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14. Maps of Finite Variation
Definition 108 We call total variation of a map b : R+ → C the
map |b| : R+ → [0, +∞] defined as:

∀t ∈ R+ , |b|(t) �
= |b(0)| + sup

n∑
i=1

|b(ti) − b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn in [0, t], n ≥ 1.
We say that b is of finite variation, if and only if:

∀t ∈ R+ , |b|(t) < +∞
We say that b is of bounded variation, if and only if:

sup
t∈R+

|b|(t) < +∞

Warning: The notation |b| can be misleading: it can refer to the map
t → |b(t)|(the modulus), or to the map t → |b|(t) (the total variation).

Exercise 1. Let a : R+ → R+ be non-decreasing with a(0) ≥ 0.
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1. Show that |a| = a and a is of finite variation.

2. Show that the limit limt↑+∞ a(t), denoted a(∞), exists in R̄.

3. Show that a is of bounded variation if and only if a(∞) < +∞.

Exercise 2. Let b = b1 + ib2 : R+ → C be a map, b1, b2 real-valued.

1. Show that |b1| ≤ |b| and |b2| ≤ |b|.
2. Show that |b| ≤ |b1| + |b2|.
3. Show that b is of finite variation if and only if b1, b2 are.

4. Show that b is of bounded variation if and only if b1, b2 are.

5. Show that |b|(0) = |b(0)|.
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Exercise 3. Let b : R+ → R be differentiable, such that b′ is
bounded on each compact interval of R+. Show that b is of finite
variation.

Exercise 4. Show that if b : R+ → C is of class C1, i.e. continu-
ous and differentiable with continuous derivative, then b is of finite
variation.

Exercise 5. Let f : (R+,B(R+)) → (C,B(C)) be a measurable
map, with

∫ t

0 |f(s)|ds < +∞ for all t ∈ R+. Let b : R+ → C defined
by:

∀t ∈ R+ , b(t)
�
=

∫
R+

f1[0,t]ds

1. Show that b is of finite variation and:

∀t ∈ R+ , |b|(t) ≤
∫ t

0

|f(s)|ds
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2. Show that f ∈ L1
C(R+,B(R+), ds) ⇒ b is of bounded variation.

Exercise 6. Show that if b, b′ : R+ → C are maps of finite variation,
and α ∈ C, then b + αb′ is also a map of finite variation. Prove the
same result when the word ’finite’ is replaced by ’bounded’.

Exercise 7. Let b : R+ → C be a map. For all t ∈ R+, let S(t)
be the set of all finite subsets A of [0, t], with cardA ≥ 2. For all
A ∈ S(t), we define:

S(A)
�
=

n∑
i=1

|b(ti) − b(ti−1)|

where it is understood that t0, . . . , tn are such that:

t0 < t1 < . . . < tn and A = {t0, . . . , tn} ⊆ [0, t]

1. Show that for all t ∈ R+, if s0 ≤ . . . ≤ sp (p ≥ 1) is a finite
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sequence in [0, t], then if:

S
�
=

p∑
j=1

|b(sj) − b(sj−1)|

either S = 0 or S = S(A) for some A ∈ S(t).

2. Conclude that:

∀t ∈ R+ , |b|(t) = |b(0)| + sup{S(A) : A ∈ S(t)}

3. Let A ∈ S(t) and s ∈ [0, t]. Show that S(A) ≤ S(A ∪ {s}).
4. Let A, B ∈ S(t). Show that:

A ⊆ B ⇒ S(A) ≤ S(B)

5. Show that if t0 ≤ . . . ≤ tn, n ≥ 1, and s0 ≤ . . . ≤ sp, p ≥ 1, are
finite sequences in [0, t] such that:

{t0, . . . , tn} ⊆ {s0, . . . , sp}
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then:
n∑

i=1

|b(ti) − b(ti−1)| ≤
p∑

j=1

|b(sj) − b(sj−1)|

Exercise 8. Let b : R+ → C be of finite variation. Let s, t ∈ R+,
with s ≤ t. We define:

δ
�
= sup

n∑
i=1

|b(ti) − b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn, n ≥ 1, in [s, t].

1. Let s0 ≤ . . . ≤ sp and t0 ≤ . . . ≤ tn be finite sequences in [0, s]
and [s, t] respectively, where n, p ≥ 1. Show that:

p∑
j=1

|b(sj) − b(sj−1)| +
n∑

i=1

|b(ti) − b(ti−1)| ≤ |b|(t) − |b(0)|

2. Show that δ ≤ |b|(t) − |b|(s).
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3. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], where n ≥ 1, and
suppose that s = tj for some 0 < j < n. Show that:

n∑
i=1

|b(ti) − b(ti−1)| ≤ |b|(s) − |b(0)| + δ (1)

4. Show that inequality (1) holds, for all t0 ≤ . . . ≤ tn in [0, t].

5. Prove the following:

Theorem 80 Let b : R+ → C be a map of finite variation. Then,
for all s, t ∈ R+, s ≤ t, we have:

|b|(t) − |b|(s) = sup
n∑

i=1

|b(ti) − b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn, n ≥ 1, in [s, t].
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Exercise 9. Let b : R+ → C be a map of finite variation. Show that
|b| is non-decreasing with |b|(0) ≥ 0, and ||b|| = |b|.
Definition 109 Let b : R+ → R be a map of finite variation. Let:

|b|+ �
=

1
2
(|b| + b)

|b|− �
=

1
2
(|b| − b)

|b|+, |b|− are respectively the positive, negative variation of b.

Exercise 10. Let b : R+ → R be a map of finite variation.

1. Show that |b| = |b|+ + |b|− and b = |b|+ − |b|−.

2. Show that |b|+(0) = b+(0) ≥ 0 and |b|−(0) = b−(0) ≥ 0.

3. Show that for all s, t ∈ R+, s ≤ t, we have:

|b(t) − b(s)| ≤ |b|(t) − |b|(s)
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4. Show that |b|+ and |b|− are non-decreasing.

Exercise 11. Let b : R+ → C be of finite variation. Show the
existence of b1, b2, b3, b4 : R+ → R+, non-decreasing with bi(0) ≥ 0,
such that b = b1− b2 + i(b3− b4). Show conversely that if b : R+ → C
is a map with such decomposition, then it is of finite variation.

Exercise 12. Let b : R+ → C be a right-continuous map of finite
variation, and x0 ∈ R+.

1. Show that the limit |b|(x0+) = limt↓↓x0 |b|(t) exists in R and is
equal to infx0<t |b|(t).

2. Show that |b|(x0) ≤ |b|(x0+).

3. Given ε > 0, show the existence of y0 ∈ R+, x0 < y0, such that:

u ∈]x0, y0] ⇒ |b(u) − b(x0)| ≤ ε/2
u ∈]x0, y0] ⇒ |b|(y0) − |b|(u) ≤ ε/2
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Exercise 13. Further to exercise (12), let t0 ≤ . . . ≤ tn, n ≥ 1, be a
finite sequence in [0, y0], for which there exists j with 0 < j < n − 1,
x0 = tj and x0 < tj+1.

1. Show that
∑j

i=1 |b(ti) − b(ti−1)| ≤ |b|(x0) − |b(0)|.
2. Show that |b(tj+1) − b(tj)| ≤ ε/2.

3. Show that
∑n

i=j+2 |b(ti) − b(ti−1)| ≤ |b|(y0) − |b|(tj+1) ≤ ε/2.

4. Show that for all finite sequences t0 ≤ . . . ≤ tn, n ≥ 1, in [0, y0]:
n∑

i=1

|b(ti) − b(ti−1)| ≤ |b|(x0) − |b(0)| + ε

5. Show that |b|(y0) ≤ |b|(x0) + ε.

6. Show that |b|(x0+) ≤ |b|(x0) and that |b| is right-continuous.
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Exercise 14. Let b : R+ → C be a left-continuous map of finite
variation, and let x0 ∈ R+ \ {0}.

1. Show that the limit |b|(x0−) = limt↑↑x0 |b|(t) exists in R, and is
equal to supt<x0

|b|(t).
2. Show that |b|(x0−) ≤ |b|(x0).

3. Given ε > 0, show the existence of y0 ∈ [0, x0[, such that:

u ∈ [y0, x0[ ⇒ |b(x0) − b(u)| ≤ ε/2
u ∈ [y0, x0[ ⇒ |b|(u) − |b|(y0) ≤ ε/2

Exercise 15. Further to exercise (14), let t0 ≤ . . . ≤ tn, n ≥ 1, be a
finite sequence in [0, x0], such that y0 = tj for some 0 < j < n − 1,
and x0 = tn. We denote k = max{i : j ≤ i , ti < x0}.
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1. Show that j ≤ k ≤ n − 1 and tk ∈ [y0, x0[.

2. Show that
∑j

i=1 |b(ti) − b(ti−1)| ≤ |b|(y0) − |b(0)|.
3. Show that

∑k
i=j+1 |b(ti) − b(ti−1)| ≤ |b|(tk) − |b|(y0) ≤ ε/2,

where if j = k, the corresponding sum is zero.

4. Show that
∑n

i=k+1 |b(ti) − b(ti−1)| = |b(x0) − b(tk)| ≤ ε/2.

5. Show that for all finite sequences t0 ≤ . . . ≤ tn, n ≥ 1, in [0, x0]:
n∑

i=1

|b(ti) − b(ti−1)| ≤ |b|(y0) − |b(0)| + ε

6. Show that |b|(x0) ≤ |b|(y0) + ε.

7. Show that |b|(x0) ≤ |b|(x0−) and that |b| is left-continuous.

8. Prove the following:
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Theorem 81 Let b : R+ → C be a map of finite variation. Then:

b is right-continuous ⇒ |b| is right-continuous
b is left-continuous ⇒ |b| is left-continuous

b is continuous ⇒ |b| is continuous

Exercise 16. Let b : R+ → R be an R-valued map of finite variation.

1. Show that if b is right-continuous, then so are |b|+ and |b|−.

2. State and prove similar results for left-continuity and continuity.

Exercise 17. Let b : R+ → C be a right-continuous map of finite
variation. Show the existence of b1, b2, b3, b4 : R+ → R+, right-
continuous and non-decreasing maps with bi(0) ≥ 0, such that:

b = b1 − b2 + i(b3 − b4)
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Exercise 18. Let b : R+ → C be a right-continuous map. Let
t ∈ R+. For all p ≥ 1, we define:

Sp
�
= |b(0)| +

2p∑
k=1

|b(kt/2p) − b((k − 1)t/2p)|

1. Show that for all p ≥ 1, Sp ≤ Sp+1 and define S = supp≥1 Sp.

2. Show that S ≤ |b|(t).

Exercise 19. Further to exercise (18), let t0 < . . . < tn be a finite
sequence of distinct elements of [0, t]. Let ε > 0.

1. Show that for all i = 0, . . . , n, there exists pi ≥ 1 and
qi ∈ {0, 1, . . . , 2pi} such that:

0 ≤ t0 ≤ q0t

2p0
< t1 ≤ q1t

2p1
< . . . < tn ≤ qnt

2pn
≤ t
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and:
|b(ti) − b(qit/2pi)| ≤ ε , ∀i = 0, . . . , n

2. Show the existence of p ≥ 1, and k0, . . . , kn ∈ {0, . . . , 2p} with:

0 ≤ t0 ≤ k0t

2p
< t1 ≤ k1t

2p
< . . . < tn ≤ knt

2p
≤ t

and:
|b(ti) − b(kit/2p)| ≤ ε , ∀i = 0, . . . , n

3. Show that:
n∑

i=1

|b(kit/2p) − b(ki−1t/2p)| ≤ Sp − |b(0)|

4. Show that:
n∑

i=1

|b(ti) − b(ti−1)| ≤ S − |b(0)| + 2nε
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5. Show that:
n∑

i=1

|b(ti) − b(ti−1)| ≤ S − |b(0)|

6. Conclude that |b|(t) ≤ S.

7. Prove the following:

Theorem 82 Let b : R+ → C be right-continuous or left-continuous.
Then, for all t ∈ R+:

|b|(t) = |b(0)| + lim
n→+∞

2n∑
k=1

|b(kt/2n) − b((k − 1)t/2n)|

Exercise 20. Let b : R+ → R+ be defined by b = 1Q+ . Show that:

+∞ = |b|(1) �= lim
n→+∞

2n∑
k=1

|b(k/2n) − b((k − 1)/2n)| = 0
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Exercise 21. b : R+ → C is right-continuous of bounded variation.

1. Let b1 = Re(b) and b2 = Im(b). Explain why d|b1|+, d|b1|−,
d|b2|+ and d|b2|− are all well-defined measures on (R+,B(R+)).

2. Is this still true, if b is right-continuous of finite variation?

3. Show that d|b1|+, d|b1|−, d|b2|+ and d|b2|− are finite measures.

4. Let db = d|b1|+ − d|b1|− + i(d|b2|+ − d|b2|−). Show that db is a
well-defined complex measure on (R+,B(R+)).

5. Show that db({0}) = b(0).

6. Show that for all s, t ∈ R+, s ≤ t, db(]s, t]) = b(t) − b(s).

7. Show that limt→+∞ b(t) exists in C. We denote b(∞) this limit.

8. Show that db(R+) = b(∞).

9. Proving the uniqueness of db, justify the following:
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Definition 110 Let b : R+ → C be a right-continuous map of
bounded variation. There exists a unique complex measure db on
(R+,B(R+)), such that:

(i) db({0}) = b(0)
(ii) ∀s, t ∈ R+ s ≤ t , db(]s, t]) = b(t) − b(s)

db is called the complex Stieltjes measure associated with b.

Exercise 22. Show that if a : R+ → R+ is right-continuous, non-
decreasing with a(0) ≥ 0 and a(∞) < +∞, then definition (110) of
da coincides with the already known definition (24).

Exercise 23. b : R+ → C is right-continuous of finite variation.

1. Let b1 = Re(b) and b2 = Im(b). Explain why d|b1|+, d|b1|−,
d|b2|+ and d|b2|− are all well-defined measures on (R+,B(R+)).
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2. Why is it in general impossible to define:

db
�
= d|b1|+ − d|b1|− + i(d|b2|+ − d|b2|−)

Warning: it does not make sense to write something like ’db’, unless
b is either right-continuous, non-decreasing and b(0) ≥ 0, or b is a
right-continuous map of bounded variation.

Exercise 24. Let b : R+ → C be a map. For all T ∈ R+, we define
bT : R+ → C as bT (t) = b(T ∧ t) for all t ∈ R+.

1. Show that for all T ∈ R+, |bT | = |b|T .

2. Show that if b is of finite variation, then for all T ∈ R+, bT is
of bounded variation, and we have |bT |(∞) = |b|(T ) < +∞.

3. Show that if b is right-continuous and of finite variation, for all
T ∈ R+, dbT is the unique complex measure on R+, with:

(i) dbT ({0}) = b(0)
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(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = b(T ∧ t) − b(T ∧ s)

4. Show that if b is R-valued and of finite variation, for all T ∈ R+,
we have |bT |+ = (|b|+)T and |bT |− = (|b|−)T .

5. Show that if b is right-continuous and of bounded variation, for
all T ∈ R+, we have dbT = db[0,T ] = db([0, T ] ∩ · )

6. Show that if b is right-continuous, non-decreasing with b(0) ≥ 0,
for all T ∈ R+, we have dbT = db[0,T ] = db([0, T ] ∩ · )

Exercise 25. Let μ, ν be two finite measures on R+, such that:

(i) μ({0}) ≤ ν({0})
(ii) ∀s, t ∈ R+, s ≤ t , μ(]s, t]) ≤ ν(]s, t])

We define a, c : R+ → R+ by a(t) = μ([0, t]) and c(t) = ν([0, t]).

