16. Differentiation

Definition 115 Let (Ω, \mathcal{T}) be a topological space. A map $f : \Omega \to \bar{\mathbb{R}}$ is said to be lower-semi-continuous (l.s.c), if and only if:

$$\forall \lambda \in \mathbb{R}, \{\lambda < f\} \text{ is open}$$

We say that f is upper-semi-continuous (u.s.c), if and only if:

$$\forall \lambda \in \mathbb{R}, \{f < \lambda\} \text{ is open}$$

Exercise 1. Let $f : \Omega \to \bar{\mathbb{R}}$ be a map, where Ω is a topological space.

1. Show that f is l.s.c if and only if $\{\lambda < f\}$ is open for all $\lambda \in \bar{\mathbb{R}}$.
2. Show that f is u.s.c if and only if $\{f < \lambda\}$ is open for all $\lambda \in \bar{\mathbb{R}}$.
3. Show that every open set U in $\bar{\mathbb{R}}$ can be written:

$$U = V^+ \cup V^- \cup \bigcup_{i \in I}[\alpha_i, \beta_i[$$

www.probability.net
for some index set \(I, \alpha_i, \beta_i \in \mathbb{R}, V^+ = \emptyset \) or \(V^+ =]\alpha, +\infty[\),
\((\alpha \in \mathbb{R}) \) and \(V^- = \emptyset \) or \(V^- =]-\infty, \beta[, (\beta \in \mathbb{R}) \).

4. Show that \(f \) is continuous if and only if it is both l.s.c and u.s.c.

5. Let \(u : \Omega \to \mathbb{R} \) and \(v : \Omega \to \bar{\mathbb{R}} \). Let \(\lambda \in \mathbb{R} \). Show that:
\[
\{ \lambda < u + v \} = \bigcup_{(\lambda_1, \lambda_2) \in \mathbb{R}^2} \{ \lambda_1 < u \} \cap \{ \lambda_2 < v \} \\
\lambda_1 + \lambda_2 = \lambda
\]

6. Show that if both \(u \) and \(v \) are l.s.c, then \(u + v \) is also l.s.c.

7. Show that if both \(u \) and \(v \) are u.s.c, then \(u + v \) is also u.s.c.

8. Show that if \(f \) is l.s.c, then \(\alpha f \) is l.s.c, for all \(\alpha \in \mathbb{R}^+ \).

9. Show that if \(f \) is u.s.c, then \(\alpha f \) is u.s.c, for all \(\alpha \in \mathbb{R}^+ \).

10. Show that if \(f \) is l.s.c, then \(-f \) is u.s.c.
11. Show that if f is u.s.c, then $-f$ is l.s.c.

12. Show that if V is open in Ω, then $f = 1_V$ is l.s.c.

13. Show that if F is closed in Ω, then $f = 1_F$ is u.s.c.

Exercise 2. Let $(f_i)_{i \in I}$ be an arbitrary family of maps $f_i : \Omega \to \mathbb{R}$, defined on a topological space Ω.

1. Show that if all f_i’s are l.s.c, then $f = \sup_{i \in I} f_i$ is l.s.c.

2. Show that if all f_i’s are u.s.c, then $f = \inf_{i \in I} f_i$ is u.s.c.

Exercise 3. Let (Ω, T) be a metrizable and σ-compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let f be an element of $L^1_\mathbb{R}(\Omega, \mathcal{B}(\Omega), \mu)$, such that $f \geq 0$.
1. Let \((s_n)_{n \geq 1}\) be a sequence of simple functions on \((\Omega, \mathcal{B}(\Omega))\) such that \(s_n \uparrow f\). Define \(t_1 = s_1\) and \(t_n = s_n - s_{n-1}\) for all \(n \geq 2\).

Show that \(t_n\) is a simple function on \((\Omega, \mathcal{B}(\Omega))\), for all \(n \geq 1\).

2. Show that \(f\) can be written as:

\[
f = \sum_{n=1}^{+\infty} \alpha_n 1_{A_n}
\]

where \(\alpha_n \in \mathbb{R}^+ \setminus \{0\}\) and \(A_n \in \mathcal{B}(\Omega)\), for all \(n \geq 1\).

3. Show that \(\mu(A_n) < +\infty\), for all \(n \geq 1\).

4. Show that there exist \(K_n\) compact and \(V_n\) open in \(\Omega\) such that:

\[
K_n \subseteq A_n \subseteq V_n, \quad \mu(V_n \setminus K_n) \leq \frac{\epsilon}{\alpha_n 2^n + 1}
\]

for all \(\epsilon > 0\) and \(n \geq 1\).
5. Show the existence of \(N \geq 1 \) such that:
\[
\sum_{n=N+1}^{+\infty} \alpha_n \mu(A_n) \leq \frac{\epsilon}{2}
\]

6. Define \(u = \sum_{n=1}^{N} \alpha_n 1_{K_n} \). Show that \(u \) is u.s.c.

7. Define \(v = \sum_{n=1}^{+\infty} \alpha_n 1_{V_n} \). Show that \(v \) is l.s.c.

8. Show that we have \(0 \leq u \leq f \leq v \).

9. Show that we have:
\[
v = u + \sum_{n=N+1}^{+\infty} \alpha_n 1_{K_n} + \sum_{n=1}^{+\infty} \alpha_n 1_{V_n \setminus K_n}
\]

10. Show that \(\int v d\mu \leq \int u d\mu + \epsilon < +\infty \).

11. Show that \(u \in L^1_R(\Omega, \mathcal{B}(\Omega), \mu) \).

www.probability.net
12. Explain why \(v \) may fail to be in \(L^1_{\mathbb{R}}(\Omega, \mathcal{B}(\Omega), \mu) \).

