
Tutorial 13: Regular Measure 1

13. Regular Measure
In the following, K denotes R or C.

Definition 99 Let (Ω,F) be a measurable space. We say that a map
s : Ω → C is a complex simple function on (Ω,F), if and only if
it is of the form:

s =
n∑

i=1

αi1Ai

where n ≥ 1, αi ∈ C and Ai ∈ F for all i ∈ Nn. The set of all
complex simple functions on (Ω,F) is denoted SC(Ω,F). The set of
all R-valued complex simple functions in (Ω,F) is denoted SR(Ω,F).

Recall that a simple function on (Ω,F), as defined in (40), is just a
non-negative element of SR(Ω,F).

Exercise 1. Let (Ω,F , μ) be a measure space and p ∈ [1,+∞[.
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1. Suppose s : Ω → C is of the form

s =
n∑

i=1

αi1Ai

where n ≥ 1, αi ∈ C, Ai ∈ F and μ(Ai) < +∞ for all i ∈ Nn.
Show that s ∈ Lp

C(Ω,F , μ) ∩ SC(Ω,F).

2. Show that any s ∈ SC(Ω,F) can be written as:

s =
n∑

i=1

αi1Ai

where n ≥ 1, αi ∈ C \ {0}, Ai ∈ F and Ai ∩Aj = ∅ for i �= j.

3. Show that any s ∈ Lp
C(Ω,F , μ) ∩ SC(Ω,F) is of the form:

s =
n∑

i=1

αi1Ai

where n ≥ 1, αi ∈ C, Ai ∈ F and μ(Ai) < +∞, for all i ∈ Nn.
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4. Show that L∞
C (Ω,F , μ) ∩ SC(Ω,F) = SC(Ω,F).

Exercise 2. Let (Ω,F , μ) be a measure space and p ∈ [1,+∞[. Let
f be a non-negative element of Lp

R(Ω,F , μ).

1. Show the existence of a sequence (sn)n≥1 of non-negative func-
tions in Lp

R(Ω,F , μ) ∩ SR(Ω,F) such that sn ↑ f .

2. Show that:
lim

n→+∞

∫
|sn − f |pdμ = 0

3. Show that there exists s ∈ Lp
R(Ω,F , μ) ∩ SR(Ω,F) such that

‖f − s‖p ≤ ε, for all ε > 0.

4. Show that Lp
K(Ω,F , μ) ∩ SK(Ω,F) is dense in Lp

K(Ω,F , μ).
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Exercise 3. Let (Ω,F , μ) be a measure space. Let f be a non-
negative element of L∞

R (Ω,F , μ). For all n ≥ 1, we define:

sn
�
=

n2n−1∑
k=0

k

2n
1{k/2n≤f<(k+1)/2n} + n1{n≤f}

1. Show that for all n ≥ 1, sn is a simple function.

2. Show there exists n0 ≥ 1 and N ∈ F with μ(N) = 0, such that:

∀ω ∈ N c , 0 ≤ f(ω) < n0

3. Show that for all n ≥ n0 and ω ∈ N c, we have:

0 ≤ f(ω) − sn(ω) <
1
2n

4. Conclude that:
lim

n→+∞ ‖f − sn‖∞ = 0
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5. Show the following:

Theorem 67 Let (Ω,F , μ) be a measure space and p ∈ [1,+∞].
Then, Lp

K(Ω,F , μ) ∩ SK(Ω,F) is dense in Lp
K(Ω,F , μ).

Exercise 4. Let (Ω, T ) be a metrizable topological space, and μ be
a finite measure on (Ω,B(Ω)). We define Σ as the set of all B ∈ B(Ω)
such that for all ε > 0, there exist F closed and G open in Ω, with:

F ⊆ B ⊆ G , μ(G \ F ) ≤ ε

Given a metric d on (Ω, T ) inducing the topology T , we define:

d(x,A)
�
= inf{d(x, y) : y ∈ A}

for all A ⊆ Ω and x ∈ Ω.

1. Show that x→ d(x,A) from Ω to R̄ is continuous for all A ⊆ Ω.
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2. Show that if F is closed in Ω, x ∈ F is equivalent to d(x, F ) = 0.

Exercise 5. Further to exercise (4), we assume that F is a closed
subset of Ω. For all n ≥ 1, we define:

Gn
�
= {x ∈ Ω : d(x, F ) <

1
n
}

1. Show that Gn is open for all n ≥ 1.

2. Show that Gn ↓ F .

3. Show that F ∈ Σ.

4. Was it important to assume that μ is finite?

5. Show that Ω ∈ Σ.

6. Show that if B ∈ Σ, then Bc ∈ Σ.
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Exercise 6. Further to exercise (5), let (Bn)n≥1 be a sequence in Σ.
Define B = ∪+∞

n=1Bn and let ε > 0.

1. Show that for all n, there is Fn closed and Gn open in Ω, with:

Fn ⊆ Bn ⊆ Gn , μ(Gn \ Fn) ≤ ε

2n

2. Show the existence of some N ≥ 1 such that:

μ

((
+∞⋃
n=1

Fn

)
\
(

N⋃
n=1

Fn

))
≤ ε

3. Define G = ∪+∞
n=1Gn and F = ∪N

n=1Fn. Show that F is closed,
G is open and F ⊆ B ⊆ G.

4. Show that:

G \ F ⊆ G \
(

+∞⋃
n=1

Fn

)
�
(

+∞⋃
n=1

Fn

)
\ F
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5. Show that:

G \
(

+∞⋃
n=1

Fn

)
⊆

+∞⋃
n=1

Gn \ Fn

6. Show that μ(G \ F ) ≤ 2ε.

7. Show that Σ is a σ-algebra on Ω, and conclude that Σ = B(Ω).

Theorem 68 Let (Ω, T ) be a metrizable topological space, and μ be
a finite measure on (Ω,B(Ω)). Then, for all B ∈ B(Ω) and ε > 0,
there exist F closed and G open in Ω such that:

F ⊆ B ⊆ G , μ(G \ F ) ≤ ε

Definition 100 Let (Ω, T ) be a topological space. We denote Cb
K(Ω)

the K-vector space of all continuous, bounded maps φ : Ω → K,
where K = R or K = C.
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Exercise 7. Let (Ω, T ) be a metrizable topological space with some
metric d. Let μ be a finite measure on (Ω,B(Ω)) and F be a closed
subset of Ω. For all n ≥ 1, we define φn : Ω → R by:

∀x ∈ Ω , φn(x)
�
= 1 − 1 ∧ (nd(x, F ))

1. Show that for all p ∈ [1,+∞], we have Cb
K(Ω) ⊆ Lp

K(Ω,B(Ω), μ).

2. Show that for all n ≥ 1, φn ∈ Cb
R(Ω).

3. Show that φn → 1F .

4. Show that for all p ∈ [1,+∞[, we have:

lim
n→+∞

∫
|φn − 1F |pdμ = 0

5. Show that for all p ∈ [1,+∞[ and ε > 0, there exists φ ∈ Cb
R(Ω)

such that ‖φ− 1F ‖p ≤ ε.
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6. Let ν ∈M1(Ω,B(Ω)). Show that Cb
C(Ω) ⊆ L1

C(Ω,B(Ω), ν) and:

ν(F ) = lim
n→+∞

∫
φndν

7. Prove the following:

Theorem 69 Let (Ω, T ) be a metrizable topological space and μ, ν
be two complex measures on (Ω,B(Ω)) such that:

∀φ ∈ Cb
R(Ω) ,

∫
φdμ =

∫
φdν

Then μ = ν.

Exercise 8. Let (Ω, T ) be a metrizable topological space and μ be
a finite measure on (Ω,B(Ω)). Let s ∈ SC(Ω,B(Ω)) be a complex

www.probability.net

http://www.probability.net


Tutorial 13: Regular Measure 11

simple function:

s =
n∑

i=1

αi1Ai

where n ≥ 1, αi ∈ C, Ai ∈ B(Ω) for all i ∈ Nn. Let p ∈ [1,+∞[.

1. Show that given ε > 0, for all i ∈ Nn there is a closed subset Fi

of Ω such that Fi ⊆ Ai and μ(Ai \ Fi) ≤ ε. Let:

s′
�
=

n∑
i=1

αi1Fi

2. Show that:

‖s− s′‖p ≤
(

n∑
i=1

|αi|
)
ε

1
p

3. Conclude that given ε > 0, there exists φ ∈ Cb
C(Ω) such that:

‖φ− s‖p ≤ ε
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4. Prove the following:

Theorem 70 Let (Ω, T ) be a metrizable topological space and μ be
a finite measure on (Ω,B(Ω)). Then, for all p ∈ [1,+∞[, Cb

K(Ω) is
dense in Lp

K(Ω,B(Ω), μ).

Definition 101 A topological space (Ω, T ) is said to be σ-compact
if and only if, there exists a sequence (Kn)n≥1 of compact subsets of
Ω such that Kn ↑ Ω.

Exercise 9. Let (Ω, T ) be a metrizable and σ-compact topological
space, with metric d. Let Ω′ be open in Ω. For all n ≥ 1, we define:

Fn
�
= {x ∈ Ω : d(x, (Ω′)c) ≥ 1/n}

Let (Kn)n≥1 be a sequence of compact subsets of Ω such that Kn ↑ Ω.

1. Show that for all n ≥ 1, Fn is closed in Ω.
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2. Show that Fn ↑ Ω′.

3. Show that Fn ∩Kn ↑ Ω′.

4. Show that Fn ∩Kn is closed in Kn for all n ≥ 1.

5. Show that Fn ∩Kn is a compact subset of Ω′ for all n ≥ 1.

6. Prove the following:

Theorem 71 Let (Ω, T ) be a metrizable and σ-compact topological
space. Then, for all Ω′ open subsets of Ω, the induced topological space
(Ω′, T|Ω′) is itself metrizable and σ-compact.

Definition 102 Let (Ω, T ) be a topological space and μ be a measure
on (Ω,B(Ω)). We say that μ is locally finite, if and only if, every
x ∈ Ω has an open neighborhood of finite μ-measure, i.e.

∀x ∈ Ω , ∃U ∈ T , x ∈ U , μ(U) < +∞
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Definition 103 If μ is a measure on a Hausdorff topological space Ω:
We say that μ is inner-regular, if and only if, for all B ∈ B(Ω):

μ(B) = sup{μ(K) : K ⊆ B , K compact}
We say that μ is outer-regular, if and only if, for all B ∈ B(Ω):

μ(B) = inf{μ(G) : B ⊆ G , G open}
We say that μ is regular if it is both inner and outer-regular.

Exercise 10. Let (Ω, T ) be a Hausdorff topological space, μ a locally
finite measure on (Ω,B(Ω)), and K a compact subset of Ω.

1. Show the existence of open sets V1, . . . , Vn with μ(Vi) < +∞ for
all i ∈ Nn and K ⊆ V1 ∪ . . . ∪ Vn, where n ≥ 1.

2. Conclude that μ(K) < +∞.

Exercise 11. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let μ be a finite measure on (Ω,B(Ω)). Let (Kn)n≥1 be a
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sequence of compact subsets of Ω such that Kn ↑ Ω. Let B ∈ B(Ω).
We define α = sup{μ(K) : K ⊆ B , K compact}.

1. Show that given ε > 0, there exists F closed in Ω such that
F ⊆ B and μ(B \ F ) ≤ ε.

2. Show that F \ (Kn ∩ F ) ↓ ∅.

3. Show that Kn ∩ F is closed in Kn.

4. Show that Kn ∩ F is compact.

5. Conclude that given ε > 0, there exists K compact subset of Ω
such that K ⊆ F and μ(F \K) ≤ ε.

6. Show that μ(B) ≤ μ(K) + 2ε.

7. Show that μ(B) ≤ α and conclude that μ is inner-regular.

Exercise 12. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let μ be a locally finite measure on (Ω,B(Ω)). Let (Kn)n≥1 be
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a sequence of compact subsets of Ω such that Kn ↑ Ω. Let B ∈ B(Ω),
and α ∈ R be such that α < μ(B).