1. Show that a and c are right-continuous, non-decreasing with
a(0) ≥ 0 and c(0) ≥ 0.
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2. Show that da = μ and dc = ν.

3. Show that a ≤ c.

4. Define b : R+ → R+ by b = c − a. Show that b is right-
continuous, non-decreasing with b(0) ≥ 0.

5. Show that da + db = dc.

6. Conclude with the following:

Theorem 83 Let μ, ν be two finite measures on (R+,B(R+)) with:

(i) μ({0}) ≤ ν({0})
(ii) ∀s, t ∈ R+, s ≤ t , μ(]s, t]) ≤ ν(]s, t])

Then μ ≤ ν, i.e. for all B ∈ B(R+), μ(B) ≤ ν(B).

Exercise 26. b : R+ → C is right-continuous of bounded variation.
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1. Show that |db|({0}) = |b(0)| = d|b|({0}).
2. Let s, t ∈ R+, s ≤ t. Let t0 ≤ . . . ≤ tn be a finite sequence in

[s, t], n ≥ 1. Show that:
n∑

i=1

|b(ti) − b(ti−1)| ≤ |db|(]s, t])

3. Show that |b|(t) − |b|(s) ≤ |db|(]s, t]).
4. Show that d|b| ≤ |db|.
5. Show that L1

C(R+,B(R+), |db|) ⊆ L1
C(R+,B(R+), d|b|).

6. Show that R+ is metrizable and strongly σ-compact.

7. Show that Cc
C(R+), Cb

C(R+) are dense in L1
C(R+,B(R+), |db|).

8. Let h ∈ L1
C(R+,B(R+), |db|). Given ε > 0, show the existence

of φ ∈ Cb
C(R+) such that

∫ |φ − h||db| ≤ ε.
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9. Show that | ∫ hdb| ≤ | ∫ φdb| + ε.

10. Show that:∣∣∣∣
∫

|φ|d|b| −
∫

|h|d|b|
∣∣∣∣ ≤

∫
|φ − h|d|b| ≤

∫
|φ − h||db|

11. Show that
∫ |φ|d|b| ≤ ∫ |h|d|b| + ε.

12. For all n ≥ 1, we define:

φn
�
= φ(0)1{0} +

n2n−1∑
k=0

φ(k/2n)1]k/2n,(k+1)/2n]

Show there is M ∈ R+, such that |φn(x)| ≤ M for all x and n.

13. Using the continuity of φ, show that φn → φ.

14. Show that lim
∫

φndb =
∫

φdb.

15. Show that lim
∫ |φn|d|b| =

∫ |φ|d|b|.
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16. Show that for all n ≥ 1:
∫

φndb = φ(0)b(0) +
n2n−1∑

k=0

φ(k/2n)(b((k + 1)/2n) − b(k/2n))

17. Show that | ∫ φndb| ≤ ∫ |φn|d|b| for all n ≥ 1.

18. Show that | ∫ φdb| ≤ ∫ |φ|d|b|.
19. Show that | ∫ hdb| ≤ ∫ |h|d|b| + 2ε.

20. Show that | ∫ hdb| ≤ ∫ |h|d|b| for all h ∈ L1
C(R+,B(R+), |db|).

21. Let B ∈ B(R+) and h ∈ L1
C(R+,B(R+), |db|) be such that

|h| = 1 and db =
∫

h|db|. Show that |db|(B) =
∫

B
h̄db.

22. Conclude that |db| ≤ d|b|.

Exercise 27. b : R+ → C is right-continuous of finite variation.
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1. Show that for all T ∈ R+, |dbT | = d|bT | = d|b|T .

2. Show that d|b|T = d|b|[0,T ] = d|b|([0, T ] ∩ · ), and conclude:

Theorem 84 If b : R+ → C is right-continuous of bounded varia-
tion, the total variation of its associated complex Stieltjes measure, is
equal to the Stieltjes measure associated with its total variation, i.e.

|db| = d|b|
If b : R+ → C is right-continuous of finite variation, then for all
T ∈ R+, bT defined by bT (t) = b(T ∧t), is right-continuous of bounded
variation, and we have |dbT | = d|b|([0, T ] ∩ · ) = d|b|T .

Definition 111 Let b : R+ → E be a map, where E is a Hausdorff
topological space. We say that b is cadlag with respect to E, if and
only if b is right-continuous, and the limit:

b(t−) = lim
s↑↑t

b(s)
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exists in E, for all t ∈ R+ \ {0}. In the case when E = C or E = R,
given b cadlag, we define b(0−) = 0, and for all t ∈ R+:

Δb(t)
�
= b(t) − b(t−)

Exercise 28. Let b : R+ → E be cadlag, where E is a Hausdorff
topological space. Suppose b has values in E′ ⊆ E.

1. Show that for all t > 0, the limit b(t−) is unique.

2. Show that E′ is Hausdorff.

3. Explain why b may not be cadlag with respect to E′.

4. Show that b is cadlag with respect to Ē′.

5. Show that b : R+ → R is cadlag ⇔ it is cadlag w.r. to C.
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Exercise 29.

1. Show that if b : R+ → C is cadlag, then b is continuous with
b(0) = 0 if and only if Δb(t) = 0 for all t ∈ R+.

2. Show that if a : R+ → R+ is right-continuous, non-decreasing
with a(0) ≥ 0, then a is cadlag (w.r. to R and R+) with Δa ≥ 0.

3. Show that any linear combination of cadlag maps is itself cadlag.

4. Show that if b : R+ → C is a right-continuous map of finite
variation, then b is cadlag.

5. Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. Show that da({t}) = Δa(t) for all t ∈ R+.

6. Let b : R+ → C be a right-continuous map of bounded varia-
tion. Show that db({t}) = Δb(t) for all t ∈ R+.
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7. Let b : R+ → C be a right-continuous map of finite variation.
Let T ∈ R+. Show that:

∀t ∈ R+ , bT (t−) =
{

b(t−) if t ≤ T
b(T ) if T < t

Show that ΔbT = (Δb)1[0,T ], and dbT ({t}) = Δb(t)1[0,T ](t).

Exercise 30. Let b : R+ → C be a cadlag map and T ∈ R+.

1. Show that if t → b(t−) is not bounded on [0, T ], there exists a
sequence (tn)n≥1 in [0, T ] such that |b(tn)| → +∞.

2. Suppose from now on that b is not bounded on [0, T ]. Show the
existence of a sequence (tn)n≥1 in [0, T ], such that tn → t for
some t ∈ [0, T ], and |b(tn)| → +∞.

3. Define R = {n ≥ 1 : t ≤ tn} and L = {n ≥ 1 : tn < t}. Show
that R and L cannot be both finite.
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4. Suppose that R is infinite. Show the existence of n1 ≥ 1, with:

tn1 ∈ [t, t + 1[∩[0, T ]

5. If R is infinite, show there is n1 < n2 < . . . such that:

tnk
∈ [t, t +

1
k

[∩[0, T ] , ∀k ≥ 1

6. Show that |b(tnk
)| �→ +∞.

7. Show that if L is infinite, then t > 0 and there is an increasing
sequence n1 < n2 < . . ., such that:

tnk
∈]t − 1

k
, t[∩[0, T ] , ∀k ≥ 1

8. Show that: |b(tnk
)| �→ +∞.

9. Prove the following:
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Theorem 85 Let b : R+ → C be a cadlag map. Let T ∈ R+. Then
b and the map t → b(t−) are bounded on [0, T ], i.e. there exists
M ∈ R+ such that:

|b(t)| ∨ |b(t−)| ≤ M , ∀t ∈ [0, T ]

www.probability.net

http://www.probability.net


Solutions to Exercises 31

Solutions to Exercises
Exercise 1.

1. Let a : R+ → R+ be non-decreasing with a(0) ≥ 0. Let t ∈ R+.
Taking t0 = 0 and t1 = t, from definition (108), we have:

|a(t1) − a(t0)| ≤ |a|(t) − |a(0)|
Since a is non-decreasing and a(0) ≥ 0, we obtain a(t) ≤ |a|(t).
Let n ≥ 1 and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]:

n∑
i=1

|a(ti) − a(ti−1)| = a(tn) − a(t0) ≤ a(t) − a(0)

So a(t)−a(0) is an upper-bound of all sums
∑n

i=1 |a(ti)−a(ti−1)|
as t0 ≤ . . . ≤ tn runs through all finite sequences in [0, t]. From
definition (108), |a|(t) − |a(0)| is the smallest of such upper-
bounds. Hence:

|a|(t) − |a(0)| ≤ a(t) − a(0)
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and since a(0) ≥ 0, we obtain |a|(t) ≤ a(t). We have proved
that |a|(t) = a(t) for all t ∈ R+, i.e. |a| = a.

2. Let l = supt∈R+ a(t) ∈ R̄. We claim that a(t) converges to l as
t → +∞. Suppose l = +∞. l being the smallest upper-bound
of all a(t)’s, for all A ∈ R+ A cannot be such an upper-bound.
Hence, there exists tA ∈ R+ such that A < a(tA). Since a is
non-decreasing, for all t ∈ R+:

tA ≤ t ⇒ A < a(tA) ≤ a(t)

This shows that limt→+∞ a(t) = +∞ = l. Suppose l < +∞.
Then, given ε > 0 we have l − ε < l. Again, l − ε cannot be
an upper-bound of all a(t)’s. There exists tε ∈ R+ such that
l−ε < a(tε). Since a is non-decreasing we obtain, for all t ∈ R+:

tε ≤ t ⇒ l − ε < a(tε) ≤ a(t) ≤ l

This shows that limt→+∞ a(t) = l. We have proved that a(t)
has a limit in R̄ as t → +∞. This limit is denoted a(∞).
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3. The proof of 2. together with 1. shows that:

a(∞) = sup
t∈R+

a(t) = sup
t∈R+

|a|(t)

It follows from definition (108) that a is of bounded variation if
and only if a(∞) < +∞.

Exercise 1
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Exercise 2.

1. Let b = b1 + ib2 : R+ → C be a map where b1 = Re(b) and
b2 = Im(b). Let t ∈ R+. Let t0 ≤ . . . ≤ tn be a finite sequence
in [0, t]. Since |Re(z)| ≤ |z| for all z ∈ C and by virtue of
definition (108):

n∑
i=1

|b1(ti) − b1(ti−1)| ≤
n∑

i=1

|b(ti) − b(ti−1)| ≤ |b|(t) − |b(0)|

It follows that |b|(t) − |b(0)| is an upper-bound of all sums∑n
i=1 |b1(ti) − b1(ti−1)| as t0 ≤ . . . ≤ tn runs through all fi-

nite sequences in [0, t]. |b1|(t) − |b1(0)| being the smallest of
such upper-bounds, we obtain:

|b1|(t) − |b1(0)| ≤ |b|(t) − |b(0)|
and from |b1(0)| ≤ |b(0)| we conclude that |b1|(t) ≤ |b|(t). This
being true for all t ∈ R+, we have proved that |b1| ≤ |b|. Since
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|Im(z)| ≤ |z| for all z ∈ C, we obtain |b2| ≤ |b| with a strictly
identical argument.

2. Let t ∈ R+ and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]:
n∑

i=1

|b(ti)−b(ti−1)| ≤
n∑

i=1

|b1(ti)−b1(ti−1)|+
n∑

i=1

|b2(ti)−b2(ti−1)|

≤ |b1|(t) − |b1(0)| + |b2|(t) − |b2(0)|
It follows that the r.h.s of this last inequality is an upper-bound
of all sums

∑n
i=1 |b(ti) − b(ti−1)| as t0 ≤ . . . ≤ tn runs through

all finite sequences in [0, t]. |b|(t) − |b(0)| being the smallest of
such upper-bounds, we obtain:

|b|(t) − |b(0)| ≤ |b1|(t) − |b1(0)| + |b2|(t) − |b2(0)|
and from |b(0)| ≤ |b1(0)| + |b2(0)| we conclude that:

|b|(t) ≤ |b1|(t) + |b2|(t)
This being true for all t ∈ R+, we have proved |b| ≤ |b1| + |b2|.
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3. Suppose b is of finite variation. Then |b|(t) < +∞ for all t ∈ R+.
It follows from 1. that |b1|(t) < +∞ and |b2|(t) < +∞ for all t ∈
R+. So b1 and b2 are also of finite variation. Suppose conversely
that b1 and b2 are of finite variation. Then |b1|(t) < +∞ and
|b2|(t) < +∞ for all t ∈ R+. It follows from 2. that |b|(t) < +∞
for all t ∈ R+. So b is also of finite variation. We have proved
that b is of finite variation if and only if b1 and b2 are of finite
variation.

4. From 1. we have:

sup
t∈R+

|b1|(t) ≤ sup
t∈R+

|b|(t)

together with:
sup

t∈R+
|b2|(t) ≤ sup

t∈R+
|b|(t)

Furthermore, from 2. we obtain:

sup
t∈R+

|b|(t) ≤ sup
t∈R+

|b1|(t) + sup
t∈R+

|b2|(t)
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We conclude from definition (108) that b is of bounded variation
if and only if both b1 and b2 are also of bounded variation.

5. Take t = t0 = t1 = 0. From definition (108), we have:

|b(t1) − b(t0)| ≤ |b|(t) − |b(0)|
i.e. |b(0)| ≤ |b|(0). Furthermore, let t0 ≤ . . . ≤ tn be a finite
sequence in [0, t] = {0}. Then t0 = . . . = tn = 0 and:

n∑
i=1

|b(ti) − b(ti−1)| = 0

So 0 is an upper-bound of all sums
∑n

i=1 |b(ti) − b(ti−1)| as
t0 ≤ . . . ≤ tn runs through all finite sequences in [0, t] = {0}.
|b|(0)− |b(0)| being the smallest of such upper-bounds, we have
|b|(0) − |b(0)| ≤ 0. We have proved that |b|(0) = |b(0)|.

Exercise 2
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Exercise 3. Let b : R+ → R be differentiable, such that b′ is bounded
on each compact interval of R+. In particular b′ is bounded on [0, t]
for all t ∈ R+ and consequently:

sup
u∈[0,t]

|b′(u)| < +∞

Let t ∈ R+ be given and t0 ≤ . . . ≤ tn be a finite sequence in [0, t].
Let i ∈ Nn and suppose ti−1 < ti. b being differentiable on R+ is in
particular continuous. In particular b is continuous on [ti−1, ti] and
differentiable on ]ti−1, ti[. From Taylor’s theorem (39), there exists
ci ∈]ti−1, ti[ such that:

b(ti) − b(ti−1) = b′(ci) · (ti − ti−1)

and in particular:

|b(ti) − b(ti−1)| ≤ mt · (ti − ti−1)
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where mt = supu∈[0,t] |b′(u)| < +∞. It is clear that this last inequality
is still valid when ti−1 = ti. Hence:

n∑
i=1

|b(ti) − b(ti−1)| ≤ mt · (tn − t0) ≤ mt · t

It follows that mt ·t is an upper-bound of all sums
∑n

i=1 |b(ti)−b(ti−1)|
as t0 ≤ . . . ≤ tn runs through all finite sequences in [0, t]. |b|(t)−|b(0)|
being the smallest of such upper-bounds, we obtain |b|(t) − |b(0)| ≤
mt · t and finally |b|(t) ≤ |b(0)| + mt · t < +∞. We have proved that
b is of finite variation.

