathbf{K}}^{b}(\Omega)\right.\right.$ is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$.

Definition 101 A topological space (Ω, \mathcal{T}) is said to be σ-compact if and only if, there exists a sequence $\left(K_{n}\right)_{n \geq 1}$ of compact subsets of Ω such that $K_{n} \uparrow \Omega$.

ExERCISE 9. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space, with metric d. Let Ω^{\prime} be open in Ω. For all $n \geq 1$, we define:

$$
F_{n} \triangleq\left\{x \in \Omega: d\left(x,\left(\Omega^{\prime}\right)^{c}\right) \geq 1 / n\right\}
$$

Let $\left(K_{n}\right)_{n \geq 1}$ be a sequence of compact subsets of Ω such that $K_{n} \uparrow \Omega$.

1. Show that for all $n \geq 1, F_{n}$ is closed in Ω.
2. Show that $F_{n} \uparrow \Omega^{\prime}$.
3. Show that $F_{n} \cap K_{n} \uparrow \Omega^{\prime}$.
4. Show that $F_{n} \cap K_{n}$ is closed in K_{n} for all $n \geq 1$.
5. Show that $F_{n} \cap K_{n}$ is a compact subset of Ω^{\prime} for all $n \geq 1$.
6. Prove the following:

Theorem 71 Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Then, for all Ω^{\prime} open subsets of Ω, the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is itself metrizable and σ-compact.

Definition 102 Let (Ω, \mathcal{T}) be a topological space and μ be a measure on $(\Omega, \mathcal{B}(\Omega))$. We say that μ is locally finite, if and only if, every $x \in \Omega$ has an open neighborhood of finite μ-measure, i.e.

$$
\forall x \in \Omega, \exists U \in \mathcal{T}, x \in U, \mu(U)<+\infty
$$

Definition 103 If μ is a measure on a Hausdorff topological space Ω : We say that μ is inner-regular, if and only if, for all $B \in \mathcal{B}(\Omega)$:

$$
\mu(B)=\sup \{\mu(K): K \subseteq B, K \text { compact }\}
$$

We say that μ is outer-regular, if and only if, for all $B \in \mathcal{B}(\Omega)$:

$$
\mu(B)=\inf \{\mu(G): B \subseteq G, G \text { open }\}
$$

We say that μ is regular if it is both inner and outer-regular.
Exercise 10. Let (Ω, \mathcal{T}) be a Hausdorff topological space, μ a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$, and K a compact subset of Ω.

1. Show the existence of open sets V_{1}, \ldots, V_{n} with $\mu\left(V_{i}\right)<+\infty$ for all $i \in \mathbf{N}_{n}$ and $K \subseteq V_{1} \cup \ldots \cup V_{n}$, where $n \geq 1$.
2. Conclude that $\mu(K)<+\infty$.

ExERCISE 11. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Let μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $\left(K_{n}\right)_{n \geq 1}$ be a
sequence of compact subsets of Ω such that $K_{n} \uparrow \Omega$. Let $B \in \mathcal{B}(\Omega)$. We define $\alpha=\sup \{\mu(K): K \subseteq B, K$ compact $\}$.

1. Show that given $\epsilon>0$, there exists F closed in Ω such that $F \subseteq B$ and $\mu(B \backslash F) \leq \epsilon$.
2. Show that $F \backslash\left(K_{n} \cap F\right) \downarrow \emptyset$.
3. Show that $K_{n} \cap F$ is closed in K_{n}.
4. Show that $K_{n} \cap F$ is compact.
5. Conclude that given $\epsilon>0$, there exists K compact subset of Ω such that $K \subseteq F$ and $\mu(F \backslash K) \leq \epsilon$.
6. Show that $\mu(B) \leq \mu(K)+2 \epsilon$.
7. Show that $\mu(B) \leq \alpha$ and conclude that μ is inner-regular.

ExERCISE 12. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $\left(K_{n}\right)_{n \geq 1}$ be
a sequence of compact subsets of Ω such that $K_{n} \uparrow \Omega$. Let $B \in \mathcal{B}(\Omega)$, and $\alpha \in \mathbf{R}$ be such that $\alpha<\mu(B)$.

1. Show that $\mu\left(K_{n} \cap B\right) \uparrow \mu(B)$.
2. Show the existence of $K \subseteq \Omega$ compact, with $\alpha<\mu(K \cap B)$.
3. Let $\mu^{K}=\mu(K \cap \cdot)$. Show that μ^{K} is a finite measure, and conclude that $\mu^{K}(B)=\sup \left\{\mu^{K}\left(K^{*}\right): K^{*} \subseteq B, K^{*}\right.$ compact $\}$.
4. Show the existence of a compact subset K^{*} of Ω, such that $K^{*} \subseteq B$ and $\alpha<\mu\left(K \cap K^{*}\right)$.
5. Show that K^{*} is closed in Ω.
6. Show that $K \cap K^{*}$ is closed in K.
7. Show that $K \cap K^{*}$ is compact.
8. Show that $\alpha<\sup \left\{\mu\left(K^{\prime}\right): K^{\prime} \subseteq B, K^{\prime}\right.$ compact $\}$.
9. Show that $\mu(B) \leq \sup \left\{\mu\left(K^{\prime}\right): K^{\prime} \subseteq B, K^{\prime}\right.$ compact $\}$.
10. Conclude that μ is inner-regular.

Exercise 13. Let (Ω, \mathcal{T}) be a metrizable topological space.

1. Show that (Ω, \mathcal{T}) is separable if and only if it has a countable base.
2. Show that if (Ω, \mathcal{T}) is compact, for all $n \geq 1, \Omega$ can be covered by a finite number of open balls with radius $1 / n$.
3. Show that if (Ω, \mathcal{T}) is compact, then it is separable.

ExERCISE 14. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space with metric d. Let $\left(K_{n}\right)_{n \geq 1}$ be a sequence of compact subsets of Ω such that $K_{n} \uparrow \Omega$.

1. For all $n \geq 1$, give a metric on K_{n} inducing the topology $\mathcal{T}_{\mid K_{n}}$.
2. Show that $\left(K_{n}, \mathcal{T}_{\mid K_{n}}\right)$ is separable.
3. Let $\left(x_{n}^{p}\right)_{p \geq 1}$ be an at most countable sequence of $\left(K_{n}, \mathcal{T}_{\mid K_{n}}\right)$, which is dense. Show that $\left(x_{n}^{p}\right)_{n, p \geq 1}$ is an at most countable dense family of (Ω, \mathcal{T}), and conclude with the following:

Theorem 72 Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Then, (Ω, \mathcal{T}) is separable and has a countable base.

ExERCISE 15. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let \mathcal{H} be a countable base of (Ω, \mathcal{T}). We define $\mathcal{H}^{\prime}=\{V \in \mathcal{H}: \mu(V)<+\infty\}$.

1. Show that for all U open in Ω and $x \in U$, there is U_{x} open in Ω such that $x \in U_{x} \subseteq U$ and $\mu\left(U_{x}\right)<+\infty$.
2. Show the existence of $V_{x} \in \mathcal{H}$ such that $x \in V_{x} \subseteq U_{x}$.
3. Conclude that \mathcal{H}^{\prime} is a countable base of (Ω, \mathcal{T}).
4. Show the existence of a sequence $\left(V_{n}\right)_{n \geq 1}$ of open sets in Ω with:

$$
\Omega=\bigcup_{n=1}^{+\infty} V_{n}, \mu\left(V_{n}\right)<+\infty, \forall n \geq 1
$$

ExERCISE 16. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $\left(V_{n}\right)_{n \geq 1}$ a sequence of open subsets of Ω such that:

$$
\Omega=\bigcup_{n=1}^{+\infty} V_{n}, \mu\left(V_{n}\right)<+\infty, \forall n \geq 1
$$

Let $B \in \mathcal{B}(\Omega)$ and $\alpha=\inf \{\mu(G): B \subseteq G, G$ open $\}$.

1. Given $\epsilon>0$, show that there exists G_{n} open in Ω such that $B \subseteq G_{n}$ and $\mu^{V_{n}}\left(G_{n} \backslash B\right) \leq \epsilon / 2^{n}$, where $\mu^{V_{n}}=\mu\left(V_{n} \cap \cdot\right)$.
2. Let $G=\cup_{n=1}^{+\infty}\left(V_{n} \cap G_{n}\right)$. Show that G is open in Ω, and $B \subseteq G$.
3. Show that $G \backslash B=\cup_{n=1}^{+\infty} V_{n} \cap\left(G_{n} \backslash B\right)$.
4. Show that $\mu(G) \leq \mu(B)+\epsilon$.
5. Show that $\alpha \leq \mu(B)$.
6. Conclude that is μ outer-regular.
7. Show the following:

Theorem 73 Let μ be a locally finite measure on a metrizable and σ-compact topological space (Ω, \mathcal{T}). Then, μ is regular, i.e.:

$$
\begin{aligned}
\mu(B) & =\sup \{\mu(K): K \subseteq B, K \text { compact }\} \\
& =\inf \{\mu(G): B \subseteq G, G \text { open }\}
\end{aligned}
$$

Tutorial 13: Regular Measure
for all $B \in \mathcal{B}(\Omega)$.
Exercise 17. Show the following:
Theorem 74 Let Ω be an open subset of \mathbf{R}^{n}, where $n \geq 1$. Any locally finite measure on $(\Omega, \mathcal{B}(\Omega))$ is regular.

Definition 104 We call strongly σ-compact topological space, a topological space (Ω, \mathcal{T}), for which there exists a sequence $\left(V_{n}\right)_{n \geq 1}$ of open sets with compact closure, such that $V_{n} \uparrow \Omega$.

Definition 105 We call locally compact topological space, a topological space (Ω, \mathcal{T}), for which every $x \in \Omega$ has an open neighborhood with compact closure, i.e. such that:

$$
\forall x \in \Omega, \exists U \in \mathcal{T}: x \in U, \bar{U} \text { is compact }
$$

Exercise 18. Let (Ω, \mathcal{T}) be a σ-compact and locally compact topological space. Let $\left(K_{n}\right)_{n \geq 1}$ be a sequence of compact subsets of Ω such that $K_{n} \uparrow \Omega$.

1. Show that for all $n \geq 1$, there are open sets $V_{1}^{n}, \ldots, V_{p_{n}}^{n}, p_{n} \geq 1$, such that $K_{n} \subseteq V_{1}^{n} \cup \ldots \cup V_{p_{n}}^{n}$ and $\bar{V}_{1}^{n}, \ldots, \bar{V}_{p_{n}}^{n}$ are compact subsets of Ω.
2. Define $W_{n}=V_{1}^{n} \cup \ldots \cup V_{p_{n}}^{n}$ and $V_{n}=\cup_{k=1}^{n} W_{k}$, for $n \geq 1$. Show that $\left(V_{n}\right)_{n \geq 1}$ is a sequence of open sets in Ω with $V_{n} \uparrow \Omega$.
3. Show that $\bar{W}_{n}=\bar{V}_{1}^{n} \cup \ldots \cup \bar{V}_{p_{n}}^{n}$ for all $n \geq 1$.
4. Show that \bar{W}_{n} is compact for all $n \geq 1$.
5. Show that \bar{V}_{n} is compact for all $n \geq 1$
6. Conclude with the following:

Theorem 75 A topological space (Ω, \mathcal{T}) is strongly σ-compact, if and only if it is σ-compact and locally compact.

Exercise 19. Let (Ω, \mathcal{T}) be a topological space and Ω^{\prime} be a subset of Ω. Let $A \subseteq \Omega^{\prime}$. We denote $\bar{A}^{\Omega^{\prime}}$ the closure of A in the induced topological space ($\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}$), and \bar{A} its closure in Ω.

1. Show that $A \subseteq \Omega^{\prime} \cap \bar{A}$.
2. Show that $\Omega^{\prime} \cap \bar{A}$ is closed in Ω^{\prime}.
3. Show that $\bar{A}^{\Omega^{\prime}} \subseteq \Omega^{\prime} \cap \bar{A}$.
4. Let $x \in \Omega^{\prime} \cap \bar{A}$. Show that if $x \in U^{\prime} \in \mathcal{T}_{\mid \Omega^{\prime}}$, then $A \cap U^{\prime} \neq \emptyset$.
5. Show that $\bar{A}^{\Omega^{\prime}}=\Omega^{\prime} \cap \bar{A}$.

Exercise 20. Let (Ω, d) be a metric space.

1. Show that for all $x \in \Omega$ and $\epsilon>0$, we have:

$$
\overline{B(x, \epsilon)} \subseteq\{y \in \Omega: d(x, y) \leq \epsilon\}
$$

2. Take $\Omega=[0,1 / 2[\cup\{1\}$. Show that $B(0,1)=[0,1 / 2[$.
3. Show that $[0,1 / 2[$ is closed in Ω.
4. Show that $\overline{B(0,1)}=[0,1 / 2[$.
5. Conclude that $\overline{B(0,1)} \neq\{y \in \Omega:|y| \leq 1\}=\Omega$.

ExErcise 21. Let (Ω, d) be a locally compact metric space. Let Ω^{\prime} be an open subset of Ω. Let $x \in \Omega^{\prime}$.

1. Show there exists U open with compact closure, such that $x \in U$.
2. Show the existence of $\epsilon>0$ such that $B(x, \epsilon) \subseteq U \cap \Omega^{\prime}$.
3. Show that $\overline{B(x, \epsilon / 2)} \subseteq \bar{U}$.
4. Show that $\overline{B(x, \epsilon / 2)}$ is closed in \bar{U}.
5. Show that $\overline{B(x, \epsilon / 2)}$ is a compact subset of Ω.
6. Show that $\overline{B(x, \epsilon / 2)} \subseteq \Omega^{\prime}$.
7. Let $U^{\prime}=B(x, \epsilon / 2) \cap \Omega^{\prime}=B(x, \epsilon / 2)$. Show $x \in U^{\prime} \in \mathcal{T}_{\mid \Omega^{\prime}}$, and:

$$
\bar{U}^{\prime \Omega^{\prime}}=\overline{B(x, \epsilon / 2)}
$$

8. Show that the induced topological space Ω^{\prime} is locally compact.
9. Prove the following:

Theorem 76 Let (Ω, \mathcal{T}) be a metrizable and strongly σ-compact topological space. Then, for all Ω^{\prime} open subsets of Ω, the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is itself metrizable and strongly σ-compact.