13. Show that \(v \) is \(\mu \)-a.s. equal to an element of \(L^1_{\mathbb{R}}(\Omega, \mathcal{B}(\Omega), \mu) \).

14. Show that \(\int (v - u) d\mu \leq \epsilon \).

15. Prove the following:

Theorem 94 (Vitali-Caratheodory) Let \((\Omega, \mathcal{T}) \) be a metrizable and \(\sigma \)-compact topological space. Let \(\mu \) be a locally finite measure on \((\Omega, \mathcal{B}(\Omega)) \) and \(f \) be an element of \(L^1_{\mathbb{R}}(\Omega, \mathcal{B}(\Omega), \mu) \). Then, for all \(\epsilon > 0 \), there exist measurable maps \(u, v : \Omega \to \mathbb{R} \), which are \(\mu \)-a.s. equal to elements of \(L^1_{\mathbb{R}}(\Omega, \mathcal{B}(\Omega), \mu) \), such that \(u \leq f \leq v \), \(u \) is u.s.c, \(v \) is l.s.c, and furthermore:

\[
\int (v - u) d\mu \leq \epsilon
\]
Definition 116 Let \((\Omega, T)\) be a topological space. We say that \((\Omega, T)\) is \textbf{connected}, if and only if the only subsets of \(\Omega\) which are both open and closed are \(\Omega\) and \(\emptyset\).

Exercise 4. Let \((\Omega, T)\) be a topological space.

1. Show that \((\Omega, T)\) is connected if and only if whenever \(\Omega = A \cup B\) where \(A, B\) are disjoint open sets, we have \(A = \emptyset\) or \(B = \emptyset\).

2. Show that \((\Omega, T)\) is connected if and only if whenever \(\Omega = A \cup B\) where \(A, B\) are disjoint closed sets, we have \(A = \emptyset\) or \(B = \emptyset\).

Definition 117 Let \((\Omega, T)\) be a topological space, and \(A \subseteq \Omega\). We say that \(A\) is a \textbf{connected subset} of \(\Omega\), if and only if the induced topological space \((A, T|_A)\) is connected.

Exercise 5. Let \(A\) be open and closed in \(\mathbb{R}\), with \(A \neq \emptyset\) and \(A^c \neq \emptyset\).
1. Let $x \in A^c$. Show that $A \cap [x, +\infty]$ or $A \cap (-\infty, x]$ is non-empty.

2. Suppose $B = A \cap [x, +\infty] \neq \emptyset$. Show that B is closed and that we have $B = A \cap [x, +\infty]$. Conclude that B is also open.

3. Let $b = \inf B$. Show that $b \in B$ (and in particular $b \in \mathbb{R}$).

4. Show the existence of $\epsilon > 0$ such that $]b - \epsilon, b + \epsilon[\subseteq B$.

5. Conclude with the following:

Theorem 95
The topological space $(\mathbb{R}, T_{\mathbb{R}})$ is connected.

Exercise 6. Let (Ω, T) be a topological space and $A \subseteq \Omega$ be a connected subset of Ω. Let B be a subset of Ω such that $A \subseteq B \subseteq \overline{A}$. We assume that $B = V_1 \uplus V_2$ where V_1, V_2 are disjoint open sets in B.

1. Show there is U_1, U_2 open in Ω, with $V_1 = B \cap U_1, V_2 = B \cap U_2$.

www.probability.net
2. Show that \(A \cap U_1 = \emptyset \) or \(A \cap U_2 = \emptyset \).

3. Suppose that \(A \cap U_1 = \emptyset \). Show that \(\bar{A} \subseteq U_1^c \).

4. Show then that \(V_1 = B \cap U_1 = \emptyset \).

5. Conclude that \(B \) and \(\bar{A} \) are both connected subsets of \(\Omega \).

Exercise 7. Prove the following:

Theorem 96 Let \((\Omega, T), (\Omega', T') \) be two topological spaces, and \(f \) be a continuous map, \(f : \Omega \to \Omega' \). If \((\Omega, T) \) is connected, then \(f(\Omega) \) is a connected subset of \(\Omega' \).

Definition 118 Let \(A \subseteq \bar{\mathbb{R}} \). We say that \(A \) is an **interval**, if and only if for all \(x, y \in A \) with \(x \leq y \), we have \([x, y] \subseteq A \), where:

\[
[x, y] \triangleq \{ z \in \bar{\mathbb{R}} : x \leq z \leq y \}
\]
Exercise 8. Let $A \subseteq \mathbb{R}$.