Exercise 3
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Exercise 4. Let b : R+ → C be of class C1. Then both Re(b) and
Im(b) are of class C1. In particular, they are differentiable, and from
theorem (37) their derivatives are bounded on any compact subset of
R+. From exercise (3), Re(b) and Im(b) are both of finite variation.
It follows from exercise (2) that b is also of finite variation.

Exercise 4
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Exercise 5.

1. Let f : (R+,B(R+)) → (C,B(C)) be a measurable map such
that

∫ t

0 |f(s)|ds < +∞ for all t ∈ R+. Let b(t) =
∫ t

0 f(s)ds. Let
t ∈ R+ be given and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]:

n∑
i=1

|b(ti) − b(ti−1)| =
n∑

i=1

∣∣∣∣
∫

f(s)1]ti−1,ti](s)ds

∣∣∣∣
≤

n∑
i=1

∫
|f(s)|1]ti−1,ti](s)ds

=
∫

|f(s)|1]t0,tn](s)ds

≤
∫ t

0

|f(s)|ds

So
∫ t

0
|f(s)|ds is an upper-bound of all sums

∑n
i=1 |b(ti)−b(ti−1)|

as t0 ≤ . . . ≤ tn runs through all finite sequences in [0, t]. Since
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|b|(t) − |b(0)| is the smallest of such upper-bounds, we obtain
|b|(t) − |b(0)| ≤ ∫ t

0 |f(s)|ds and since b(0) = 0 we have proved
that for all t ∈ R+:

|b|(t) ≤
∫ t

0

|f(s)|ds < +∞

In particular, b is a map of finite variation.

2. Suppose f ∈ L1
C(R+,B(R+), ds). Then

∫
R+ |f |ds < +∞, and

from 1. we have for all t ∈ R+:

|b|(t) ≤
∫ t

0

|f(s)|ds ≤
∫
R+

|f(s)|ds

In particular:

sup
t∈R+

|b|(t) ≤
∫
R+

|f(s)|ds < +∞

We conclude from definition (108) that b is of bounded variation.

Exercise 5
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Exercise 6. Let b, b′ : R+ → C be two maps and α ∈ C. Define
c = b+αb′. Let t ∈ R+ and t0 ≤ . . . ≤ tn be a finite sequence in [0, t].
Then:

n∑
i=1

|c(ti) − c(ti−1)| ≤
n∑

i=1

|b(ti) − b(ti−1)| + |α|
n∑

i=1

|b′(ti) − b′(ti−1)|

≤ |b|(t) − |b(0)| + |α| · (|b′|(t) − |b′(0)|)
It follows that the r.h.s of this last inequality is an upper-bound of
all sums

∑n
i=1 |c(ti) − c(ti−1)| as t0 ≤ . . . ≤ tn runs through all finite

sequences in [0, t]. |c|(t) − |c(0)| being the smallest of such upper-
bounds, we obtain:

|c|(t) − |c(0)| ≤ |b|(t) − |b(0)| + |α| · (|b′|(t) − |b′(0)|)
Since |c(0)| ≤ |b(0)| + |α| · |b′(0)|, we conclude that for all t ∈ R+:

|c|(t) ≤ |b|(t) + |α| · |b′|(t)
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Hence, if b and b′ are of finite variation, c = b + αb′ is also of finite
variation. Furthermore, we have:

sup
t∈R+

|c|(t) ≤ sup
t∈R+

|b|(t) + |α| · sup
t∈R+

|b′|(t)

So b, b′ of bounded variation ⇒ c of bounded variation.
Exercise 6

www.probability.net

http://www.probability.net


Solutions to Exercises 45

Exercise 7.

1. Let t ∈ R+ and s0 ≤ . . . ≤ sp, p ≥ 1, be a finite sequence in
[0, t]. We define:

S
�
=

p∑
j=1

|b(sj) − b(sj−1)| (2)

Let A = {s0, . . . , sp}. If cardA = 1, then s0 = . . . = sp, and it is
clear from (2) that S = 0. We assume that cardA ≥ 2. Then A
is a subset of [0, t] with cardA ≥ 2, and consequently A ∈ S(t).
We shall prove that S = S(A). Let t0 < . . . < tn be distinct in
[0, t] such that A = {t0, . . . , tn}. By definition:

S(A)
�
=

n∑
i=1

|b(ti) − b(ti−1)| (3)

Since A = {t0, . . . , tn} = {s0, . . . , sp}, it is intuitively fairly
obvious from (2) and (3) that S = S(A). After all, the only
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difference between the ti’s and the sj ’s (both are ordered, i.e.
t0 < . . . < tn and s0 ≤ . . . ≤ sp) is that the former are assumed
to be distinct and not the latter, and any ’repetition’ in the sj ’s
will not affect the sum in (2) as the corresponding term |b(sj)−
b(sj−1)| is nil. We may choose to go no further and rely solely
on intuition to conclude that S = S(A). To manufacture a more
formal proof of the fact that S = S(A) (which may not be that
pointless for a student in search of more technical strength), one
may proceed with an induction argument based on the difference
p−n. Since cardA = n+1 and A = {s0, . . . , sp}, we have n ≤ p.
If n = p, then sk = tk for all k = 0, . . . , n (the tk’s and sk’s are
ordered), and it is clear from (2) and (3) that S = S(A). So
S = S(A) is proved when p − n = 0. Suppose that S = S(A) is
proved when p−n = k for k ≥ 0, and assume that p−n = k+1.
In particular p > n. Since A = {t0, . . . , tn} = {s0, . . . , sp}, it is
impossible that all sj ’s be distinct, and consequently the integer:

j0 = min{j : j ∈ {1, . . . , p} , sj = sj−1}
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as the smallest element of an non-empty subset of N is well-
defined. Let s′0 ≤ . . . ≤ s′p−1 be defined as:

s′k =
{

sk if k ≤ j0 − 1
sk+1 if k ≥ j0

for k = 0, . . . , p − 1. Informally, the finite sequence s′0 ≤ . . . ≤
s′p−1 is nothing but the sequence s0 ≤ . . . ≤ sp where the ’du-
plicated point’ sj0 has been ’taken out’. The sum S′ associated
with s′0 ≤ . . . ≤ s′p−1 is given similarly to (2) as:

S′ =
p−1∑
j=1

|b(s′j) − b(s′j−1)| (4)

We shall prove formally that S = S′ (which is also intuitively
obvious in the light of (2) and (4)) by distinguishing three pos-
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sible cases. Suppose j0 = p. Then (4) can be re-expressed as:

S′ =
j0−1∑
j=1

|b(sj) − b(sj−1)|

=
j0∑

j=1

|b(sj) − b(sj−1)|

=
p∑

j=1

|b(sj) − b(sj−1)| = S

where the fact that sj0 = sj0−1 was used for the second equality.
Suppose that j0 = p − 1. Then (4) can be re-expressed as:

S′ =
j0−1∑
j=1

|b(sj) − b(sj−1)| + |b(sj0+1) − b(sj0−1)|
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=
j0−1∑
j=1

|b(sj) − b(sj−1)| + |b(sj0+1) − b(sj0)|

=
j0+1∑
j=1

|b(sj) − b(sj−1)|

=
p∑

j=1

|b(sj) − b(sj−1)| = S

where the fact that sj0 = sj0−1 was used for the third equality.
Suppose lastly that j0 < p − 1. Then (4) can be split in three:
j0−1∑
j=1

|b(sj)−b(sj−1)|+|b(sj0+1)−b(sj0−1)|+
p−1∑

j=j0+1

|b(sj+1)−b(sj)|
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which can be re-expressed as:
j0−1∑
j=1

|b(sj)−b(sj−1)|+ |b(sj0+1)−b(sj0)|+
p∑

j=j0+2

|b(sj)−b(sj−1)|

and finally from |b(sj0) − b(sj0−1)| = 0, we obtain:

S′ =
p∑

j=1

|b(sj) − b(sj−1)| = S

In all cases, we have proved that S = S′. However, it is clear
that {s′0, . . . , s′p−1} = A = {t0, . . . , tn} and from our induction
hypothesis, since p−1−n = k, we have S′ = S(A). We conclude
that S = S(A) and our induction hypothesis is proved for p−n =
k + 1. This completes the induction argument and we have
showed that S = S(A). For all t ∈ R+ and s0 ≤ . . . ≤ sp

finite sequences in [0, t] (with p ≥ 1 as always, in line with
definition (108)), then if S is defined by (2), either S = 0 or
S = S(A) for some A ∈ S(t).
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2. Let t ∈ R+ and a(t) = sup{S(A) : A ∈ S(t)}. Let s0 ≤ . . . ≤ sp,
p ≥ 1, be a finite sequence in [0, t]. Define:

S =
p∑

j=1

|b(sj) − b(sj−1)|

From 1. either S = 0 or S = S(A) for some A ∈ S(t). In any
case, a(t) being an upper-bound of all S(A)’s, we have S ≤ a(t).
So a(t) is an upper-bound of all sums

∑p
j=1 |b(sj) − b(sj−1)| as

s0 ≤ . . . ≤ sp runs through all finite sequences (with p ≥ 1) in
[0, t]. Since |b|(t) − |b(0)| is the smallest of such upper-bounds,
we have |b|(t)−|b(0)| ≤ a(t). Let A ∈ S(t). Let t0 < . . . < tn be
distinct in [0, t] such that A = {t0, . . . , tn}. Then, by definition,
the sum S(A) is given by:

S(A) =
n∑

i=1

|b(ti) − b(ti−1)|

In particular, |b|(t) − |b(0)| being an upper-bound of all sums
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∑n
i=1 |b(ti) − b(ti−1)| as t0 ≤ . . . ≤ tn runs through all finite

sequences (with n ≥ 1) in [0, t], we have S(A) ≤ |b|(t) − |b(0)|.
It follows that |b|(t) − |b(0)| is an upper-bound of all S(A)’s
with A ∈ S(t). Since a(t) is the smallest of such upper-bounds,
we obtain a(t) ≤ |b|(t) − |b(0)|. We have proved that a(t) =
|b|(t) − |b(0)| for all t ∈ R+, or equivalently:

|b|(t) = |b(0)| + sup{S(A) : A ∈ S(t)}

3. Let A ∈ S(t) and s ∈ [0, t]. Then A ∪ {s} is a subset of [0, t]
with card(A ∪ {s}) ≥ 2. So S(A ∪ {s}) is well-defined. Let
t0 < . . . < tn be distinct in [0, t] such that A = {t0, . . . , tn}.
Then, by definition:

S(A) =
n∑

i=1

|b(ti) − b(ti−1)|

If s ∈ A then A ∪ {s} = A and S(A) = S(A ∪ {s}). We assume
that s �∈ A. There are three possible cases to consider: firstly
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s < t0, secondly tj−1 < s < tj for some j = 1, . . . , n and thirdly
tn < s. In the first case we have:

S(A ∪ {s}) = |b(t0) − b(s)| + S(A)

and in the third case:

S(A ∪ {s}) = S(A) + |b(s) − b(tn)|
In the second case, S(A ∪ {s}) can be split into four parts:

j−1∑
i=1

|b(ti) − b(ti−1)| + |b(s) − b(tj−1)| + |b(tj) − b(s)|

+
n∑

i=j+1

|b(ti) − b(ti−1)|

and from |b(tj) − b(tj−1)| ≤ |b(s) − b(tj−1)| + |b(tj) − b(s)| we
conclude that S(A) ≤ S(A ∪ {s}). In any case, we have proved
that S(A) ≤ S(A ∪ {s}).

www.probability.net

http://www.probability.net


Solutions to Exercises 54

4. Let A, B ∈ S(t) such that A ⊆ B. We shall prove that S(A) ≤
S(B) using an induction argument based on the cardinality of
B \ A. If card(B \ A) = 0, then A = B and S(A) = S(B). We
assume that S(A) ≤ S(B) is true when card(B \ A) = k for
k ≥ 0, and that card(B \ A) = k + 1. In particular B \ A �= ∅
and there exists s ∈ B \A. From 3. we have S(A) ≤ S(A∪{s}).
Furthermore, A ∪ {s} is an element of S(t) with A ∪ {s} ⊆ B
and card(B \ (A∪ {s})) = k. From our induction hypothesis, it
follows that S(A∪{s}) ≤ S(B). We conclude that S(A) ≤ S(B)
and the induction hypothesis is proved for card(B \A) = k + 1.
This completes the induction argument, and we have proved
that S(A) ≤ S(B) for all A, B ∈ S(t) with A ⊆ B.

5. Let t0 ≤ . . . ≤ tn, n ≥ 1, and s0 ≤ . . . ≤ sp, p ≥ 1, be finite
sequences in [0, t] such that {t0, . . . , tn} ⊆ {s0, . . . , sp}. Define:

S =
n∑

i=1

|b(ti) − b(ti−1)|
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and:

S′ =
p∑

j=1

|b(sj) − b(sj−1)|

Let A = {t0, . . . , tn} and B = {s0, . . . , sp}. If cardA = 1 then
S = 0 and in particular S ≤ S′. We assume that cardA ≥ 2.
Then cardB ≥ 2 and looking back at the proof of 1. we have
S = S(A) and S′ = S(B). Since A ⊆ B, it follows from 4. that
S(A) ≤ S(B). We conclude that S ≤ S′.

Exercise 7
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Exercise 8.

1. Let s0 ≤ . . . ≤ sp and t0 ≤ . . . ≤ tn be finite sequences in [0, s]
and [s, t] respectively, n, p ≥ 1. s0 ≤ . . . sp ≤ t0 ≤ . . . ≤ tn is
a finite sequence in [0, t], with n + p + 2 terms and associated
sum:

p∑
j=1

|b(sj) − b(sj−1)| + |b(t0) − b(sp)| +
n∑

i=1

|b(ti) − b(ti−1)| (5)

From definition (108), |b|(t) − |b(0)| is an upper-bound of all
sums

∑m
k=1 |b(uk)− b(uk−1)| as u0 ≤ . . . ≤ um runs through all

finite sequences in [0, t], m ≥ 1. So |b|(t)− |b(0)| is greater than
or equal to (5). In particular, we have:

p∑
j=1

|b(sj) − b(sj−1)| +
n∑

i=1

|b(ti) − b(ti−1)| ≤ |b|(t) − |b(0)|

2. Let s0 ≤ . . . ≤ sp be a finite sequence in [0, s], p ≥ 1. It
follows from 1. that |b|(t)− |b(0)| −∑p

j=1 |b(sj)− b(sj−1)| is an
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upper-bound of all sums
∑n

i=1 |b(ti) − b(ti−1)| as t0 ≤ . . . ≤ tn
runs through all finite sequences in [s, t], n ≥ 1. Since δ is the
smallest of such upper-bounds, we obtain:

δ ≤ |b|(t) − |b(0)| −
p∑

j=1

|b(sj) − b(sj−1)|

b being of finite variation we have |b|(t) < +∞ and consequently
δ < +∞. The previous inequality can be re-arranged as:

p∑
j=1

|b(sj) − b(sj−1)| ≤ |b|(t) − |b(0)| − δ

It follows that |b|(t) − |b(0)| − δ is an upper-bound of all sums∑p
j=1 |b(sj) − b(sj−1)| as s0 ≤ . . . ≤ sp runs through all finite

sequences in [0, s], p ≥ 1. Since |b|(s) − |b(0)| is the smallest of
such upper-bounds, we obtain:

|b|(s) − |b(0)| ≤ |b|(t) − |b(0)| − δ
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and all terms being finite, we conclude that:

δ ≤ |b|(t) − |b|(s)

3. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], n ≥ 1. We assume
that s = tj for some j with 0 < j < n. Then t0 ≤ . . . ≤ tj is a
finite sequence in [0, s], j ≥ 1, and consequently:

j∑
i=1

|b(ti) − b(ti−1)| ≤ |b|(s) − |b(0)| (6)