Definition 106 Let (Ω, \mathcal{T}) be a topological space, and $\phi: \Omega \rightarrow \mathbf{C}$ be a map. We call support of ϕ, the closure of the set $\{\phi \neq 0\}$, i.e.:

$$
\operatorname{supp}(\phi) \triangleq \overline{\{\omega \in \Omega: \phi(\omega) \neq 0\}}
$$

Definition 107 Let (Ω, \mathcal{T}) be a topological space. We denote $C_{\mathbf{K}}^{c}(\Omega)$ the \mathbf{K}-vector space of all continuous map with compact support $\phi: \Omega \rightarrow \mathbf{K}$, where $\mathbf{K}=\mathbf{R}$ or $\mathbf{K}=\mathbf{C}$.

Exercise 22. Let (Ω, \mathcal{T}) be a topological space.

1. Show that $0 \in C_{\mathbf{K}}^{c}(\Omega)$.
2. Show that $C_{\mathbf{K}}^{c}(\Omega)$ is indeed a \mathbf{K}-vector space.
3. Show that $C_{\mathbf{K}}^{c}(\Omega) \subseteq C_{\mathbf{K}}^{b}(\Omega)$.

Exercise 23. let (Ω, d) be a locally compact metric space. let K be a compact subset of Ω, and G be open in Ω, with $K \subseteq G$.

1. Show the existence of open sets V_{1}, \ldots, V_{n} such that:

$$
K \subseteq V_{1} \cup \ldots \cup V_{n}
$$

and $\bar{V}_{1}, \ldots, \bar{V}_{n}$ are compact subsets of Ω.
2. Show that $V=\left(V_{1} \cup \ldots \cup V_{n}\right) \cap G$ is open in Ω, and $K \subseteq V \subseteq G$.
3. Show that $\bar{V} \subseteq \bar{V}_{1} \cup \ldots \cup \bar{V}_{n}$.
4. Show that \bar{V} is compact.
5. We assume $K \neq \emptyset$ and $V \neq \Omega$, and we define $\phi: \Omega \rightarrow \mathbf{R}$ by:

$$
\forall x \in \Omega, \phi(x) \triangleq \frac{d\left(x, V^{c}\right)}{d\left(x, V^{c}\right)+d(x, K)}
$$

Show that ϕ is well-defined and continuous.
6. Show that $\{\phi \neq 0\}=V$.
7. Show that $\phi \in C_{\mathbf{R}}^{c}(\Omega)$.
8. Show that $1_{K} \leq \phi \leq 1_{G}$.
9. Show that if $K=\emptyset$, there is $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ with $1_{K} \leq \phi \leq 1_{G}$.
10. Show that if $V=\Omega$ then Ω is compact.
11. Show that if $V=\Omega$, there $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ with $1_{K} \leq \phi \leq 1_{G}$.

Theorem 77 Let (Ω, \mathcal{T}) be a metrizable and locally compact topological space. Let K be a compact subset of Ω, and G be an open subset of Ω such that $K \subseteq G$. Then, there exists $\phi \in C_{\mathbf{R}}^{c}(\Omega)$, real-valued continuous map with compact support, such that:

$$
1_{K} \leq \phi \leq 1_{G}
$$

ExERCISE 24. Let (Ω, \mathcal{T}) be a metrizable and strongly σ-compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $B \in \mathcal{B}(\Omega)$ be such that $\mu(B)<+\infty$. Let $p \in[1,+\infty[$.

1. Show that $C_{\mathbf{K}}^{c}(\Omega) \subseteq L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$.
2. Let $\epsilon>0$. Show the existence of K compact and G open, with:

$$
K \subseteq B \subseteq G, \mu(G \backslash K) \leq \epsilon
$$

3. Where did you use the fact that $\mu(B)<+\infty$?
4. Show the existence of $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ with $1_{K} \leq \phi \leq 1_{G}$.
5. Show that:

$$
\int\left|\phi-1_{B}\right|^{p} d \mu \leq \mu(G \backslash K)
$$

6. Conclude that for all $\epsilon>0$, there exists $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ such that:

$$
\left\|\phi-1_{B}\right\|_{p} \leq \epsilon
$$

7. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega)) \cap L_{\mathbf{C}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$. Show that for all $\epsilon>0$, there exists $\phi \in C_{\mathbf{C}}^{c}(\Omega)$ such that $\|\phi-s\|_{p} \leq \epsilon$.
8. Prove the following:

Theorem 78 Let (Ω, \mathcal{T}) be a metrizable and strongly σ-compact topological space ${ }^{1}$. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $p \in\left[1,+\infty\left[\right.\right.$, the space $C_{\mathbf{K}}^{c}(\Omega)$ of \mathbf{K}-valued, continuous maps with compact support, is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$.

Exercise 25. Prove the following:
Theorem 79 Let Ω be an open subset of \mathbf{R}^{n}, where $n \geq 1$. Then, for any locally finite measure μ on $(\Omega, \mathcal{B}(\Omega))$ and $p \in\left[1,+\infty\left[, C_{\mathbf{K}}^{c}(\Omega)\right.\right.$ is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$.

[^0]
Solutions to Exercises

Exercise 1.

1. From definition (99), s is clearly an element of $S_{\mathbf{C}}(\Omega, \mathcal{F})$. Furthermore, for all $i \in \mathbf{N}_{n}, 1_{A_{i}}$ is measurable, and:

$$
\int\left|1_{A_{i}}\right|^{p} d \mu=\int 1_{A_{i}} d \mu=\mu\left(A_{i}\right)<+\infty
$$

So $1_{A_{i}} \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu) . s$ being a linear combination of the $1_{A_{i}}$'s is also an element of $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$. We have proved that s is an element of $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$.
2. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{F})$. From definition (99), s is of the form:

$$
\begin{equation*}
s=\sum_{j=1}^{m} \beta_{j} 1_{B_{j}} \tag{1}
\end{equation*}
$$

where $m \geq 1, \beta_{j} \in \mathbf{C}$, and $B_{j} \in \mathcal{F}$ for all $j \in \mathbf{N}_{m}$. If $s=0$, it can be written as $s=1 \times 1_{\emptyset}$ and there is nothing further to
prove. We assume that $s \neq 0$. The map $\theta:\{0,1\}^{m} \rightarrow \mathbf{C}$ given by $\theta\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)=\sum_{j=1}^{m} \beta_{j} \epsilon_{j}$ being defined on a finite set, has a finite range. Since $s(\Omega)$ is a subset of $\theta\left(\{0,1\}^{m}\right), s(\Omega)$ is also a finite set. Having assumed that $s \neq 0$, the set $s(\Omega) \backslash\{0\}$ is therefore non-empty and finite. Let $n \geq 1$ be its cardinal, and $\alpha: \mathbf{N}_{n} \rightarrow s(\Omega) \backslash\{0\}$ be an arbitrary bijection. For all $\omega \in \Omega$, we have:

$$
\begin{equation*}
s(\omega)=\sum_{i=1}^{n} \alpha(i) 1_{\{s=\alpha(i)\}} \tag{2}
\end{equation*}
$$

Since $B_{j} \in \mathcal{F}$ for all j 's, s is a measurable map. If we define $A_{i}=\{s=\alpha(i)\}$ for $i \in \mathbf{N}_{n}$, we have $A_{i} \in \mathcal{F}$. Furthermore, it is clear that $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. We conclude from (2) that s can be written as:

$$
s=\sum_{i=1}^{n} \alpha(i) 1_{A_{i}}
$$

where $n \geq 1, \alpha(i) \in \mathbf{C} \backslash\{0\}, A_{i} \in \mathcal{F}$, and $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$.
3. Let $s \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$. From $2 . s$ can be expressed as:

$$
\begin{equation*}
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}} \tag{3}
\end{equation*}
$$

where $n \geq 1, \alpha_{i} \neq 0, A_{i} \in \mathcal{F}$ and $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$. Let $A=A_{1} \uplus \ldots \uplus A_{n}$. Then $s(\omega)=0$ for all $\omega \in A^{c}$ and furthermore $1_{A}=1_{A_{1}}+\ldots+1_{A_{n}}$. Hence:

$$
\int|s|^{p} d \mu=\sum_{i=1}^{n} \int|s|^{p} 1_{A_{i}} d \mu=\sum_{i=1}^{n}\left|\alpha_{i}\right|^{p} \mu\left(A_{i}\right)<+\infty
$$

Since $\alpha_{i} \neq 0$, it follows that $\mu\left(A_{i}\right)<+\infty$ for all $i \in \mathbf{N}_{n}$. We have been able to express s as (3), where $n \geq 1, \alpha_{i} \in \mathbf{C}$ (in fact $\left.\alpha_{i} \in \mathbf{C}^{*}\right), A_{i} \in \mathcal{F}$ and $\mu\left(A_{i}\right)<+\infty$ for all $i \in \mathbf{N}_{n}$. This is a converse of 1 .
4. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{F})$. Then s is bounded and measurable.

Exercise 2.

1. f being non-negative and measurable, from theorem (18) there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions on (Ω, \mathcal{F}) such that $s_{n} \uparrow f$. In particular, each s_{n} is a non-negative element of $S_{\mathbf{R}}(\Omega, \mathcal{F})$. Furthermore, $s_{n} \leq f$ for all $n \geq 1$ and having assumed that $f \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$, we have:

$$
\int s_{n}^{p} d \mu \leq \int f^{p} d \mu<+\infty
$$

We conclude that $\left(s_{n}\right)_{n \geq 1}$ is a sequence of non-negative elements of $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $s_{n} \uparrow f$.
2. Since $s_{n} \rightarrow f$, we have $\left|s_{n}-f\right|^{p} \rightarrow 0$ as $n \rightarrow+\infty$. Furthermore:

$$
\left|s_{n}-f\right|^{p} \leq\left(s_{n}+f\right)^{p} \leq 2^{p} f^{p} \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)
$$

From the dominated convergence theorem (23), we obtain:

$$
\lim _{n \rightarrow+\infty} \int\left|s_{n}-f\right|^{p} d \mu=0
$$

3. Given $\epsilon>0$, from 2 . there exists $N \geq 1$ such that:

$$
n \geq N \Rightarrow \int\left|s_{n}-f\right|^{p} d \mu \leq \epsilon^{p}
$$

In particular, taking $s=s_{N}$, we have found s belonging to the set $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $\|f-s\|_{p} \leq \epsilon$.
4. Let $A_{\mathbf{K}}=L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$. We claim that $A_{\mathbf{K}}$ is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$, i.e. that $\bar{A}_{\mathbf{K}}=L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$ where $\overline{A_{\mathbf{K}}}$ is the closure of $A_{\mathbf{K}}$ in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$. Recall from definition (75) that for any open set U in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$ and $f \in U$, there exists $\epsilon>0$ such that $B(f, \epsilon) \subseteq U$. Hence, all we need to prove is that given $f \in L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$ and $\epsilon>0$, there exists $s \in A_{\mathbf{K}}$ such that $\|f-s\|_{p} \leq \epsilon$. Indeed, if such property is proved, then for any $f \in L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$ and U open containing f, we have $A_{\mathbf{K}} \cap U \neq \emptyset$ and consequently $f \in \overline{A_{\mathbf{K}}}$. So $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu) \subseteq \overline{A_{\mathbf{K}}}$. Now, if $f \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ and $\epsilon>0$, the existence of $s \in A_{\mathbf{R}}$ such that $\|f-s\|_{p} \leq \epsilon$ has already been proved when f is non-negative. Suppose $f \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$. Then $f=f^{+}-f^{-}$where each
f^{+}, f^{-}is a non-negative element of $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$. There exists $s^{+}, s^{-} \in A_{\mathbf{R}}$ such that $\left\|f^{+}-s^{+}\right\|_{p} \leq \epsilon / 2$ and $\left\|f^{-}-s^{-}\right\|_{p} \leq \epsilon / 2$. Taking $s=s^{+}-s^{-}$, we have found $s \in A_{\mathbf{R}}$ such that:

$$
\|f-s\|_{p} \leq\left\|f^{+}-s^{+}\right\|_{p}+\left\|f^{-}-s^{-}\right\|_{p} \leq \epsilon
$$

and the property is proved for $f \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$. If f is an element of $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, then $f=f_{1}+i f_{2}$ where each f_{1}, f_{2} lies in $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$. There exists $s_{1}, s_{2} \in A_{\mathbf{R}}$ such that $\left\|f_{1}-s_{1}\right\|_{p} \leq \epsilon / 2$ and $\left\|f_{2}-s_{2}\right\|_{p} \leq \epsilon / 2$. Taking $s=s_{1}+i s_{2}$, we have found $s \in A_{\mathbf{C}}$ such that:

$$
\|f-s\|_{p} \leq\left\|f_{1}-s_{1}\right\|_{p}+\left\|f_{2}-s_{2}\right\|_{p} \leq \epsilon
$$

and the property is proved for $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.
Exercise 2

Exercise 3.

1. Given $n \geq 1, s_{n}$ is of the form:

$$
s_{n}=\sum_{i=1}^{p} \alpha_{i} 1_{A_{i}}
$$

where $p \geq 1, \alpha_{i} \in \mathbf{R}^{+}$and $A_{i} \in \mathcal{F}$ for all $i \in \mathbf{N}_{p}$. From definition (40), it is therefore a simple function on (Ω, \mathcal{F}) (or indeed a complex simple function on (Ω, \mathcal{F}) with values in $\left.\mathbf{R}^{+}\right)$.
2. Since f is an element of $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$, we have:

$$
\|f\|_{\infty} \triangleq \inf \left\{M \in \mathbf{R}^{+}:|f| \leq M \mu \text {-a.s. }\right\}<+\infty
$$

It is therefore possible to find an integer $n_{0} \geq 1$ such that $\|f\|_{\infty}<n_{0}$. Since $\|f\|_{\infty}$ is the greatest lower bound all M 's such that $|f| \leq M \mu$-a.s., n_{0} cannot be such lower bound. Hence, there exists $M_{0} \in \mathbf{R}^{+}$such that $|f| \leq M_{0} \mu$-a.s. and $M_{0}<n_{0}$.