1. If A is an interval, and $\alpha = \inf A$, $\beta = \sup A$, show that:
 \[\alpha, \beta \subseteq A \subseteq [\alpha, \beta] \]
 2. Show that A is an interval if and only if, it is of the form $[\alpha, \beta]$, $[\alpha, \beta[,]\alpha, \beta]$ or $]\alpha, \beta[\,$, for some $\alpha, \beta \in \mathbb{R}$.
 3. Show that an interval of the form $] - \infty, \alpha[, \,$ where $\alpha \in \mathbb{R}$, is homeomorphic to $] - 1, \alpha'[\,$, for some $\alpha' \in \mathbb{R}$.
 4. Show that an interval of the form $]\alpha, +\infty[, \,$ where $\alpha \in \mathbb{R}$, is homeomorphic to $]\alpha', 1[, \,$ for some $\alpha' \in \mathbb{R}$.
 5. Show that an interval of the form $]\alpha, \beta[, \,$ where $\alpha, \beta \in \mathbb{R}$ and $\alpha < \beta$, is homeomorphic to $]-1, 1[$.
 6. Show that $]-1, 1[$ is homeomorphic to \mathbb{R}.
 7. Show an non-empty open interval in \mathbb{R}, is homeomorphic to \mathbb{R}.

www.probability.net
8. Show that an open interval in \mathbb{R}, is a connected subset of \mathbb{R}.

9. Show that an interval in \mathbb{R}, is a connected subset of \mathbb{R}.

Exercise 9. Let $A \subseteq \mathbb{R}$ be a non-empty connected subset of \mathbb{R}, and $\alpha = \inf A$, $\beta = \sup A$. We assume there exists $x_0 \in A^{c} \cap]\alpha, \beta[$.

1. Show that $A \cap]x_0, +\infty[\cup A \cap]-\infty, x_0[\text{ is empty.}$

2. Show that $A \cap]x_0, +\infty[= \emptyset$ leads to a contradiction.

3. Show that $]x_0, +\infty[\subseteq A \subseteq [\alpha, \beta]$.

4. Show the following:

Theorem 97 For all $A \subseteq \mathbb{R}$, A is a connected subset of \mathbb{R}, if and only if A is an interval.
Exercise 10. Prove the following:

Theorem 98 Let \(f : \Omega \rightarrow \mathbb{R} \) be a continuous map, where \((\Omega, T)\) is a connected topological space. Let \(a, b \in \Omega \) such that \(f(a) \leq f(b) \). Then, for all \(z \in [f(a), f(b)] \), there exists \(x \in \Omega \) such that \(z = f(x) \).

Exercise 11. Let \(a, b \in \mathbb{R}, a < b \), and \(f : [a, b] \rightarrow \mathbb{R} \) be a map such that \(f'(x) \) exists for all \(x \in [a, b] \).

1. Show that \(f' : ([a, b], \mathcal{B}([a, b])) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R})) \) is measurable.

2. Show that \(f' \in L^1_{\mathbb{R}}([a, b], \mathcal{B}([a, b]), dx) \) is equivalent to:
\[
\int_a^b |f'(t)| dt < +\infty
\]

3. We assume from now on that \(f' \in L^1_{\mathbb{R}}([a, b], \mathcal{B}([a, b]), dx) \). Given \(\epsilon > 0 \), show the existence of \(g : [a, b] \rightarrow \mathbb{R} \), almost surely equal...
to an element of $L^1_{\mathbb{R}}([a, b], \mathcal{B}([a, b]), dx)$, such that $f' \leq g$ and g
is l.s.c, with:

$$\int_a^b g(t) dt \leq \int_a^b f'(t) dt + \epsilon$$

4. By considering $g + \alpha$ for some $\alpha > 0$, show that without loss of
generality, we can assume that $f' < g$ with the above inequality
still holding.

5. We define the complex measure $\nu = \int g dx \in M^1([a, b], \mathcal{B}([a, b]))$.
Show that:

$$\forall \epsilon' > 0, \ \exists \delta > 0, \ \forall E \in \mathcal{B}([a, b]), \ dx(E) \leq \delta \Rightarrow |\nu(E)| < \epsilon'$$

6. For all $\eta > 0$ and $x \in [a, b]$, we define:

$$F_\eta(x) \triangleq \int_a^x g(t) dt - f(x) + f(a) + \eta(x - a)$$

Show that $F_\eta : [a, b] \rightarrow \mathbb{R}$ is a continuous map.
7. \(\eta \) being fixed, let \(x = \sup F_{\eta}^{-1}(\{0\}) \). Show that \(x \in [a, b] \) and \(F_{\eta}(x) = 0 \).

8. We assume that \(x \in [a, b] \). Show the existence of \(\delta > 0 \) such that for all \(t \in]x, x + \delta[\cap [a, b] \), we have:

\[
f'(x) < g(t) \quad \text{and} \quad \frac{f(t) - f(x)}{t - x} < f'(x) + \eta
\]

9. Show that for all \(t \in]x, x + \delta[\cap [a, b] \), we have \(F_{\eta}(t) > F_{\eta}(x) = 0 \).

10. Show that there exists \(t_0 \) such that \(x < t_0 < b \) and \(F_{\eta}(t_0) > 0 \).

11. Show that \(F_{\eta}(b) < 0 \) leads to a contradiction.

12. Conclude that \(F_{\eta}(b) \geq 0 \), even if \(x = b \).

13. Show that \(f(b) - f(a) \leq \int_a^b f'(t)dt \), and conclude:
Theorem 99 (Fundamental Calculus) Let \(a, b \in \mathbb{R}, \ a < b, \) and \(f : [a, b] \rightarrow \mathbb{R} \) be a map which is differentiable at every point of \([a, b] \), and such that:

\[
\int_{a}^{b} |f'(t)| \, dt < +\infty
\]

Then, we have:

\[
f(b) - f(a) = \int_{a}^{b} f'(t) \, dt
\]

Exercise 12. Let \(\alpha > 0, \) and \(k_\alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n \) defined by \(k_\alpha(x) = \alpha x. \)

1. Show that \(k_\alpha : (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)) \rightarrow (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)) \) is measurable.