1. Show that μ(Kn ∩B) ↑ μ(B).

2. Show the existence of K ⊆ Ω compact, with α < μ(K ∩B).

3. Let μK = μ(K ∩ · ). Show that μK is a finite measure, and
conclude that μK(B) = sup{μK(K∗) : K∗ ⊆ B , K∗ compact}.

4. Show the existence of a compact subset K∗ of Ω, such that
K∗ ⊆ B and α < μ(K ∩K∗).

5. Show that K∗ is closed in Ω.

6. Show that K ∩K∗ is closed in K.

7. Show that K ∩K∗ is compact.

8. Show that α < sup{μ(K ′) : K ′ ⊆ B , K ′ compact}.
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9. Show that μ(B) ≤ sup{μ(K ′) : K ′ ⊆ B , K ′ compact}.

10. Conclude that μ is inner-regular.

Exercise 13. Let (Ω, T ) be a metrizable topological space.

1. Show that (Ω, T ) is separable if and only if it has a countable
base.

2. Show that if (Ω, T ) is compact, for all n ≥ 1, Ω can be covered
by a finite number of open balls with radius 1/n.

3. Show that if (Ω, T ) is compact, then it is separable.

Exercise 14. Let (Ω, T ) be a metrizable and σ-compact topological
space with metric d. Let (Kn)n≥1 be a sequence of compact subsets
of Ω such that Kn ↑ Ω.
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1. For all n ≥ 1, give a metric on Kn inducing the topology T|Kn
.

2. Show that (Kn, T|Kn
) is separable.

3. Let (xp
n)p≥1 be an at most countable sequence of (Kn, T|Kn

),
which is dense. Show that (xp

n)n,p≥1 is an at most countable
dense family of (Ω, T ), and conclude with the following:

Theorem 72 Let (Ω, T ) be a metrizable and σ-compact topological
space. Then, (Ω, T ) is separable and has a countable base.

Exercise 15. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let μ be a locally finite measure on (Ω,B(Ω)). Let H be a
countable base of (Ω, T ). We define H′ = {V ∈ H : μ(V ) < +∞}.

1. Show that for all U open in Ω and x ∈ U , there is Ux open in
Ω such that x ∈ Ux ⊆ U and μ(Ux) < +∞.
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2. Show the existence of Vx ∈ H such that x ∈ Vx ⊆ Ux.

3. Conclude that H′ is a countable base of (Ω, T ).

4. Show the existence of a sequence (Vn)n≥1 of open sets in Ω with:

Ω =
+∞⋃
n=1

Vn , μ(Vn) < +∞ , ∀n ≥ 1

Exercise 16. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let μ be a locally finite measure on (Ω,B(Ω)). Let (Vn)n≥1 a
sequence of open subsets of Ω such that:

Ω =
+∞⋃
n=1

Vn , μ(Vn) < +∞ , ∀n ≥ 1

Let B ∈ B(Ω) and α = inf{μ(G) : B ⊆ G , G open}.
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1. Given ε > 0, show that there exists Gn open in Ω such that
B ⊆ Gn and μVn(Gn \B) ≤ ε/2n, where μVn = μ(Vn ∩ · ).

2. Let G = ∪+∞
n=1(Vn ∩Gn). Show that G is open in Ω, and B ⊆ G.

3. Show that G \B = ∪+∞
n=1Vn ∩ (Gn \B).

4. Show that μ(G) ≤ μ(B) + ε.

5. Show that α ≤ μ(B).

6. Conclude that is μ outer-regular.

7. Show the following:

Theorem 73 Let μ be a locally finite measure on a metrizable and
σ-compact topological space (Ω, T ). Then, μ is regular, i.e.:

μ(B) = sup{μ(K) : K ⊆ B , K compact}
= inf{μ(G) : B ⊆ G , G open}
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for all B ∈ B(Ω).

Exercise 17. Show the following:

Theorem 74 Let Ω be an open subset of Rn, where n ≥ 1. Any
locally finite measure on (Ω,B(Ω)) is regular.

Definition 104 We call strongly σ-compact topological space, a
topological space (Ω, T ), for which there exists a sequence (Vn)n≥1 of
open sets with compact closure, such that Vn ↑ Ω.

Definition 105 We call locally compact topological space, a topo-
logical space (Ω, T ), for which every x ∈ Ω has an open neighborhood
with compact closure, i.e. such that:

∀x ∈ Ω , ∃U ∈ T : x ∈ U , Ū is compact

Exercise 18. Let (Ω, T ) be a σ-compact and locally compact topo-
logical space. Let (Kn)n≥1 be a sequence of compact subsets of Ω
such that Kn ↑ Ω.
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1. Show that for all n ≥ 1, there are open sets V n
1 , . . . , V

n
pn

, pn ≥ 1,
such that Kn ⊆ V n

1 ∪ . . . ∪ V n
pn

and V̄ n
1 , . . . , V̄

n
pn

are compact
subsets of Ω.

2. Define Wn = V n
1 ∪ . . .∪V n

pn
and Vn = ∪n

k=1Wk, for n ≥ 1. Show
that (Vn)n≥1 is a sequence of open sets in Ω with Vn ↑ Ω.

3. Show that W̄n = V̄ n
1 ∪ . . . ∪ V̄ n

pn
for all n ≥ 1.

4. Show that W̄n is compact for all n ≥ 1.

5. Show that V̄n is compact for all n ≥ 1

6. Conclude with the following:

Theorem 75 A topological space (Ω, T ) is strongly σ-compact, if
and only if it is σ-compact and locally compact.
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Exercise 19. Let (Ω, T ) be a topological space and Ω′ be a subset
of Ω. Let A ⊆ Ω′. We denote ĀΩ′

the closure of A in the induced
topological space (Ω′, T|Ω′), and Ā its closure in Ω.

1. Show that A ⊆ Ω′ ∩ Ā.

2. Show that Ω′ ∩ Ā is closed in Ω′.

3. Show that ĀΩ′ ⊆ Ω′ ∩ Ā.

4. Let x ∈ Ω′ ∩ Ā. Show that if x ∈ U ′ ∈ T|Ω′ , then A ∩ U ′ �= ∅.

5. Show that ĀΩ′
= Ω′ ∩ Ā.

Exercise 20. Let (Ω, d) be a metric space.

1. Show that for all x ∈ Ω and ε > 0, we have:

B(x, ε) ⊆ {y ∈ Ω : d(x, y) ≤ ε}
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2. Take Ω = [0, 1/2[∪{1}. Show that B(0, 1) = [0, 1/2[.

3. Show that [0, 1/2[ is closed in Ω.

4. Show that B(0, 1) = [0, 1/2[.

5. Conclude that B(0, 1) �= {y ∈ Ω : |y| ≤ 1} = Ω.

Exercise 21. Let (Ω, d) be a locally compact metric space. Let Ω′

be an open subset of Ω. Let x ∈ Ω′.

1. Show there exists U open with compact closure, such that x ∈ U .

2. Show the existence of ε > 0 such that B(x, ε) ⊆ U ∩ Ω′.

3. Show that B(x, ε/2) ⊆ Ū .

4. Show that B(x, ε/2) is closed in Ū .

5. Show that B(x, ε/2) is a compact subset of Ω.
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6. Show that B(x, ε/2) ⊆ Ω′.

7. Let U ′ = B(x, ε/2) ∩ Ω′ = B(x, ε/2). Show x ∈ U ′ ∈ T|Ω′ , and:

Ū ′Ω′
= B(x, ε/2)

8. Show that the induced topological space Ω′ is locally compact.

9. Prove the following:

Theorem 76 Let (Ω, T ) be a metrizable and strongly σ-compact
topological space. Then, for all Ω′ open subsets of Ω, the induced
topological space (Ω′, T|Ω′) is itself metrizable and strongly σ-compact.

Definition 106 Let (Ω, T ) be a topological space, and φ : Ω → C be
a map. We call support of φ, the closure of the set {φ �= 0}, i.e.:

supp(φ)
�
= {ω ∈ Ω : φ(ω) �= 0}
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Definition 107 Let (Ω, T ) be a topological space. We denote Cc
K(Ω)

the K-vector space of all continuous map with compact support
φ : Ω → K, where K = R or K = C.

Exercise 22. Let (Ω, T ) be a topological space.

1. Show that 0 ∈ Cc
K(Ω).

2. Show that Cc
K(Ω) is indeed a K-vector space.

3. Show that Cc
K(Ω) ⊆ Cb

K(Ω).

Exercise 23. let (Ω, d) be a locally compact metric space. let K be
a compact subset of Ω, and G be open in Ω, with K ⊆ G.

1. Show the existence of open sets V1, . . . , Vn such that:

K ⊆ V1 ∪ . . . ∪ Vn

and V̄1, . . . , V̄n are compact subsets of Ω.
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2. Show that V = (V1∪ . . .∪Vn)∩G is open in Ω, and K ⊆ V ⊆ G.

3. Show that V̄ ⊆ V̄1 ∪ . . . ∪ V̄n.

4. Show that V̄ is compact.

5. We assume K �= ∅ and V �= Ω, and we define φ : Ω → R by:

∀x ∈ Ω , φ(x)
�
=

d(x, V c)
d(x, V c) + d(x,K)

Show that φ is well-defined and continuous.

6. Show that {φ �= 0} = V .

7. Show that φ ∈ Cc
R(Ω).

8. Show that 1K ≤ φ ≤ 1G.

9. Show that if K = ∅, there is φ ∈ Cc
R(Ω) with 1K ≤ φ ≤ 1G.

10. Show that if V = Ω then Ω is compact.
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11. Show that if V = Ω, there φ ∈ Cc
R(Ω) with 1K ≤ φ ≤ 1G.

Theorem 77 Let (Ω, T ) be a metrizable and locally compact topolog-
ical space. Let K be a compact subset of Ω, and G be an open subset
of Ω such that K ⊆ G. Then, there exists φ ∈ Cc

R(Ω), real-valued
continuous map with compact support, such that:

1K ≤ φ ≤ 1G

Exercise 24. Let (Ω, T ) be a metrizable and strongly σ-compact
topological space. Let μ be a locally finite measure on (Ω,B(Ω)). Let
B ∈ B(Ω) be such that μ(B) < +∞. Let p ∈ [1,+∞[.

1. Show that Cc
K(Ω) ⊆ Lp

K(Ω,B(Ω), μ).

2. Let ε > 0. Show the existence of K compact and G open, with:

K ⊆ B ⊆ G , μ(G \K) ≤ ε
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3. Where did you use the fact that μ(B) < +∞?

4. Show the existence of φ ∈ Cc
R(Ω) with 1K ≤ φ ≤ 1G.

5. Show that: ∫
|φ− 1B|pdμ ≤ μ(G \K)

6. Conclude that for all ε > 0, there exists φ ∈ Cc
R(Ω) such that:

‖φ− 1B‖p ≤ ε

7. Let s ∈ SC(Ω,B(Ω)) ∩ Lp
C(Ω,B(Ω), μ). Show that for all ε > 0,

there exists φ ∈ Cc
C(Ω) such that ‖φ− s‖p ≤ ε.

8. Prove the following:
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Theorem 78 Let (Ω, T ) be a metrizable and strongly σ-compact
topological space1. Let μ be a locally finite measure on (Ω,B(Ω)).
Then, for all p ∈ [1,+∞[, the space Cc

K(Ω) of K-valued, continuous
maps with compact support, is dense in Lp

K(Ω,B(Ω), μ).