Furthermore, tj ≤ . . . ≤ tn is a finite sequence in [s, t] (with
n − j + 1 ≥ 2 terms) and consequently:

n∑
i=j+1

|b(ti) − b(ti−1)| ≤ δ (7)
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From (6) and (7) we conclude that:
n∑

i=1

|b(ti) − b(ti−1)| ≤ |b|(s) − |b(0)| + δ (8)

4. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], n ≥ 1. We
claim that inequality (8) still holds, despite not having made
the assumption that s = tj for some j with 0 < j < n. Consider
the finite sequence 0 ≤ t0 ≤ . . . ≤ tn ≤ t in [0, t] (with n + 3
terms), which we may denote s′0 ≤ . . . ≤ s′n+2 (how each s′k is
defined is obvious). Since s ∈ [0, t] we claim that there exists
p ∈ {1, . . . , n + 2} such that s′p−1 ≤ s ≤ s′p. A formal proof of
this (intuitively obvious) fact can be obtained as follows: If s =
s′0 = 0, then in particular s′0 ≤ s ≤ s′1. We assume that s′0 < s.
Since s ≤ t = s′n+2, the set {j : s ≤ s′j , j = 0, . . . , n+2} is a non-
empty subset of N, and therefore has a smallest element, say p.
Since s′0 < s we have p ≥ 1, and furthermore s′p−1 < s ≤ s′p.
In particular, we have been able to find p ∈ {1, . . . , n + 2} such
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that s′p−1 ≤ s ≤ s′p. Consider the finite sequence s′0 ≤ . . . ≤
s′p−1 ≤ s ≤ s′p ≤ . . . ≤ s′n+2 in [0, t] (with n + 4 terms), which
we may denote s0 ≤ . . . ≤ sn+3. This finite sequence in [0, t] is
such that there exists j with s = sj and 0 < j < n + 3. From 3.
we obtain:

n+3∑
i=1

|b(si) − b(si−1)| ≤ |b|(s) − |b(0)| + δ

However, it is clear that {t0, . . . , tn} ⊆ {s0, . . . , sn+3}, and it
follows from 5. of exercise (7) that:

n∑
i=1

|b(ti) − b(ti−1)| ≤
n+3∑
i=1

|b(si) − b(si−1)|

We conclude that:
n∑

i=1

|b(ti) − b(ti−1)| ≤ |b|(s) − |b(0)| + δ
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5. It follows from 4. that |b|(s) − |b(0)| + δ is an upper-bound of
all sums

∑n
i=1 |b(ti) − b(ti−1)| as t0 ≤ . . . ≤ tn runs through

all finite sequences in [0, t], n ≥ 1. Since |b|(t) − |b(0)| is the
smallest of such upper-bounds, we obtain:

|b|(t) − |b(0)| ≤ |b|(s) − |b(0)| + δ

Equivalently, since |b|(s) < +∞, |b|(t) − |b|(s) ≤ δ. Having
proved the reverse inequality in 2. we conclude that:

|b|(t) − |b|(s) = δ = sup
n∑

i=1

|b(ti) − b(ti−1)|

where the supremum is taken over all finite sequences t0 ≤ . . . ≤
tn in [s, t], n ≥ 1. This completes the proof of theorem (80).

Exercise 8
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Exercise 9. Let b : R+ → C be a map of finite variation. Let
s, t ∈ R+, s ≤ t. A consequence of theorem (80) is that |b|(s) ≤ |b|(t).
So |b| is non-decreasing. From 5. of exercise (2), we have |b|(0) = |b(0)|
and in particular |b|(0) ≥ 0. From exercise (1), it follows that the total
variation ||b|| of |b| is nothing but itself, i.e. ||b|| = |b|.

Exercise 9
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Exercise 10.

1. Let b : R+ → R be a map of finite variation. From defini-
tion (109), we have:

|b|+ + |b|− =
1
2
(|b| + b) +

1
2
(|b| − b) = |b|

and furthermore:

|b|+ − |b|− =
1
2
(|b| + b) − 1

2
(|b| − b) = b

2. Since |b|(0) = |b(0)|, we have:

|b|+(0) =
1
2
(|b(0)| + b(0))

�
= b+(0)

and:
|b|−(0) =

1
2
(|b(0)| − b(0))

�
= b−(0)

In particular, |b|+(0) ≥ 0 and |b|−(0) ≥ 0.
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3. Let s, t ∈ R+, s ≤ t. Then s ≤ t is a finite sequence in [s, t]
(with 2 terms). It follows from theorem (80) that:

|b(t) − b(s)| ≤ |b|(t) − |b|(s) (9)

4. Let s, t ∈ R+, s ≤ t. It follows from (9) that:

b(s) − b(t) ≤ |b|(t) − |b|(s)
and:

b(t) − b(s) ≤ |b|(t) − |b|(s)
we conclude that |b|+(s) ≤ |b|+(t) and |b|−(s) ≤ |b|−(t). So |b|+
and |b|− are non-decreasing.

Exercise 10
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Exercise 11. Let b : R+ → C be a map of finite variation. Let
u = Re(b) and v = Im(b). From exercise (2), u, v : R+ → R are
both of finite variation. Let b1 = |u|+, b2 = |u|−, b3 = |v|+ and
b4 = |v|−. From exercise (10), b1, b2, b3 and b4 are all non-decreasing
maps with bi(0) ≥ 0, i = 1, . . . , 4. Furthermore, since u = b1 − b2 and
v = b3 − b4, we have b = b1 − b2 + i(b3 − b4). Conversely, suppose
b = b1 − b2 + i(b3 − b4) where each bi, i = 1, . . . , 4 is non-decreasing
with bi(0) ≥ 0. From exercise (1), each bi is a map of finite variation.
From exercise (6), it follows that b is also a map of finite variation.
We have proved that a map b : R+ → C is of finite variation, if and
only if there exist b1, b2, b3 and b4 non-decreasing with bi(0) ≥ 0,
i = 1, . . . , 4, such that b = b1 − b2 + i(b3 − b4).

Exercise 11
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Exercise 12.

1. Let b : R+ → C be a right-continuous map of finite varia-
tion. Let x0 ∈ R+. From exercise (9), |b| : R+ → R+ is
non-decreasing with |b|(0) ≥ 0. In particular, for all t ∈ R+,
x0 < t, we have |b|(x0) ≤ |b|(t). So |b|(x0) is a lower-bound of
all |b|(t)’s as t ∈ R+, x0 < t. If we define l = infx0<t |b|(t),
then l is the greatest of such lower-bounds, and consequently
|b|(x0) ≤ l. In particular −∞ < l. Furthermore, t being an
arbitrary element of R+ with x0 < t, we have l ≤ |b|(t) and in
particular, since b is of finite variation, l < +∞. So l is a well-
defined element of R. We claim that |b|(t) → l as t → x0 with
x0 < t. Let ε > 0. Since l < l + ε, l + ε cannot be a lower-bound
of all |b|(t)’s as x0 < t. Hence, there exists t1 ∈ R+, x0 < t1,
such that |b|(t1) < l + ε. |b| being non-decreasing, we have:

t ∈]x0, t1[ ⇒ l ≤ |b|(t) ≤ l + ε

This shows that the limit limt↓↓x0 |b|(t) exists and is equal to l.
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This limit is denoted |b|(x0+). We have proved that for all x0 ∈
R+, the limit |b|(x0+) exists in R, and |b|(x0+) = inft<x0 |b|(t).

2. From 1. we have |b|(x0+) = infx0<t |b|(t). However, since |b| is
non-decreasing, for all t ∈ R+, x0 < t, we have |b|(x0) ≤ |b|(t).
It follows that |b|(x0) is a lower-bound of all |b|(t)’s as t ∈ R+,
x0 < t. Since |b|(x0+) is the greatest of such lower-bounds, we
conclude that |b|(x0) ≤ |b|(x0+).

3. Let ε > 0. Since |b|(x0+) = limt↓↓x0 |b|(t) exists in R, there
exists y1 ∈ R+, x0 < y1, such that:

u ∈]x0, y1] ⇒ | |b|(u) − |b|(x0+) | ≤ ε

4
In particular, from the triangle inequality:

u, v ∈]x0, y1] ⇒ | |b|(v) − |b|(u) | ≤ ε

2
(10)

Furthermore, since b is right-continuous, in particular it is right-
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continuous at x0. There exists y2 ∈ R+, x0 < y2, such that:

u ∈]x0, y2] ⇒ |b(u) − b(x0)| ≤ ε

2
(11)

Taking y0 = min(y1, y2), y0 ∈ R+, x0 < y0, and from (11):

u ∈]x0, y0] ⇒ |b(u) − b(x0)| ≤ ε

2
Furthermore, y0 ∈]x0, y1] and from (10) we have:

u ∈]x0, y0] ⇒ |b|(y0) − |b|(u) ≤ ε

2

Exercise 12
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Exercise 13.

1. Let t0 ≤ . . . ≤ tn, n ≥ 1, be a finite sequence in [0, y0], for
which there exists j with 0 < j < n− 1 (so in particular n ≥ 3),
x0 = tj and x0 < tj+1. Then t0 ≤ . . . ≤ tj is a finite sequence
in [0, x0] with j ≥ 1. From definition (108), we have:

j∑
i=1

|b(ti) − b(ti−1)| ≤ |b|(x0) − |b(0)| (12)

2. Since tj = x0 and tj+1 ∈]x0, y0], it follows from exercise (12):

|b(tj+1) − b(tj)| ≤ ε

2
(13)

3. Since tj+1 ≤ . . . ≤ tn is a finite sequence in [tj+1, y0] (with
n − j ≥ 2 terms), from theorem (80) we have:

n∑
i=j+2

|b(ti) − b(ti−1)| ≤ |b|(y0) − |b|(tj+1)
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and furthermore, since tj+1 ∈]x0, y0], from exercise (12) we have:

|b|(y0) − |b|(tj+1) ≤ ε

2
We conclude that:

n∑
i=j+2

|b(ti) − b(ti−1)| ≤ ε

2
(14)

4. Let t0 ≤ . . . ≤ tn, n ≥ 1, be a finite sequence in [0, y0]. We
claim that:

n∑
i=1

|b(ti) − b(ti−1)| ≤ |b|(x0) − |b(0)| + ε (15)

In the case when there exists an index j with 0 < j < n−1, x0 =
tj and x0 < tj+1, we can apply 1. 2. 3. and adding (12), (13)
and (14) together, we obtain (15). Our task is to extend (15)
to the general case where there may not exists such an index j.
However, since x0 < y0, it is always possible to ’add points’ to
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the sequence t0 ≤ . . . ≤ tn so as to obtain s0 ≤ . . . ≤ sp in [0, y0]
with {t0, . . . tn} ⊆ {s0, . . . , sp} and x0 = sj , x0 < sj+1 for some
0 < j < p − 1. Applying (15) to the si’s, we obtain:

p∑
i=1

|b(si) − b(si−1)| ≤ |b|(x0) − |b(0)| + ε

However, from exercise (7), since {t0, . . . tn} ⊆ {s0, . . . , sp}:
n∑

i=1

|b(ti) − b(ti−1)| ≤
p∑

i=1

|b(si) − b(si−1)|

and we conclude that (15) is true.

5. It follows from (15) that |b|(x0)−|b(0)|+ ε is an upper-bound of
all sums

∑n
i=1 |b(ti)− b(ti−1)| as t0 ≤ . . . ≤ tn runs through the

set of all finite sequences in [0, y0], n ≥ 1. Since |b|(y0) − |b(0)|
is the smallest of such upper-bounds, we obtain:

|b|(y0) − |b(0)| ≤ |b|(x0) − |b(0)| + ε
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and finally |b|(y0) ≤ |b|(x0) + ε.

6. Given ε > 0, in the light of 5. and exercise (12), we have found
y0 ∈ R+, x0 < y0, such that |b|(y0) ≤ |b|(x0) + ε. However,
still from exercise (12), we have |b|(x0+) = infx0<t |b|(t). In
particular, |b|(x0+) is a lower-bound of all |b|(t)’s with t ∈
R+, x0 < t. So |b|(x0+) ≤ |b|(y0), and we have proved that
|b|(x0+) ≤ |b|(x0) + ε. This being true for all ε > 0, we ob-
tain |b|(x0+) ≤ |b|(x0). Having proved in exercise (12) that
|b|(x0) ≤ |b|(x0+), we conclude that |b|(x0) = |b|(x0+), i.e.

|b|(x0) = lim
t↓↓x0

|b|(t)

It follows that |b| is right-continuous at x0. This being true for
all x0 ∈ R+, the map |b| : R+ → R+ is right-continuous.

Exercise 13
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Exercise 14.

1. Let b : R+ → C be a left-continuous map of finite variation. Let
x0 ∈ R+\{0}. Let l = supt<x0

|b|(t). Since |b| is non-decreasing,
for all t ∈ R+, t < x0, we have |b|(t) ≤ |b|(x0). It follows that
|b|(x0) is an upper-bound of all |b|(t)’s as t ∈ R+, t < x0. Since
l is the smallest of such upper-bounds, we obtain l ≤ |b|(x0). In
particular, since b is of finite variation, l < +∞. Furthermore,
since 0 < x0, there exists some t ∈ R+ with t < x0. For any such
t we have |b|(t) ≤ l and it follows in particular that −∞ < l.
So l is a well-defined element of R. We claim that |b|(t) → l as
t → x0 with t < x0. Let ε > 0. Since l − ε < l, l − ε cannot be
an upper-bound of all |b|(t)’s as t < x0. There exists t1 ∈ R+,
t1 < x0, such that l− ε < |b|(t1). Since |b| is non-decreasing, we
obtain:

t ∈ [t1, x0[ ⇒ l − ε < |b|(t) ≤ l

This shows that the limit limt↑↑x0 |b|(t) exists in R and is equal
to l. This limit is denoted |b|(x0−). We have proved that for

www.probability.net

http://www.probability.net


Solutions to Exercises 74

all x0 ∈ R+ \ {0}, the limit |b|(x0−) exists in R and is equal to
supt<x0

|b|(t).
2. From 1. we have |b|(x0−) = supt<x0

|b|(t). However, since |b|
is non-decreasing, for all t ∈ R+, t < x0, |b|(t) ≤ |b|(x0). So
|b|(x0) is an upper-bound of all |b|(t)’s as t ∈ R+, t < x0.
Since |b|(x0−) is the smallest of such upper-bounds, we obtain
|b|(x0−) ≤ |b|(x0).

3. Let ε > 0. By definition of the left-hand limit |b|(x0−), there
exists y1 ∈ [0, x0[ such that:

u ∈ [y1, x0[ ⇒ | |b|(u) − |b|(x0−) | ≤ ε

4
In particular, from the triangle inequality:

u, v ∈ [y1, x0[ ⇒ | |b|(u) − |b|(v) | ≤ ε

2
(16)

Furthermore, from the left-continuity of b at x0, there exists
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y2 ∈ [0, x0[, such that:

u ∈ [y2, x0[ ⇒ |b(x0) − b(u)| ≤ ε

2
(17)

Taking y0 = max(y1, y2), y0 ∈ [0, x0[ and from (17):

u ∈ [y0, x0[ ⇒ |b(x0) − b(u)| ≤ ε

2
Furthermore, since y0 ∈ [y1, x0[, we have from (16):

u ∈ [y0, x0[ ⇒ |b|(u) − |b|(y0) ≤ ε

2

Exercise 14
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Exercise 15.