2. Show that for all \(B \in \mathcal{B}(\mathbb{R}^n), \) we have:

\[
dx(k_\alpha \in B) = \frac{1}{\alpha^n} dx(B)
\]

3. Show that for all \(\epsilon > 0 \) and \(x \in \mathbb{R}^n: \)

\[
dx(B(x, \epsilon)) = \epsilon^n dx(B(0, 1))
\]
Definition 119 Let μ be a complex measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, $n \geq 1$, with total variation $|\mu|$. We call **maximal function** of μ, the map $M\mu : \mathbb{R}^n \to [0, +\infty]$, defined by:

$$\forall x \in \mathbb{R}^n, \quad (M\mu)(x) \triangleq \sup_{\epsilon > 0} \frac{|\mu|(B(x, \epsilon))}{dx(B(x, \epsilon))}$$

where $B(x, \epsilon)$ is the open ball in \mathbb{R}^n, of center x and radius ϵ, with respect to the usual metric of \mathbb{R}^n.

Exercise 13. Let μ be a complex measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.

1. Let $\lambda \in \mathbb{R}$. Show that if $\lambda < 0$, then $\{\lambda < M\mu\} = \mathbb{R}^n$.

2. Show that if $\lambda = 0$, then $\{\lambda < M\mu\} = \mathbb{R}^n$ if $\mu \neq 0$, and $\{\lambda < M\mu\}$ is the empty set if $\mu = 0$.

3. Suppose $\lambda > 0$. Let $x \in \{\lambda < M\mu\}$. Show the existence of $\epsilon > 0$ such that $|\mu|(B(x, \epsilon)) = tdx(B(x, \epsilon))$, for some $t > \lambda$.
4. Show the existence of $\delta > 0$ such that $(\epsilon + \delta)^n < \epsilon^n t / \lambda$.

5. Show that if $y \in B(x, \delta)$, then $B(x, \epsilon) \subseteq B(y, \epsilon + \delta)$.

6. Show that if $y \in B(x, \delta)$, then:

$$|\mu|(B(y, \epsilon + \delta)) \geq \frac{\epsilon^n t}{(\epsilon + \delta)^n} dx(B(y, \epsilon + \delta)) > \lambda dx(B(y, \epsilon + \delta))$$

7. Conclude that $B(x, \delta) \subseteq \{ \lambda < M\mu \}$, and that the maximal function $M\mu : \mathbb{R}^n \rightarrow [0, +\infty]$ is l.s.c, and therefore measurable.

Exercise 14. Let $B_i = B(x_i, \epsilon_i)$, $i = 1, \ldots, N$, $N \geq 1$, be a finite collection of open balls in \mathbb{R}^n. Assume without loss of generality that $\epsilon_N \leq \ldots \leq \epsilon_1$. We define a sequence (J_k) of sets by $J_0 = \{1, \ldots, N\}$ and for all $k \geq 1$:

$$J_k \triangleq \begin{cases} J_{k-1} \cap \{j : j > i_k, B_j \cap B_{i_k} = \emptyset\} & \text{if } J_{k-1} \neq \emptyset \\ \emptyset & \text{if } J_{k-1} = \emptyset \end{cases}$$
where we have put $i_k = \min J_{k-1}$, whenever $J_{k-1} \neq \emptyset$.

1. Show that if $J_{k-1} \neq \emptyset$ then $J_k \subset J_{k-1}$ (strict inclusion), $k \geq 1$.

2. Let $p = \min\{k \geq 1 : J_k = \emptyset\}$. Show that p is well-defined.

3. Let $S = \{i_1, \ldots, i_p\}$. Explain why S is well defined.

4. Suppose that $1 \leq k < k' \leq p$. Show that $i_{k'} \in J_k$.

5. Show that $(B_i)_{i \in S}$ is a family of pairwise disjoint open balls.

6. Let $i \in \{1, \ldots, N\} \setminus S$, and define k_0 to be the minimum of the set $\{k \in \mathbb{N}_p : i \notin J_k\}$. Explain why k_0 is well-defined.

7. Show that $i \in J_{k_0-1}$ and $i_{k_0} \leq i$.

8. Show that $B_i \cap B_{i_{k_0}} \neq \emptyset$.

9. Show that $B_i \subseteq B(x_{i_{k_0}}, 3\epsilon_{i_{k_0}})$.

www.probability.net
10. Conclude that there exists a subset S of $\{1, \ldots, N\}$ such that $(B_i)_{i \in S}$ is a family of pairwise disjoint balls, and:

$$\bigcup_{i=1}^{N} B(x_i, \epsilon_i) \subseteq \bigcup_{i \in S} B(x_i, 3\epsilon_i)$$

11. Show that:

$$dx\left(\bigcup_{i=1}^{N} B(x_i, \epsilon_i)\right) \leq 3^n \sum_{i \in S} dx(B(x_i, \epsilon_i))$$

Exercise 15. Let μ be a complex measure on \mathbb{R}^n. Let $\lambda > 0$ and K be a non-empty compact subset of $\{\lambda < M\mu\}$.