Exercise 25. Prove the following:

Theorem 79 Let Ω be an open subset of Rn, where n ≥ 1. Then,
for any locally finite measure μ on (Ω,B(Ω)) and p ∈ [1,+∞[, Cc

K(Ω)
is dense in Lp

K(Ω,B(Ω), μ).

1i.e. a metrizable topological space for which there exists a sequence (Vn)n≥1

of open sets with compact closure, such that Vn ↑ Ω.
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Solutions to Exercises
Exercise 1.

1. From definition (99), s is clearly an element of SC(Ω,F). Fur-
thermore, for all i ∈ Nn, 1Ai is measurable, and:∫

|1Ai |pdμ =
∫

1Aidμ = μ(Ai) < +∞

So 1Ai ∈ Lp
C(Ω,F , μ). s being a linear combination of the 1Ai ’s

is also an element of Lp
C(Ω,F , μ). We have proved that s is an

element of Lp
C(Ω,F , μ) ∩ SC(Ω,F).

2. Let s ∈ SC(Ω,F). From definition (99), s is of the form:

s =
m∑

j=1

βj1Bj (1)

where m ≥ 1, βj ∈ C, and Bj ∈ F for all j ∈ Nm. If s = 0,
it can be written as s = 1 × 1∅ and there is nothing further to
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prove. We assume that s �= 0. The map θ : {0, 1}m → C given
by θ(ε1, . . . , εm) =

∑m
j=1 βjεj being defined on a finite set, has

a finite range. Since s(Ω) is a subset of θ({0, 1}m), s(Ω) is also
a finite set. Having assumed that s �= 0, the set s(Ω) \ {0} is
therefore non-empty and finite. Let n ≥ 1 be its cardinal, and
α : Nn → s(Ω) \ {0} be an arbitrary bijection. For all ω ∈ Ω,
we have:

s(ω) =
n∑

i=1

α(i)1{s=α(i)} (2)

Since Bj ∈ F for all j’s, s is a measurable map. If we define
Ai = {s = α(i)} for i ∈ Nn, we have Ai ∈ F . Furthermore, it
is clear that Ai ∩ Aj = ∅ for i �= j. We conclude from (2) that
s can be written as:

s =
n∑

i=1

α(i)1Ai

where n ≥ 1, α(i) ∈ C \ {0}, Ai ∈ F , and Ai ∩Aj = ∅ for i �= j.
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3. Let s ∈ Lp
C(Ω,F , μ)∩SC(Ω,F). From 2. s can be expressed as:

s =
n∑

i=1

αi1Ai (3)

where n ≥ 1, αi �= 0, Ai ∈ F and Ai ∩ Aj = ∅ for i �= j. Let
A = A1�. . .�An. Then s(ω) = 0 for all ω ∈ Ac and furthermore
1A = 1A1 + . . .+ 1An . Hence:∫

|s|pdμ =
n∑

i=1

∫
|s|p1Aidμ =

n∑
i=1

|αi|pμ(Ai) < +∞

Since αi �= 0, it follows that μ(Ai) < +∞ for all i ∈ Nn. We
have been able to express s as (3), where n ≥ 1, αi ∈ C (in fact
αi ∈ C∗), Ai ∈ F and μ(Ai) < +∞ for all i ∈ Nn. This is a
converse of 1.

4. Let s ∈ SC(Ω,F). Then s is bounded and measurable.

Exercise 1
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Exercise 2.

1. f being non-negative and measurable, from theorem (18) there
exists a sequence (sn)n≥1 of simple functions on (Ω,F) such
that sn ↑ f . In particular, each sn is a non-negative element
of SR(Ω,F). Furthermore, sn ≤ f for all n ≥ 1 and having
assumed that f ∈ Lp

R(Ω,F , μ), we have:∫
sp

ndμ ≤
∫
fpdμ < +∞

We conclude that (sn)n≥1 is a sequence of non-negative elements
of Lp

R(Ω,F , μ) ∩ SR(Ω,F) such that sn ↑ f .

2. Since sn → f , we have |sn −f |p → 0 as n→ +∞. Furthermore:

|sn − f |p ≤ (sn + f)p ≤ 2pfp ∈ L1
R(Ω,F , μ)

From the dominated convergence theorem (23), we obtain:

lim
n→+∞

∫
|sn − f |pdμ = 0
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3. Given ε > 0, from 2. there exists N ≥ 1 such that:

n ≥ N ⇒
∫

|sn − f |pdμ ≤ εp

In particular, taking s = sN , we have found s belonging to the
set Lp

R(Ω,F , μ) ∩ SR(Ω,F) such that ‖f − s‖p ≤ ε.

4. Let AK = Lp
K(Ω,F , μ) ∩ SK(Ω,F). We claim that AK is dense

in Lp
K(Ω,F , μ), i.e. that ĀK = Lp

K(Ω,F , μ) where ĀK is the
closure of AK in Lp

K(Ω,F , μ). Recall from definition (75) that
for any open set U in Lp

K(Ω,F , μ) and f ∈ U , there exists ε > 0
such that B(f, ε) ⊆ U . Hence, all we need to prove is that
given f ∈ Lp

K(Ω,F , μ) and ε > 0, there exists s ∈ AK such that
‖f − s‖p ≤ ε. Indeed, if such property is proved, then for any
f ∈ Lp

K(Ω,F , μ) and U open containing f , we have AK ∩U �= ∅
and consequently f ∈ ĀK. So Lp

K(Ω,F , μ) ⊆ ĀK. Now, if
f ∈ Lp

R(Ω,F , μ) and ε > 0, the existence of s ∈ AR such that
‖f − s‖p ≤ ε has already been proved when f is non-negative.
Suppose f ∈ Lp

R(Ω,F , μ). Then f = f+ − f− where each
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f+, f− is a non-negative element of Lp
R(Ω,F , μ). There exists

s+, s− ∈ AR such that ‖f+−s+‖p ≤ ε/2 and ‖f−−s−‖p ≤ ε/2.
Taking s = s+ − s−, we have found s ∈ AR such that:

‖f − s‖p ≤ ‖f+ − s+‖p + ‖f− − s−‖p ≤ ε

and the property is proved for f ∈ Lp
R(Ω,F , μ). If f is an

element of Lp
C(Ω,F , μ), then f = f1+if2 where each f1, f2 lies in

Lp
R(Ω,F , μ). There exists s1, s2 ∈ AR such that ‖f1−s1‖p ≤ ε/2

and ‖f2−s2‖p ≤ ε/2. Taking s = s1+is2, we have found s ∈ AC

such that:

‖f − s‖p ≤ ‖f1 − s1‖p + ‖f2 − s2‖p ≤ ε

and the property is proved for f ∈ Lp
C(Ω,F , μ).

Exercise 2
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Exercise 3.

1. Given n ≥ 1, sn is of the form:

sn =
p∑

i=1

αi1Ai

where p ≥ 1, αi ∈ R+ and Ai ∈ F for all i ∈ Np. From
definition (40), it is therefore a simple function on (Ω,F) (or
indeed a complex simple function on (Ω,F) with values in R+).

2. Since f is an element of L∞
R (Ω,F , μ), we have:

‖f‖∞
�
= inf{M ∈ R+ : |f | ≤M μ-a.s.} < +∞

It is therefore possible to find an integer n0 ≥ 1 such that
‖f‖∞ < n0. Since ‖f‖∞ is the greatest lower bound all M ’s
such that |f | ≤M μ-a.s., n0 cannot be such lower bound. Hence,
there exists M0 ∈ R+ such that |f | ≤ M0 μ-a.s. and M0 < n0.
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Thus, there exists N ∈ F with μ(N) = 0, and:

∀ω ∈ N c , |f(ω)| ≤M0 < n0

In particular, since f is a non-negative element of L∞
R (Ω,F , μ):

∀ω ∈ N c , 0 ≤ f(ω) < n0

3. Let n ≥ n0 and ω ∈ N c. From 2. we have 0 ≤ f(ω) < n0 and
consequently sn(ω) = k/2n, where k is the unique integer of
{0, . . . , n2n − 1} such that f(ω) ∈ [k/2n, (k + 1)/2n[. So:

0 ≤ f(ω) − sn(ω) <
1
2n

(4)

4. From 3. we have N ∈ F with μ(N) = 0 such that for all ω ∈ N c,
inequality (4) holds for all n ≥ n0. So |f − sn| < 1/2n μ-a.s. for
all n ≥ n0. Since ‖f − sn‖∞ is a lower bound of all M ’s such
that |f − sn| ≤ M μ-a.s., we conclude that ‖f − sn‖∞ ≤ 1/2n
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for all n ≥ n0, and in particular:

lim
n→+∞ ‖f − sn‖∞ = 0 (5)

5. Let p ∈ [1,+∞] be given and AK = Lp
K(Ω,F , μ)∩ SK(Ω,F). If

p ∈ [1,+∞[, we have already proved in exercise (2) that AK is
dense in Lp

K(Ω,F , μ). We assume that p = +∞ and we claim
likewise that AK is dense in L∞

K (Ω,F , μ) (note that AK and
SK(Ω,F) coincide when p = +∞). Given f ∈ L∞

K (Ω,F , μ)
and ε > 0, we need to show the existence of s ∈ AK such that
‖f − s‖∞ ≤ ε. When K = R and f is a non-negative ele-
ment of L∞

R (Ω,F , μ), then such existence is guaranteed by (5),
(keeping in mind that simple functions on (Ω,F) are elements
of SR(Ω,F) = AR). If f ∈ L∞

R (Ω,F , μ), then f = f+ − f−

where each f+, f− is a non-negative element of L∞
R (Ω,F , μ).

There exists s+, s− in AR such that ‖f+ − s+‖∞ ≤ ε/2 and
‖f− − s−‖∞ ≤ ε/2. Taking s = s+ − s− we obtain s ∈ AR and
‖f − s‖∞ ≤ ε. This completes the proof of theorem (67) when
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K = R. If f ∈ L∞
C (Ω,F , μ), then f = f1 + if2 where each f1, f2

is an element of L∞
R (Ω,F , μ). Approximating f1 and f2 by ele-

ments s1, s2 of AR, we obtain likewise an element s = s1 + is2
of AC with ‖f − s‖∞ ≤ ε. This proves theorem (67).

Exercise 3
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Exercise 4.

1. Let A ⊆ Ω. If A = ∅, then d(x,A) = +∞ for all x ∈ Ω. In
particular, the map x → d(x,A) is a continuous map. If A �= ∅
and y ∈ A, then d(x,A) ≤ d(x, y). In particular d(x,A) < +∞
for all x ∈ Ω. Furthermore, for all x, x′ ∈ Ω and y ∈ A:

d(x,A) ≤ d(x, y) ≤ d(x, x′) + d(x′, y)

Consequently, d(x,A) − d(x, x′) is a lower bound of all d(x′, y),
as y ranges through A. d(x′, A) being the greatest of such lower
bounds, we have:

d(x,A) ≤ d(x, x′) + d(x′, A)

Interchanging the roles of x and x′ we obtain:

d(x′, A) ≤ d(x, x′) + d(x,A)

from which we see that:

∀x, x′ ∈ Ω , |d(x,A) − d(x′, A)| ≤ d(x, x′) (6)
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We conclude from (6) that x→ d(x,A) is continuous.