1. By definition, k = max{i : j ≤ i, ti < x0}. Since tj = y0 and
y0 ∈ [0, x0[, we have tj < x0. It follows that j ≤ k. Furthermore,
since tn = x0, we have k ≤ n − 1. So j ≤ k ≤ n − 1. Since
j ≤ k, we have tj ≤ tk and from tj = y0 we obtain y0 ≤ tk.
Furthermore, it is clear that tk < x0. So tk ∈ [y0, x0[.

2. t0 ≤ . . . ≤ tj being a sequence in [0, y0] (with j ≥ 1):

j∑
i=1

|b(ti) − b(ti−1)| ≤ |b|(y0) − |b(0)| (18)

3. If j = k, the sum
∑k

i=j+1 |b(ti)− b(ti−1)| is by convention set to
zero. So there is nothing to prove. We assume that j < k. Then
tj ≤ . . . ≤ tk is a finite sequence in [y0, tk] (with k − j + 1 ≥ 2
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terms). From theorem (80), we have:

k∑
i=j+1

|b(ti) − b(ti−1)| ≤ |b|(tk) − |b|(y0)

Furthermore from 1. we have tk ∈ [y0, x0[ and consequently from
exercise (14):

|b|(tk) − |b|(y0) ≤ ε

2
We conclude that:

k∑
i=j+1

|b(ti) − b(ti−1)| ≤ ε

2
(19)

4. By definition, k is the greatest index with j ≤ k and tk < x0.
Hence, for all i = k + 1, . . . , n, we have ti = x0. It follows that:

n∑
i=k+1

|b(ti) − b(ti−1)| = |b(x0) − b(tk)|
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Furthermore, since tk ∈ [y0, x0[, from exercise (14):

|b(x0) − b(tk)| ≤ ε

2
We conclude that:

n∑
i=k+1

|b(ti) − b(ti−1)| ≤ ε

2
(20)

5. Let t0 ≤ . . . ≤ tn, n ≥ 1, be a finite sequence in [0, x0]. In the
case when tn = x0 and there exists an index j with 0 < j < n−1
and tj = y0, we obtain from (18), (19) and (20):

n∑
i=1

|b(ti) − b(ti−1)| ≤ |b|(y0) − |b(0)| + ε (21)

Our task is to extend (21) to the general case when t0 ≤ . . . ≤ tn
may not satisfy this property. However, it is always possible to
’add points’ to the finite sequence t0 ≤ . . . ≤ tn, so as to obtain
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s0 ≤ . . . ≤ sp in [0, x0] with {t0, . . . , tn} ⊆ {s0, . . . , sp}, such
that sp = x0 and for which there exists j with 0 < j < p − 1
and sj = y0. Applying (21) to the sequence s0 ≤ . . . ≤ sp:

p∑
i=1

|b(si) − b(si−1)| ≤ |b|(y0) − |b(0)| + ε

and since {t0, . . . , tn} ⊆ {s0, . . . , sp}, from exercise (7):
n∑

i=1

|b(ti) − b(ti−1)| ≤
p∑

i=1

|b(si) − b(si−1)|

We conclude that (21) is true in the general case.

6. It follows from (21) that |b|(y0)−|b(0)|+ ε is an upper-bound of
all sums

∑n
i=1 |b(ti)− b(ti−1)| as t0 ≤ . . . ≤ tn runs through the

set of all finite sequences in [0, x0], n ≥ 1. Since |b|(x0) − |b(0)|
is the smallest of such upper-bounds, we obtain:

|b|(x0) − |b(0)| ≤ |b|(y0) − |b(0)| + ε
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and finally |b|(x0) ≤ |b|(y0) + ε.

7. Since |b|(x0−) = supt<x0
|b|(t) and y0 ∈ [0, x0[, we have |b|(y0) ≤

|b|(x0−). It follows from 6. that |b|(x0) ≤ |b|(x0−) + ε. This
being true for all ε > 0, we obtain |b|(x0) ≤ |b|(x0−). Having
proved in exercise (14) that |b|(x0−) ≤ |b|(x0), we conclude that
|b|(x0) = |b|(x0−), i.e.

|b|(x0) = lim
t↑↑x0

|b|(t)

This shows that |b| is left-continuous at x0. This being true for
all x0 ∈ R+ \ {0}, we have proved that |b| is a left-continuous.

8. Let b : R+ → C be a map of finite variation. If b is right-
continuous, then |b| is right-continuous by virtue of exercise (13).
If b is left-continuous, we have just proved that |b| is also left-
continuous. It follows that if b is continuous then |b| is also
continuous. This completes the proof of theorem (81).

Exercise 15
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Exercise 16.

1. Let b : R+ → R be an R-valued map of finite variation. We
assume that b is right-continuous. From definition (109), the
positive variation of b is given by |b|+ = (|b| + b)/2. From
theorem (81), |b| is right-continuous. It follows that |b|+ is right-
continuous. Similarly, |b|− = (|b| − b)/2 is right continuous.

2. It follows likewise from theorem (81) that if b is left-continuous,
then |b|+ and |b|− are left-continuous. If b is continuous, then
|b|+ and |b|− are continuous.

Exercise 16
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Exercise 17. Let b : R+ → C be a right continuous map of finite
variation. Let u = Re(b) and v = Im(b). Define b1 = |u|+, b2 = |u|−,
b3 = |v|+ and b4 = |v|−. Then b = b1 − b2 + i(b3 − b4), and each
bi is non-decreasing with bi(0) ≥ 0 (see proof of exercise (11)). Fur-
thermore, since u and v are right-continuous maps of finite variation,
from exercise (16) we conclude that each bi is right-continuous.

Exercise 17
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Exercise 18.

1. Let b : R+ → C be a right-continuous map. Let t ∈ R+. For
all p ≥ 1, we define:

Sp
�
= |b(0)| +

2p∑
k=1

∣∣∣∣b
(

kt

2p

)
− b

(
(k − 1)t

2p

)∣∣∣∣
Then, given p ≥ 1, we have:

{kt/2p : k = 0, . . . , 2p} ⊆ {kt/2p+1 : k = 0, . . . , 2p+1}
and it follows from exercise (7) that:

2p∑
k=1

∣∣∣∣b
(

kt

2p

)
− b

(
(k − 1)t

2p

)∣∣∣∣ ≤
2p+1∑
k=1

∣∣∣∣b
(

kt

2p+1

)
− b

(
(k − 1)t

2p+1

)∣∣∣∣
We conclude that Sp ≤ Sp+1.
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2. It is clear from definition (108) that:

2p∑
k=1

∣∣∣∣b
(

kt

2p

)
− b

(
(k − 1)t

2p

)∣∣∣∣ ≤ |b|(t) − |b(0)|

or equivalently Sp ≤ |b|(t). It follows that |b|(t) is an upper-
bound of all Sp’s. Since S = supp≥1 Sp is the smallest of such
upper-bounds, we obtain S ≤ |b|(t).

Exercise 18
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Exercise 19.

1. Let t0 < . . . < tn be a finite sequence of distinct elements of [0, t].
Let ε > 0. Let i ∈ {0, . . . , n − 1}. We want to find an integer
pi ≥ 1 and some qi ∈ {0, . . . , 2pi}, such that ti ≤ qit/2pi < ti+1

and: ∣∣∣∣b(ti) − b

(
qit

2pi

)∣∣∣∣ ≤ ε

When i = n, we want to find an integer pn ≥ 1 and some
qn ∈ {0, . . . , 2pn} such that tn ≤ qnt/2pn ≤ t and:∣∣∣∣b(tn) − b

(
qnt

2pn

)∣∣∣∣ ≤ ε

If tn = t, then pn = 1 and qn = 2 will satisfy our requirements,
and we only need to consider the case of i ∈ {0, . . . , n − 1}. If
tn < t, then we may set tn+1 = t and we no longer need to treat
the case of i = n separately. Indeed, if we achieve the condition
ti ≤ qit/2pi < ti+1 for i = n, then in particular tn ≤ qnt/2pn ≤ t
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will be satisfied. Now, from the right-continuity of b at ti, there
exists si > ti such that:

u ∈ [ti, si[ ⇒ |b(ti) − b(u)| ≤ ε

Let ui = min(si, ti+1). Then ti < ui ≤ t, and:

u ∈ [ti, ui[ ⇒ ti ≤ u < ti+1 and |b(ti) − b(u)| ≤ ε

Hence, all we need to do is find u ∈ [ti, ui[ which can be written
as some qit/2pi. Note that since 0 ≤ t0 < t1 ≤ t, in particular
t > 0 and finding u ∈ [ti, ui[ of the form qit/2pi is equivalent to
finding u′ ∈ [ti/t, ui/t[ of the form qi/2pi . In other words, since
0 ≤ ti/t < ui/t ≤ 1, we are reduced to showing that any interval
[α, β[ where 0 ≤ α < β ≤ 1, contains a dyadic number of [0, 1],
i.e. a number of the form q/2p where p ≥ 1 and q ∈ {0, . . . , 2p}.
It is well-known that dyadic numbers are dense in [0, 1] and some
of us will be happy to conclude our proof here. For those who
do not wish to take the density of dyadic numbers for granted,
we may proceed as follows: We assume that 0 ≤ α < β ≤ 1.
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Choose an integer p ≥ 1 such that 2−p ≤ β − α, and consider
the set:

J = {r : r ∈ {0, . . . , 2p} , β ≤ r/2p}
Since r = 2p ∈ J , J is a non-empty subset of N, and therefore
has a smallest element, say q. Since β > 0, we have q ≥ 1 and
furthermore:

q − 1
2p

< β ≤ q

2p

However, since β − α ≥ 1/2p, we have:

α ≤ β − 1
2p

≤ q

2p
− 1

2p
=

q − 1
2p

It follows that α ≤ (q− 1)/2p < β and we have proved that any
non empty sub-interval [α, β[ of [0, 1] contains a dyadic num-
ber. This completes our proof. Coming back to our original
problem, we have proved that there exists integers pi ≥ 1 and
qi ∈ {0, . . . , 2pi}, i = 0, . . . , n, such that:

0 ≤ t0 ≤ q0t

2p0
< t1 ≤ q1t

2p1
< . . . < tn ≤ qnt

2pn
≤ t
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and: ∣∣∣∣b(ti) − b

(
qit

2pi

)∣∣∣∣ ≤ ε , ∀i = 0, . . . , n

2. Define p = maxi=0,...,n pi and ki = qi2(p−pi). Then p ≥ 1 and
from 0 ≤ qi ≤ 2pi we obtain 0 ≤ ki ≤ 2p. Furthermore, for all
i = 0, . . . , n, we have:

kit

2p
= qi2(p−pi)

t

2p
=

qit

2pi

We conclude from 1. that:

0 ≤ t0 ≤ k0t

2p
< t1 ≤ k1t

2p
< . . . < tn ≤ knt

2p
≤ t

and: ∣∣∣∣b(ti) − b

(
kit

2p

)∣∣∣∣ ≤ ε , ∀i = 0, . . . , n
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3. It follows from the inclusion:{
kit

2p
: i = 0, . . . , n

}
⊆

{
kt

2p
: k = 0, . . . , 2p

}

together with exercise (7), that:
n∑

i=1

∣∣∣∣b
(

kit

2p

)
− b

(
ki−1t

2p

)∣∣∣∣ ≤
2p∑

k=1

∣∣∣∣b
(

kt

2p

)
− b

(
(k − 1)t

2p

)∣∣∣∣
or equivalently:

n∑
i=1

∣∣∣∣b
(

kit

2p

)
− b

(
ki−1t

2p

)∣∣∣∣ ≤ Sp − |b(0)| (22)

4. Let i ∈ {1, . . . , n}. Then:

|b(ti) − b(ti−1)| ≤
∣∣∣∣b(ti) − b

(
kit

2p

)∣∣∣∣ +
∣∣∣∣b

(
kit

2p

)
− b

(
ki−1t

2p

)∣∣∣∣
+

∣∣∣∣b(ti−1) − b

(
ki−1t

2p

)∣∣∣∣
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≤ 2ε +
∣∣∣∣b

(
kit

2p

)
− b

(
ki−1t

2p

)∣∣∣∣
and consequently from (22):

n∑
i=1

|b(ti) − b(ti−1)| ≤ Sp − |b(0)| + 2nε (23)

Since S = supp≥1 Sp, in particular Sp ≤ S, and we obtain:
n∑

i=1

|b(ti) − b(ti−1)| ≤ S − |b(0)| + 2nε (24)

5. Having proved (24) for arbitrary ε > 0, we conclude that:
n∑

i=1

|b(ti) − b(ti−1)| ≤ S − |b(0)| (25)

6. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], n ≥ 1. If
card{t0, . . . , tn} = 1, then all ti’s are equal and (25) is true.
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We assume that card{t0, . . . , tn} ≥ 2. Let s0 < . . . < sp be
distinct in [0, t] such that {s0, . . . , sp} = {t0, . . . , tn}. Then,
inequality (25) holds for the sj ’s, i.e.:

p∑
j=1

|b(sj) − b(sj−1)| ≤ S − |b(0)| (26)

However, from exercise (7), since {t0, . . . , tn} ⊆ {s0, . . . , sp}:
n∑

i=1

|b(ti) − b(ti−1)| ≤
p∑

j=1

|b(sj) − b(sj−1)|

and it follows that (25) is true for the ti’s. Hence, we have proved
that (25) holds for all finite sequences t0 ≤ . . . ≤ tn in [0, t],
n ≥ 1. In other words, S − |b(0)| is an upper-bound of all sums∑n

i=1 |b(ti)− b(ti−1)| as t0 ≤ . . . ≤ tn runs through the set of all
finite sequences in [0, t], n ≥ 1. Since |b|(t)−|b(0)| is the smallest
of such upper-bounds, we obtain |b|(t)− |b(0)| ≤ S − |b(0)|, and
finally |b|(t) ≤ S.
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7. Let b : R+ → C be right-continuous. Let t ∈ R+. From 6.
we have |b|(t) ≤ S and we have proved in exercise (18) that
S ≤ |b|(t). It follows that |b|(t) = S. Furthermore, still from
exercise (18), the sequence (Sp)p≥1 is non-decreasing. Hence:

S = sup
p≥1

Sp = lim
p→+∞Sp ∈ [0, +∞]

we conclude that |b|(t) = limp→+∞ Sp, or equivalently:

|b|(t) = |b(0)| + lim
n→+∞

2n∑
k=1

∣∣∣∣b
(

kt

2n

)
− b

(
(k − 1)t

2n

)∣∣∣∣ (27)

This completes the proof of theorem (82) in the case when b
is right-continuous. We now assume that b is left-continuous
instead of right-continuous. In order to prove (27), we need to
show that given t ∈ R+, we have |b|(t) = S. It is clear that
S ≤ |b|(t) still holds, so we need to prove the reverse inequality
|b|(t) ≤ S, which we shall do with a very similar argument to
that contained in 1. to 6.. Let ε > 0 be given, and suppose
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t0 < . . . < tn is a finite sequence of distinct elements of [0, t].
From the left-continuity of b, there exists integers pi ≥ 1 and
qi ∈ {0, . . . , 2pi} such that:

0 ≤ q0t

2p0
≤ t0 <

q1t

2p1
≤ t1 < . . . <

qnt

2pn
≤ tn ≤ t

and: ∣∣∣∣b(ti) − b

(
qit

2pi

)∣∣∣∣ ≤ ε , ∀i = 0, . . . , n

Note that some extra care is required for t0. Indeed, if t0 = 0,
then there is no such thing as the left-continuity of b at t0. How-
ever, p0 = 1 and q0 = 0 will satisfy our requirements. Having
found the pi’s and the qi’s, we then define p = maxi=0,...,n pi

and ki = qi2(p−pi). Then p ≥ 1, 0 ≤ ki ≤ 2p and furthermore:

0 ≤ k0t

2p
≤ t0 <

k1t

2p
≤ t1 < . . . <

knt

2p
≤ tn ≤ t
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and: ∣∣∣∣b(ti) − b

(
kit

2p

)∣∣∣∣ ≤ ε , ∀i = 0, . . . , n

Using exercise (7), we then argue that:
n∑

i=1

∣∣∣∣b
(

kit

2p

)
− b

(
ki−1t

2p

)∣∣∣∣ ≤ Sp − |b(0)|

from which we obtain, just like in 4. and 5.:
n∑

i=1

|b(ti) − b(ti−1)| ≤ S − |b(0)|

This being true when the ti’s are distinct, is in fact true in
general, and we conclude that |b|(t) ≤ S. This completes the
proof of theorem (82).