1. Show that K can be covered by a finite collection $B_i = B(x_i, \epsilon_i)$, $i = 1, \ldots, N$ of open balls, such that:

$$\forall i = 1, \ldots, N \ , \ \lambda dx(B_i) < |\mu|(B_i)$$
2. Show the existence of $S \subseteq \{1, \ldots, N\}$ such that:

$$dx(K) \leq 3^n \lambda^{-1} |\mu| \left(\bigcup_{x \in S} B(x, \epsilon_i) \right)$$

3. Show that $dx(K) \leq 3^n \lambda^{-1} \| \mu \|$

4. Conclude with the following:

Theorem 100 Let μ be a complex measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, $n \geq 1$, with maximal function $M\mu$. Then, for all $\lambda \in \mathbb{R}^+ \setminus \{0\}$, we have:

$$dx(\{ \lambda < M\mu \}) \leq 3^n \lambda^{-1} \| \mu \|$$

Definition 120 Let $f \in L^1_c(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), dx)$, and μ be the complex measure $\mu = \int f \, dx$ on \mathbb{R}^n, $n \geq 1$. We call maximal function of f, denoted Mf, the maximal function $M\mu$ of μ.

www.probability.net
Exercise 16. Let $f \in L^1_{C}(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), dx)$, $n \geq 1$.

1. Show that for all $x \in \mathbb{R}^n$:

 $$(Mf)(x) = \sup_{\epsilon > 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f| dx$$

2. Show that for all $\lambda > 0$, $dx(\{\lambda < Mf\}) \leq 3^n \lambda^{-1} \|f\|_1$.

Definition 121. Let $f \in L^1_{C}(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), dx)$, $n \geq 1$. We say that $x \in \mathbb{R}^n$ is a Lebesgue point of f, if and only if we have:

$$\lim_{\epsilon \to 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)| dy = 0$$

Exercise 17. Let $f \in L^1_{C}(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), dx)$, $n \geq 1$.

1. Show that if f is continuous at $x \in \mathbb{R}^n$, then x is a Lebesgue point of f.

www.probability.net
2. Show that if \(x \in \mathbb{R}^n \) is a Lebesgue point of \(f \), then:

\[
f(x) = \lim_{\epsilon \downarrow 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} f(y)dy
\]

Exercise 18. Let \(n \geq 1 \) and \(f \in L^1_c(\mathbb{R}^n, B(\mathbb{R}^n), dx) \). For all \(\epsilon > 0 \) and \(x \in \mathbb{R}^n \), we define:

\[
(T_\epsilon f)(x) \triangleq \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)|dy
\]

and we put, for all \(x \in \mathbb{R}^n \):

\[
(Tf)(x) \triangleq \limsup_{\epsilon \downarrow 0} (T_\epsilon f)(x) \triangleq \inf_{\epsilon > 0} \sup_{u \in [0, \epsilon]} (T_\epsilon f)(x)
\]

1. Given \(\eta > 0 \), show the existence of \(g \in C^c_c(\mathbb{R}^n) \) such that:

\[
\|f - g\|_1 \leq \eta
\]
2. Let $h = f - g$. Show that for all $\epsilon > 0$ and $x \in \mathbb{R}^n$:

$$
(T, h)(x) \leq \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |h| dx + |h(x)|
$$

3. Show that $Th \leq Mh + |h|$.

4. Show that for all $\epsilon > 0$, we have $T_{\epsilon}f \leq T_{\epsilon}g + T_{\epsilon}h$.

5. Show that $Tf \leq Tg + Th$.

6. Using the continuity of g, show that $Tg = 0$.

7. Show that $Tf \leq Mh + |h|.

8. Show that for all $\alpha > 0$, $\{2\alpha < Tf\} \subseteq \{\alpha < Mh\} \cup \{\alpha < |h|\}$.

9. Show that $dx(\{\alpha < |h|\}) \leq \alpha^{-1} \|h\|_1$.

10. Conclude that for all $\alpha > 0$ and $\eta > 0$, there is $N_{\alpha, \eta} \in B(\mathbb{R}^n)$ such that $\{2\alpha < Tf\} \subseteq N_{\alpha, \eta}$ and $dx(N_{\alpha, \eta}) \leq \eta$.

www.probability.net
11. Show that for all $\alpha > 0$, there exists $N_\alpha \in \mathcal{B}(\mathbb{R}^n)$ such that
$\{2\alpha < Tf\} \subseteq N_\alpha$ and $dx(N_\alpha) = 0$.

12. Show there is $N \in \mathcal{B}(\mathbb{R}^n)$, $dx(N) = 0$, such that $\{Tf > 0\} \subseteq N$.

13. Conclude that $Tf = 0$, dx–a.s.

14. Conclude with the following:

Theorem 101 Let $f \in L^1_c(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), dx)$, $n \geq 1$. Then, dx–almost surely, any $x \in \mathbb{R}^n$ is a Lebesgue points of f, i.e.

$$dx$-a.s., \quad \lim_{\epsilon \downarrow 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)| dy = 0$$

Exercise 19. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Omega' \in \mathcal{F}$. We define $\mathcal{F}' = \mathcal{F}|_{\Omega'}$ and $\mu' = \mu|_{\mathcal{F}'}$. For all maps $f : \Omega' \rightarrow [0, +\infty]$ (or

www.probability.net
C), we define \(\tilde{f} : \Omega \rightarrow [0, +\infty] \) (or \(C \)), by:

\[
\tilde{f}(\omega) \triangleq \begin{cases}
 f(\omega) & \text{if } \omega \in \Omega' \\
 0 & \text{if } \omega \notin \Omega'
\end{cases}
\]

1. Show that \(\mathcal{F}' \subseteq \mathcal{F} \) and conclude that \(\mu' \) is therefore a well-defined measure on \((\Omega', \mathcal{F}') \).