2. Let F be a closed subset of Ω. If x ∈ F , d(x, F ) ≤ d(x, x) = 0
and consequently d(x, F ) = 0. Conversely, suppose d(x, F ) = 0.
We shall show that x �∈ F is impossible. Indeed, if x ∈ F c,
since F c is open, there exists ε > 0 such that B(x, ε) ⊆ F c.
However, d(x, F ) = 0 implies in particular that d(x, F ) < ε.
Since d(x, F ) is the greatest of all lower bounds of d(x, y), as y
range through F , ε cannot be such a lower bound. Hence, there
exists y ∈ F such that d(x, y) < ε. So y ∈ B(x, ε)∩F �= ∅ which
is a contradiction. We have proved that x ∈ F is equivalent to
d(x, F ) = 0, whenever F is a closed subset of Ω. This exercise
is in fact a repetition of exercise (22) of Tutorial 4.

Exercise 4
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Exercise 5.

1. Gn = {x ∈ Ω : d(x, F )<1/n} can be written as Φ−1
F ([−∞, 1/n[)

where ΦF is the map defined on Ω by ΦF (x) = d(x, F ). Having
proved in exercise (4) that ΦF is continuous, and since [−∞, 1/n[
is open in R̄, we conclude that Gn is an open subset of Ω.

2. It is clear that Gn+1 ⊆ Gn and F ⊆ ∩n≥1Gn. Suppose that
x ∈ ∩n≥1Gn. Then d(x, F ) < 1/n for all n ≥ 1 and consequently
d(x, F ) = 0. From exercise (4), F being a closed subset of Ω, it
follows that x ∈ F . This shows that ∩n≥1Gn ⊆ F and finally
∩n≥1Gn = F . So Gn ↓ F .

3. Since μ is a finite measure on (Ω,B(Ω)), from theorem (8) and
Gn ↓ F we obtain μ(Gn) → μ(F ) as n → +∞. Furthermore,
since F ⊆ Gn for all n ≥ 1, we have:

μ(Gn \ F ) = μ(Gn \ F ) + μ(F ) − μ(F ) = μ(Gn) − μ(F )

It follows that μ(Gn \ F ) → 0 as n → +∞. Given ε > 0, there
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exists N ≥ 1, such that:

n ≥ N ⇒ μ(Gn \ F ) ≤ ε

In particular, taking F ′ = F and G′ = GN , F ′ and G′ are
respectively closed and open subsets of Ω, with F ′ ⊆ F ⊆ G′

and μ(G′ \ F ′) ≤ ε. This shows that F ∈ Σ. We have proved
that any closed subset F of Ω is an element of Σ.

4. The application of theorem (8) requires some finiteness property.

5. Ω is a closed subset of Ω. So Ω ∈ Σ.

6. Let B ∈ Σ. For all ε > 0, there exist F and G respectively closed
and open subsets of Ω, such that F ⊆ B ⊆ G and μ(G \F ) ≤ ε.
Since F c \Gc = F c ∩G = G \ F , it follows that Gc ⊆ Bc ⊆ F c

and μ(F c \Gc) ≤ ε. This shows that Bc ∈ Σ, since Gc and F c

are respectively closed and open subsets of Ω. We have proved
that Σ is closed under complementation.

Exercise 5
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Exercise 6.

1. Let n ≥ 1. By assumption Bn is an element of Σ. For all
ε′ > 0, and in particular for ε′ = ε/2n, there exist Fn and Gn

respectively closed and open subsets of Ω, with Fn ⊆ Bn ⊆ Gn

and μ(Gn \ Fn) ≤ ε′.

2. Let Hn = ∪n
k=1Fk and H = ∪k≥1Fk. Then Hn ↑ H , and conse-

quently from theorem (7), μ(Hn) → μ(H) as n→ +∞. μ being
a finite measure, we obtain:

lim
n→+∞μ(H \Hn) = lim

n→+∞μ(H) − μ(Hn) = 0

In particular, there exists N ≥ 1 such that μ(H \HN ) ≤ ε, or
equivalently:

μ
((
∪+∞

n=1Fn

)
\
(
∪N

n=1Fn

))
≤ ε (7)

3. Let G = ∪n≥1Gn and F = ∪N
n=1Fn. G being a union of open

subsets of Ω, is itself an open subset of Ω. F being a finite
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union of closed subsets of Ω, is itself a closed subset of Ω. Since
Fn ⊆ Bn ⊆ Gn for all n ≥ 1 and B = ∪n≥1Bn, it is clear that
F ⊆ B ⊆ G.

4. Let H = ∪n≥1Fn. The sets G\H and H \F are clearly disjoint.
Furthermore if x ∈ G\F = G∩F c, then either x ∈ H or x �∈ H .
If x ∈ H then x ∈ H \F . If x �∈ H then x ∈ G \H . In any case,
x ∈ G \H �H \ F . This shows that G \ F ⊆ G \H �H \ F .

5. Let H = ∪n≥1Fn and x ∈ G \ H . Since x ∈ G, there exists
n ≥ 1 such that x ∈ Gn. But x ∈ Hc = ∩k≥1F

c
k . So in

particular x ∈ F c
n and consequently x ∈ Gn \ Fn. This shows

that G \H ⊆ ∪n≥1Gn \ Fn.

6. Applying 4. and 5. with H = ∪n≥1Fn, we have:

G \ F ⊆ (∪n≥1Gn \ Fn) �H \ F
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It follows that:

μ(G \ F ) ≤
+∞∑
n=1

μ(Gn \ Fn) + μ(H \ F )

Having chosen Fn and Gn such that μ(Gn \ Fn) ≤ ε/2n and
having defined F from 2. such that μ(H \ F ) ≤ ε, we conclude
that μ(G \ F ) ≤ 2ε.

7. Given a sequence (Bn)n≥1 in Σ and B = ∪n≥1Bn, given an arbi-
trary ε > 0, we have shown the existence of F andG respectively
closed and open subsets of Ω, such that F ⊆ B ⊆ G (see 3.)
and μ(G \ F ) ≤ 2ε (see 6.). It follows that B ∈ Σ. This shows
that Σ is closed under countable union. Since Ω ∈ Σ and Σ is
closed under complementation (see exercise (5)), Σ is therefore a
σ-algebra on Ω. Furthermore, still from exercise (5), Σ contains
every closed subset of Ω. Being closed under complementation,
it also contains every open subset of Ω. In other words, the
topology T is a subset of Σ, i.e. T ⊆ Σ. The σ-algebra σ(T )
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being the smallest σ-algebra on Ω containing T (containing in
the inclusion sense), the fact that Σ is a σ-algebra on Ω implies
that B(Ω) = σ(T ) ⊆ Σ. Σ being a subset of the Borel σ-algebra
B(Ω), we conclude that Σ = B(Ω). Hence, for all B ∈ B(Ω) and
ε > 0, there exist F and G respectively closed and open subsets
of Ω, such that F ⊆ B ⊆ G and μ(G \ F ) ≤ ε. This proves
theorem (68).

Exercise 6
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Exercise 7.

1. Let p ∈ [1,+∞] and f ∈ Cb
K(Ω). Since f is continuous, f is

Borel measurable. Furthermore, since f is bounded, there exists
M ∈ R+ such that |f | ≤M . This implies that ‖f‖∞ ≤M and
in particular ‖f‖∞ < +∞. So f ∈ L∞

K (Ω,B(Ω), μ). Moreover,
if p ∈ [1,+∞[, μ being a finite measure on (Ω,B(Ω)):∫

|f |pdμ ≤Mpμ(Ω) < +∞

so f ∈ Lp
K(Ω,B(Ω), μ), and finally Cb

K(Ω) ⊆ Lp
K(Ω,B(Ω), μ).

2. Let n ≥ 1 and φn be defined by φn(x) = 1 − 1 ∧ (nd(x, F )).
From exercise (4), the map x→ d(x, F ) is continuous. So φn is
also continuous, and furthermore it is clear that |φn(x)| ≤ 1 for
all x ∈ Ω. So φn ∈ Cb

R(Ω).

3. Let x ∈ Ω. If x ∈ F , then d(x, F ) = 0 and φn(x) = 1 for all
n ≥ 1. In particular, φn(x) → 1F (x) as n → +∞. If x �∈ F ,
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then from exercise (4), F being a closed subset of Ω, we have
d(x, F ) > 0. It follows that:

lim
n→+∞φn(x) = 1 − lim

n→+∞ 1 ∧ (nd(x, F )) = 0

In particular, φn(x) → 1F (x) as n→ +∞. So φn → 1F .

4. Let p ∈ [1,+∞[. From 3. we have φn → 1F and consequently
|φn − 1F |p → 0 as n→ +∞. Furthermore, for all n ≥ 1:

|φn − 1F |p ≤ (|φn| + |1F |)p ≤ 2p

μ being a finite measure on (Ω,B(Ω)), from the dominated con-
vergence theorem (23) we conclude that:

lim
n→+∞

∫
|φn − 1F |pdμ = 0

5. Let p ∈ [1,+∞[ and ε > 0. From 4. there is N ≥ 1 such that:

n ≥ N ⇒
∫

|φn − 1F |pdμ ≤ εp
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In particular, taking φ = φN , φ ∈ Cb
R(Ω) and ‖φ− 1F ‖p ≤ ε.

6. Let ν be a complex measure on (Ω,B(Ω)). From theorem (57),
the total variation |ν| of ν is a finite measure on (Ω,B(Ω)). It
follows that Cb

C(Ω) ⊆ L1
C(Ω,B(Ω), |ν|) = L1

C(Ω,B(Ω), ν). Let
h ∈ L1

C(Ω,B(Ω), |ν|) be such that |h| = 1 and ν =
∫
hd|ν|.

Then: ∣∣∣∣
∫
φndν − ν(F )

∣∣∣∣ =
∣∣∣∣
∫
φndν −

∫
1Fdν

∣∣∣∣
=

∣∣∣∣
∫

(φn − 1F )hd|ν|
∣∣∣∣

≤
∫

|φn − 1F |d|ν|

where the second equality stems from definition (97), and the
last inequality from theorem (24). We conclude from 4. applied
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to μ = |ν| and p = 1, that:

ν(F ) = lim
n→+∞

∫
φndν

7. Let (Ω, T ) be a metrizable topological space, and μ, ν be two
complex measures on (Ω,B(Ω)). We assume that:

∀φ ∈ Cb
R(Ω) ,

∫
φdμ =

∫
φdν (8)

and we claim that μ = ν. We define:

D = {E ∈ B(Ω) : μ(E) = ν(E)}
Let F be a closed subset of Ω. From 6. and (8) we have:

μ(F ) = lim
n→+∞

∫
φndμ = lim

n→+∞

∫
φndν = ν(F )

So F ∈ D. Hence, any closed subset of Ω is an element of D. In
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particular, Ω ∈ D. Furthermore, if A,B ∈ D with A ⊆ B, then:

μ(B \A) = μ(B) − μ(A) = ν(B) − ν(A) = ν(B \A)

So B \ A ∈ D. Finally, if (En)n≥1 is a sequence of elements of
D with En ↑ E, then using exercise (13) of Tutorial 12 we have:

μ(E) = lim
n→+∞μ(En) = lim

n→+∞ ν(En) = ν(E)

So E ∈ D, and we have proved that D is a Dynkin system on
Ω. In particular, D is closed under complementation, and since
it contains every closed subset of Ω, it also contains every open
subset of Ω. So T ⊆ D and finally, since T is closed under
finite intersection, from the Dynkin system theorem (1) we con-
clude that B(Ω) = σ(T ) ⊆ D. It follows that B(Ω) = D and
consequently μ = ν, which completes the proof of theorem (69).

Exercise 7
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Exercise 8.

1. Let ε > 0 and i ∈ Nn. Since Ai ∈ B(Ω), μ is a finite measure
on (Ω,B(Ω)) and (Ω, T ) is metrizable, from theorem (68) there
exist Fi, Gi respectively closed and open subsets of Ω, such that
Fi ⊆ Ai ⊆ Gi and μ(Gi \Fi) ≤ ε. In particular, Ai \Fi ⊆ Gi \Fi

and we have μ(Ai \ Fi) ≤ ε.