Exercise 19
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Exercise 20. Let b : R+ → R+ be defined by b = 1Q+ . Since for all
n ≥ 1 and k = 0, . . . , n, the number k/2n is rational, we have:

2n∑
k=1

∣∣∣∣b
(

k

2n

)
− b

(
k − 1
2n

)∣∣∣∣ = 0

However, we claim that |b|(1) = +∞. Let n ≥ 1. Define:

t0 = 0, t2 =
1
n

, t4 =
2
n

, . . . , t2n =
n

n
= 1

and for all k ∈ {1, . . . , n}, let t2k−1 be an arbitrary irrational number
in ]t2k−2, t2k[. The fact that such irrational number exists, stems from
the density of irrational numbers in [0, 1], which we shall admit in this
tutorial. Hence, we have a finite sequence t0 ≤ t1 ≤ . . . ≤ t2n in [0, 1],
such that:

2n∑
i=1

|b(ti) − b(ti−1)| = 2n

www.probability.net

http://www.probability.net


Solutions to Exercises 96

It follows that 2n ≤ |b|(1), and this being true for all n ≥ 1, we
conclude that |b|(1) = +∞. We have proved that:

+∞ = |b|(1) �= lim
n→+∞

2n∑
k=1

|b(k/2n) − b((k − 1)/2n)| = 0

The purpose of this exercise is to illustrate the fact that the conclusion
of theorem (82) may not hold. This obviously does not contradict
theorem (82), as the map 1Q+ is neither left, nor right-continuous.

Exercise 20
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Exercise 21.

1. Let b : R+ → C be right-continuous of bounded variation.
Let b1 = Re(b) and b2 = Im(b). Then, b1 and b2 are both
right-continuous of bounded variations, and in particular right-
continuous of finite variations. Their positive and negative vari-
ations |b1|+, |b1|−, |b2|+ and |b2|− are right-continuous, non-
decreasing with non-negative initial values (see exercises (10)
and (16)). It follows from definition (24) that the Stieltjes mea-
sures d|b1|+, d|b1|−, d|b2|+ and d|b2|− are all well-defined mea-
sures on (R+,B(R+)).

2. Yes. It is still true if b is right-continuous of finite variation.
The assumption that b is in fact of bounded variation has not
been used in 1.

3. Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0, and let da be its associated Stieltjes measure (see
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definition (24)). Then for all n ≥ 1, we have:

da([0, n]) = da({0}) + da(]0, n]) = a(0) + a(n) − a(0) = a(n)

Furthermore, since [0, n] ↑ R+, using theorem (7):

da(R+) = lim
n→+∞ da([0, n])

It follows that da(R+) = limn→+∞ a(n) = a(∞). So da is a
finite measure, if and only if a(∞) < +∞. Now, b being of
bounded variation, we have:

|b|(∞) = lim
t→+∞ |b|(t) = sup

t∈R+
|b|(t) < +∞

From exercise (2) we have |b1| ≤ |b| and |b2| ≤ |b|. Furthermore
from exercise (10), |b1| = |b1|+ + |b1|− and |b2| = |b2|+ + |b2|−.
In particular, it follows that |b1|+ ≤ |b| and consequently:

|b1|+(∞) ≤ |b|(∞) < +∞
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We conclude that d|b1|+ is a finite measure on (R+,B(R+)).
Similarly, d|b1|−, d|b2|+ and d|b2|− are all finite measures.

4. We define:

db = d|b1|+ − d|b1|− + i(d|b2|+ − d|b2|−) (28)

Since d|b1|+, d|b1|−, d|b2|+ and d|b2|− are all finite measures, in
particular they are complex measures on (R+,B(R+)), i.e. ele-
ments of the C-vector space M1(R+,B(R+)). db being defined
by (28) as a linear combinations of elements of M1(R+,B(R+)),
is a well-defined complex measure on (R+,B(R+)).

5. From (28) and definition (24), we have:

db({0}) = d|b1|+({0}) − d|b1|−({0})
+ i(d|b2|+({0}) − d|b2|−({0}))
= |b1|+(0) − |b1|−(0) + i(|b2|+(0) − |b2|−(0))
= b1(0) + ib2(0) = b(0)
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6. Let s, t ∈ R+, s ≤ t. From (28) and definition (24):

db(]s, t]) = d|b1|+(]s, t]) − d|b1|−(]s, t])
+ i(d|b2|+(]s, t]) − d|b2|−(]s, t]))
= |b1|+(t) − |b1|+(s) − |b1|−(t) + |b1|−(s)
+ i(|b2|+(t) − |b2|+(s) − |b2|−(t) + |b2|−(s))
= b1(t) − b1(s) + i(b2(t) − b2(s))
= b(t) − b(s)

7. Since b = |b1|+ − |b1|− + i(|b2|+ − |b2|−) and |b1|+, |b1|−, |b2|+
and |b2|− all have finite limits as t → +∞ (see 3.), we conclude
that limt→+∞ b(t) exists in C. This limit is denoted b(∞).

8. Since [0, n] ↑ R+, in particular 1[0,n] → 1R+ = 1 and using
exercise (13) of Tutorial 12, db([0, n]) → db(R+). Hence:

db(R+) = lim
n→+∞ db([0, n])

= lim
n→+∞(db({0}) + db(]0, n]))
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= lim
n→+∞(b(0) + b(n) − b(0))

= lim
n→+∞ b(n) = b(∞)

9. Given b : R+ → C right-continuous of bounded variation, we
have seen that db is a complex measure on (R+,B(R+)) with:

(i) db({0}) = b(0)
(ii) ∀s, t ∈ R+ s ≤ t , db(]s, t]) = b(t) − b(s)

This proves the existence property stated in definition (110). To
prove the uniqueness, we shall use a standard argument based on
Dynkin systems. Suppose μ and ν are two complex measures on
(R+,B(R+)) such that μ({0}) = ν({0}) and μ(]s, t]) = ν(]s, t])
for all s, t ∈ R+, s ≤ t. Define:

D = {B ∈ B(R+) : μ(B) = ν(B)}
and let:

C = {{0}} ∪ {]s, t] : s, t ∈ R+, s ≤ t}
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By assumption C ⊆ D, and since C is closed under finite intersec-
tion while D is a Dynkin system on R+, from the Dynkin system
theorem (1) we obtain σ(C) ⊆ D. Finally, since σ(C) = B(R+),
we have B(R+) ⊆ D which shows that μ = ν. This proves the
uniqueness property stated in definition (110). It may be that
some of us think this proof of the uniqueness property was a
little bit short, as some of the key points have not been justi-
fied. The fact that A, B ∈ C ⇒ A ∩ B ∈ C was already proved
in detail in Tutorial 3, and it is pretty straightforward anyway.
The fact that σ(C) = B(R+) is the object of exercise (20) in
Tutorial 3. As an alternative quick proof, it is by now known
that C′ = {]s, t] : s, t ∈ R s ≤ t} generates the σ-algebra on R,
i.e. σ(C′) = B(R). However, any element of C′

|R+ , the trace of C′

on R+, is of the form ]s, t] or {0}∪]0, t] with s, t ∈ R+. Hence,
it is a simple exercise to show that σ(C) = σ(C′

|R+). Using the
trace theorem (10) we obtain:

σ(C) = σ(C′
|R+) = σ(C′)|R+ = B(R)|R+ = B(R+)
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The fact that D is a Dynkin system on R+ can be seen as follows:

μ(R+) = lim
n→+∞μ([0, n]) = lim

n→+∞ ν([0, n]) = ν(R+)

So R+ ∈ D. Furthermore, if A, B ∈ D, A ⊆ B, then:

μ(B \ A) = μ(B) − μ(A) = ν(B) − ν(A) = ν(B \ A)

So B \A ∈ D. Finally if An ∈ D and An ↑ A, then in particular
1An → 1A and from exercise (13) of Tutorial 12, we have:

μ(A) = lim
n→+∞μ(An) = lim

n→+∞ ν(An) = ν(A)

which shows that A ∈ D. This really completes our proof of the
uniqueness property stated in definition (110).

Exercise 21

www.probability.net

http://www.probability.net


Solutions to Exercises 104

Exercise 22. Let a : R+ → R+ be right-continuous, non-decreasing
with a(0) ≥ 0. From definition (24), the Stieltjes measure da associ-
ated with a is well-defined. However, if we assume that a(∞) < +∞,
from exercise (1) |a| = a, and a is therefore right-continuous of
bounded variation. According to definition (110), the notation ’da’
refers to the so-called complex Stieltjes measure associated with a.
Hence, we are in a situation where because a can be viewed both as
right-continuous, non-decreasing with a(0) ≥ 0 and right-continuous
of bounded variation, the notation ’da’ is potentially ambiguous as
its meaning is derived from two possibly conflicting definitions (24)
and (110). The purpose of this exercise is to show that in fact, no
conflict arises. Let μ be the Stieltjes measure on (R+,B(R+)) asso-
ciated with a, as per definition (24), and ν be the complex Stieltjes
measure associated with a, as per definition (110). Then, we have:

(i) μ({0}) = ν({0}) = a(0)
(ii) ∀s, t ∈ R+ s ≤ t , μ(]s, t]) = ν(]s, t]) = a(t) − a(s)
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However, μ(R+) = a(∞) < +∞ and μ is therefore a finite measure.
In particular, it is a complex measure on (R+,B(R+)). From the
uniqueness property of definition (110), it follows that μ = ν. So the
Stieltjes measure associated with a, coincides with its complex Stieltjes
measure, and there is no conflict regarding the notation ’da’.

Exercise 22
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Exercise 23.

1. Let b : R+ → C be right-continuous of finite variation. Let
b1 = Re(b) and b2 = Im(b). Then b1 and b2 are right-continuous
maps of finite variation, and their negative and positive varia-
tions |b1|+, |b1|−, |b2|+ and |b2|− are all right-continuous, non-
decreasing with non-negative initial values. By virtue of defini-
tion (24), d|b1|+, d|b1|−, d|b2|+ and d|b2|− are all well-defined
measures on (R+,B(R+)).

2. It is impossible to define db = d|b1|+−d|b1|−+i(d|b2|+−d|b2|−),
because d|b1|+, d|b1|−, d|b2|+ and d|b2|− are not necessarily fi-
nite measures, and any algebraic expression involving +∞ −
(+∞) makes no sense. To ensure that d|b1|+, d|b1|−, d|b2|+ and
d|b2|− be finite measures, we have to assume that b is not just
of finite variation, but also of bounded variation.

Exercise 23

www.probability.net

http://www.probability.net


Solutions to Exercises 107

Exercise 24.

1. Let b : R+ → C be a map and T ∈ R+. Let bT : R+ → C be
the map defined by bT (t) = b(T ∧ t) for all t ∈ R+. Let t ∈ R+

and t0 ≤ . . . ≤ tn be a finite sequence in [0, t], n ≥ 1. Then
T ∧ t0 ≤ . . . ≤ T ∧ tn is a finite sequence in [0, T ∧ t], n ≥ 1.
Hence, from definition (108):

n∑
i=1

|b(T ∧ ti) − b(T ∧ ti−1)| ≤ |b|(T ∧ t) − |b(0)|

or equivalently:
n∑

i=1

|bT (ti) − bT (ti−1)| ≤ |b|T (t) − |b(0)|

It follows that |b|T (t) − |b(0)| is an upper-bound of all sums∑n
i=1 |bT (ti)− bT (ti−1)| as t0 ≤ . . . ≤ tn runs through the set of

all finite sequences in [0, t], n ≥ 1. Since |bT |(t) − |bT (0)| is the
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smallest of such upper-bounds, we obtain:

|bT |(t) − |bT (0)| ≤ |b|T (t) − |b(0)|
Since bT (0) = b(0) we finally have |bT |(t) ≤ |b|T (t). To show
the reverse inequality, let t0 ≤ . . . ≤ tn be a finite sequence in
[0, T ∧ t], n ≥ 1. Then:

n∑
i=1

|b(ti) − b(ti−1)| =
n∑

i=1

|bT (ti) − bT (ti−1)|

≤ |bT |(T ∧ t) − |bT (0)|
≤ |bT |(t) − |b(0)|

It follows that |bT |(t) − |b(0)| is an upper-bound of all sums∑n
i=1 |b(ti) − b(ti−1)| as t0 ≤ . . . ≤ tn runs through the set of

all finite sequences in [0, T ∧ t], n ≥ 1. Since |b|(T ∧ t) − |b(0)|
is the smallest of such upper-bounds, we obtain:

|b|(T ∧ t) − |b(0)| ≤ |bT |(t) − |b(0)|
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i.e. |b|T (t) ≤ |bT |(t). Finally, we have proved that |bT |(t) =
|b|T (t). This being true for all t ∈ R+, we have |bT | = |b|T .

2. Suppose b is of finite variation. Then |b|(t) < +∞ for all t ∈ R+.
Let T ∈ R+. Using 1. we obtain:

|bT |(∞) = lim
t→+∞ |bT |(t)

= lim
t→+∞ |b|T (t)

= lim
t→+∞ |b|(T ∧ t)

= |b|(T ) < +∞
So bT is a map of bounded variation.

3. Suppose b is right-continuous of finite variation. Let T ∈ R+.
From 2. bT is right-continuous of bounded variation. From defi-
nition (110), its associated complex Stieltjes measure dbT is well-
defined, and is the unique complex measure on (R+,B(R+))
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such that:

(i) dbT ({0}) = bT (0)
(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = bT (t) − bT (s)

In other words, it is the unique complex measure such that:

(i) dbT ({0}) = b(0)
(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = b(T ∧ t) − b(T ∧ s)

4. Suppose b is R-valued of finite variation. Let T ∈ R+. Using 1.
together with definition (109) we obtain for all t ∈ R+:

|bT |+(t) =
1
2
(|bT |(t) + bT (t))

=
1
2
(|b|T (t) + bT (t))

=
1
2
(|b|(T ∧ t) + b(T ∧ t))

= |b|+(T ∧ t) = (|b|+)T (t)
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So |bT |+ = (|b|+)T and similarly, the negative variation |bT |− of
bT is given by |bT |− = (|b|−)T .