2. Let \(A \in \mathcal{F}' \) and \(1_A' \) be the characteristic function of \(A \) defined on \(\Omega' \). Let \(1_A \) be the characteristic function of \(A \) defined on \(\Omega \). Show that \(1_A' = 1_A \).

3. Let \(f : (\Omega', \mathcal{F}') \rightarrow [0, +\infty] \) be a non-negative and measurable map. Show that \(\tilde{f} : (\Omega, \mathcal{F}) \rightarrow [0, +\infty] \) is also non-negative and measurable, and that we have:

\[
\int_{\Omega'} f \, d\mu' = \int_{\Omega} \tilde{f} \, d\mu
\]
4. Let $f \in L^1_C(\Omega', \mathcal{F}', \mu')$. Show that $\tilde{f} \in L^1_C(\Omega, \mathcal{F}, \mu)$, and:

$$\int_{\Omega'} f \, d\mu' = \int_{\Omega} \tilde{f} \, d\mu$$

Definition 122 $b : \mathbb{R}^+ \to \mathbb{C}$ is absolutely continuous, if and only if b is right-continuous of finite variation, and b is absolutely continuous with respect to $a(t) = t$.

Exercise 20. Let $b : \mathbb{R}^+ \to \mathbb{C}$ be a map.

1. Show that b is absolutely continuous, if and only if there is $f \in L^1_{C_{\text{loc}}}(t)$ such that $b(t) = \int_0^t f(s) \, ds$, for all $t \in \mathbb{R}^+$.

2. Show that b absolutely continuous \Rightarrow b continuous with $b(0) = 0$.

Exercise 21. Let $b : \mathbb{R}^+ \to \mathbb{C}$ be an absolutely continuous map. Let $f \in L^1_{C_{\text{loc}}}(t)$ be such that $b = f.t$. For all $n \geq 1$, we define

www.probability.net
Let $n \geq 1$. Show $f_n \in L^1_C(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx)$ and for all $t \in [0, n]$:

$$b(t) = \int_0^t f_n dx$$

2. Show the existence of $N_n \in \mathcal{B}(\mathbb{R})$ such that $dx(N_n) = 0$, and for all $t \in N_n$, t is a Lebesgue point of f_n.

3. Show that for all $t \in \mathbb{R}$, and $\epsilon > 0$:

$$\frac{1}{\epsilon} \int_t^{t+\epsilon} |f_n(s) - f_n(t)|ds \leq \frac{2}{dx(B(t, \epsilon))} \int_{B(t, \epsilon)} |f_n(s) - f_n(t)|ds$$

4. Show that for all $t \in N_n^c$, we have:

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_t^{t+\epsilon} f_n(s)ds = f_n(t)$$
5. Show similarly that for all \(t \in N_n^c \), we have:
\[
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{t-\epsilon}^{t} f_n(s) ds = f_n(t)
\]

6. Show that for all \(t \in N_n^c \cap [0,n[\), \(b'(t) \) exists and \(b'(t) = f(t) \).

7. Show the existence of \(N \in \mathcal{B}(\mathbb{R}^+) \), such that \(dx(N) = 0 \), and:
\[
\forall t \in N^c \ , \ b'(t) \text{ exists with } b'(t) = f(t)
\]

8. Conclude with the following:

\[b'(0) \text{ being a r.h.s derivative only.}\]
Theorem 102 A map \(b : \mathbb{R}^+ \rightarrow \mathbb{C} \) is absolutely continuous, if and only if there exists \(f \in L^1_{\text{loc}}(t) \) such that:

\[
\forall t \in \mathbb{R}^+, \quad b(t) = \int_0^t f(s)ds
\]

in which case, \(b \) is almost surely differentiable with \(b' = f \text{ d}x \)-a.s.
Solutions to Exercises

Exercise 1.

1. Let $f : \Omega \rightarrow \mathbb{R}$ be a map, where Ω is a topological space. Suppose that $\{ \lambda < f \}$ is open for all $\lambda \in \mathbb{R}$. Then in particular, $\{ \lambda < f \}$ is open for all $\lambda \in \mathbb{R}$. So f is l.s.c. Conversely, suppose f is l.s.c. Then $\{ \lambda < f \}$ is open for all $\lambda \in \mathbb{R}$, and since:

$$\{ -\infty < f \} = \bigcup_{\lambda \in \mathbb{R}} \{ \lambda < f \}$$

it follows that $\{ -\infty < f \}$ is also open. Furthermore, $\{ +\infty < f \}$ is the empty set, and in particular, $\{ +\infty < f \}$ is open. We conclude that $\{ \lambda < f \}$ is open for all $\lambda \in \mathbb{R}$. We have proved that f is l.s.c if and only if $\{ \lambda < f \}$ is open for all $\lambda \in \mathbb{R}$.

2. Similarly to 1. we have:

$$\{ f < +\infty \} = \bigcup_{\lambda \in \mathbb{R}} \{ f < \lambda \}$$
and \(\{ f < -\infty \} = \emptyset \) which is open. We conclude that \(f \) is u.s.c if and only if \(\{ f < \lambda \} \) is open for all \(\lambda \in \mathbb{R} \).