Thus, there exists $N \in \mathcal{F}$ with $\mu(N)=0$, and:

$$
\forall \omega \in N^{c},|f(\omega)| \leq M_{0}<n_{0}
$$

In particular, since f is a non-negative element of $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$:

$$
\forall \omega \in N^{c}, 0 \leq f(\omega)<n_{0}
$$

3. Let $n \geq n_{0}$ and $\omega \in N^{c}$. From 2. we have $0 \leq f(\omega)<n_{0}$ and consequently $s_{n}(\omega)=k / 2^{n}$, where k is the unique integer of $\left\{0, \ldots, n 2^{n}-1\right\}$ such that $f(\omega) \in\left[k / 2^{n},(k+1) / 2^{n}[\right.$. So:

$$
\begin{equation*}
0 \leq f(\omega)-s_{n}(\omega)<\frac{1}{2^{n}} \tag{4}
\end{equation*}
$$

4. From 3. we have $N \in \mathcal{F}$ with $\mu(N)=0$ such that for all $\omega \in N^{c}$, inequality (4) holds for all $n \geq n_{0}$. So $\left|f-s_{n}\right|<1 / 2^{n} \mu$-a.s. for all $n \geq n_{0}$. Since $\left\|f-s_{n}\right\|_{\infty}$ is a lower bound of all M 's such that $\left|f-s_{n}\right| \leq M \mu$-a.s., we conclude that $\left\|f-s_{n}\right\|_{\infty} \leq 1 / 2^{n}$
for all $n \geq n_{0}$, and in particular:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|f-s_{n}\right\|_{\infty}=0 \tag{5}
\end{equation*}
$$

5. Let $p \in[1,+\infty]$ be given and $A_{\mathbf{K}}=L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$. If $p \in\left[1,+\infty\left[\right.\right.$, we have already proved in exercise (2) that $A_{\mathbf{K}}$ is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$. We assume that $p=+\infty$ and we claim likewise that $A_{\mathbf{K}}$ is dense in $L_{\mathbf{K}}^{\infty}(\Omega, \mathcal{F}, \mu)$ (note that $A_{\mathbf{K}}$ and $S_{\mathbf{K}}(\Omega, \mathcal{F})$ coincide when $\left.p=+\infty\right)$. Given $f \in L_{\mathbf{K}}^{\infty}(\Omega, \mathcal{F}, \mu)$ and $\epsilon>0$, we need to show the existence of $s \in A_{\mathbf{K}}$ such that $\|f-s\|_{\infty} \leq \epsilon$. When $\mathbf{K}=\mathbf{R}$ and f is a non-negative element of $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$, then such existence is guaranteed by (5), (keeping in mind that simple functions on (Ω, \mathcal{F}) are elements of $\left.S_{\mathbf{R}}(\Omega, \mathcal{F})=A_{\mathbf{R}}\right)$. If $f \in L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$, then $f=f^{+}-f^{-}$ where each f^{+}, f^{-}is a non-negative element of $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$. There exists s^{+}, s^{-}in $A_{\mathbf{R}}$ such that $\left\|f^{+}-s^{+}\right\|_{\infty} \leq \epsilon / 2$ and $\left\|f^{-}-s^{-}\right\|_{\infty} \leq \epsilon / 2$. Taking $s=s^{+}-s^{-}$we obtain $s \in A_{\mathbf{R}}$ and $\|f-s\|_{\infty} \leq \epsilon$. This completes the proof of theorem (67) when
$\mathbf{K}=\mathbf{R}$. If $f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$, then $f=f_{1}+i f_{2}$ where each f_{1}, f_{2} is an element of $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$. Approximating f_{1} and f_{2} by elements s_{1}, s_{2} of $A_{\mathbf{R}}$, we obtain likewise an element $s=s_{1}+i s_{2}$ of $A_{\mathbf{C}}$ with $\|f-s\|_{\infty} \leq \epsilon$. This proves theorem (67).

Exercise 3

Exercise 4.

1. Let $A \subseteq \Omega$. If $A=\emptyset$, then $d(x, A)=+\infty$ for all $x \in \Omega$. In particular, the map $x \rightarrow d(x, A)$ is a continuous map. If $A \neq \emptyset$ and $y \in A$, then $d(x, A) \leq d(x, y)$. In particular $d(x, A)<+\infty$ for all $x \in \Omega$. Furthermore, for all $x, x^{\prime} \in \Omega$ and $y \in A$:

$$
d(x, A) \leq d(x, y) \leq d\left(x, x^{\prime}\right)+d\left(x^{\prime}, y\right)
$$

Consequently, $d(x, A)-d\left(x, x^{\prime}\right)$ is a lower bound of all $d\left(x^{\prime}, y\right)$, as y ranges through $A . d\left(x^{\prime}, A\right)$ being the greatest of such lower bounds, we have:

$$
d(x, A) \leq d\left(x, x^{\prime}\right)+d\left(x^{\prime}, A\right)
$$

Interchanging the roles of x and x^{\prime} we obtain:

$$
d\left(x^{\prime}, A\right) \leq d\left(x, x^{\prime}\right)+d(x, A)
$$

from which we see that:

$$
\begin{equation*}
\forall x, x^{\prime} \in \Omega,\left|d(x, A)-d\left(x^{\prime}, A\right)\right| \leq d\left(x, x^{\prime}\right) \tag{6}
\end{equation*}
$$

We conclude from (6) that $x \rightarrow d(x, A)$ is continuous.
2. Let F be a closed subset of Ω. If $x \in F, d(x, F) \leq d(x, x)=0$ and consequently $d(x, F)=0$. Conversely, suppose $d(x, F)=0$. We shall show that $x \notin F$ is impossible. Indeed, if $x \in F^{c}$, since F^{c} is open, there exists $\epsilon>0$ such that $B(x, \epsilon) \subseteq F^{c}$. However, $d(x, F)=0$ implies in particular that $d(x, F)<\epsilon$. Since $d(x, F)$ is the greatest of all lower bounds of $d(x, y)$, as y range through F, ϵ cannot be such a lower bound. Hence, there exists $y \in F$ such that $d(x, y)<\epsilon$. So $y \in B(x, \epsilon) \cap F \neq \emptyset$ which is a contradiction. We have proved that $x \in F$ is equivalent to $d(x, F)=0$, whenever F is a closed subset of Ω. This exercise is in fact a repetition of exercise (22) of Tutorial 4.

Exercise 4

Exercise 5.

1. $G_{n}=\{x \in \Omega: d(x, F)<1 / n\}$ can be written as $\Phi_{F}^{-1}([-\infty, 1 / n[)$ where Φ_{F} is the map defined on Ω by $\Phi_{F}(x)=d(x, F)$. Having proved in exercise (4) that Φ_{F} is continuous, and since $[-\infty, 1 / n[$ is open in $\overline{\mathbf{R}}$, we conclude that G_{n} is an open subset of Ω.
2. It is clear that $G_{n+1} \subseteq G_{n}$ and $F \subseteq \cap_{n \geq 1} G_{n}$. Suppose that $x \in \cap_{n \geq 1} G_{n}$. Then $d(x, F)<1 / n$ for all $n \geq 1$ and consequently $d(x, F)=0$. From exercise (4), F being a closed subset of Ω, it follows that $x \in F$. This shows that $\cap_{n \geq 1} G_{n} \subseteq F$ and finally $\cap_{n \geq 1} G_{n}=F$. So $G_{n} \downarrow F$.
3. Since μ is a finite measure on $(\Omega, \mathcal{B}(\Omega))$, from theorem (8) and $G_{n} \downarrow F$ we obtain $\mu\left(G_{n}\right) \rightarrow \mu(F)$ as $n \rightarrow+\infty$. Furthermore, since $F \subseteq G_{n}$ for all $n \geq 1$, we have:

$$
\mu\left(G_{n} \backslash F\right)=\mu\left(G_{n} \backslash F\right)+\mu(F)-\mu(F)=\mu\left(G_{n}\right)-\mu(F)
$$

It follows that $\mu\left(G_{n} \backslash F\right) \rightarrow 0$ as $n \rightarrow+\infty$. Given $\epsilon>0$, there
exists $N \geq 1$, such that:

$$
n \geq N \Rightarrow \mu\left(G_{n} \backslash F\right) \leq \epsilon
$$

In particular, taking $F^{\prime}=F$ and $G^{\prime}=G_{N}, F^{\prime}$ and G^{\prime} are respectively closed and open subsets of Ω, with $F^{\prime} \subseteq F \subseteq G^{\prime}$ and $\mu\left(G^{\prime} \backslash F^{\prime}\right) \leq \epsilon$. This shows that $F \in \Sigma$. We have proved that any closed subset F of Ω is an element of Σ.
4. The application of theorem (8) requires some finiteness property.
5. Ω is a closed subset of Ω. So $\Omega \in \Sigma$.
6. Let $B \in \Sigma$. For all $\epsilon>0$, there exist F and G respectively closed and open subsets of Ω, such that $F \subseteq B \subseteq G$ and $\mu(G \backslash F) \leq \epsilon$. Since $F^{c} \backslash G^{c}=F^{c} \cap G=G \backslash F$, it follows that $G^{c} \subseteq B^{c} \subseteq F^{c}$ and $\mu\left(F^{c} \backslash G^{c}\right) \leq \epsilon$. This shows that $B^{c} \in \Sigma$, since G^{c} and F^{c} are respectively closed and open subsets of Ω. We have proved that Σ is closed under complementation.

Exercise 6.

1. Let $n \geq 1$. By assumption B_{n} is an element of Σ. For all $\epsilon^{\prime}>0$, and in particular for $\epsilon^{\prime}=\epsilon / 2^{n}$, there exist F_{n} and G_{n} respectively closed and open subsets of Ω, with $F_{n} \subseteq B_{n} \subseteq G_{n}$ and $\mu\left(G_{n} \backslash F_{n}\right) \leq \epsilon^{\prime}$.
2. Let $H_{n}=\cup_{k=1}^{n} F_{k}$ and $H=\cup_{k \geq 1} F_{k}$. Then $H_{n} \uparrow H$, and consequently from theorem (7), $\mu\left(H_{n}\right) \rightarrow \mu(H)$ as $n \rightarrow+\infty . \mu$ being a finite measure, we obtain:

$$
\lim _{n \rightarrow+\infty} \mu\left(H \backslash H_{n}\right)=\lim _{n \rightarrow+\infty} \mu(H)-\mu\left(H_{n}\right)=0
$$

In particular, there exists $N \geq 1$ such that $\mu\left(H \backslash H_{N}\right) \leq \epsilon$, or equivalently:

$$
\begin{equation*}
\mu\left(\left(\cup_{n=1}^{+\infty} F_{n}\right) \backslash\left(\cup_{n=1}^{N} F_{n}\right)\right) \leq \epsilon \tag{7}
\end{equation*}
$$

3. Let $G=\cup_{n \geq 1} G_{n}$ and $F=\cup_{n=1}^{N} F_{n} . G$ being a union of open subsets of Ω, is itself an open subset of Ω. F being a finite
union of closed subsets of Ω, is itself a closed subset of Ω. Since $F_{n} \subseteq B_{n} \subseteq G_{n}$ for all $n \geq 1$ and $B=\cup_{n \geq 1} B_{n}$, it is clear that $F \subseteq B \subseteq G$.
4. Let $H=\cup_{n \geq 1} F_{n}$. The sets $G \backslash H$ and $H \backslash F$ are clearly disjoint. Furthermore if $x \in G \backslash F=G \cap F^{c}$, then either $x \in H$ or $x \notin H$. If $x \in H$ then $x \in H \backslash F$. If $x \notin H$ then $x \in G \backslash H$. In any case, $x \in G \backslash H \uplus H \backslash F$. This shows that $G \backslash F \subseteq G \backslash H \uplus H \backslash F$.
5. Let $H=\cup_{n \geq 1} F_{n}$ and $x \in G \backslash H$. Since $x \in G$, there exists $n \geq 1$ such that $x \in G_{n}$. But $x \in H^{c}=\cap_{k \geq 1} F_{k}^{c}$. So in particular $x \in F_{n}^{c}$ and consequently $x \in G_{n} \backslash F_{n}$. This shows that $G \backslash H \subseteq \cup_{n \geq 1} G_{n} \backslash F_{n}$.
6. Applying 4. and 5. with $H=\cup_{n \geq 1} F_{n}$, we have:

$$
G \backslash F \subseteq\left(\cup_{n \geq 1} G_{n} \backslash F_{n}\right) \uplus H \backslash F
$$

It follows that:

$$
\mu(G \backslash F) \leq \sum_{n=1}^{+\infty} \mu\left(G_{n} \backslash F_{n}\right)+\mu(H \backslash F)
$$

Having chosen F_{n} and G_{n} such that $\mu\left(G_{n} \backslash F_{n}\right) \leq \epsilon / 2^{n}$ and having defined F from 2. such that $\mu(H \backslash F) \leq \epsilon$, we conclude that $\mu(G \backslash F) \leq 2 \epsilon$.
7. Given a sequence $\left(B_{n}\right)_{n \geq 1}$ in Σ and $B=\cup_{n \geq 1} B_{n}$, given an arbitrary $\epsilon>0$, we have shown the existence of \bar{F} and G respectively closed and open subsets of Ω, such that $F \subseteq B \subseteq G$ (see 3.) and $\mu(G \backslash F) \leq 2 \epsilon$ (see 6.). It follows that $B \in \Sigma$. This shows that Σ is closed under countable union. Since $\Omega \in \Sigma$ and Σ is closed under complementation (see exercise (5)), Σ is therefore a σ-algebra on Ω. Furthermore, still from exercise (5), Σ contains every closed subset of Ω. Being closed under complementation, it also contains every open subset of Ω. In other words, the topology \mathcal{T} is a subset of Σ, i.e. $\mathcal{T} \subseteq \Sigma$. The σ-algebra $\sigma(\mathcal{T})$
being the smallest σ-algebra on Ω containing \mathcal{T} (containing in the inclusion sense), the fact that Σ is a σ-algebra on Ω implies that $\mathcal{B}(\Omega)=\sigma(\mathcal{T}) \subseteq \Sigma$. Σ being a subset of the Borel σ-algebra $\mathcal{B}(\Omega)$, we conclude that $\Sigma=\mathcal{B}(\Omega)$. Hence, for all $B \in \mathcal{B}(\Omega)$ and $\epsilon>0$, there exist F and G respectively closed and open subsets of Ω, such that $F \subseteq B \subseteq G$ and $\mu(G \backslash F) \leq \epsilon$. This proves theorem (68).