5. Suppose b is right-continuous of bounded variation. Then its
associated complex Stieltjes measure db is well-defined as per
definition (110). Let db[0,T ] be the complex measure defined by:

∀B ∈ B(R+) , db[0,T ] �
= db([0, T ] ∩ B)

Then, we have:

db[0,T ]({0}) = db([0, T ] ∩ {0}) = db({0}) = b(0)

and for all s, t ∈ R+, s ≤ t:

db[0,T ](]s, t]) = db([0, T ]∩]s, t])
= db(]T ∧ s, T ∧ t])
= b(T ∧ t) − b(T ∧ s)

Hence, from the uniqueness property of 3., dbT = db[0,T ].
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6. Suppose b is right-continuous, non-decreasing with b(0) ≥ 0. In
particular, b is right-continuous of finite variation, and from 3.
dbT is the unique complex measure on (R+,B(R+)) such that:

(i) dbT ({0}) = b(0)
(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = b(T ∧ t) − b(T ∧ s)

However, the Stieltjes measure db is well-defined as per defini-
tion (24), and similarly to 5. we have db[0,T ]({0}) = b(0), with:

db[0,T ](]s, t]) = b(T ∧ t) − b(T ∧ s)

Furthermore:

db[0,T ](R+) = db([0, T ]) = b(T ) < +∞
and consequently db[0,T ] is a finite measure, and in particular a
complex measure on R+. From the uniqueness property of 3.
we conclude that db[0,T ] = dbT .

Exercise 24
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Exercise 25.

1. Let μ, ν be two finite measures on R+ such that:

(i) μ({0}) ≤ ν({0})
(ii) ∀s, t ∈ R+, s ≤ t , μ(]s, t]) ≤ ν(]s, t])

Let a, c : R+ → R+ be defined by a(t) = μ([0, t]) and c(t) =
ν([0, t]). Then a(0) = μ({0}) ≥ 0 and similarly c(0) ≥ 0. Let
s, t ∈ R+, s ≤ t. Then, we have:

a(t) = μ([0, t])
= μ([0, s]) + μ(]s, t])
≥ μ([0, s]) = a(s)

So a is non-decreasing, and similarly c is non-decreasing. Let
t ∈ R+ and (tn)n≥1 be an arbitrary sequence in R+ such that
tn ↓↓ t (i.e. tn → t and t < tn+1 ≤ tn for all n ≥ 1). Then,
[0, tn] ↓ [0, t], and since μ is a finite measure, from theorem (8)
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we have:
μ([0, t]) = lim

n→+∞μ([0, tn])

It follows that a(t) = limn→+∞ a(tn), which shows that a is
right-continuous. Similarly, c is right-continuous.

2. Let da be the Stieltjes measure associated with a as per defini-
tion (24). We have μ({0}) = a(0) = da({0}) and since μ is a
finite measure, for all s, t ∈ R+, s ≤ t:

μ(]s, t]) = μ([0, t]) − μ([0, s])
= a(t) − a(s) = da(]s, t])

From the uniqueness property of definition (24), we conclude
that da = μ. Similarly dc = ν.

3. For all t ∈ R+, we have:

a(t) = μ([0, t])
= μ({0}) + μ(]0, t])
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≤ ν({0}) + ν(]0, t])
= ν([0, t]) = c(t)

which shows that a ≤ c.

4. Let b = c − a. Since a and c are right-continuous, b is also
right-continuous. Since a ≤ c, in particular a(0) ≤ c(0) and
consequently b(0) ≥ 0. Let s, t ∈ R+, s ≤ t. We have:

b(t) = c(t) − a(t)
= ν([0, t]) − μ([0, t])
= ν([0, s]) − μ([0, s]) + ν(]s, t]) − μ(]s, t])
= c(s) − a(s) + ν(]s, t]) − μ(]s, t])
≥ c(s) − a(s) = b(s)

which shows that b is non-decreasing.

5. Let db be the Stieltjes measure associated with b as per defini-
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tion (24). Then da + db is a measure on (R+,B(R+)), and:

(da + db)({0}) = da({0}) + db({0}) = a(0) + b(0) = c(0)

Furthermore, for all s, t ∈ R+, s ≤ t:

(da + db)(]s, t]) = da(]s, t]) + db(]s, t])
= a(t) − a(s) + b(t) − b(s)
= c(t) − c(s)

From the uniqueness property of definition (24), we conclude
that da + db = dc.

6. It follows from 5. that for all B ∈ B(R+), we have:

dc(B) = da(B) + db(B)

In particular da(B) ≤ dc(B), and since da = μ and dc = ν, we
have proved that μ(B) ≤ ν(B). This proves theorem (83).

Exercise 25
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Exercise 26.

1. Let b : R+ → C be a right-continuous map of bounded vari-
ation. Let db be its associated complex Stieltjes measure, as
per definition (110). Let d|b| be the Stieltjes measure associated
with the total variation map |b|, as per definition (24). Then, we
have d|b|({0}) = |b|(0) = |b(0)|. Furthermore, since E1 = {0},
En = ∅, n ≥ 1, defines a measurable partition of {0} (see defi-
nition (91)), we have from definition (94):

|b(0)| = |db({0})| =
+∞∑
n=1

|db(En)| ≤ |db|({0})

where |db| denotes the total variation measure |db| of the com-
plex measure db. Furthermore, if (En)n≥1 is an arbitrary mea-
surable partition of {0}, then {0} = En for some n ≥ 1, and it
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is easy to see that Em = ∅ for m �= n. Hence:
+∞∑
n=1

|db(En)| = |db({0})| = |b(0)|

In particular |b(0)| is an upper-bound of all sums
∑+∞

n=1 |db(En)|
as (En)n≥1 runs through the set of all measurable partitions
of {0}. From definition (94), |db|({0}) is the smallest of such
upper-bounds, and consequently |db|({0}) ≤ |b(0)|. Finally, we
have proved that |db|({0}) = |b(0)| = d|b|({0}).

2. Let s, t ∈ R+, s ≤ t. Let t0 ≤ . . . ≤ tn be a finite sequence
in [s, t], n ≥ 1. Then, the sequence ]s, t0], ]t0, t1],. . . ,]tn−1, tn],
]tn, t], ∅,. . . constitutes a measurable partition of ]s, t]. Hence:

n∑
i=1

|b(ti) − b(ti−1)|=
n∑

i=1

|db(]ti−1, ti])|
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≤ |db(]s, t0])|+
n∑

i=1

|db(]ti−1, ti])|+|db(]tn, t])|

≤ |db|(]s, t])

3. It follows from 2. that |db|(]s, t]) is an upper-bound of all sums∑n
i=1 |b(ti) − b(ti−1)| as t0 ≤ . . . ≤ tn runs through the set of

all finite sequences in [s, t], n ≥ 1. Since from theorem (80),
|b|(t) − |b|(s) is the smallest of such upper-bounds, we obtain:

|b|(t) − |b|(s) ≤ |db|(]s, t])

4. From 3. we have for all s, t ∈ R+, s ≤ t:

d|b|(]s, t]) = |b|(t) − |b|(s) ≤ |db|(]s, t])
Furthermore from 1. d|b|({0}) = |db|({0}) and in particular
d|b|({0}) ≤ |db|({0}). Moreover, from theorem (57), the to-
tal variation |db| is a finite measure on (R+,B(R+)), and since
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b is of bounded variation:

d|b|(R+) = lim
n→+∞ d|b|([0, n]) = lim

n→+∞ |b|(n) = |b|(∞) < +∞

So d|b| is also a finite measure on (R+,B(R+)). Applying the-
orem (83), we conclude that d|b| ≤ |db|.

5. Let f ∈ L1
C(R+,B(R+), |db|). Then f is measurable, and using

d|b| ≤ |db| together with exercise (18) of Tutorial 12, we obtain:∫
|f |d|b| ≤

∫
|f ||db| < +∞

So f ∈ L1
C(R+,B(R+), d|b|).

6. From theorem (12), since R is metrizable, R+ is also metrizable.
Furthermore, if Vn = [0, n[, n ≥ 1, then (Vn)n≥1 is a sequence of
open subsets of R+ with compact closure, such that Vn ↑ R+.
From definition (104), it follows that R+ is strongly σ-compact.
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7. Since R+ is metrizable and |db| is a finite measure, from theo-
rem (70) the set of continuous and bounded functions Cb

C(R+)
is dense in L1

C(R+,B(R+), |db|). Since R+ is metrizable and
strongly σ-compact, since |db| is a finite measure, in particu-
lar |db| is locally finite. From theorem (78) the space of con-
tinuous functions with compact support Cc

C(R+) is dense in
L1

C(R+,B(R+), |db|).
8. Let h ∈ L1

C(R+,B(R+), |db|). Let ε > 0. From the density of
Cb

C(R+) obtained in 7. there exists φ ∈ Cb
C(R+) such that:∫

|φ − h||db| ≤ ε (29)

9. Using (29) and exercise (16) of Tutorial 12:∣∣∣∣
∫

hdb

∣∣∣∣ −
∣∣∣∣
∫

φdb

∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣
∫

φdb

∣∣∣∣ −
∣∣∣∣
∫

hdb

∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∫

φdb −
∫

hdb

∣∣∣∣
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=
∣∣∣∣
∫

(φ − h)db

∣∣∣∣
≤

∫
|φ − h||db| ≤ ε

and we conclude that:∣∣∣∣
∫

hdb

∣∣∣∣ ≤
∣∣∣∣
∫

φdb

∣∣∣∣ + ε (30)

10. Since d|b| ≤ |db|, using exercise (18) of Tutorial 12:∣∣∣∣
∫

|φ|d|b| −
∫

|h|d|b|
∣∣∣∣ =

∣∣∣∣
∫

(|φ| − |h|)d|b|
∣∣∣∣

≤
∫

| |φ| − |h| |d|b|

≤
∫

|φ − h|d|b|

≤
∫

|φ − h||db|
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11. Using 10 and (29) we obtain:∫
|φ|d|b| −

∫
|h|d|b| ≤

∣∣∣∣
∫

|φ|d|b| −
∫

|h|d|b|
∣∣∣∣

≤
∫

|φ − h||db| ≤ ε

and consequently: ∫
|φ|d|b| ≤

∫
|h|d|b| + ε (31)

12. For all n ≥ 1, we define:

φn
�
= φ(0)1{0} +

n2n−1∑
k=0

φ(k/2n)1]k/2n,(k+1)/2n]

Since φ ∈ Cb
C(R+), there exists M ∈ R+ such that |φ(x)| ≤ M

for all x ∈ R+. Then |φn(x)| ≤ M for all x ∈ R+ and n ≥ 1.
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13. Let t ∈ R+. If t = 0 then φn(t) = φn(0) = φ(0) = φ(t) for all
n ≥ 1, and it is clear that φn(t) → φ(t). We assume that t > 0.
Since φ is continuous at t, given δ > 0 there exists η > 0 with:

|t − t′| < η ⇒ |φ(t) − φ(t′)| ≤ δ

Choose N ≥ 1 large enough so that 2−N < η and t ∈ [0, N ].
Then, for all n ≥ N , there exists k ∈ {0, . . . , n2n − 1} such that
t ∈]k/2n, (k + 1)/2n], and consequently:

|φn(t) − φ(t)| = |φ(k/2n) − φ(t)| ≤ δ

We have found N ≥ 1 such that:

n ≥ N ⇒ |φn(t) − φ(t)| ≤ δ

This shows that φn(t) → φ(t). This being true for all t ∈ R+,
we have proved that φn → φ pointwise.

14. Since φ and all the φn’s are measurable and bounded, |db|
being a finite measure, the integrals

∫
φdb and

∫
φndb with
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respect to the complex measure db, are well-defined, as per
definition (97). Let g ∈ L1

C(R+,B(R+), |db|) be such that
|g| = 1 and db =

∫
g|db|. Since φn → φ pointwise, we have

φng → φg. Furthermore from 12. |φn| ≤ M and since |db| is
a finite measure, the constant M can be viewed as an element
of L1

R(R+,B(R+), |db|). Applying definition (97) together with
the dominated convergence theorem (23), we obtain:∫

φdb =
∫

φg|db|

= lim
n→+∞

∫
φng|db|

= lim
n→+∞

∫
φndb

15. Since |φn| → |φ| pointwise and |φn| ≤ M for all n ≥ 1 while
d|b| is a finite measure, from the dominated convergence theo-
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rem (23), we have:∫
|φ|d|b| = lim

n→+∞

∫
|φn|d|b|

16. For all n ≥ 1 we have:
∫

φndb = φ(0)
∫

1{0}db +
n2n−1∑

k=0

φ

(
k

2n

) ∫
1]k/2n,(k+1)/2n]db

= φ(0)db({0}) +
n2n−1∑

k=0

φ

(
k

2n

)
db(]k/2n, (k + 1)/2n])

= φ(0)b(0) +
n2n−1∑

k=0

φ

(
k

2n

) (
b

(
k + 1
2n

)
− b

(
k

2n

))

17. Given n ≥ 1 and k ∈ {0, . . . , n2n − 1}, from theorem (80):∣∣∣∣b
(

k + 1
2n

)
− b

(
k

2n

)∣∣∣∣ ≤ |b|
(

k + 1
2n

)
− |b|

(
k

2n

)
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Hence, from 16. we obtain:
∣∣∣∣
∫

φndb

∣∣∣∣≤ |φ(0)||b(0)|+
n2n−1∑

k=0

∣∣∣∣φ
(

k

2n

)∣∣∣∣
∣∣∣∣b

(
k + 1
2n

)
− b

(
k

2n

)∣∣∣∣

≤ |φ(0)||b(0)|+
n2n−1∑

k=0

∣∣∣∣φ
(

k

2n

)∣∣∣∣
(
|b|

(
k + 1
2n

)
−|b|

(
k

2n

))

= |φ(0)|d|b|({0})+
n2n−1∑

k=0

∣∣∣∣φ
(

k

2n

)∣∣∣∣ d|b|
(]

k

2n
,
k + 1
2n

])

= |φ(0)|
∫

1{0}d|b|+
n2n−1∑

k=0

∣∣∣∣φ
(

k

2n

)∣∣∣∣
∫

1]k/2n,(k+1)/2n]d|b|

=
∫

|φn|d|b|
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18. From 14. 15. and 17. taking the limit as n → +∞, we obtain:∣∣∣∣
∫

φdb

∣∣∣∣ ≤
∫

|φ|d|b| (32)

19. From (30), (32) and (31) we obtain:∣∣∣∣
∫

hdb

∣∣∣∣ ≤
∣∣∣∣
∫

φdb

∣∣∣∣ + ε

≤
∫

|φ|d|b| + ε

≤
∫

|h|d|b| + 2ε

20. Having proved that | ∫ hdb| ≤ ∫ |h|d|b| + 2ε for arbitrary ε > 0,
we conclude that: ∣∣∣∣

∫
hdb

∣∣∣∣ ≤
∫

|h|d|b| (33)
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This has been proved for arbitrary h ∈ L1
C(R+,B(R+), |db|).

21. Let B ∈ B(R+) and h ∈ L1
C(R+,B(R+), |db|) be such that

|h| = 1 and db =
∫

h|db|. Since |db| is a finite measure, in
particular it is a complex measure, and we can therefore apply
theorem (65) to obtain:∫

B

h̄db =
∫

1Bh̄db

=
∫

1Bh̄ · h|db|

=
∫

1B|h|2|db|

=
∫

1B|db| = |db|(B)

22. Let B ∈ B(R+). We have:

|db|(B) = | |db|(B) |
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=
∣∣∣∣
∫

1Bh̄db

∣∣∣∣
≤

∫
1B|h̄|d|b|

=
∫

1Bd|b| = d|b|(B)

where the second equality stems from 21. and the inequality
from (33) applied to the map 1Bh̄ ∈ L1

C(R+,B(R+), |db|). Hav-
ing proved that |db|(B) ≤ d|b|(B) for all B ∈ R+, we have
proved that |db| ≤ d|b|. From 4. we conclude that |db| = d|b|.
The purpose of this exercise is to show that given a right-
continuous map of bounded variation b : R+ → C, the total
variation |db| of its associated complex Stieltjes measure, is equal
to the Stieltjes measure d|b| associated with its total variation.

Exercise 26
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Exercise 27.