3. Let \(U \) be open in \(\mathbb{R} \). If \(+\infty \in U \), let \(V^+ = [\alpha, +\infty] \) where \(\alpha \in \mathbb{R} \) is such that \([\alpha, +\infty] \subseteq U \). Otherwise, let \(V^+ = \emptyset \). If \(-\infty \in U \), let \(V^- = (-\infty, \beta] \), where \(\beta \in \mathbb{R} \) is such that \((-\infty, \beta] \subseteq U \). Otherwise, let \(V^- = \emptyset \). Then, we have:

\[
U = V^+ \cup V^- \cup (U \cap \mathbb{R})
\]

and \(U \cap \mathbb{R} \) is an open subset of \(\mathbb{R} \) (possibly empty). For all \(x \in U \cap \mathbb{R} \), let \(\alpha_x, \beta_x \in \mathbb{R} \) be such that \(x \in [\alpha_x, \beta_x] \subseteq U \cap \mathbb{R} \). Then, we have:

\[
U \cap \mathbb{R} = \bigcup_{x \in U \cap \mathbb{R}} [\alpha_x, \beta_x]
\]

where it is understood that if \(U \cap \mathbb{R} = \emptyset \), the corresponding union is the empty set. Taking \(I = U \cap \mathbb{R} \), we conclude that:

\[
U = V^+ \cup V^- \cup \bigcup_{i \in I} [\alpha_i, \beta_i]
\]
4. Suppose that f is continuous. For all $\lambda \in \mathbb{R}$, the interval $]\lambda, +\infty]$ is an open subset of \mathbb{R}. It follows that $\{ \lambda < f \} = f^{-1}(]\lambda, +\infty])$ is open. This being true for all $\lambda \in \mathbb{R}$, f is l.s.c. Similarly, the interval $[-\infty, \lambda]$ is an open subset of \mathbb{R}. It follows that $\{ f < \lambda \} = f^{-1}([-\infty, \lambda])$ is open. This being true for all $\lambda \in \mathbb{R}$, f is u.s.c. Hence, if f is continuous, it is both l.s.c and u.s.c. Conversely, suppose f is both l.s.c. and u.s.c. Let U be an open subset of \mathbb{R}. Using the decomposition obtained in 3. we have:

$$f^{-1}(U) = f^{-1}\left(V^+ \cup V^- \cup \bigcup_{i \in I} [\alpha_i, \beta_i] \right)$$

$$= f^{-1}(V^+) \cup f^{-1}(V^-) \cup \bigcup_{i \in I} f^{-1}([\alpha_i, \beta_i])$$

$$= f^{-1}(V^+) \cup f^{-1}(V^-) \cup \bigcup_{i \in I} \{ \alpha_i < f \} \cap \{ f < \beta_i \}$$

Since $f^{-1}(V^+)$ is either $\{ \alpha < f \}$ or \emptyset, and $f^{-1}(V^-)$ is either $\{ f < \beta \}$ or \emptyset, it follows that $f^{-1}(U)$ is a union of open sets in
Ω, and is therefore open. Having proved that \(f^{-1}(U) \) is open for all \(U \) open in \(\mathbb{R} \), we conclude that \(f \) is continuous. So \(f \) is continuous, if and only if it is both l.s.c and u.s.c.

5. Let \(u : \Omega \to \mathbb{R} \) and \(v : \Omega \to \mathbb{R} \). Let \(\lambda \in \mathbb{R} \). Note that having restricted the range of \(u \) to be a subset of \(\mathbb{R} \), the map \(u + v \) is well defined, as there can be no occurrence of \((+\infty) + (-\infty) \).

We claim that:

\[
\{ \lambda < u + v \} = \bigcup_{(\lambda_1, \lambda_2) \in \mathbb{R}^2} \{ \lambda_1 < u \} \cap \{ \lambda_2 < v \}
\]

It is clear that if \(\omega \in \Omega \) is such that \(\lambda_1 < u(\omega) \) and \(\lambda_2 < v(\omega) \) for some \(\lambda_1, \lambda_2 \in \mathbb{R} \) with \(\lambda_1 + \lambda_2 = \lambda \), then \(\lambda < u(\omega) + v(\omega) \). This shows the inclusion \(\supseteq \). To show the reverse inclusion, suppose that \(\omega \in \Omega \) is such that \(\lambda < u(\omega) + v(\omega) \). Then, we have \(\lambda - u(\omega) < v(\omega) \), and there exists \(\lambda_2 \in \mathbb{R} \) such that:

\[
\lambda - u(\omega) < \lambda_2 < v(\omega)
\]
Define $\lambda_1 = \lambda - \lambda_2$. Then $\lambda_2 < v(\omega)$ and $\lambda_1 < u(\omega)$ where λ_1, λ_2 are elements of \mathbb{R} such that $\lambda_1 + \lambda_2 = \lambda$. This shows the inclusion \subseteq.

6. Suppose that both u and v are l.s.c. Then for all $\lambda_1, \lambda_2 \in \mathbb{R}$, \{\lambda_1 < u\} and \{\lambda_2 < v\} are open subsets of Ω. It follows from 5. that \{\lambda < u + v\} is also an open subset of Ω, for all $\lambda \in \mathbb{R}$. So $u + v$ is l.s.c.