2. From s =
∑n

i=1 αi1Ai and s′ =
∑n

i=1 αi1Fi we obtain:

‖s− s′‖p =

∥∥∥∥∥
n∑

i=1

αi(1Ai − 1Fi)

∥∥∥∥∥
p

≤
n∑

i=1

|αi| · ‖1Ai − 1Fi‖p

=
n∑

i=1

|αi|
(∫

|1Ai − 1Fi |pdμ
) 1

p
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=
n∑

i=1

|αi|
(∫

1Ai\Fi
dμ

) 1
p

=
n∑

i=1

|αi|μ(Ai \ Fi)
1
p

≤
(

n∑
i=1

|αi|
)
ε

1
p

3. Let ε > 0. Choosing ε′ > 0 sufficiently small such that:(
n∑

i=1

‖αi|
)
ε′1/p ≤ ε/2

and applying 2. to ε′, there exist closed subsets F1, . . . , Fn of Ω,
such that ‖s− s′‖p ≤ ε/2, where s′ is defined as:

s′ =
n∑

i=1

αi1Fi
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Furthermore for all i ∈ Nn, from 5. of exercise (7) there exists
φi ∈ Cb

R(Ω) such that |αi| · ‖φi − 1Fi‖p ≤ ε/2n. We Define:

φ =
n∑

i=1

αiφi

Then φ ∈ Cb
C(Ω) (in fact φ ∈ Cb

R(Ω) if αi ∈ R for all i’s), and:

‖φ− s′‖p =

∥∥∥∥∥
n∑

i=1

αi(φi − 1Fi)

∥∥∥∥∥
p

≤
n∑

i=1

|αi| · ‖φi − 1Fi‖p

≤ ε/2

Finally, we obtain ‖φ− s‖p ≤ ‖φ− s′‖p + ‖s− s′‖p ≤ ε.

4. Suppose (Ω, T ) is a metrizable topological space, and μ is a
finite measure on (Ω,B(Ω)). For all p ∈ [1,+∞[, we clearly
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have Cb
K(Ω) ⊆ Lp

K(Ω,B(Ω), μ) and we claim that Cb
K(Ω) is in

fact dense in Lp
K(Ω,B(Ω), μ). Given f ∈ Lp

K(Ω,B(Ω), μ) and
ε > 0, we have to prove the existence of φ ∈ Cb

K(Ω) such
that ‖f − φ‖p ≤ ε. From theorem (67), the set SK(Ω,B(Ω))
(which is a subset of Lp

K(Ω,B(Ω), μ) since μ is finite) is dense
in Lp

K(Ω,B(Ω), μ). There exists s ∈ SK(Ω,B(Ω)) such that
‖f − s‖p ≤ ε/2. Applying 3. to the K-valued simple function
s, there exists φ ∈ Cb

K(Ω) (φ can indeed be chosen R-valued if
K = R), such that ‖φ− s‖p ≤ ε/2. It follows that:

‖f − φ‖p ≤ ‖f − s‖p + ‖φ− s‖p ≤ ε

which completes the proof of theorem (70).

Exercise 8
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Exercise 9.

1. Fn = φ−1([1/n,+∞]) where φ is the continuous map defined by
φ(x) = d(x,Ω′c). Since [1/n,+∞] is a closed subset of R̄, we
conclude that Fn is a closed subset of Ω.

2. For all n ≥ 1 it is clear that Fn ⊆ Fn+1. Let x ∈ Ω′. Since Ω′ is
an open subset of Ω, Ω′c is a closed subset of Ω and x �∈ Ω′c. It
follows from exercise (4) that d(x,Ω′c) > 0. Hence, there exists
n ≥ 1 such that d(x,Ω′c) ≥ 1/n. So x ∈ Fn and we have proved
that Ω′ ⊆ ∪n≥1Fn. To prove the reverse inclusion, suppose
x ∈ Fn for a some n ≥ 1. Then in particular d(x,Ω′c) > 0 and
x cannot be an element of Ω′c. So x ∈ Ω′. This shows that
Fn ⊆ Ω′ for all n ≥ 1, and we have proved that Fn ↑ Ω′.

3. Since Fn ⊆ Fn+1 and Kn ⊆ Kn+1, Fn ∩ Kn ⊆ Fn+1 ∩ Kn+1.
Furthermore, it is clear that ∪n≥1Fn ∩Kn ⊆ Ω′ since Fn ⊆ Ω′

for all n ≥ 1. Finally if x ∈ Ω′, since Fn ↑ Ω′ there exists
p ≥ 1 such that x ∈ Fp. Since Kn ↑ Ω there exists q ≥ 1 such
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that x ∈ Kq. Taking n = max(p, q), we have x ∈ Fn ∩Kn. So
Ω′ ⊆ ∪n≥1Fn ∩Kn and we have proved that Fn ∩Kn ↑ Ω′.

4. Let n ≥ 1. Since Fn is closed in Ω, F c
n is open in Ω. By the very

definition of the induced topology on Kn, Kn \ Fn = Kn ∩ F c
n

is an open subset of Kn. We conclude that Fn ∩Kn is a closed
subset of Kn.

5. By assumption, each Kn is a compact subset of Ω. Equivalently,
the induced topological space (Kn, T|Kn

) is compact. Having
proved that Fn ∩Kn is a closed subset of Kn, from exercise (2)
of Tutorial 8, Fn∩Kn is a compact subset of Kn, or equivalently
a compact subset of Ω′.

6. We have found a sequence (Fn ∩ Kn)n≥1 of compact subsets
of Ω′, such that Fn ∩ Kn ↑ Ω′. This shows that the induced
topological space (Ω′, T|Ω′) is σ-compact. From theorem (12), it
is also metrizable, which completes the proof of theorem (71).

Exercise 9
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Exercise 10.

1. Let x ∈ K. Since μ is locally finite, there exists Ux open subset
of Ω, such that x ∈ Ux and μ(Ux) < +∞. It is clear that
K ⊆ ∪x∈KUx, and K being a compact subset of Ω, there exists
a finite subset {x1, . . . , xn} of K such that K ⊆ Ux1 ∪ . . .∪Uxn .
Taking Vi = Uxi , we have found V1, . . . , Vn open subsets of Ω,
such that μ(Vi) < +∞ for all i ∈ Nn and:

K ⊆ V1 ∪ . . . ∪ Vn (9)

Note that if n = 0, K = ∅ and it is always possible to assume
n = 1 by taking V1 = ∅ (not a very important comment).

2. From (9) and exercise (13) of Tutorial 5, we obtain:

μ(K) ≤ μ(V1 ∪ . . . ∪ Vn) ≤
n∑

i=1

μ(Vi) < +∞

Exercise 10
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Exercise 11.

1. Let ε > 0. Since (Ω, T ) is metrizable and μ is a finite measure,
from theorem (68) there exist F,G respectively closed and open
subsets of Ω, such that F ⊆ B ⊆ G and μ(G \ F ) ≤ ε. In
particular, there exists F closed with F ⊆ B and μ(B \ F ) ≤ ε.

2. Since Kn ⊆ Kn+1, F \ (Kn+1 ∩F ) ⊆ F \ (Kn ∩F ) for all n ≥ 1.
Moreover, we have:
+∞⋂
n=1

F \ (Kn ∩ F ) =
+∞⋂
n=1

F ∩ (Kc
n ∪ F c) = F ∩

(
+∞⋃
n=1

Kn

)c

= ∅

It follows that F \ (Kn ∩ F ) ↓ ∅.

3. F being a closed subset of Ω, Kn ∩ F is closed with respect to
the induced topology on Kn. In other words, Kn ∩F is a closed
subset of Kn.

4. Since Kn is compact, and Kn ∩ F is closed in Kn, from exer-
cise (2) of Tutorial 8, Kn ∩ F is itself compact.
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5. Since F \(Kn∩F ) ↓ ∅ and μ is a finite measure, from theorem (8)
we have μ(F \ (Kn ∩ F )) → 0 as n→ +∞. In particular, there
exists n ≥ 1 such that μ(F \(Kn∩F )) ≤ ε. Taking K = Kn∩F ,
from 4. K is a compact subset of Kn, or equivalently a compact
subset of Ω. Hence, we have found a compact subset K of Ω,
such that K ⊆ F and μ(F \K) ≤ ε.

6. Since μ(B \ F ) ≤ ε and μ(F \K) ≤ ε, we have:

μ(B) = μ(B \ F ) + μ(F )
= μ(B \ F ) + μ(F \K) + μ(K)
≤ μ(K) + 2ε

7. We have proved in 6. that for all B ∈ B(Ω), there exists K
compact with K ⊆ B and μ(B) ≤ μ(K)+ 2ε. α being an upper
bound of all μ(K), as K ranges through all compacts subsets
with K ⊆ B, we have μ(K) ≤ α. So μ(B) ≤ α+ 2ε. This being
true for all ε > 0, it follows that μ(B) ≤ α. Moreover, for all
K compact with K ⊆ B, we have μ(K) ≤ μ(B). So μ(B) is an
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upper bound of all μ(K), as K ranges through compacts with
K ⊆ B. α being the smallest of such upper bounds, we have
α ≤ μ(B) and finally:

μ(B) = α = sup{μ(K) : K ⊆ B , K compact}

This being true for all B ∈ B(Ω), from definition (103), μ is
inner-regular. We have proved that any finite measure on a
metrizable, σ-compact topological space is inner-regular.

Exercise 11
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Exercise 12.

1. Since Kn ↑ Ω, we haveKn∩B ↑ B. From theorem (7), it follows
that μ(Kn ∩B) ↑ μ(B).

2. Since α < μ(B) and μ(Kn ∩ B) → μ(B), there exists n ≥ 1
such that α < μ(Kn ∩ B). Taking K = Kn, we have found K
compact subset of Ω such that α < μ(K ∩B).

3. From exercise (10), μ being a locally finite measure and K being
compact, we have μ(K) < +∞. Hence, for all A ∈ B(Ω):

μK(A) = μ(K ∩A) ≤ μ(K) < +∞
So μK is a finite measure on (Ω,B(Ω)). Since (Ω, T ) is metriz-
able and σ-compact, from exercise (11) it follows that μK is
inner-regular. In particular:

μK(B) = sup{μK(K∗) : K∗ ⊆ B , K∗ compact}
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4. It appears from 3. that μK(B) is the smallest upper bound of all
μK(K∗), as K∗ ranges through compacts with K∗ ⊆ B. Since
α < μK(B), α cannot be such an upper bound. Hence, there
exists K∗ compact with K∗ ⊆ B, such that α < μ(K ∩K∗).

5. (Ω, T ) being metrizable, it is a Hausdorff topological space. K∗

being a compact subset of Ω, we conclude from theorem (35)
that K∗ is a closed subset of Ω.

6. Having proved that K∗ is a closed subset of Ω, K ∩K∗ is closed
relative to the induced topology on K. In other words, K ∩K∗

is a closed subset of K.

7. K ∩ K∗ being a closed subset of K, and K being compact,
from exercise (2) of Tutorial 8 we conclude that K ∩K∗ is itself
compact.

8. We have shown that α < μ(K ∩ K∗) and that K ∩ K∗ is a
compact subset of Ω. Since K∗ ⊆ B, we have K ∩K∗ ⊆ B and
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we conclude that:

α < μ(K ∩K∗) ≤ sup{μ(K ′) : K ′ ⊆ B , K ′ compact} (10)

9. For all α ∈ R̄ with α < μ(B), inequality (10) holds. Hence:

μ(B) ≤ sup{μ(K ′) : K ′ ⊆ B , K ′ compact}

10. Is is clear that:

sup{μ(K ′) : K ′ ⊆ B , K ′ compact} ≤ μ(B)

We conclude that:

μ(B) = sup{μ(K ′) : K ′ ⊆ B , K ′ compact}

This being true for all B ∈ B(Ω), from definition (103), μ is
inner-regular. We have proved that any locally finite measure on
a metrizable and σ-compact topological space, is inner-regular.