Exercise 6

Exercise 7.

1. Let $p \in[1,+\infty]$ and $f \in C_{\mathbf{K}}^{b}(\Omega)$. Since f is continuous, f is Borel measurable. Furthermore, since f is bounded, there exists $M \in \mathbf{R}^{+}$such that $|f| \leq M$. This implies that $\|f\|_{\infty} \leq M$ and in particular $\|f\|_{\infty}<+\infty$. So $f \in L_{\mathbf{K}}^{\infty}(\Omega, \mathcal{B}(\Omega), \mu)$. Moreover, if $p \in[1,+\infty[, \mu$ being a finite measure on $(\Omega, \mathcal{B}(\Omega))$:

$$
\int|f|^{p} d \mu \leq M^{p} \mu(\Omega)<+\infty
$$

so $f \in L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$, and finally $C_{\mathbf{K}}^{b}(\Omega) \subseteq L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$.
2. Let $n \geq 1$ and ϕ_{n} be defined by $\phi_{n}(x)=1-1 \wedge(n d(x, F))$. From exercise (4), the map $x \rightarrow d(x, F)$ is continuous. So ϕ_{n} is also continuous, and furthermore it is clear that $\left|\phi_{n}(x)\right| \leq 1$ for all $x \in \Omega$. So $\phi_{n} \in C_{\mathbf{R}}^{b}(\Omega)$.
3. Let $x \in \Omega$. If $x \in F$, then $d(x, F)=0$ and $\phi_{n}(x)=1$ for all $n \geq 1$. In particular, $\phi_{n}(x) \rightarrow 1_{F}(x)$ as $n \rightarrow+\infty$. If $x \notin F$,
then from exercise (4), F being a closed subset of Ω, we have $d(x, F)>0$. It follows that:

$$
\lim _{n \rightarrow+\infty} \phi_{n}(x)=1-\lim _{n \rightarrow+\infty} 1 \wedge(n d(x, F))=0
$$

In particular, $\phi_{n}(x) \rightarrow 1_{F}(x)$ as $n \rightarrow+\infty$. So $\phi_{n} \rightarrow 1_{F}$.
4. Let $p \in\left[1,+\infty\left[\right.\right.$. From 3 . we have $\phi_{n} \rightarrow 1_{F}$ and consequently $\left|\phi_{n}-1_{F}\right|^{p} \rightarrow 0$ as $n \rightarrow+\infty$. Furthermore, for all $n \geq 1$:

$$
\left|\phi_{n}-1_{F}\right|^{p} \leq\left(\left|\phi_{n}\right|+\left|1_{F}\right|\right)^{p} \leq 2^{p}
$$

μ being a finite measure on $(\Omega, \mathcal{B}(\Omega))$, from the dominated convergence theorem (23) we conclude that:

$$
\lim _{n \rightarrow+\infty} \int\left|\phi_{n}-1_{F}\right|^{p} d \mu=0
$$

5. Let $p \in[1,+\infty[$ and $\epsilon>0$. From 4. there is $N \geq 1$ such that:

$$
n \geq N \Rightarrow \int\left|\phi_{n}-1_{F}\right|^{p} d \mu \leq \epsilon^{p}
$$

In particular, taking $\phi=\phi_{N}, \phi \in C_{\mathbf{R}}^{b}(\Omega)$ and $\left\|\phi-1_{F}\right\|_{p} \leq \epsilon$.
6. Let ν be a complex measure on $(\Omega, \mathcal{B}(\Omega))$. From theorem (57), the total variation $|\nu|$ of ν is a finite measure on $(\Omega, \mathcal{B}(\Omega))$. It follows that $C_{\mathbf{C}}^{b}(\Omega) \subseteq L_{\mathbf{C}}^{1}(\Omega, \mathcal{B}(\Omega),|\nu|)=L_{\mathbf{C}}^{1}(\Omega, \mathcal{B}(\Omega), \nu)$. Let $h \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{B}(\Omega),|\nu|)$ be such that $|h|=1$ and $\nu=\int h d|\nu|$. Then:

$$
\begin{aligned}
\left|\int \phi_{n} d \nu-\nu(F)\right| & =\left|\int \phi_{n} d \nu-\int 1_{F} d \nu\right| \\
& =\left|\int\left(\phi_{n}-1_{F}\right) h d\right| \nu| | \\
& \leq \int\left|\phi_{n}-1_{F}\right| d|\nu|
\end{aligned}
$$

where the second equality stems from definition (97), and the last inequality from theorem (24). We conclude from 4. applied
to $\mu=|\nu|$ and $p=1$, that:

$$
\nu(F)=\lim _{n \rightarrow+\infty} \int \phi_{n} d \nu
$$

7. Let (Ω, \mathcal{T}) be a metrizable topological space, and μ, ν be two complex measures on $(\Omega, \mathcal{B}(\Omega))$. We assume that:

$$
\begin{equation*}
\forall \phi \in C_{\mathbf{R}}^{b}(\Omega), \quad \int \phi d \mu=\int \phi d \nu \tag{8}
\end{equation*}
$$

and we claim that $\mu=\nu$. We define:

$$
\mathcal{D}=\{E \in \mathcal{B}(\Omega): \mu(E)=\nu(E)\}
$$

Let F be a closed subset of Ω. From 6. and (8) we have:

$$
\mu(F)=\lim _{n \rightarrow+\infty} \int \phi_{n} d \mu=\lim _{n \rightarrow+\infty} \int \phi_{n} d \nu=\nu(F)
$$

So $F \in \mathcal{D}$. Hence, any closed subset of Ω is an element of \mathcal{D}. In
particular, $\Omega \in \mathcal{D}$. Furthermore, if $A, B \in \mathcal{D}$ with $A \subseteq B$, then:

$$
\mu(B \backslash A)=\mu(B)-\mu(A)=\nu(B)-\nu(A)=\nu(B \backslash A)
$$

So $B \backslash A \in \mathcal{D}$. Finally, if $\left(E_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{D} with $E_{n} \uparrow E$, then using exercise (13) of Tutorial 12 we have:

$$
\mu(E)=\lim _{n \rightarrow+\infty} \mu\left(E_{n}\right)=\lim _{n \rightarrow+\infty} \nu\left(E_{n}\right)=\nu(E)
$$

So $E \in \mathcal{D}$, and we have proved that \mathcal{D} is a Dynkin system on Ω. In particular, \mathcal{D} is closed under complementation, and since it contains every closed subset of Ω, it also contains every open subset of Ω. So $\mathcal{T} \subseteq \mathcal{D}$ and finally, since \mathcal{T} is closed under finite intersection, from the Dynkin system theorem (1) we conclude that $\mathcal{B}(\Omega)=\sigma(\mathcal{T}) \subseteq \mathcal{D}$. It follows that $\mathcal{B}(\Omega)=\mathcal{D}$ and consequently $\mu=\nu$, which completes the proof of theorem (69).

Exercise 7

Exercise 8.

1. Let $\epsilon>0$ and $i \in \mathbf{N}_{n}$. Since $A_{i} \in \mathcal{B}(\Omega), \mu$ is a finite measure on $(\Omega, \mathcal{B}(\Omega))$ and (Ω, \mathcal{T}) is metrizable, from theorem (68) there exist F_{i}, G_{i} respectively closed and open subsets of Ω, such that $F_{i} \subseteq A_{i} \subseteq G_{i}$ and $\mu\left(G_{i} \backslash F_{i}\right) \leq \epsilon$. In particular, $A_{i} \backslash F_{i} \subseteq G_{i} \backslash F_{i}$ and we have $\mu\left(A_{i} \backslash F_{i}\right) \leq \epsilon$.
2. From $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ and $s^{\prime}=\sum_{i=1}^{n} \alpha_{i} 1_{F_{i}}$ we obtain:

$$
\begin{aligned}
\left\|s-s^{\prime}\right\|_{p} & =\left\|\sum_{i=1}^{n} \alpha_{i}\left(1_{A_{i}}-1_{F_{i}}\right)\right\|_{p} \\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left\|1_{A_{i}}-1_{F_{i}}\right\|_{p} \\
& =\sum_{i=1}^{n}\left|\alpha_{i}\right|\left(\int\left|1_{A_{i}}-1_{F_{i}}\right|^{p} d \mu\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left|\alpha_{i}\right|\left(\int 1_{A_{i} \backslash F_{i}} d \mu\right)^{\frac{1}{p}} \\
& =\sum_{i=1}^{n}\left|\alpha_{i}\right| \mu\left(A_{i} \backslash F_{i}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\right) \epsilon^{\frac{1}{p}}
\end{aligned}
$$

3. Let $\epsilon>0$. Choosing $\epsilon^{\prime}>0$ sufficiently small such that:

$$
\left(\sum_{i=1}^{n} \| \alpha_{i} \mid\right) \epsilon^{\prime 1 / p} \leq \epsilon / 2
$$

and applying 2. to ϵ^{\prime}, there exist closed subsets F_{1}, \ldots, F_{n} of Ω, such that $\left\|s-s^{\prime}\right\|_{p} \leq \epsilon / 2$, where s^{\prime} is defined as:

$$
s^{\prime}=\sum_{i=1}^{n} \alpha_{i} 1_{F_{i}}
$$

Furthermore for all $i \in \mathbf{N}_{n}$, from 5. of exercise (7) there exists $\phi_{i} \in C_{\mathbf{R}}^{b}(\Omega)$ such that $\left|\alpha_{i}\right| \cdot\left\|\phi_{i}-1_{F_{i}}\right\|_{p} \leq \epsilon / 2 n$. We Define:

$$
\phi=\sum_{i=1}^{n} \alpha_{i} \phi_{i}
$$

Then $\phi \in C_{\mathbf{C}}^{b}(\Omega)$ (in fact $\phi \in C_{\mathbf{R}}^{b}(\Omega)$ if $\alpha_{i} \in \mathbf{R}$ for all i 's), and:

$$
\begin{aligned}
\left\|\phi-s^{\prime}\right\|_{p} & =\left\|\sum_{i=1}^{n} \alpha_{i}\left(\phi_{i}-1_{F_{i}}\right)\right\|_{p} \\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left\|\phi_{i}-1_{F_{i}}\right\|_{p} \\
& \leq \epsilon / 2
\end{aligned}
$$

Finally, we obtain $\|\phi-s\|_{p} \leq\left\|\phi-s^{\prime}\right\|_{p}+\left\|s-s^{\prime}\right\|_{p} \leq \epsilon$.
4. Suppose (Ω, \mathcal{T}) is a metrizable topological space, and μ is a finite measure on $(\Omega, \mathcal{B}(\Omega))$. For all $p \in[1,+\infty[$, we clearly
have $C_{\mathbf{K}}^{b}(\Omega) \subseteq L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$ and we claim that $C_{\mathbf{K}}^{b}(\Omega)$ is in fact dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$. Given $f \in L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$ and $\epsilon>0$, we have to prove the existence of $\phi \in C_{\mathbf{K}}^{b}(\Omega)$ such that $\|f-\phi\|_{p} \leq \epsilon$. From theorem (67), the set $S_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega))$ (which is a subset of $L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$ since μ is finite) is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$. There exists $s \in S_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega))$ such that $\|f-s\|_{p} \leq \epsilon / 2$. Applying 3. to the \mathbf{K}-valued simple function s, there exists $\phi \in C_{\mathbf{K}}^{b}(\Omega)$ (ϕ can indeed be chosen \mathbf{R}-valued if $\mathbf{K}=\mathbf{R})$, such that $\|\phi-s\|_{p} \leq \epsilon / 2$. It follows that:

$$
\|f-\phi\|_{p} \leq\|f-s\|_{p}+\|\phi-s\|_{p} \leq \epsilon
$$

which completes the proof of theorem (70).
Exercise 8

Exercise 9.