1. Let b : R+ → C be a right-continuous map of finite varia-
tion. Let T ∈ R+. From exercise (24), bT is right-continuous
of bounded variation and its complex Stieltjes measure dbT

is therefore well-defined, as per definition (110). From exer-
cise (26), we have |dbT | = d|bT |. Furthermore, we showed in
exercise (24) that |bT | = |b|T . Hence, we have d|bT | = d|b|T and
we have proved that for all T ∈ R+:

|dbT | = d|bT | = d|b|T (34)

2. Since |b| is right-continuous, non-negative with |b|(0) ≥ 0, from
exercise (24) we have:

d|b|T = d|b|[0,T ] �
= d|b|([0, T ] ∩ ·) (35)

Now, if b is right-continuous of bounded variation, the fact that
|db| = d|b| was proved in exercise (26). If b is right-continuous
of finite variation and T ∈ R+, then bT is right-continuous of
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bounded variation, and from (34) and (35) we conclude that
|dbT | = d|b|([0, T ] ∩ ·) = d|b|T . This proves theorem (84).

Exercise 27
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Exercise 28.

1. Let t > 0. Suppose the limit b(t−) is not unique. There exist
l, l′ ∈ E, l �= l′ such that b(s) tends both to l and l′ as s ↑↑ t
(i.e. s → t, s < t). However, since E is Hausdorff and l �= l′,
from definition (67) there exist U and U ′ open in E such that
l ∈ U , l′ ∈ U ′ and U ∩ U ′ = ∅. From b(s) → l as s ↑↑ t we see
that there exists t1 ∈ R+, t1 < t, such that:

s ∈]t1, t[ ⇒ b(s) ∈ U

Similarly, there exists t′1 ∈ R+, t′1 < t, such that:

s ∈]t′1, t[ ⇒ b(s) ∈ U ′

This contradicts the fact that U ∩U ′ = ∅. We have proved that
the limit b(t−) is unique. More generally, any limit (when it
exists) in a Hausdorff topological space is unique.

2. Let x, y ∈ E′ with x �= y. In particular x, y ∈ E with x �= y.
Since E is Hausdorff, there exist U and V open in E, such that
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x ∈ U , y ∈ V and U ∩ V = ∅. It follows that x ∈ U ∩ E′,
y ∈ V ∩ E′ and (U ∩ E′) ∩ (V ∩ E′) = ∅. Since U ∩ E′ and
V ∩ E′ are open subsets of E′, we conclude that the induced
topological space E′ is Hausdorff.

3. Let b : R+ → E be cadlag with values in E′ ⊆ E. By assump-
tion, b is right-continuous and for all t > 0, the limit:

b(t−)
�
= lim

s↑↑t
b(s)

exists in E. Since b has values in E′, it can be viewed as a map
b : R+ → E′. Such a map is still right-continuous (see proof of
4.), but the limit b(t−) for t > 0 may not be an element of E′.
So b : R+ → E′ may not be cadlag. In other words, b may not
be cadlag with respect to E′.

4. Consider b : R+ → Ē′, where Ē′ is the closure of E′ in E. We
claim that b is cadlag (with respect to Ē′). Since b : R+ → E
is right-continuous, for all t0 ∈ R+, for all U open subsets of E
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with b(t0) ∈ U , there exists t1 ∈ R+, t0 < t1, such that:

t ∈ [t0, t1[ ⇒ b(t) ∈ U (36)

Let U ′ be open in Ē′ with b(t0) ∈ U ′. Then U ′ = U ∩ Ē′ for
some U open in E with b(t0) ∈ U . Let t1 ∈ R+, t0 < t1 be
such that (36) holds. Since b has values in E′ ⊆ Ē′, b(t) ∈ U is
equivalent to b(t) ∈ U ∩ Ē′ = U ′. Hence, we have:

t ∈ [t0, t1[ ⇒ b(t) ∈ U ′

which shows that b : R+ → Ē′ is indeed right-continuous (the
fact that Ē′ is the closure of E′ has not be used so far). Let
t0 > 0. Since b : R+ → E is cadlag, the limit b(t0−) exists in
E. Let U be open in E such that b(t0−) ∈ U . There exists
t1 ∈ R+, t1 < t0, such that:

t ∈]t1, t0[ ⇒ b(t) ∈ U

In particular, since b(t) ∈ E′ for all t ∈ R+, we have U ∩E′ �= ∅.
Hence, for all U open subsets of E with b(t0−) ∈ U , we have
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proved that U∩E′ �= ∅. This shows that b(t0−) ∈ Ē′. Hence, for
all t0 > 0, we have shown that b(t0−) exists in Ē′. We conclude
that b : R+ → Ē′ is cadlag. In other words, b is cadlag with
respect to Ē′.

5. Let b : R+ → R be a map. The right-continuity of b is inde-
pendent of whether b is viewed as a map with values in R or
values C. If b : R+ → R is cadlag, then for all t > 0, b(t−)
exists in R. In particular, b(t−) exists in C. So b : R+ → C is
cadlag. Conversely, if b is cadlag with respect to C with values
in R, from 4. it is cadlag with respect to the closure of R in
C. However, R is a closed subset of C, hence equal to its own
closure. So b is cadlag with respect to R. We have proved that
b : R+ → R is cadlag, if and only if b : R+ → C is cadlag.

Exercise 28
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Exercise 29.

1. Let b : R+ → C be cadlag. Suppose b is continuous with b(0) =
0. From definition (111), b(0−) is defined as b(0−) = 0. Hence,
Δb(0) = b(0)− b(0−) = 0. Suppose t > 0. Since b is continuous
at t, in particular it is left-continuous at t. Hence:

b(t) = lim
s↑↑t

b(s)
�
= b(t−)

It follows that Δb(t) = b(t) − b(t−) = 0. Conversely, sup-
pose Δb(t) = 0 for all t ∈ R+. In particular Δb(0) = 0 and
consequently b(0) = b(0−) = 0. Furthermore, for all t > 0,
Δb(t) = 0. So b is left-continuous at t. Being cadlag, b is also
right-continuous at t. Being right-continuous at 0, b is in fact
continuous at every point of R+. We have proved that b is con-
tinuous with b(0) = 0, if and only if Δb(t) = 0 for all t ∈ R+.

2. Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. We claim that a is cadlag. From exercise (28), since
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R+ is a closed subset of R, being cadlag with respect to R or
R+ is equivalent. To show that a is cadlag, we only need to
show that for all t > 0, the left-limit a(t−) exists in R. Given
t > 0, define:

l
�
= sup

s∈]0,t[

a(s)

Since a is non-decreasing, we have l ≤ a(t) < +∞. In particular,
ε > 0 being given, we have l−ε < l. So l−ε cannot be an upper-
bound of all a(s)’s as s ∈]0, t[. There exists u ∈]0, t[ such that
l − ε < a(u). Since a is non-decreasing, we obtain:

s ∈]u, t[ ⇒ l − ε < a(s) ≤ l

which shows that a(t−) exists and is equal to l. We have proved
that a is cadlag. Since a(0) ≥ 0 and by convention a(0−) = 0,
it is clear that Δa(0) ≥ 0. Let t > 0. We have seen that
a(t−) = l ≤ a(t). So Δa(t) ≥ 0. Having proved that Δa(t) ≥ 0
for all t ∈ R+, we conclude that Δa ≥ 0.
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3. Let b1, b2 : R+ → C be two cadlag maps. Let α ∈ C. Then,
b1 + αb2 is right-continuous, and for all t > 0:

lim
s↑↑t

(b1 + αb2)(s) = b1(t−) + αb2(t−)

So the left-limit (b1 + αb2)(t−) exists in C. This shows that
b1 + αb2 is cadlag.

4. Let b : R+ → C be right-continuous of finite variation. From
exercise (17), b can be expressed as b = b1−b2 + i(b3−b4) where
each bi is right-continuous, non-decreasing with bi(0) ≥ 0. From
2. each bi is cadlag. From 3. a linear combination of cadlag maps
is cadlag. We conclude that b is cadlag. We have proved that
any right-continuous map of finite variation is cadlag.

5. Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. Let da be its associated Stieltjes measure, as per
definition (24). We have:

Δa(0) = a(0) − a(0−) = a(0) = da({0})
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Furthermore, for all t > 0, given an arbitrary sequence (tn)n≥1

in ]0, t[ such that tn ↑↑ t, we have ]tn, t] ↓ {t}. Moreover:

da(]t1, t]) = a(t) − a(t1) ≤ a(t) < +∞
Applying theorem (8), we obtain:

da({t}) = lim
n→+∞ da(]tn, t])

= lim
n→+∞(a(t) − a(tn))

= a(t) − a(t−) = Δa(t)

We have proved that da({t}) = Δa(t) for all t ∈ R+.

6. Let b : R+ → C be right-continuous of bounded variation. Let
db be its associated complex Stieltjes measure, as per defini-
tion (110). We have:

Δb(0) = b(0) − b(0−) = b(0) = db({0})
Furthermore, for all t > 0, given an arbitrary sequence (tn)n≥1

in ]0, t[ such that tn ↑↑ t, we have ]tn, t] ↓ {t} and in particular
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1]tn,t] → 1{t}. Using exercise (13) of Tutorial 12, we obtain:

db({t}) = lim
n→+∞ db(]tn, t])

= lim
n→+∞(b(t) − b(tn))

= b(t) − b(t−) = Δb(t)

We have proved that db({t}) = Δb(t) for all t ∈ R+.

7. Let b : R+ → C be right-continuous of finite variation. Let
T ∈ R+. Let t ∈ R+. Suppose that t ≤ T . Then bT (s) and
b(s) coincide for s < t. So bT (t−) = b(t−). Suppose that T < t.
Then b(s) = b(T ) on ]T, t[ and consequently bT (t−) = b(T ). We
have proved that:

∀t ∈ R+ , bT (t−) =
{

b(t−) if t ≤ T
b(T ) if T < t

Furthermore, we have:

ΔbT (0) = bT (0) = b(0) = Δb(0)1[0,T ](0)
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Moreover, if t ∈]0, T ]:

ΔbT (t) = bT (t) − bT (t−) = b(t) − b(t−) = Δb(t)1[0,T ](t)

and if t ∈]T, +∞[:

ΔbT (t) = bT (t) − bT (t−) = b(T ) − b(T ) = 0 = Δb(t)1[0,T ](t)

We have proved that ΔbT (t) = Δb(t)1[0,T ](t) for all t ∈ R+.
Finally, since bT is right-continuous of bounded variation, from
6. we have dbT ({t}) = ΔbT (t) = Δb(t)1[0,T ](t).

Exercise 29
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Exercise 30.

1. Let b : R+ → C be cadlag and T ∈ R+. Suppose that b(t−) is
not bounded on [0, T ]. For all n ≥ 1, there exists t ∈ [0, T ] such
that |b(t−)| > n. Define Un = {z ∈ C : |z| > n}. Then Un is an
open subset of C and b(t−) ∈ Un. There exists un ∈ [0, t[, such
that:

s ∈]un, t[ ⇒ b(s) ∈ Un

Choosing an arbitrary tn ∈]un, t[, we have b(tn) ∈ Un. The
sequence (tn)n≥1 is a sequence of elements of [0, T ] such that
|b(tn)| > n and in particular |b(tn)| → +∞.

2. Suppose b is not bounded on [0, T ]. For all n ≥ 1, there exists
some sn ∈ [0, T ] such that |b(sn)| > n. Since [0, T ] is metriz-
able and compact, from the sequence (sn)n≥1 we can extract
a converging sub-sequence, say (sφ(n))n≥1 (see theorem (47)).
Let t ∈ [0, T ] be its limit. Defining tn = sφ(n), we have found a
sequence (tn)n≥1 on [0, T ] such that tn → t for some t ∈ [0, T ],
and |b(tn)| → +∞.
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3. Let R = {n ≥ 1 : t ≤ tn} and L = {n ≥ 1 : tn < t}. Since
N = R ∪ L, R and L cannot be both finite.

4. Suppose R is infinite. Since tn → t, there exists N1 ≥ 1 such
that:

n ≥ N1 ⇒ tn ∈]t − 1, t + 1[∩[0, T ]
Let A1 = {n ≥ 1 : tn ∈ [t, t + 1[∩[0, T ]}. Since n ∈ R implies
n < N1 or n ∈ A1, the fact that R is infinite implies that A1 is
infinite. In particular, A1 is not empty, and there exists n1 ≥ 1
such that:

tn1 ∈ [t, t + 1[∩[0, T ]

5. R being assumed infinite, suppose we have n1 < . . . < nk, k ≥ 1,
such that tnj ∈ [t, t + 1/j[∩[0, T ] for all j ∈ {1, . . . , k}. Since
tn → t, there exists Nk+1 ≥ 1 such that:

n ≥ Nk+1 ⇒ tn ∈
]
t − 1

k + 1
, t +

1
k + 1

[
∩ [0, T ]
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Let Ak+1 = {n > nk : tn ∈ [t, t+1/(k+1)[∩[0, T ]}. Then n ∈ R
implies n < Nk+1 or n ≤ nk or n ∈ Ak+1. So the fact that R is
infinite implies that Ak+1 is itself infinite. In particular, Ak+1

is not empty, and there exists nk+1 > nk such that:

tnk+1 ∈
[
t, t +

1
k + 1

[
∩ [0, T ]

This induction argument shows that we can construct a sequence
n1 < n2 < . . . such that

tnk
∈

[
t, t +

1
k

[
∩ [0, T ] , ∀k ≥ 1

6. By construction we have tnk
→ t while t ≤ tnk

. Since b is
cadlag, in particular b is right-continuous. So b(tnk

) → b(t) and
|b(tnk

)| cannot converge to +∞. This contradicts the fact that
|b(tn)| → +∞.

7. Suppose L is infinite. In particular L is not empty. There exists
n ≥ 1 such that tn < t. So t > 0. Since tn → t, there exists
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N1 ≥ 1 such that:

n ≥ N1 ⇒ tn ∈]t − 1, t + 1[∩[0, T ]

Let B1 = {n ≥ 1 : t ∈]t − 1, t[∩[0, T ]}. Then n ∈ L implies that
n < N1 or n ∈ B1. So the fact that L is infinite implies that
B1 is infinite. In particular, B1 is not empty, and there exists
n1 ≥ 1 such that tn1 ∈]t − 1, t[∩[0, T ]. Following an induction
argument identical to that of 5. we can construct a sequence
n1 < n2 < ... such that:

tnk
∈

]
t − 1

k
, t

[
∩ [0, T ] , ∀k ≥ 1

8. Since b is cadlag, the left-limit b(t−) exists in C. By con-
struction, we have tnk

→ t, while tnk
< t. It follows that

b(tnk
) → b(t−) and consequently |b(tnk

)| cannot converge to
+∞. This contradicts the fact that |b(tn)| → +∞.

9. Let b : R+ → C be a cadlag map. Let T ∈ R+. Suppose
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b(t) or b(t−) is not bounded on [0, T ]. If b(t−) is not bounded
on [0, T ], then from 1. there exists (tn)n≥1 in [0, T ] such that
|b(tn)| → +∞. Hence, without loss of generality, we may assume
that b(t) is not bounded on [0, T ]. From 2. we can construct
a sequence (tn)n≥1 in [0, T ] such that tn → t for some t ∈
[0, T ] and |b(tn)| → +∞. However, assuming R infinite leads
to a contradiction in 6. while assuming L infinite leads to a
contradiction in 8.. Since R and L cannot be both finite, we
conclude that our initial assumption is absurd. This shows that
b(t) and b(t−) are both bounded on [0, T ], which completes the
proof of theorem (85).

Exercise 30
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