Exercise 12
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Exercise 13.

1. Let (Ω, T ) be a metrizable topological space. Suppose (Ω, T ) is
separable. From definition (58), there exists a sequence (xn)n≥1

of elements of Ω, which are dense in Ω. The set of open balls:

H = {B(xn, 1/p) : n ≥ 1, p ≥ 1}

is easily seen to be a countable base of (Ω, T ). Indeed, it is a
subset of the topology T which is at most countable, and for
any open set U and any x ∈ U , on can easily find n ≥ 1 and
p ≥ 1 such that:

x ∈ B(xn, 1/p) ⊆ U

So U is a union of elements of H. We have proved that if (Ω, T )
is separable, then it has a countable base. Conversely, suppose
(Ω, T ) has a countable base, say H. For all V ∈ H, V �= ∅, let
xV be an arbitrary element of V . Then, the set:

A = {xV : V ∈ H, V �= ∅}

www.probability.net

http://www.probability.net


Solutions to Exercises 68

is at most countable, and is easily seen to be dense in Ω. Indeed,
for all x ∈ Ω and ε > 0, the open ball B(x, ε) being a union of
elements of H (see definition (57) of a countable base), we have
x ∈ V ⊆ B(x, ε) for some V ∈ H, V �= ∅. In particular, we have
found xV ∈ A, such that d(x, xV ) < ε. This shows that (Ω, T )
is separable, and we have proved the equivalence between the
separability of (Ω, T ), and the fact that it has a countable base.
This equivalence was already proved in slightly more detail, as
part of exercise (19) of Tutorial 6.

2. We assume that (Ω, T ) is not only metrizable, but also compact.
Let n ≥ 1. Then (B(x, 1/n))x∈Ω is a family of open sets whose
union is equal to Ω itself. In other words, it is an open covering
of Ω. Since (Ω, T ) is compact, this open covering has a finite
sub-covering. In other words, there exists an integer p ≥ 1 and
x1, . . . , xp in Ω, such that:

Ω = B(x1, 1/n) ∪ . . . ∪B(xp, 1/n)
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We have proved that Ω can be covered by a finite number of
open balls with radius 1/n.

3. We assume that (Ω, T ) is not only metrizable but also compact.
From 2. given n ≥ 1, Ω can be covered by a finite number, say
pn ≥ 1, of open balls with radius 1/n. Let x1,n, . . . , xpn,n be
the centers of such open balls. Then, the set A = {xk,n : n ≥
1, k = 1, . . . , pn} is at most countable, and we claim that it is
dense in Ω. Let x ∈ Ω. We have to show that x ∈ Ā, i.e. that
given U open containing x, we have U ∩ A �= ∅. (Ω, T ) being
metrizable, it is sufficient to show that given ε > 0, B(x, ε)∩A �=
∅. Let n ≥ 1 be such that 1/n ≤ ε. Since x belongs to an
open ball B(xk,n, 1/n) for some k = 1, . . . , pn, in particular
we have d(x, xk,n) < ε. This shows that B(x, ε) ∩ A �= ∅ and
we have proved that A is dense in Ω. This shows that (Ω, T )
is separable. The purpose of this exercise is to show that a
metrizable compact topological space is also separable.

Exercise 13
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Exercise 14.

1. From theorem (12), the induced metric d|Kn
induces the induced

topology T|Kn
on Kn.

2. By assumption, each Kn is a compact subset of Ω. In other
words, the topological space (Kn, T|Kn

) is compact. However
from 1. it is also metrizable. It follows from exercise (13) that
(Kn, T|Kn

) is separable.

3. Let A = {xp
n : n ≥ 1, p ≥ 1}. Then A is an at most count-

able set, and we claim that A is dense in Ω. Since (Ω, T ) is
metrizable, given x ∈ Ω and ε > 0, it is sufficient to show that
A ∩ B(x, ε) �= ∅. Since Ω = ∪n≥1Kn, there is n ≥ 1 such that
x ∈ Kn. By assumption, the sequence (xp

n)p≥1 is dense in Kn.
Hence, there exists p ≥ 1 such that d|Kn(x, xp

n) < ε. Equiva-
lently, we have d(x, xp

n) < ε. It follows that A∩B(x, ε) �= ∅ and
we have proved that A is dense in Ω. This shows that (Ω, T )
is separable. The purpose of this exercise is to prove that a
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metrizable and σ-compact topological space, is also separable.
This is the objective of theorem (72).

Exercise 14
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Exercise 15.

1. Let U be open in Ω and x ∈ U . The measure μ being locally
finite, there exists some open set Wx such that x ∈ Wx and
μ(Wx) < +∞. Defining Ux = U ∩Wx, Ux is an open set in Ω
such that x ∈ Ux ⊆ U and μ(Ux) < +∞.

2. Since Ux is open, and H is a countable base of (Ω, T ), Ux can
be expressed as a union of elements of H. In particular, since
x ∈ Ux, there exists some Vx ∈ H such that x ∈ Vx ⊆ Ux.

3. H′ being a subset of H, and H being a countable base of (Ω, T ),
H′ is an at most countable set of open sets in Ω. Furthermore,
given U open in Ω and x ∈ U , it follows from 1. and 2. that
there exists Vx ∈ H such that x ∈ Vx ⊆ U and μ(Vx) < +∞.
In other words, there exists Vx ∈ H′ such that x ∈ Vx ⊆ U .
Consequently, U can be expressed as U = ∪x∈UVx and we have
proved that any open set in Ω can be written as a union of
elements of H′. This shows that H′ is a countable base of (Ω, T ).
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4. Since Ω is an open set in Ω, and H′ is a countable base of (Ω, T ),
Ω can be written as a union of elements of H′. In other words,
there exists a subset G ⊆ H′ such that Ω = ∪V ∈GV . H′ being
at most countable, G is itself at most countable. There exists
a map φ : N∗ → G which is surjective. So Ω = ∪n≥1φ(n), and
defining Vn = φ(n) we obtain Ω = ∪n≥1Vn where each Vn is an
element of G ⊆ H′. In particular, each Vn is an open set in Ω
with μ(Vn) < +∞.

Exercise 15
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Exercise 16.

1. Let μVn = μ(Vn ∩·). Since μ(Vn) < +∞, μVn is a finite measure
on (Ω,B(Ω)). Furthermore, (Ω, T ) is a metrizable topological
space. Applying theorem (68), since B ∈ B(Ω), there exist Fn

closed and Gn open such that Fn ⊆ B ⊆ Gn and μVn(Gn\Fn) ≤
ε/2n. In particular, since Gn \ B ⊆ Gn \ Fn, there exists Gn

open such that B ⊆ Gn and μVn(Gn \B) ≤ ε/2n.

2. Let G = ∪n≥1Vn ∩ Gn. Each Vn and Gn is an open set in Ω.
So G is a union of open sets in Ω. It follows that G is an open
set in Ω. Furthermore, since Ω = ∪n≥1Vn and B ⊆ Gn for all
n ≥ 1, we have:

B =
+∞⋃
n=1

Vn ∩B ⊆
+∞⋃
n=1

Vn ∩Gn = G
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3. We have:

G \B = G ∩Bc =
+∞⋃
n=1

Vn ∩Gn ∩Bc =
+∞⋃
n=1

Vn ∩ (Gn \B)

4. From 3. and 1. we obtain:

μ(G \B) ≤
+∞∑
n=1

μ(Vn ∩ (Gn \B)) =
+∞∑
n=1

μVn(Gn \B) ≤ ε

Since B ⊆ G, we have μ(G) = μ(B)+μ(G\B) and consequently
μ(G) ≤ μ(B) + ε.

5. Since G is open and B ⊆ G, we have α ≤ μ(G). Using 4. it
follows that α ≤ μ(B) + ε. This being true for all ε > 0, we
conclude that α ≤ μ(B).

6. For all G open with B ⊆ G, we have μ(B) ≤ μ(G). It follows
that μ(B) is a lower bound of all μ(G)’s where G is open with
B ⊆ G. α being the greatest of such lower bounds, we have
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μ(B) ≤ α. However, from 5. we have α ≤ μ(B). It follows that
α = μ(B). We have proved that for all B ∈ B(Ω):

μ(B) = inf{μ(G) : B ⊆ G , G open}
This shows that μ is outer-regular.

7. In this exercise, we proved that a locally finite measure on a
metrizable and σ-compact topological space is outer-regular.
However, in exercise (12), we proved that it is also inner-regular.
It follows that a locally finite measure on a metrizable and σ-
compact topological space is regular. This proves theorem (73).

Exercise 16
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Exercise 17. Let Ω be an open subset of Rn, and μ be a locally
finite measure in (Ω,B(Ω)). Rn is a metrizable topological space, and
furthermore from theorem (48) any closed and bounded subset of Rn

is compact. In particular, Kp = [−p, p]n is a compact subset of Rn

for all p ≥ 1. So Rn is both metrizable and σ-compact. From theo-
rem (71) it follows that the induced topological space (Ω, (TRn)|Ω) is
also metrizable and σ-compact. Applying theorem (73), we conclude
that μ being locally finite, is a regular measure. We have proved that
any locally finite measure on an open subset of Rn is regular. This is
the objective of theorem (74).

Exercise 17
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Exercise 18.

1. Since (Ω, T ) is locally compact, for all x ∈ Ω, there exists Wx

open in Ω such that x ∈ Wx and W̄x is compact. Let n ≥ 1. Kn

is a compact subset of Ω. Furthermore, (Kn ∩Wx)x∈Kn is an
open covering ofKn, from which therefore we can extract a finite
sub-covering. There exists an integer pn ≥ 1 and xn

1 , . . . , x
n
pn

elements of Kn, such that:

Kn = (Kn ∩Wxn
1
) ∪ . . . ∪ (Kn ∩Wxn

pn
)

Setting V n
k = Wxn

k
for k = 1, . . . , pn, we have found V n

1 , . . . , V
n
pn

open subsets of Ω such thatKn ⊆ V n
1 ∪. . .∪V n

pn
and V̄ n

1 , . . . , V̄
n
pn

are compact subsets of Ω.

2. Let Wn = V n
1 ∪ . . . ∪ V n

pn
and Vn = ∪n

k=1Wk for n ≥ 1. Since
V n

1 , . . . , V
n
pn

are open, each Wn is open, and consequently each
Vn is open. So (Vn)n≥1 is a sequence of open sets in Ω, and it
is clear that Vn ⊆ Vn+1 for all n ≥ 1. Let x ∈ Ω. Since Kn ↑ Ω,
in particular Ω = ∪n≥1Kn and there exists n ≥ 1 such that
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x ∈ Kn. From 1. we have Kn ⊆ Wn, and since Wn ⊆ Vn, it
follows that x ∈ Vn. This shows that Ω = ∪n≥1Vn and we have
proved that (Vn)n≥1 is a sequence of open sets such that Vn ↑ Ω.