1. $F_{n}=\phi^{-1}([1 / n,+\infty])$ where ϕ is the continuous map defined by $\phi(x)=d\left(x, \Omega^{\prime c}\right)$. Since $[1 / n,+\infty]$ is a closed subset of $\overline{\mathbf{R}}$, we conclude that F_{n} is a closed subset of Ω.
2. For all $n \geq 1$ it is clear that $F_{n} \subseteq F_{n+1}$. Let $x \in \Omega^{\prime}$. Since Ω^{\prime} is an open subset of $\Omega, \Omega^{\prime c}$ is a closed subset of Ω and $x \notin \Omega^{\prime c}$. It follows from exercise (4) that $d\left(x, \Omega^{\prime c}\right)>0$. Hence, there exists $n \geq 1$ such that $d\left(x, \Omega^{\prime c}\right) \geq 1 / n$. So $x \in F_{n}$ and we have proved that $\Omega^{\prime} \subseteq \cup_{n \geq 1} F_{n}$. To prove the reverse inclusion, suppose $x \in F_{n}$ for a some $n \geq 1$. Then in particular $d\left(x, \Omega^{\prime c}\right)>0$ and x cannot be an element of $\Omega^{\prime c}$. So $x \in \Omega^{\prime}$. This shows that $F_{n} \subseteq \Omega^{\prime}$ for all $n \geq 1$, and we have proved that $F_{n} \uparrow \Omega^{\prime}$.
3. Since $F_{n} \subseteq F_{n+1}$ and $K_{n} \subseteq K_{n+1}, F_{n} \cap K_{n} \subseteq F_{n+1} \cap K_{n+1}$. Furthermore, it is clear that $\cup_{n \geq 1} F_{n} \cap K_{n} \subseteq \Omega^{\prime}$ since $F_{n} \subseteq \Omega^{\prime}$ for all $n \geq 1$. Finally if $x \in \bar{\Omega}^{\prime}$, since $F_{n} \uparrow \Omega^{\prime}$ there exists $p \geq 1$ such that $x \in F_{p}$. Since $K_{n} \uparrow \Omega$ there exists $q \geq 1$ such
that $x \in K_{q}$. Taking $n=\max (p, q)$, we have $x \in F_{n} \cap K_{n}$. So $\Omega^{\prime} \subseteq \cup_{n \geq 1} F_{n} \cap K_{n}$ and we have proved that $F_{n} \cap K_{n} \uparrow \Omega^{\prime}$.
4. Let $n \geq 1$. Since F_{n} is closed in Ω, F_{n}^{c} is open in Ω. By the very definition of the induced topology on $K_{n}, K_{n} \backslash F_{n}=K_{n} \cap F_{n}^{c}$ is an open subset of K_{n}. We conclude that $F_{n} \cap K_{n}$ is a closed subset of K_{n}.
5. By assumption, each K_{n} is a compact subset of Ω. Equivalently, the induced topological space $\left(K_{n}, \mathcal{T}_{\mid K_{n}}\right)$ is compact. Having proved that $F_{n} \cap K_{n}$ is a closed subset of K_{n}, from exercise (2) of Tutorial $8, F_{n} \cap K_{n}$ is a compact subset of K_{n}, or equivalently a compact subset of Ω^{\prime}.
6. We have found a sequence $\left(F_{n} \cap K_{n}\right)_{n \geq 1}$ of compact subsets of Ω^{\prime}, such that $F_{n} \cap K_{n} \uparrow \Omega^{\prime}$. This shows that the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is σ-compact. From theorem (12), it is also metrizable, which completes the proof of theorem (71).

Exercise 9

Exercise 10.

1. Let $x \in K$. Since μ is locally finite, there exists U_{x} open subset of Ω, such that $x \in U_{x}$ and $\mu\left(U_{x}\right)<+\infty$. It is clear that $K \subseteq \cup_{x \in K} U_{x}$, and K being a compact subset of Ω, there exists a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of K such that $K \subseteq U_{x_{1}} \cup \ldots \cup U_{x_{n}}$. Taking $V_{i}=U_{x_{i}}$, we have found V_{1}, \ldots, V_{n} open subsets of Ω, such that $\mu\left(V_{i}\right)<+\infty$ for all $i \in \mathbf{N}_{n}$ and:

$$
\begin{equation*}
K \subseteq V_{1} \cup \ldots \cup V_{n} \tag{9}
\end{equation*}
$$

Note that if $n=0, K=\emptyset$ and it is always possible to assume $n=1$ by taking $V_{1}=\emptyset$ (not a very important comment).
2. From (9) and exercise (13) of Tutorial 5, we obtain:

$$
\mu(K) \leq \mu\left(V_{1} \cup \ldots \cup V_{n}\right) \leq \sum_{i=1}^{n} \mu\left(V_{i}\right)<+\infty
$$

Exercise 11.

1. Let $\epsilon>0$. Since (Ω, \mathcal{T}) is metrizable and μ is a finite measure, from theorem (68) there exist F, G respectively closed and open subsets of Ω, such that $F \subseteq B \subseteq G$ and $\mu(G \backslash F) \leq \epsilon$. In particular, there exists F closed with $F \subseteq B$ and $\mu(B \backslash F) \leq \epsilon$.
2. Since $K_{n} \subseteq K_{n+1}, F \backslash\left(K_{n+1} \cap F\right) \subseteq F \backslash\left(K_{n} \cap F\right)$ for all $n \geq 1$. Moreover, we have:

$$
\bigcap_{n=1}^{+\infty} F \backslash\left(K_{n} \cap F\right)=\bigcap_{n=1}^{+\infty} F \cap\left(K_{n}^{c} \cup F^{c}\right)=F \cap\left(\bigcup_{n=1}^{+\infty} K_{n}\right)^{c}=\emptyset
$$

It follows that $F \backslash\left(K_{n} \cap F\right) \downarrow \emptyset$.
3. F being a closed subset of $\Omega, K_{n} \cap F$ is closed with respect to the induced topology on K_{n}. In other words, $K_{n} \cap F$ is a closed subset of K_{n}.
4. Since K_{n} is compact, and $K_{n} \cap F$ is closed in K_{n}, from exercise (2) of Tutorial 8, $K_{n} \cap F$ is itself compact.
5. Since $F \backslash\left(K_{n} \cap F\right) \downarrow \emptyset$ and μ is a finite measure, from theorem (8) we have $\mu\left(F \backslash\left(K_{n} \cap F\right)\right) \rightarrow 0$ as $n \rightarrow+\infty$. In particular, there exists $n \geq 1$ such that $\mu\left(F \backslash\left(K_{n} \cap F\right)\right) \leq \epsilon$. Taking $K=K_{n} \cap F$, from $4 . K$ is a compact subset of K_{n}, or equivalently a compact subset of Ω. Hence, we have found a compact subset K of Ω, such that $K \subseteq F$ and $\mu(F \backslash K) \leq \epsilon$.
6. Since $\mu(B \backslash F) \leq \epsilon$ and $\mu(F \backslash K) \leq \epsilon$, we have:

$$
\begin{aligned}
\mu(B) & =\mu(B \backslash F)+\mu(F) \\
& =\mu(B \backslash F)+\mu(F \backslash K)+\mu(K) \\
& \leq \mu(K)+2 \epsilon
\end{aligned}
$$

7. We have proved in 6. that for all $B \in \mathcal{B}(\Omega)$, there exists K compact with $K \subseteq B$ and $\mu(B) \leq \mu(K)+2 \epsilon . \alpha$ being an upper bound of all $\mu(K)$, as K ranges through all compacts subsets with $K \subseteq B$, we have $\mu(K) \leq \alpha$. So $\mu(B) \leq \alpha+2 \epsilon$. This being true for all $\epsilon>0$, it follows that $\mu(B) \leq \alpha$. Moreover, for all K compact with $K \subseteq B$, we have $\mu(K) \leq \mu(B)$. So $\mu(B)$ is an
upper bound of all $\mu(K)$, as K ranges through compacts with $K \subseteq B . \alpha$ being the smallest of such upper bounds, we have $\alpha \leq \mu(B)$ and finally:

$$
\mu(B)=\alpha=\sup \{\mu(K): K \subseteq B, K \text { compact }\}
$$

This being true for all $B \in \mathcal{B}(\Omega)$, from definition (103), μ is inner-regular. We have proved that any finite measure on a metrizable, σ-compact topological space is inner-regular.

Exercise 11

Exercise 12.

1. Since $K_{n} \uparrow \Omega$, we have $K_{n} \cap B \uparrow B$. From theorem (7), it follows that $\mu\left(K_{n} \cap B\right) \uparrow \mu(B)$.
2. Since $\alpha<\mu(B)$ and $\mu\left(K_{n} \cap B\right) \rightarrow \mu(B)$, there exists $n \geq 1$ such that $\alpha<\mu\left(K_{n} \cap B\right)$. Taking $K=K_{n}$, we have found K compact subset of Ω such that $\alpha<\mu(K \cap B)$.
3. From exercise (10), μ being a locally finite measure and K being compact, we have $\mu(K)<+\infty$. Hence, for all $A \in \mathcal{B}(\Omega)$:

$$
\mu^{K}(A)=\mu(K \cap A) \leq \mu(K)<+\infty
$$

So μ^{K} is a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Since (Ω, \mathcal{T}) is metrizable and σ-compact, from exercise (11) it follows that μ^{K} is inner-regular. In particular:

$$
\mu^{K}(B)=\sup \left\{\mu^{K}\left(K^{*}\right): K^{*} \subseteq B, K^{*} \text { compact }\right\}
$$

4. It appears from 3 . that $\mu^{K}(B)$ is the smallest upper bound of all $\mu^{K}\left(K^{*}\right)$, as K^{*} ranges through compacts with $K^{*} \subseteq B$. Since $\alpha<\mu^{K}(B), \alpha$ cannot be such an upper bound. Hence, there exists K^{*} compact with $K^{*} \subseteq B$, such that $\alpha<\mu\left(K \cap K^{*}\right)$.
5. (Ω, \mathcal{T}) being metrizable, it is a Hausdorff topological space. K^{*} being a compact subset of Ω, we conclude from theorem (35) that K^{*} is a closed subset of Ω.
6. Having proved that K^{*} is a closed subset of $\Omega, K \cap K^{*}$ is closed relative to the induced topology on K. In other words, $K \cap K^{*}$ is a closed subset of K.
7. $K \cap K^{*}$ being a closed subset of K, and K being compact, from exercise (2) of Tutorial 8 we conclude that $K \cap K^{*}$ is itself compact.
8. We have shown that $\alpha<\mu\left(K \cap K^{*}\right)$ and that $K \cap K^{*}$ is a compact subset of Ω. Since $K^{*} \subseteq B$, we have $K \cap K^{*} \subseteq B$ and
we conclude that:

$$
\begin{equation*}
\alpha<\mu\left(K \cap K^{*}\right) \leq \sup \left\{\mu\left(K^{\prime}\right): K^{\prime} \subseteq B, K^{\prime} \text { compact }\right\} \tag{10}
\end{equation*}
$$

9. For all $\alpha \in \overline{\mathbf{R}}$ with $\alpha<\mu(B)$, inequality (10) holds. Hence:

$$
\mu(B) \leq \sup \left\{\mu\left(K^{\prime}\right): K^{\prime} \subseteq B, K^{\prime} \text { compact }\right\}
$$

10. Is is clear that:

$$
\sup \left\{\mu\left(K^{\prime}\right): K^{\prime} \subseteq B, K^{\prime} \text { compact }\right\} \leq \mu(B)
$$

We conclude that:

$$
\mu(B)=\sup \left\{\mu\left(K^{\prime}\right): K^{\prime} \subseteq B, K^{\prime} \text { compact }\right\}
$$

This being true for all $B \in \mathcal{B}(\Omega)$, from definition (103), μ is inner-regular. We have proved that any locally finite measure on a metrizable and σ-compact topological space, is inner-regular.

Exercise 13.

1. Let (Ω, \mathcal{T}) be a metrizable topological space. Suppose (Ω, \mathcal{T}) is separable. From definition (58), there exists a sequence $\left(x_{n}\right)_{n \geq 1}$ of elements of Ω, which are dense in Ω. The set of open balls:

$$
\mathcal{H}=\left\{B\left(x_{n}, 1 / p\right): n \geq 1, p \geq 1\right\}
$$

is easily seen to be a countable base of (Ω, \mathcal{T}). Indeed, it is a subset of the topology \mathcal{T} which is at most countable, and for any open set U and any $x \in U$, on can easily find $n \geq 1$ and $p \geq 1$ such that:

$$
x \in B\left(x_{n}, 1 / p\right) \subseteq U
$$

So U is a union of elements of \mathcal{H}. We have proved that if (Ω, \mathcal{T}) is separable, then it has a countable base. Conversely, suppose (Ω, \mathcal{T}) has a countable base, say \mathcal{H}. For all $V \in \mathcal{H}, V \neq \emptyset$, let x_{V} be an arbitrary element of V. Then, the set:

$$
A=\left\{x_{V}: V \in \mathcal{H}, V \neq \emptyset\right\}
$$

is at most countable, and is easily seen to be dense in Ω. Indeed, for all $x \in \Omega$ and $\epsilon>0$, the open ball $B(x, \epsilon)$ being a union of elements of \mathcal{H} (see definition (57) of a countable base), we have $x \in V \subseteq B(x, \epsilon)$ for some $V \in \mathcal{H}, V \neq \emptyset$. In particular, we have found $x_{V} \in A$, such that $d\left(x, x_{V}\right)<\epsilon$. This shows that (Ω, \mathcal{T}) is separable, and we have proved the equivalence between the separability of (Ω, \mathcal{T}), and the fact that it has a countable base. This equivalence was already proved in slightly more detail, as part of exercise (19) of Tutorial 6.
2. We assume that (Ω, \mathcal{T}) is not only metrizable, but also compact. Let $n \geq 1$. Then $(B(x, 1 / n))_{x \in \Omega}$ is a family of open sets whose union is equal to Ω itself. In other words, it is an open covering of Ω. Since (Ω, \mathcal{T}) is compact, this open covering has a finite sub-covering. In other words, there exists an integer $p \geq 1$ and x_{1}, \ldots, x_{p} in Ω, such that:

$$
\Omega=B\left(x_{1}, 1 / n\right) \cup \ldots \cup B\left(x_{p}, 1 / n\right)
$$

We have proved that Ω can be covered by a finite number of open balls with radius $1 / n$.

3 . We assume that (Ω, \mathcal{T}) is not only metrizable but also compact. From 2 . given $n \geq 1, \Omega$ can be covered by a finite number, say $p_{n} \geq 1$, of open balls with radius $1 / n$. Let $x_{1, n}, \ldots, x_{p_{n}, n}$ be the centers of such open balls. Then, the set $A=\left\{x_{k, n}: n \geq\right.$ $\left.1, k=1, \ldots, p_{n}\right\}$ is at most countable, and we claim that it is dense in Ω. Let $x \in \Omega$. We have to show that $x \in \bar{A}$, i.e. that given U open containing x, we have $U \cap A \neq \emptyset .(\Omega, \mathcal{T})$ being metrizable, it is sufficient to show that given $\epsilon>0, B(x, \epsilon) \cap A \neq$ \emptyset. Let $n \geq 1$ be such that $1 / n \leq \epsilon$. Since x belongs to an open ball $B\left(x_{k, n}, 1 / n\right)$ for some $k=1, \ldots, p_{n}$, in particular we have $d\left(x, x_{k, n}\right)<\epsilon$. This shows that $B(x, \epsilon) \cap A \neq \emptyset$ and we have proved that A is dense in Ω. This shows that (Ω, \mathcal{T}) is separable. The purpose of this exercise is to show that a metrizable compact topological space is also separable.

Exercise 13

Exercise 14.

1. From theorem (12), the induced metric $d_{\mid K_{n}}$ induces the induced topology $\mathcal{T}_{\mid K_{n}}$ on K_{n}.
2. By assumption, each K_{n} is a compact subset of Ω. In other words, the topological space $\left(K_{n}, \mathcal{T}_{\mid K_{n}}\right)$ is compact. However from 1. it is also metrizable. It follows from exercise (13) that $\left(K_{n}, \mathcal{T}_{\mid K_{n}}\right)$ is separable.
3. Let $A=\left\{x_{n}^{p}: n \geq 1, p \geq 1\right\}$. Then A is an at most countable set, and we claim that A is dense in Ω. Since (Ω, \mathcal{T}) is metrizable, given $x \in \Omega$ and $\epsilon>0$, it is sufficient to show that $A \cap B(x, \epsilon) \neq \emptyset$. Since $\Omega=\cup_{n \geq 1} K_{n}$, there is $n \geq 1$ such that $x \in K_{n}$. By assumption, the sequence $\left(x_{n}^{p}\right)_{p \geq 1}$ is dense in K_{n}. Hence, there exists $p \geq 1$ such that $d_{\mid K n}\left(x, x_{n}^{p}\right)<\epsilon$. Equivalently, we have $d\left(x, x_{n}^{p}\right)<\epsilon$. It follows that $A \cap B(x, \epsilon) \neq \emptyset$ and we have proved that A is dense in Ω. This shows that (Ω, \mathcal{T}) is separable. The purpose of this exercise is to prove that a

Solutions to Exercises
metrizable and σ-compact topological space, is also separable. This is the objective of theorem (72).

Exercise 14

Exercise 15.

1. Let U be open in Ω and $x \in U$. The measure μ being locally finite, there exists some open set W_{x} such that $x \in W_{x}$ and $\mu\left(W_{x}\right)<+\infty$. Defining $U_{x}=U \cap W_{x}, U_{x}$ is an open set in Ω such that $x \in U_{x} \subseteq U$ and $\mu\left(U_{x}\right)<+\infty$.
2. Since U_{x} is open, and \mathcal{H} is a countable base of $(\Omega, \mathcal{T}), U_{x}$ can be expressed as a union of elements of \mathcal{H}. In particular, since $x \in U_{x}$, there exists some $V_{x} \in \mathcal{H}$ such that $x \in V_{x} \subseteq U_{x}$.
3. \mathcal{H}^{\prime} being a subset of \mathcal{H}, and \mathcal{H} being a countable base of (Ω, \mathcal{T}), \mathcal{H}^{\prime} is an at most countable set of open sets in Ω. Furthermore, given U open in Ω and $x \in U$, it follows from 1. and 2 . that there exists $V_{x} \in \mathcal{H}$ such that $x \in V_{x} \subseteq U$ and $\mu\left(V_{x}\right)<+\infty$. In other words, there exists $V_{x} \in \mathcal{H}^{\prime}$ such that $x \in V_{x} \subseteq U$. Consequently, U can be expressed as $U=\cup_{x \in U} V_{x}$ and we have proved that any open set in Ω can be written as a union of elements of \mathcal{H}^{\prime}. This shows that \mathcal{H}^{\prime} is a countable base of (Ω, \mathcal{T}).
4. Since Ω is an open set in Ω, and \mathcal{H}^{\prime} is a countable base of (Ω, \mathcal{T}), Ω can be written as a union of elements of \mathcal{H}^{\prime}. In other words, there exists a subset $\mathcal{G} \subseteq \mathcal{H}^{\prime}$ such that $\Omega=\cup_{V \in \mathcal{G}} V$. \mathcal{H}^{\prime} being at most countable, \mathcal{G} is itself at most countable. There exists a map $\phi: \mathbf{N}^{*} \rightarrow \mathcal{G}$ which is surjective. So $\Omega=\cup_{n \geq 1} \phi(n)$, and defining $V_{n}=\phi(n)$ we obtain $\Omega=\cup_{n \geq 1} V_{n}$ where each V_{n} is an element of $\mathcal{G} \subseteq \mathcal{H}^{\prime}$. In particular, each V_{n} is an open set in Ω with $\mu\left(V_{n}\right)<+\infty$.

Exercise 15

Exercise 16.

1. Let $\mu^{V_{n}}=\mu\left(V_{n} \cap \cdot\right)$. Since $\mu\left(V_{n}\right)<+\infty, \mu^{V_{n}}$ is a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Furthermore, (Ω, \mathcal{T}) is a metrizable topological space. Applying theorem (68), since $B \in \mathcal{B}(\Omega)$, there exist F_{n} closed and G_{n} open such that $F_{n} \subseteq B \subseteq G_{n}$ and $\mu^{V_{n}}\left(G_{n} \backslash F_{n}\right) \leq$ $\epsilon / 2^{n}$. In particular, since $G_{n} \backslash B \subseteq G_{n} \backslash F_{n}$, there exists G_{n} open such that $B \subseteq G_{n}$ and $\mu^{V_{n}}\left(G_{n} \backslash B\right) \leq \epsilon / 2^{n}$.
2. Let $G=\cup_{n \geq 1} V_{n} \cap G_{n}$. Each V_{n} and G_{n} is an open set in Ω. So G is a union of open sets in Ω. It follows that G is an open set in Ω. Furthermore, since $\Omega=\cup_{n \geq 1} V_{n}$ and $B \subseteq G_{n}$ for all $n \geq 1$, we have:

$$
B=\bigcup_{n=1}^{+\infty} V_{n} \cap B \subseteq \bigcup_{n=1}^{+\infty} V_{n} \cap G_{n}=G
$$

3. We have:

$$
G \backslash B=G \cap B^{c}=\bigcup_{n=1}^{+\infty} V_{n} \cap G_{n} \cap B^{c}=\bigcup_{n=1}^{+\infty} V_{n} \cap\left(G_{n} \backslash B\right)
$$

4. From 3. and 1. we obtain:

$$
\mu(G \backslash B) \leq \sum_{n=1}^{+\infty} \mu\left(V_{n} \cap\left(G_{n} \backslash B\right)\right)=\sum_{n=1}^{+\infty} \mu^{V_{n}}\left(G_{n} \backslash B\right) \leq \epsilon
$$

Since $B \subseteq G$, we have $\mu(G)=\mu(B)+\mu(G \backslash B)$ and consequently $\mu(G) \leq \mu(B)+\epsilon$.
5. Since G is open and $B \subseteq G$, we have $\alpha \leq \mu(G)$. Using 4. it follows that $\alpha \leq \mu(B)+\epsilon$. This being true for all $\epsilon>0$, we conclude that $\alpha \leq \mu(B)$.
6. For all G open with $B \subseteq G$, we have $\mu(B) \leq \mu(G)$. It follows that $\mu(B)$ is a lower bound of all $\mu(G)$'s where G is open with $B \subseteq G . \alpha$ being the greatest of such lower bounds, we have
$\mu(B) \leq \alpha$. However, from 5 . we have $\alpha \leq \mu(B)$. It follows that $\alpha=\mu(B)$. We have proved that for all $B \in \mathcal{B}(\Omega)$:

$$
\mu(B)=\inf \{\mu(G): B \subseteq G, G \text { open }\}
$$

This shows that μ is outer-regular.
7. In this exercise, we proved that a locally finite measure on a metrizable and σ-compact topological space is outer-regular. However, in exercise (12), we proved that it is also inner-regular. It follows that a locally finite measure on a metrizable and σ compact topological space is regular. This proves theorem (73).

Exercise 16

Exercise 17. Let Ω be an open subset of \mathbf{R}^{n}, and μ be a locally finite measure in $(\Omega, \mathcal{B}(\Omega))$. \mathbf{R}^{n} is a metrizable topological space, and furthermore from theorem (48) any closed and bounded subset of \mathbf{R}^{n} is compact. In particular, $K_{p}=[-p, p]^{n}$ is a compact subset of \mathbf{R}^{n} for all $p \geq 1$. So \mathbf{R}^{n} is both metrizable and σ-compact. From theorem (71) it follows that the induced topological space $\left(\Omega,\left(\mathcal{T}_{\mathbf{R}^{n}}\right)_{\mid \Omega}\right)$ is also metrizable and σ-compact. Applying theorem (73), we conclude that μ being locally finite, is a regular measure. We have proved that any locally finite measure on an open subset of \mathbf{R}^{n} is regular. This is the objective of theorem (74).

Exercise 17

Exercise 18.

1. Since (Ω, \mathcal{T}) is locally compact, for all $x \in \Omega$, there exists W_{x} open in Ω such that $x \in W_{x}$ and \bar{W}_{x} is compact. Let $n \geq 1 . K_{n}$ is a compact subset of Ω. Furthermore, $\left(K_{n} \cap W_{x}\right)_{x \in K_{n}}$ is an open covering of K_{n}, from which therefore we can extract a finite sub-covering. There exists an integer $p_{n} \geq 1$ and $x_{1}^{n}, \ldots, x_{p_{n}}^{n}$ elements of K_{n}, such that:

$$
K_{n}=\left(K_{n} \cap W_{x_{1}^{n}}\right) \cup \ldots \cup\left(K_{n} \cap W_{x_{p_{n}}^{n}}\right)
$$

Setting $V_{k}^{n}=W_{x_{k}^{n}}$ for $k=1, \ldots, p_{n}$, we have found $V_{1}^{n}, \ldots, V_{p_{n}}^{n}$ open subsets of Ω such that $K_{n} \subseteq V_{1}^{n} \cup \ldots \cup V_{p_{n}}^{n}$ and $\bar{V}_{1}^{n}, \ldots, \bar{V}_{p_{n}}^{n}$ are compact subsets of Ω.
2. Let $W_{n}=V_{1}^{n} \cup \ldots \cup V_{p_{n}}^{n}$ and $V_{n}=\cup_{k=1}^{n} W_{k}$ for $n \geq 1$. Since $V_{1}^{n}, \ldots, V_{p_{n}}^{n}$ are open, each W_{n} is open, and consequently each V_{n} is open. So $\left(V_{n}\right)_{n \geq 1}$ is a sequence of open sets in Ω, and it is clear that $V_{n} \subseteq V_{n+1}$ for all $n \geq 1$. Let $x \in \Omega$. Since $K_{n} \uparrow \Omega$, in particular $\Omega=\cup_{n \geq 1} K_{n}$ and there exists $n \geq 1$ such that
$x \in K_{n}$. From 1. we have $K_{n} \subseteq W_{n}$, and since $W_{n} \subseteq V_{n}$, it follows that $x \in V_{n}$. This shows that $\Omega=\cup_{n \geq 1} V_{n}$ and we have proved that $\left(V_{n}\right)_{n \geq 1}$ is a sequence of open sets such that $V_{n} \uparrow \Omega$.
3. In order to show that $\bar{W}_{n}=\bar{V}_{1}^{n} \cup \ldots \cup \bar{V}_{p_{n}}^{n}$ it is sufficient to prove that for all A, B subsets of Ω, we have $\overline{A \cup B}=\bar{A} \cup \bar{B}$. Recall from exercise (21) of Tutorial 4 that the closure in Ω of any set A, is the smallest closed set containing A (in the sense of inclusion). In particular, we have $A \subseteq \bar{A}$ and $B \subseteq \bar{B}$ and consequently $A \cup B \subseteq \bar{A} \cup \bar{B}$. However, $\bar{A} \cup \bar{B}$ being closed, this implies that $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$. Furthermore since $A \subseteq A \cup B \subseteq \overline{A \cup B}$ and $\overline{A \cup B}$ is closed, we have $\bar{A} \subseteq \overline{A \cup B}$ and likewise $\bar{B} \subseteq \overline{A \cup B}$. It follows that $\bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$ and we have proved the equality $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
4. Since $\bar{W}_{n}=\bar{V}_{1}^{n} \cup \ldots \cup \bar{V}_{p_{n}}^{n}$ and each \bar{V}_{k}^{n} is a compact subset of Ω, in order to prove that \bar{W}_{n} is compact, it is sufficient to show that if A and B are compact subsets of Ω, then $A \cup B$ is also a compact subset of Ω. For that purpose we shall use
the characterization of compact subsets proved in exercise (2) of Tutorial 8 . Let $\left(U_{i}\right)_{i \in I}$ be a family of open sets in Ω such that $A \cup B \subseteq \cup_{i \in I} U_{i}$. Then in particular $A \subseteq \cup_{i \in I} U_{i}$ and A being a compact subset of Ω, there exists I_{1} finite subset of I such that $A \subseteq \cup_{i \in I_{1}} U_{i}$. Similarly, there exists I_{2} finite subset of I such that $B \subseteq \cup_{i \in I_{2}} U_{i}$, It follows that $A \cup B \subseteq \cup_{i \in I_{1} \cup I_{2}} U_{i}$ and $I_{1} \cup I_{2}$ being finite, we conclude that $A \cup B$ is a compact subset of Ω.
5. Let $n \geq 1$. From 2. we have $V_{n}=\cup_{k=1}^{n} W_{k}$. Using a similar argument as in 3. we see that $\bar{V}_{n}=\cup_{k=1}^{n=1} \bar{W}_{k}$. Using a similar argument as in 4., each \bar{W}_{k} being compact by virtue of 4 . itself, we conclude that \bar{V}_{n} is itself compact.
6. Let (Ω, \mathcal{T}) be a topological space. If (Ω, \mathcal{T}) is σ-compact and locally compact, we have been able to construct a sequence $\left(V_{n}\right)_{n \geq 1}$ of open sets in Ω, such that $V_{n} \uparrow \Omega$ and V_{n} is compact for all $n \geq 1$. So (Ω, \mathcal{T}) is strongly σ-compact. Conversely, suppose that (Ω, \mathcal{T}) is strongly σ-compact, and let $\left(V_{n}\right)_{n \geq 1}$ be
a sequence of open sets in Ω, such that $V_{n} \uparrow \Omega$ and each \bar{V}_{n} is compact. Then $\bar{V}_{n} \uparrow \Omega$ and Ω is therefore σ-compact. Furthermore, for all $x \in \Omega$, there exists $n \geq 1$ such that $x \in V_{n}$. Since V_{n} is open and \bar{V}_{n} is compact, this shows that Ω is locally compact. This completes the proof of theorem (75).