3. In order to show that W̄n = V̄ n
1 ∪. . .∪V̄ n

pn
it is sufficient to prove

that for all A, B subsets of Ω, we have A ∪B = Ā ∪ B̄. Recall
from exercise (21) of Tutorial 4 that the closure in Ω of any setA,
is the smallest closed set containing A (in the sense of inclusion).
In particular, we have A ⊆ Ā and B ⊆ B̄ and consequently
A∪B ⊆ Ā ∪ B̄. However, Ā ∪ B̄ being closed, this implies that
A ∪B ⊆ Ā ∪ B̄. Furthermore since A ⊆ A ∪ B ⊆ A ∪B and
A ∪B is closed, we have Ā ⊆ A ∪B and likewise B̄ ⊆ A ∪B.
It follows that Ā ∪ B̄ ⊆ A ∪B and we have proved the equality
A ∪B = Ā ∪ B̄.

4. Since W̄n = V̄ n
1 ∪ . . . ∪ V̄ n

pn
and each V̄ n

k is a compact subset
of Ω, in order to prove that W̄n is compact, it is sufficient to
show that if A and B are compact subsets of Ω, then A ∪ B
is also a compact subset of Ω. For that purpose we shall use
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the characterization of compact subsets proved in exercise (2)
of Tutorial 8. Let (Ui)i∈I be a family of open sets in Ω such
that A ∪ B ⊆ ∪i∈IUi. Then in particular A ⊆ ∪i∈IUi and A
being a compact subset of Ω, there exists I1 finite subset of I
such that A ⊆ ∪i∈I1Ui. Similarly, there exists I2 finite subset
of I such that B ⊆ ∪i∈I2Ui, It follows that A ∪B ⊆ ∪i∈I1∪I2Ui

and I1 ∪ I2 being finite, we conclude that A ∪ B is a compact
subset of Ω.

5. Let n ≥ 1. From 2. we have Vn = ∪n
k=1Wk. Using a similar

argument as in 3. we see that V̄n = ∪n
k=1W̄k. Using a similar

argument as in 4., each W̄k being compact by virtue of 4. itself,
we conclude that V̄n is itself compact.

6. Let (Ω, T ) be a topological space. If (Ω, T ) is σ-compact and
locally compact, we have been able to construct a sequence
(Vn)n≥1 of open sets in Ω, such that Vn ↑ Ω and V̄n is com-
pact for all n ≥ 1. So (Ω, T ) is strongly σ-compact. Conversely,
suppose that (Ω, T ) is strongly σ-compact, and let (Vn)n≥1 be
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a sequence of open sets in Ω, such that Vn ↑ Ω and each V̄n

is compact. Then V̄n ↑ Ω and Ω is therefore σ-compact. Fur-
thermore, for all x ∈ Ω, there exists n ≥ 1 such that x ∈ Vn.
Since Vn is open and V̄n is compact, this shows that Ω is locally
compact. This completes the proof of theorem (75).

Exercise 18
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Exercise 19.

1. Since A ⊆ Ω′ and A ⊆ Ā, we have A ⊆ Ω′ ∩ Ā.

2. The complement of Ω′ ∩ Ā in Ω′ is:

Ω′ \ (Ω′ ∩ Ā) = Ω′ ∩ (Ω′c ∪ Āc) = Ω′ ∩ Āc

Since Ā is closed in Ω, Āc is open in Ω and consequently by
definition of the induced topology, Ω′ ∩ Āc is open in Ω′. It
follows that Ω′ ∩ Ā is closed in Ω′. Note more generally that if
F is closed in Ω, then Ω′ ∩ F is closed in Ω′.

3. The closure ĀΩ′
of A in Ω′ being the smallest closed subset of

Ω′ containing A, we conclude from A ⊆ Ω′∩Ā and Ω′∩Ā closed
in Ω′, that ĀΩ′ ⊆ Ω′ ∩ Ā.

4. Let x ∈ Ω′ ∩ Ā. Suppose U ′ ∈ T|Ω′ and x ∈ U ′. There exists
U ∈ T such that U ′ = U ∩Ω′. From x ∈ U ′, we have x ∈ U and
since x ∈ Ā, we obtain that A∩U �= ∅. However by assumption,
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A is a subset of Ω′. Hence:

A ∩ U ′ = A ∩ (U ∩ Ω′) = (A ∩ Ω′) ∩ U = A ∩ U �= ∅

So we have proved that A ∩ U ′ �= ∅.

5. It follows from 4. that Ω′ ∩ Ā ⊆ ĀΩ′
. However from 3. we have

ĀΩ′ ⊆ Ω′ ∩ Ā. We conclude that ĀΩ′
= Ω′ ∩ Ā.

Exercise 19
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Exercise 20.

1. Let x ∈ Ω and ε > 0. Let y ∈ B(x, ε). For all U open in Ω
such that y ∈ U , we have U ∩B(x, ε) �= ∅. In particular, for all
η > 0, we have B(y, η) ∩ B(x, ε) �= ∅. Let z ∈ Ω be such that
d(y, z) < η and d(x, z) < ε. From the triangle inequality:

d(x, y) ≤ d(x, z) + d(y, z) < ε+ η

This being true for all η > 0, it follows that d(x, y) ≤ ε. We
have proved that:

B(x, ε) ⊆ {y ∈ Ω : d(x, y) ≤ ε}

2. Let Ω = [0, 1/2[∪{1} together with its usual metric. Then, the
open ball B(0, 1) is given by:

B(0, 1) = {x ∈ Ω : |x| < 1} = [0, 1/2[

3. The complement of [0, 1/2[ in Ω is {1}, which can be written as
]1/2, 2[∩Ω and is therefore open in Ω, since ]1/2, 2[ is open in
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R. It follows that [0, 1/2[ is closed in Ω.

4. From 2. we have B(0, 1) = [0, 1/2[ and from 3. [0, 1/2[ is a closed
subset of Ω, and is therefore equal to its closure. Hence:

B(0, 1) = [0, 1/2[ = [0, 1/2[

5. Since Ω = {y ∈ Ω : |y| ≤ 1} and [0, 1/2[�= Ω, we conclude that:

B(0, 1) �= {y ∈ Ω : |y| ≤ 1}
The purpose of this exercise is to provide a counter-example to
the belief that the inclusion proved in 1.:

B(x, ε) ⊆ {y ∈ Ω : d(x, y) ≤ ε}

can be shown to be an equality.

Exercise 20
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Exercise 21.

1. Ω being locally compact, there exists U open with compact clo-
sure such that x ∈ U .

2. Since x ∈ Ω′ and x ∈ U , we have x ∈ U ∩Ω′. Furthermore, both
U and Ω′ being open in Ω, U ∩Ω′ is open in Ω. The topology on
Ω being metric, there exists ε > 0 such that B(x, ε) ⊆ U ∩ Ω′.

3. From B(x, ε/2) ⊆ B(x, ε) ⊆ U ∩ Ω′ ⊆ U we conclude that
B(x, ε/2) ⊆ Ū .

4. From 3. we have B(x, ε/2) = B(x, ε/2)∩ Ū and B(x, ε/2) being
closed in Ω, we conclude that it is also closed in Ū .

5. Since Ū is compact and B(x, ε/2) is a closed subset of Ū , it
follows from exercise (2) of Tutorial 8 thatB(x, ε/2) is a compact
subset of Ū , and consequently also a compact subset of Ω.
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6. Let y ∈ B(x, ε/2). From 1. of exercise (20), d(x, y) ≤ ε/2 and
in particular d(x, y) < ε. From 2. we have B(x, ε) ⊆ Ω′ and
consequently y ∈ Ω′. This shows that B(x, ε/2) ⊆ Ω′.

7. Let U ′ = B(x, ε/2) ∩ Ω′ = B(x, ε/2). It is clear that x ∈ U ′

and furthermore B(x, ε/2) being open in Ω, U ′ is open in Ω′,
i.e. U ′ ∈ T|Ω′ . Using 6. and exercise (19), we obtain:

Ū ′Ω′
= Ū ′ ∩ Ω′ = B(x, ε/2) ∩ Ω′ = B(x, ε/2)

In particular Ū ′Ω′
is compact, as can be seen from 5.

8. Given x ∈ Ω′, we have found U ′ open in Ω′ such that x ∈ U ′ and
Ū ′Ω′

is compact. This shows that (Ω′, T|Ω′) is locally compact.

9. Let (Ω, T ) be a metrizable and strongly σ-compact topological
space. Let Ω′ be an open subset of Ω. From theorem (75),
(Ω, T ) is metrizable, σ-compact and locally compact. Since Ω′

is open, it follows from theorem (71) that the induced topo-
logical space (Ω′, T|Ω′) is itself metrizable and σ-compact. Fur-
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thermore, we have proved in this exercise that (Ω′, T|Ω′) is also
locally compact. So (Ω′, T|Ω′) is metrizable, σ-compact and lo-
cally compact. Using theorem (75) once more, we conclude that
(Ω′, T|Ω′) is metrizable and strongly σ-compact. This completes
the proof of theorem (76).

Exercise 21
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Exercise 22.

1. The constant map φ : x → 0 is continuous. Indeed for any U
open in K, φ−1(U) is either equal to ∅ or to Ω itself. In any
case φ−1(U) is an open subset of Ω. Furthermore, supp(φ) = ∅
and is therefore compact (see exercise (2) of Tutorial 8). This
shows that φ ∈ Cc

K(Ω).

2. Cc
K(Ω) being a non-empty subset of the set of all maps φ : Ω →

K, to show that Cc
K(Ω) is a K-vector space, it is sufficient to

show that given φ, ψ ∈ Cc
K(Ω) and λ ∈ K, the map φ+λψ is also

an element of Cc
K(Ω). To show that φ + λψ is continuous, one

may proceed as follows: define Φ : K2 → K by Φ(x, y) = x+λy,
and Ψ : Ω → K2 by Ψ(ω) = (φ(ω), ψ(ω)). Then φ+λψ = Φ ◦Ψ
and Φ being continuous, it is sufficient to show that Ψ is itself
a continuous map. However, the continuity of Ψ follows from
the fact that each coordinate mapping φ and ψ is continuous.
Indeed if U ×V is an open rectangle in K2, then Ψ−1(U ×V ) =
φ−1(U) ∩ ψ−1(V ) and is therefore open in Ω. Any open set W
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in K2 being a union of open rectangles, it is clear that Ψ−1(W )
is open in Ω. So much for the continuity of φ + λψ. From the
inclusion:

{φ+ λψ �= 0} ⊆ {φ �= 0} ∪ {ψ �= 0}
and the fact that given A,B subsets of Ω, A ∪B = Ā ∪ B̄ (see
the proof of 3. in exercise (18)), we obtain:

supp(φ+ λψ) ⊆ supp(φ) ∪ supp(ψ)

Since φ and ψ lie in Cc
K(Ω), both supp(φ) and supp(ψ) are com-

pact and consequently A = supp(φ) ∪ supp(ψ) is itself compact
(see the proof of 4. in exercise (18)). Furthermore, supp(φ+λψ)
being closed in Ω while being a subset of A, it is also closed in
A. From exercise (2) of Tutorial 8, supp(φ + λψ) is therefore
compact. We have proved that φ+ λψ ∈ Cc

K(Ω).

3. Let φ ∈ Cc
K(Ω). If φ = 0 then φ ∈ Cb

K(Ω). We assume that
φ �= 0. Let A = supp(φ). Then |φ||A is a continuous map
defined on the non-empty compact topological space (A, T|A).
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From theorem (37), |φ||A attains its maximum, i.e. there exists
xM ∈ A such that:

|φ(xM )| = sup
x∈A

|φ(x)|

Since φ(x) = 0 for all x ∈ Ac, we have:

|φ(xM )| = sup
x∈Ω

|φ(x)|

which shows in particular that supx∈Ω |φ(x)| < +∞. So φ ∈
Cb

K(Ω) and we have proved that Cc
K(Ω) ⊆ Cb

K(Ω).

Exercise 22
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Exercise 23.