Exercise 18

Exercise 19.

1. Since $A \subseteq \Omega^{\prime}$ and $A \subseteq \bar{A}$, we have $A \subseteq \Omega^{\prime} \cap \bar{A}$.
2. The complement of $\Omega^{\prime} \cap \bar{A}$ in Ω^{\prime} is:

$$
\Omega^{\prime} \backslash\left(\Omega^{\prime} \cap \bar{A}\right)=\Omega^{\prime} \cap\left(\Omega^{\prime c} \cup \bar{A}^{c}\right)=\Omega^{\prime} \cap \bar{A}^{c}
$$

Since \bar{A} is closed in Ω, \bar{A}^{c} is open in Ω and consequently by definition of the induced topology, $\Omega^{\prime} \cap \bar{A}^{c}$ is open in Ω^{\prime}. It follows that $\Omega^{\prime} \cap \bar{A}$ is closed in Ω^{\prime}. Note more generally that if F is closed in Ω, then $\Omega^{\prime} \cap F$ is closed in Ω^{\prime}.
3. The closure $\bar{A}^{\Omega^{\prime}}$ of A in Ω^{\prime} being the smallest closed subset of Ω^{\prime} containing A, we conclude from $A \subseteq \Omega^{\prime} \cap \bar{A}$ and $\Omega^{\prime} \cap \bar{A}$ closed in Ω^{\prime}, that $\bar{A}^{\Omega^{\prime}} \subseteq \Omega^{\prime} \cap \bar{A}$.
4. Let $x \in \Omega^{\prime} \cap \bar{A}$. Suppose $U^{\prime} \in \mathcal{T}_{\mid \Omega^{\prime}}$ and $x \in U^{\prime}$. There exists $U \in \mathcal{T}$ such that $U^{\prime}=U \cap \Omega^{\prime}$. From $x \in U^{\prime}$, we have $x \in U$ and since $x \in \bar{A}$, we obtain that $A \cap U \neq \emptyset$. However by assumption,
A is a subset of Ω^{\prime}. Hence:

$$
A \cap U^{\prime}=A \cap\left(U \cap \Omega^{\prime}\right)=\left(A \cap \Omega^{\prime}\right) \cap U=A \cap U \neq \emptyset
$$

So we have proved that $A \cap U^{\prime} \neq \emptyset$.
5. It follows from 4. that $\Omega^{\prime} \cap \bar{A} \subseteq \bar{A}^{\Omega^{\prime}}$. However from 3. we have $\bar{A}^{\Omega^{\prime}} \subseteq \Omega^{\prime} \cap \bar{A}$. We conclude that $\bar{A}^{\Omega^{\prime}}=\Omega^{\prime} \cap \bar{A}$.

Exercise 19

Exercise 20.

1. Let $x \in \Omega$ and $\epsilon>0$. Let $y \in \overline{B(x, \epsilon)}$. For all U open in Ω such that $y \in U$, we have $U \cap B(x, \epsilon) \neq \emptyset$. In particular, for all $\eta>0$, we have $B(y, \eta) \cap B(x, \epsilon) \neq \emptyset$. Let $z \in \Omega$ be such that $d(y, z)<\eta$ and $d(x, z)<\epsilon$. From the triangle inequality:

$$
d(x, y) \leq d(x, z)+d(y, z)<\epsilon+\eta
$$

This being true for all $\eta>0$, it follows that $d(x, y) \leq \epsilon$. We have proved that:

$$
\overline{B(x, \epsilon)} \subseteq\{y \in \Omega: d(x, y) \leq \epsilon\}
$$

2. Let $\Omega=[0,1 / 2[\cup\{1\}$ together with its usual metric. Then, the open ball $B(0,1)$ is given by:

$$
B(0,1)=\{x \in \Omega:|x|<1\}=[0,1 / 2[
$$

3. The complement of $[0,1 / 2[$ in Ω is $\{1\}$, which can be written as $] 1 / 2,2[\cap \Omega$ and is therefore open in Ω, since $] 1 / 2,2[$ is open in
R. It follows that $[0,1 / 2[$ is closed in Ω.
4. From 2. we have $B(0,1)=[0,1 / 2[$ and from 3 . $[0,1 / 2[$ is a closed subset of Ω, and is therefore equal to its closure. Hence:

$$
\overline{B(0,1)}=\overline{[0,1 / 2[}=[0,1 / 2[
$$

5. Since $\Omega=\{y \in \Omega:|y| \leq 1\}$ and $[0,1 / 2[\neq \Omega$, we conclude that:

$$
\overline{B(0,1)} \neq\{y \in \Omega:|y| \leq 1\}
$$

The purpose of this exercise is to provide a counter-example to the belief that the inclusion proved in 1.:

$$
\overline{B(x, \epsilon)} \subseteq\{y \in \Omega: d(x, y) \leq \epsilon\}
$$

can be shown to be an equality.
Exercise 20

Exercise 21.

1. Ω being locally compact, there exists U open with compact closure such that $x \in U$.
2. Since $x \in \Omega^{\prime}$ and $x \in U$, we have $x \in U \cap \Omega^{\prime}$. Furthermore, both U and Ω^{\prime} being open in $\Omega, U \cap \Omega^{\prime}$ is open in Ω. The topology on Ω being metric, there exists $\epsilon>0$ such that $B(x, \epsilon) \subseteq U \cap \Omega^{\prime}$.
3. From $B(x, \epsilon / 2) \subseteq B(x, \epsilon) \subseteq U \cap \Omega^{\prime} \subseteq U$ we conclude that
4. From 3. we have $\overline{B(x, \epsilon / 2)}=\overline{B(x, \epsilon / 2)} \cap \bar{U}$ and $\overline{B(x, \epsilon / 2)}$ being closed in Ω, we conclude that it is also closed in \bar{U}.
5. Since \bar{U} is compact and $\overline{B(x, \epsilon / 2)}$ is a closed subset of \bar{U}, it follows from exercise (2) of Tutorial 8 that $\overline{B(x, \epsilon / 2)}$ is a compact subset of \bar{U}, and consequently also a compact subset of Ω.
6. Let $y \in \overline{B(x, \epsilon / 2)}$. From 1. of exercise (20), $d(x, y) \leq \epsilon / 2$ and in particular $d(x, y)<\epsilon$. From 2. we have $B(x, \epsilon) \subseteq \Omega^{\prime}$ and consequently $y \in \Omega^{\prime}$. This shows that $\overline{B(x, \epsilon / 2)} \subseteq \Omega^{\prime}$.
7. Let $U^{\prime}=B(x, \epsilon / 2) \cap \Omega^{\prime}=B(x, \epsilon / 2)$. It is clear that $x \in U^{\prime}$ and furthermore $B(x, \epsilon / 2)$ being open in Ω, U^{\prime} is open in Ω^{\prime}, i.e. $U^{\prime} \in \mathcal{T}_{\mid \Omega^{\prime}}$. Using 6 . and exercise (19), we obtain:

$$
\bar{U}^{\prime \Omega^{\prime}}=\bar{U}^{\prime} \cap \Omega^{\prime}=\overline{B(x, \epsilon / 2)} \cap \Omega^{\prime}=\overline{B(x, \epsilon / 2)}
$$

In particular $\bar{U}^{\prime \Omega^{\prime}}$ is compact, as can be seen from 5 .
8. Given $x \in \Omega^{\prime}$, we have found U^{\prime} open in Ω^{\prime} such that $x \in U^{\prime}$ and $\bar{U}^{\prime \Omega^{\prime}}$ is compact. This shows that $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is locally compact.

9 . Let (Ω, \mathcal{T}) be a metrizable and strongly σ-compact topological space. Let Ω^{\prime} be an open subset of Ω. From theorem (75), (Ω, \mathcal{T}) is metrizable, σ-compact and locally compact. Since Ω^{\prime} is open, it follows from theorem (71) that the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is itself metrizable and σ-compact. Fur-
thermore, we have proved in this exercise that $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is also locally compact. So $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is metrizable, σ-compact and locally compact. Using theorem (75) once more, we conclude that $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is metrizable and strongly σ-compact. This completes the proof of theorem (76).

Exercise 21

Exercise 22.

1. The constant map $\phi: x \rightarrow 0$ is continuous. Indeed for any U open in $\mathbf{K}, \phi^{-1}(U)$ is either equal to \emptyset or to Ω itself. In any case $\phi^{-1}(U)$ is an open subset of Ω. Furthermore, $\operatorname{supp}(\phi)=\emptyset$ and is therefore compact (see exercise (2) of Tutorial 8). This shows that $\phi \in C_{\mathbf{K}}^{c}(\Omega)$.
2. $C_{\mathbf{K}}^{c}(\Omega)$ being a non-empty subset of the set of all maps $\phi: \Omega \rightarrow$ \mathbf{K}, to show that $C_{\mathbf{K}}^{c}(\Omega)$ is a \mathbf{K}-vector space, it is sufficient to show that given $\phi, \psi \in C_{\mathbf{K}}^{c}(\Omega)$ and $\lambda \in \mathbf{K}$, the map $\phi+\lambda \psi$ is also an element of $C_{\mathbf{K}}^{c}(\Omega)$. To show that $\phi+\lambda \psi$ is continuous, one may proceed as follows: define $\Phi: \mathbf{K}^{2} \rightarrow \mathbf{K}$ by $\Phi(x, y)=x+\lambda y$, and $\Psi: \Omega \rightarrow \mathbf{K}^{2}$ by $\Psi(\omega)=(\phi(\omega), \psi(\omega))$. Then $\phi+\lambda \psi=\Phi \circ \Psi$ and Φ being continuous, it is sufficient to show that Ψ is itself a continuous map. However, the continuity of Ψ follows from the fact that each coordinate mapping ϕ and ψ is continuous. Indeed if $U \times V$ is an open rectangle in \mathbf{K}^{2}, then $\Psi^{-1}(U \times V)=$ $\phi^{-1}(U) \cap \psi^{-1}(V)$ and is therefore open in Ω. Any open set W
in \mathbf{K}^{2} being a union of open rectangles, it is clear that $\Psi^{-1}(W)$ is open in Ω. So much for the continuity of $\phi+\lambda \psi$. From the inclusion:

$$
\{\phi+\lambda \psi \neq 0\} \subseteq\{\phi \neq 0\} \cup\{\psi \neq 0\}
$$

and the fact that given A, B subsets of $\Omega, \overline{A \cup B}=\bar{A} \cup \bar{B}$ (see the proof of 3 . in exercise (18)), we obtain:

$$
\operatorname{supp}(\phi+\lambda \psi) \subseteq \operatorname{supp}(\phi) \cup \operatorname{supp}(\psi)
$$

Since ϕ and ψ lie in $C_{\mathbf{K}}^{c}(\Omega)$, both $\operatorname{supp}(\phi)$ and $\operatorname{supp}(\psi)$ are compact and consequently $A=\operatorname{supp}(\phi) \cup \operatorname{supp}(\psi)$ is itself compact (see the proof of 4 . in exercise (18)). Furthermore, $\operatorname{supp}(\phi+\lambda \psi)$ being closed in Ω while being a subset of A, it is also closed in A. From exercise (2) of Tutorial $8, \operatorname{supp}(\phi+\lambda \psi)$ is therefore compact. We have proved that $\phi+\lambda \psi \in C_{\mathbf{K}}^{c}(\Omega)$.
3. Let $\phi \in C_{\mathbf{K}}^{c}(\Omega)$. If $\phi=0$ then $\phi \in C_{\mathbf{K}}^{b}(\Omega)$. We assume that $\phi \neq 0$. Let $A=\operatorname{supp}(\phi)$. Then $|\phi|_{\mid A}$ is a continuous map defined on the non-empty compact topological space $\left(A, \mathcal{T}_{\mid A}\right)$.

From theorem (37), $|\phi|_{\mid A}$ attains its maximum, i.e. there exists $x_{M} \in A$ such that:

$$
\left|\phi\left(x_{M}\right)\right|=\sup _{x \in A}|\phi(x)|
$$

Since $\phi(x)=0$ for all $x \in A^{c}$, we have:

$$
\left|\phi\left(x_{M}\right)\right|=\sup _{x \in \Omega}|\phi(x)|
$$

which shows in particular that $\sup _{x \in \Omega}|\phi(x)|<+\infty$. So $\phi \in$ $C_{\mathbf{K}}^{b}(\Omega)$ and we have proved that $C_{\mathbf{K}}^{c}(\Omega) \subseteq C_{\mathbf{K}}^{b}(\Omega)$.

Exercise 22

Exercise 23.

1. Since Ω is locally compact, for all $x \in \Omega$ there exists an open set W_{x} such that $x \in W_{x}$ and \bar{W}_{x} is compact. From $K \subseteq \cup_{x \in K} W_{x}$ and the fact that K is a compact subset of Ω, we deduce the existence of $n \geq 1$ and $x_{1}, \ldots, x_{n} \in K$ such that $K \subseteq \cup_{k=1}^{n} W_{x_{k}}$. Setting $V_{k}=W_{x_{k}}$ for all $k=1, \ldots, n$, we have found open sets V_{1}, \ldots, V_{n} such that:

$$
\begin{equation*}
K \subseteq V_{1} \cup \ldots \cup V_{n} \tag{11}
\end{equation*}
$$

and each \bar{V}_{k} is compact.
2. An arbitrary union of open sets is open. A finite intersection of open sets is open. Since V_{1}, \ldots, V_{n} and G are open, the set $V=\left(V_{1} \cup \ldots \cup V_{n}\right) \cap G$ is an open set in Ω. By assumption, $K \subseteq G$ and it therefore follows from (11) that $K \subseteq V$. The fact that $V \subseteq G$ is clear. We have proved that V is open and $K \subseteq V \subseteq G$.
3. Given A, B subsets of $\Omega, \overline{A \cup B}=\bar{A} \cup \bar{B}$ (see proof of 3 . in exercise (18)). From $V \subseteq V_{1} \cup \ldots \cup V_{n}$ we obtain:

$$
\bar{V} \subseteq \overline{V_{1} \cup \ldots \cup V_{n}}=\bar{V}_{1} \cup \ldots \cup \bar{V}_{n}
$$

4. If A, B are compact subsets of $\Omega, A \cup B$ is a compact subset of Ω (see proof of 4 . in exercise (18)). It follows that $K^{\prime}=\bar{V}_{1} \cup \ldots \cup \bar{V}_{n}$ is a compact subset of Ω. Furthermore from $3 . \bar{V}$ is a subset of K^{\prime}. Being closed in Ω, \bar{V} is also closed in K^{\prime} (it can be written as $\bar{V}=F \cap K^{\prime}$ where F is closed in Ω, take $\left.F=\bar{V}\right)$. Using exercise (2) of Tutorial 8 , it follows that \bar{V} is compact.
5. Given A subset of $\Omega, d(x, A)$ is well defined for all $x \in \Omega$ as:

$$
d(x, A)=\inf \{d(x, y): y \in A\}
$$

where it is understood that $\inf \emptyset=+\infty$. Since $K \neq \emptyset$ and $V \neq$ $\Omega, d(x, K)$ and $d\left(x, V^{c}\right)$ are well-defined real numbers for all $x \in$ Ω. Furthermore, for all A closed in $\Omega, d(x, A)=0$ is equivalent to $x \in A$ (see exercise (22) of Tutorial 4). V being open in
Ω, V^{c} is a closed subset of Ω. So $d\left(x, V^{c}\right)=0$ is equivalent to $x \in V^{c}$. K being a compact subset of Ω and Ω being a Hausdorff topological space (it is metric), K is a closed subset of Ω (see theorem (35)). So $d(x, K)=0$ is equivalent to $x \in K$. It follows that $d\left(x, V^{c}\right)+d(x, K)=0$ is equivalent to $x \in K \cap V^{c}$, which can never happen since $K \subseteq V$. We have proved that for all $x \in \Omega, \phi(x)$ is a well-defined real number. So $\phi: \Omega \rightarrow \mathbf{R}$ is well-defined. For all A subsets of Ω, the map $x \rightarrow d(x, A)$ is continuous (see exercise (22) of Tutorial 4). We conclude that ϕ is also continuous.
6. $\phi(x) \neq 0$ is equivalent to $d\left(x, V^{c}\right) \neq 0$ which is itself equivalent to $x \notin V^{c}$ (since V^{c} is closed), i.e. $x \in V$. We have proved that $\{\phi \neq 0\}=V$.
7. From 7. $\{\phi \neq 0\}=V$ and consequently $\operatorname{supp}(\phi)=\bar{V}$. Having proved in 4. that \bar{V} is compact, it follows that ϕ has compact support. So $\phi: \Omega \rightarrow \mathbf{R}$ is continuous with compact support, i.e. $\phi \in C_{\mathbf{R}}^{c}(\Omega)$.
8. To show that $1_{K} \leq \phi$ it is sufficient to show that $x \in K$ implies $1 \leq \phi(x)$. However, K being closed in $\Omega, x \in K$ is equivalent to $d(x, K)=0$. In particular, $x \in K$ implies that $\phi(x)=1$. It is clear that $\phi(x) \leq 1$ for all $x \in \Omega$. To show that $\phi \leq 1_{G}$, it is sufficient to show that $x \notin G$ implies $\phi(x)=0$. But $V \subseteq G$ and consequently $x \notin G$ implies $x \notin V$, i.e. $x \in V^{c}$. And V^{c} being closed, $x \in V^{c}$ is equivalent to $d\left(x, V^{c}\right)=0$. In particular, we see that $x \notin G$ implies $\phi(x)=0$. So $1_{K} \leq \phi \leq 1_{G}$.
9. Suppose $K=\emptyset$. With $\phi=0, \phi \in C_{\mathbf{R}}^{c}(\Omega)$ and $1_{K} \leq \phi \leq 1_{G}$.
10. Suppose $V=\Omega$. Then $\bar{V}=\bar{\Omega}=\Omega . \bar{V}$ being compact (see 4.), it follows that Ω is compact.
11. Suppose $V=\Omega$. Since $V \subseteq G$, we have $G=\Omega$, i.e. $1_{G}=1$. Take $\phi=1$. Then ϕ is continuous and $\operatorname{supp}(\phi)=\Omega$ is compact (see 10.). So $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ and $1_{K} \leq \phi \leq 1_{G}$. This proves theorem (77).

Exercise 23

Exercise 24.

1. Let $\phi \in C_{\mathbf{K}}^{c}(\Omega)$. Then ϕ is continuous and from exercise (13) of Tutorial 4, the map $\phi:(\Omega, \mathcal{B}(\Omega)) \rightarrow(\mathbf{K}, \mathcal{B}(\mathbf{K}))$ is therefore measurable. Furthermore from exercise (22), $C_{\mathbf{K}}^{c}(\Omega) \subseteq C_{\mathbf{K}}^{b}(\Omega)$. So ϕ is also bounded. There exists $m \in \mathbf{R}^{+}$such that $|\phi| \leq m$. Let $A=\operatorname{supp}(\phi)$. Then A is a compact subset of Ω, and from exercise (10), μ being locally finite, $\mu(A)<+\infty$. Since $\{\phi \neq$ $0\} \subseteq A$, we have $A^{c} \subseteq\{\phi=0\}$ and consequently $\phi=\phi 1_{A}$. Hence:

$$
\int|\phi|^{p} d \mu=\int 1_{A}|\phi|^{p} d \mu \leq m^{p} \mu(A)<+\infty
$$

So $\phi \in L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$ and finally $C_{\mathbf{K}}^{c}(\Omega) \subseteq L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$.
2. Let $\epsilon>0$. Since (Ω, \mathcal{T}) is metrizable and strongly σ-compact, in particular from theorem (75), it is metrizable and σ-compact. Since μ is a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$, from theorem (73) μ is regular. Having assumed that $\mu(B)<+\infty$, we
have $\mu(B)<\mu(B)+\epsilon / 2$. From the outer-regularity of $\mu, \mu(B)$ is the greatest lower-bound of all $\mu(G)$'s where G is open with $B \subseteq G$. So $\mu(B)+\epsilon / 2$ cannot be such lower-bound. There exists G open with $B \subseteq G$ such that:

$$
\begin{equation*}
\mu(G)<\mu(B)+\frac{\epsilon}{2} \tag{12}
\end{equation*}
$$

Likewise, $\mu(B)-\epsilon / 2<\mu(B)$ and from the inner-regularity of $\mu, \mu(B)$ is the lowest upper-bound of all $\mu(K)$'s where K is compact with $K \subseteq B$. So $\mu(B)-\epsilon / 2$ cannot be such upperbound, and consequently, there exists K compact with $K \subseteq B$ such that:

$$
\begin{equation*}
\mu(B)-\frac{\epsilon}{2}<\mu(K) \tag{13}
\end{equation*}
$$

Hence, we have found K compact and G open with $K \subseteq B \subseteq G$, and furthermore from (12) and (13) we have:

$$
\mu(G)<\mu(B)+\frac{\epsilon}{2}<\mu(K)+\epsilon
$$

and consequently:

$$
\mu(K)+\mu(G \backslash K)=\mu(G)<\mu(K)+\epsilon
$$

K being compact and μ locally finite, from exercise (10) we have $\mu(K)<+\infty$, and we conclude that $\mu(G \backslash K)<\epsilon$. In particular $\mu(G \backslash K) \leq \epsilon$.
3. The fact that $\mu(B)<+\infty$ was used when writing the inequalities $\mu(B)<\mu(B)+\epsilon / 2$ and $\mu(B)-\epsilon / 2<\mu(B)$. Without this assumption, these inequalities would not be strict, and the argument developed in 2 . would fail.
4. Since (Ω, \mathcal{T}) is metrizable and strongly σ-compact, in particular from theorem (75), it is metrizable and locally compact. K being compact and G open with $K \subseteq G$, from theorem (77), there exists $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ such that $1_{K} \leq \phi \leq 1_{G}$.
5. Since $1_{K} \leq \phi \leq 1_{G}$, in particular $0 \leq \phi \leq 1$ and consequently we have $\left|\phi-1_{B}\right|^{p} \leq 1$. Suppose $x \notin G$. Then $1_{G}(x)=0$ and
therefore $\phi(x)=0$. Since $B \subseteq G$, we also have $1_{B}(x)=0$ and consequently $\left|\phi(x)-1_{B}(x)\right|^{p}=0$. Suppose $x \in K$. Then $1_{K}(x)=1$ and therefore $\phi(x)=1$. Since $K \subseteq B$ we also have $1_{B}(x)=1$ and consequently $\left|\phi(x)-1_{B}(x)\right|^{p}=0$. We have proved that $x \notin G \backslash K$ implies that $\left|\phi(x)-1_{B}(x)\right|^{p}=0$. It follows that $\left|\phi-1_{B}\right|^{p} \leq 1_{G \backslash K}$ and finally:

$$
\int\left|\phi-1_{B}\right|^{p} d \mu \leq \int 1_{G \backslash K} d \mu=\mu(G \backslash K)
$$

6. Let $\epsilon>0$. Applying 2. to ϵ^{p} instead of ϵ itself, we can find K and G such that $\mu(G \backslash K) \leq \epsilon^{p}$. From 4. and 5. there exists $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ such that:

$$
\int\left|\phi-1_{B}\right|^{p} d \mu \leq \mu(G \backslash K) \leq \epsilon^{p}
$$

from which we conclude that $\left\|\phi-1_{B}\right\|_{p} \leq \epsilon$.
7. Let $s \in \mathcal{S}_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega)) \cap L_{\mathbf{C}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$ and $\epsilon>0$. From 3 . of exercise (1) there exists an integer $n \geq 1$, together with
$\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{C}$ and $A_{1}, \ldots, A_{n} \in \mathcal{B}(\Omega)$ such that:

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

and $\mu\left(A_{i}\right)<+\infty$ for all $i \in \mathbf{N}_{n}$. Without loss of generality, we may assume that $\alpha_{i} \neq 0$ for all i 's (if $s=0$ then $s \in C_{\mathbf{C}}^{c}(\Omega)$ and finding $\phi \in C_{\mathbf{C}}^{c}(\Omega)$ such that $\|\phi-s\|_{p} \leq \epsilon$ is trivial). Applying 6 . to $B=A_{i}$ (recall that $A_{i} \in \mathcal{B}(\Omega)$ and $\left.\mu\left(A_{i}\right)<+\infty\right)$ and $\epsilon / n\left|\alpha_{i}\right|$ instead of ϵ, there exists $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ such that $\left\|\phi_{i}-1_{A_{i}}\right\|_{p} \leq$ $\epsilon / n\left|\alpha_{i}\right|$. Since $C_{\mathbf{C}}^{c}(\Omega)$ is a vector space, the map $\phi=\sum_{i=1}^{n} \alpha_{i} \phi_{i}$ is an element of $C_{\mathbf{C}}^{c}(\Omega)$ and we have:

$$
\begin{aligned}
\|\phi-s\|_{p} & =\left\|\sum_{i=1}^{n} \alpha_{i} \phi_{i}-\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}\right\|_{p} \\
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left\|\phi_{i}-1_{A_{i}}\right\|_{p}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{n}\left|\alpha_{i}\right| \cdot\left(\frac{\epsilon}{n\left|\alpha_{i}\right|}\right) \\
& =\epsilon
\end{aligned}
$$

We have found $\phi \in C_{\mathbf{C}}^{c}(\Omega)$ such that $\|\phi-s\|_{p} \leq \epsilon$. Note that if $s \in \mathcal{S}_{\mathbf{R}}(\Omega, \mathcal{B}(\Omega))$ then $\alpha_{i} \in \mathbf{R}$ for all $i \in \mathbf{N}_{n}$, and $\phi=\sum_{i=1}^{n} \alpha_{i} \phi_{i}$ is in fact an element of $C_{\mathbf{R}}^{c}(\Omega)$.
8. To show that $C_{\mathbf{K}}^{c}(\Omega)$ is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$, it is sufficient to show that given $f \in L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$ and $\epsilon>0$, there exists $\phi \in C_{\mathbf{K}}^{c}(\Omega)$ such that $\|f-\phi\|_{p} \leq \epsilon$. However, from theorem (67) there exists $s \in \mathcal{S}_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega)) \cap L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$ such that $\| f-$ $s \|_{p} \leq \epsilon / 2$. Applying 7. to s and $\epsilon / 2$ instead of ϵ, there exists $\phi \in C_{\mathbf{K}}^{c}(\Omega)$ such that $\|\phi-s\|_{p} \leq \epsilon / 2$. It follows that we have found $\phi \in C_{\mathbf{K}}^{c}(\Omega)$ such that $\|f-\phi\|_{p} \leq\|f-s\|_{p}+\|\phi-s\|_{p} \leq \epsilon$. This completes the proof of theorem (78).

Exercise 24

Exercise 25. Let Ω be an open subset of \mathbf{R}^{n} where $n \geq 1$. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$ and $p \in[1,+\infty[$. For $k \geq 1$, $\left.V_{k}=\right]-k, k\left[{ }^{n}\right.$ is an open subset of \mathbf{R}^{n} with compact closure, and $V_{k} \uparrow$ \mathbf{R}^{n}. From definition (104), \mathbf{R}^{n} is strongly σ-compact. Furthermore, it is metrizable. It follows from theorem (76) that Ω being an open subset of \mathbf{R}^{n}, is also metrizable and strongly σ-compact. Applying theorem (78), we conclude that $C_{\mathbf{K}}^{c}(\Omega)$ is dense in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$. This completes the proof of theorem (79).

[^0]: ${ }^{1}$ i.e. a metrizable topological space for which there exists a sequence $\left(V_{n}\right)_{n \geq 1}$ of open sets with compact closure, such that $V_{n} \uparrow \Omega$.