1. Since Ω is locally compact, for all x ∈ Ω there exists an open set
Wx such that x ∈Wx and W̄x is compact. From K ⊆ ∪x∈KWx

and the fact that K is a compact subset of Ω, we deduce the
existence of n ≥ 1 and x1, . . . , xn ∈ K such that K ⊆ ∪n

k=1Wxk
.

Setting Vk = Wxk
for all k = 1, . . . , n, we have found open sets

V1, . . . , Vn such that:

K ⊆ V1 ∪ . . . ∪ Vn (11)

and each V̄k is compact.

2. An arbitrary union of open sets is open. A finite intersection
of open sets is open. Since V1, . . . , Vn and G are open, the set
V = (V1 ∪ . . . ∪ Vn) ∩ G is an open set in Ω. By assumption,
K ⊆ G and it therefore follows from (11) that K ⊆ V . The
fact that V ⊆ G is clear. We have proved that V is open and
K ⊆ V ⊆ G.
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3. Given A,B subsets of Ω, A ∪B = Ā ∪ B̄ (see proof of 3. in
exercise (18)). From V ⊆ V1 ∪ . . . ∪ Vn we obtain:

V̄ ⊆ V1 ∪ . . . ∪ Vn = V̄1 ∪ . . . ∪ V̄n

4. If A,B are compact subsets of Ω, A∪B is a compact subset of Ω
(see proof of 4. in exercise (18)). It follows thatK ′ = V̄1∪. . .∪V̄n

is a compact subset of Ω. Furthermore from 3. V̄ is a subset of
K ′. Being closed in Ω, V̄ is also closed in K ′ (it can be written
as V̄ = F ∩ K ′ where F is closed in Ω, take F = V̄ ). Using
exercise (2) of Tutorial 8, it follows that V̄ is compact.

5. Given A subset of Ω, d(x,A) is well defined for all x ∈ Ω as:

d(x,A) = inf{d(x, y) : y ∈ A}
where it is understood that inf ∅ = +∞. Since K �= ∅ and V �=
Ω, d(x,K) and d(x, V c) are well-defined real numbers for all x ∈
Ω. Furthermore, for all A closed in Ω, d(x,A) = 0 is equivalent
to x ∈ A (see exercise (22) of Tutorial 4). V being open in
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Ω, V c is a closed subset of Ω. So d(x, V c) = 0 is equivalent to
x ∈ V c. K being a compact subset of Ω and Ω being a Hausdorff
topological space (it is metric), K is a closed subset of Ω (see
theorem (35)). So d(x,K) = 0 is equivalent to x ∈ K. It follows
that d(x, V c) + d(x,K) = 0 is equivalent to x ∈ K ∩ V c, which
can never happen since K ⊆ V . We have proved that for all
x ∈ Ω, φ(x) is a well-defined real number. So φ : Ω → R is
well-defined. For all A subsets of Ω, the map x → d(x,A) is
continuous (see exercise (22) of Tutorial 4). We conclude that
φ is also continuous.

6. φ(x) �= 0 is equivalent to d(x, V c) �= 0 which is itself equivalent
to x �∈ V c (since V c is closed), i.e. x ∈ V . We have proved that
{φ �= 0} = V .

7. From 7. {φ �= 0} = V and consequently supp(φ) = V̄ . Having
proved in 4. that V̄ is compact, it follows that φ has compact
support. So φ : Ω → R is continuous with compact support, i.e.
φ ∈ Cc

R(Ω).
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8. To show that 1K ≤ φ it is sufficient to show that x ∈ K implies
1 ≤ φ(x). However, K being closed in Ω, x ∈ K is equivalent
to d(x,K) = 0. In particular, x ∈ K implies that φ(x) = 1. It
is clear that φ(x) ≤ 1 for all x ∈ Ω. To show that φ ≤ 1G, it is
sufficient to show that x �∈ G implies φ(x) = 0. But V ⊆ G and
consequently x �∈ G implies x �∈ V , i.e. x ∈ V c. And V c being
closed, x ∈ V c is equivalent to d(x, V c) = 0. In particular, we
see that x �∈ G implies φ(x) = 0. So 1K ≤ φ ≤ 1G.

9. Suppose K = ∅. With φ = 0, φ ∈ Cc
R(Ω) and 1K ≤ φ ≤ 1G.

10. Suppose V = Ω. Then V̄ = Ω̄ = Ω. V̄ being compact (see 4.),
it follows that Ω is compact.

11. Suppose V = Ω. Since V ⊆ G, we have G = Ω, i.e. 1G = 1.
Take φ = 1. Then φ is continuous and supp(φ) = Ω is compact
(see 10.). So φ ∈ Cc

R(Ω) and 1K ≤ φ ≤ 1G. This proves
theorem (77).

Exercise 23
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Exercise 24.

1. Let φ ∈ Cc
K(Ω). Then φ is continuous and from exercise (13)

of Tutorial 4, the map φ : (Ω,B(Ω)) → (K,B(K)) is therefore
measurable. Furthermore from exercise (22), Cc

K(Ω) ⊆ Cb
K(Ω).

So φ is also bounded. There exists m ∈ R+ such that |φ| ≤ m.
Let A = supp(φ). Then A is a compact subset of Ω, and from
exercise (10), μ being locally finite, μ(A) < +∞. Since {φ �=
0} ⊆ A, we have Ac ⊆ {φ = 0} and consequently φ = φ1A.
Hence: ∫

|φ|pdμ =
∫

1A|φ|pdμ ≤ mpμ(A) < +∞

So φ ∈ Lp
K(Ω,B(Ω), μ) and finally Cc

K(Ω) ⊆ Lp
K(Ω,B(Ω), μ).

2. Let ε > 0. Since (Ω, T ) is metrizable and strongly σ-compact,
in particular from theorem (75), it is metrizable and σ-compact.
Since μ is a locally finite measure on (Ω,B(Ω)), from theo-
rem (73) μ is regular. Having assumed that μ(B) < +∞, we
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have μ(B) < μ(B) + ε/2. From the outer-regularity of μ, μ(B)
is the greatest lower-bound of all μ(G)’s where G is open with
B ⊆ G. So μ(B) + ε/2 cannot be such lower-bound. There
exists G open with B ⊆ G such that:

μ(G) < μ(B) +
ε

2
(12)

Likewise, μ(B) − ε/2 < μ(B) and from the inner-regularity of
μ, μ(B) is the lowest upper-bound of all μ(K)’s where K is
compact with K ⊆ B. So μ(B) − ε/2 cannot be such upper-
bound, and consequently, there exists K compact with K ⊆ B
such that:

μ(B) − ε

2
< μ(K) (13)

Hence, we have found K compact and G open with K ⊆ B ⊆ G,
and furthermore from (12) and (13) we have:

μ(G) < μ(B) +
ε

2
< μ(K) + ε
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and consequently:

μ(K) + μ(G \K) = μ(G) < μ(K) + ε

K being compact and μ locally finite, from exercise (10) we have
μ(K) < +∞, and we conclude that μ(G \K) < ε. In particular
μ(G \K) ≤ ε.

3. The fact that μ(B) < +∞ was used when writing the inequal-
ities μ(B) < μ(B) + ε/2 and μ(B) − ε/2 < μ(B). Without
this assumption, these inequalities would not be strict, and the
argument developed in 2. would fail.

4. Since (Ω, T ) is metrizable and strongly σ-compact, in particular
from theorem (75), it is metrizable and locally compact. K
being compact and G open with K ⊆ G, from theorem (77),
there exists φ ∈ Cc

R(Ω) such that 1K ≤ φ ≤ 1G.

5. Since 1K ≤ φ ≤ 1G, in particular 0 ≤ φ ≤ 1 and consequently
we have |φ − 1B|p ≤ 1. Suppose x �∈ G. Then 1G(x) = 0 and
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therefore φ(x) = 0. Since B ⊆ G, we also have 1B(x) = 0
and consequently |φ(x) − 1B(x)|p = 0. Suppose x ∈ K. Then
1K(x) = 1 and therefore φ(x) = 1. Since K ⊆ B we also have
1B(x) = 1 and consequently |φ(x) − 1B(x)|p = 0. We have
proved that x �∈ G \ K implies that |φ(x) − 1B(x)|p = 0. It
follows that |φ− 1B|p ≤ 1G\K and finally:∫

|φ− 1B|pdμ ≤
∫

1G\Kdμ = μ(G \K)

6. Let ε > 0. Applying 2. to εp instead of ε itself, we can find K
and G such that μ(G \ K) ≤ εp. From 4. and 5. there exists
φ ∈ Cc

R(Ω) such that:∫
|φ− 1B|pdμ ≤ μ(G \K) ≤ εp

from which we conclude that ‖φ− 1B‖p ≤ ε.

7. Let s ∈ SC(Ω,B(Ω)) ∩ Lp
C(Ω,B(Ω), μ) and ε > 0. From 3.

of exercise (1) there exists an integer n ≥ 1, together with
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α1, . . . , αn ∈ C and A1, . . . , An ∈ B(Ω) such that:

s =
n∑

i=1

αi1Ai

and μ(Ai) < +∞ for all i ∈ Nn. Without loss of generality, we
may assume that αi �= 0 for all i’s (if s = 0 then s ∈ Cc

C(Ω) and
finding φ ∈ Cc

C(Ω) such that ‖φ−s‖p ≤ ε is trivial). Applying 6.
to B = Ai (recall that Ai ∈ B(Ω) and μ(Ai) < +∞) and ε/n|αi|
instead of ε, there exists φ ∈ Cc

R(Ω) such that ‖φi − 1Ai‖p ≤
ε/n|αi|. Since Cc

C(Ω) is a vector space, the map φ =
∑n

i=1 αiφi

is an element of Cc
C(Ω) and we have:

‖φ− s‖p =

∥∥∥∥∥
n∑

i=1

αiφi −
n∑

i=1

αi1Ai

∥∥∥∥∥
p

≤
n∑

i=1

|αi| · ‖φi − 1Ai‖p
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≤
n∑

i=1

|αi| ·
(

ε

n|αi|

)
= ε

We have found φ ∈ Cc
C(Ω) such that ‖φ− s‖p ≤ ε. Note that if

s ∈ SR(Ω,B(Ω)) then αi ∈ R for all i ∈ Nn, and φ =
∑n

i=1 αiφi

is in fact an element of Cc
R(Ω).

8. To show that Cc
K(Ω) is dense in Lp

K(Ω,B(Ω), μ), it is sufficient
to show that given f ∈ Lp

K(Ω,B(Ω), μ) and ε > 0, there exists
φ ∈ Cc

K(Ω) such that ‖f−φ‖p ≤ ε. However, from theorem (67)
there exists s ∈ SK(Ω,B(Ω)) ∩ Lp

K(Ω,B(Ω), μ) such that ‖f −
s‖p ≤ ε/2. Applying 7. to s and ε/2 instead of ε, there exists
φ ∈ Cc

K(Ω) such that ‖φ − s‖p ≤ ε/2. It follows that we have
found φ ∈ Cc

K(Ω) such that ‖f −φ‖p ≤ ‖f − s‖p + ‖φ− s‖p ≤ ε.
This completes the proof of theorem (78).

Exercise 24
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Exercise 25. Let Ω be an open subset of Rn where n ≥ 1. Let μ
be a locally finite measure on (Ω,B(Ω)) and p ∈ [1,+∞[. For k ≥ 1,
Vk =]−k, k[n is an open subset of Rn with compact closure, and Vk ↑
Rn. From definition (104), Rn is strongly σ-compact. Furthermore,
it is metrizable. It follows from theorem (76) that Ω being an open
subset of Rn, is also metrizable and strongly σ-compact. Applying
theorem (78), we conclude that Cc

K(Ω) is dense in Lp
K(Ω,B(Ω), μ).

This completes the proof of theorem (79).
Exercise 25
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