7. Suppose that both u and v are u.s.c. Similarly to 5. we have:

$$\{u + v < \lambda\} = \bigcup_{(\lambda_1, \lambda_2) \in \mathbb{R}^2} \{u < \lambda_1\} \cap \{v < \lambda_2\}$$

and consequently \{u + v < \lambda\} is an open subset of Ω, for all $\lambda \in \mathbb{R}$. So $u + v$ is u.s.c. Anticipating on questions 10. and 11., an alternative proof goes as follows: if u and v are u.s.c, then $-u$ and $-v$ are l.s.c. so $-u - v$ is l.s.c. and finally $u + v$ is u.s.c.
8. Suppose f is l.s.c and let $\alpha \in \mathbb{R}^+$. If $\alpha = 0$, then $\alpha f = 0$ and consequently αf is continuous and in particular l.s.c. We assume that $\alpha > 0$. Then for all $\omega \in \Omega$, $\lambda < \alpha f(\omega)$ is equivalent to $\lambda/\alpha < f(\omega)$ (this is certainly true when $f(\omega) \in \mathbb{R}$, and one can easily check that it is still true when $f(\omega) \in \{-\infty, +\infty\}$). It follows that $\{\lambda < \alpha f\} = \{\lambda/\alpha < f\}$ and consequently $\{\lambda < \alpha f\}$ is an open subset of Ω. This being true for all $\lambda \in \mathbb{R}$, we conclude that αf is l.s.c.

9. Suppose that f is u.s.c and $\alpha \in \mathbb{R}^+$. If $\alpha = 0$ then αf is u.s.c. We assume that $\alpha > 0$. Then $\{\alpha f < \lambda\} = \{f < \lambda/\alpha\}$ and consequently $\{\alpha f < \lambda\}$ is open for all $\lambda \in \mathbb{R}$. So αf is u.s.c.

10. Suppose that f is l.s.c. Then $\{-f < \lambda\} = \{-\lambda < f\}$ for all $\lambda \in \mathbb{R}$, and consequently $\{-f < \lambda\}$ is an open subset of Ω. So $-f$ is u.s.c.

11. Suppose that f is u.s.c. Then $\{\lambda < -f\} = \{f < -\lambda\}$ for all $\lambda \in \mathbb{R}$, and consequently $\{\lambda < -f\}$ is an open subset of Ω. So
−f is l.s.c.

12. Let V be an open subset of Ω and \(f = 1_V \). Let \(\lambda \in \mathbb{R} \). If \(\lambda < 0 \) we have \(\{ \lambda < f \} = \Omega \). If \(0 \leq \lambda < 1 \) we have \(\{ \lambda < f \} = V \). If \(1 \leq \lambda \) we have \(\{ \lambda < f \} = \emptyset \). In any case, \(\{ \lambda < f \} \) is an open subset of Ω. So \(f \) is l.s.c. The characteristic function of an open subset of Ω is lower-semi-continuous.

13. Let \(F \) be a closed subset of Ω. Let \(\lambda \in \mathbb{R} \). Then \(\{ f < \lambda \} \) is either \(\emptyset \), \(F^c \) or Ω, depending respectively on whether \(\lambda \leq 0 \), \(0 < \lambda \leq 1 \) and \(1 < \lambda \). In any case, \(\{ f < \lambda \} \) is an open subset of Ω. So \(f \) is u.s.c. The characteristic function of a closed subset of Ω is upper-semi-continuous.

Exercise 1
Exercise 2.

1. Let \((f_i)_{i \in I}\) be a family of maps \(f_i : \Omega \to \bar{\mathbb{R}}\), where \(\Omega\) is a topological space. Let \(f = \sup_{i \in I} f_i\). We assume that all \(f_i\)'s are l.s.c. For all \(\lambda \in \mathbb{R}\), we claim that:

\[
\{\lambda < f\} = \bigcup_{i \in I} \{\lambda < f_i\}
\] \hspace{1cm} (1)

Indeed, suppose that \(\omega \in \Omega\) is such that \(\lambda < f(\omega)\). Since \(f(\omega)\) is the lowest upper-bound of all \(f_i(\omega)\)'s, \(\lambda\) cannot be such an upper-bound. Hence, there exists \(i \in I\) such that \(\lambda < f_i(\omega)\). This shows the inclusion \(\subseteq\). To show the reverse inclusion, suppose \(\omega \in \Omega\) is such that \(\lambda < f_i(\omega)\) for some \(i \in I\). Since \(f_i(\omega) \leq f(\omega)\), in particular we have \(\lambda < f(\omega)\). This shows the inclusion \(\supseteq\). Having proved equation (1) and since all \(f_i\)'s are l.s.c, \(\{\lambda < f\}\) is an open subset of \(\Omega\) for all \(\lambda \in \mathbb{R}\). It follows that \(f\) is l.s.c. The supremum of l.s.c functions is l.s.c.
2. Suppose that all \(f_i \)'s are u.s.c and \(f = \inf_{i \in I} f_i \). Given \(\lambda \in \mathbb{R} \):

\[
\{ f < \lambda \} = \bigcup_{i \in I} \{ f_i < \lambda \}
\]

and consequently \(\{ f < \lambda \} \) is an open subset of \(\Omega \). It follows that \(f \) is u.s.c. The infimum of u.s.c functions is u.s.c.

Exercise 2
Exercise 3.

1. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Let $f \in L_1^R(\Omega, \mathcal{B}(\Omega), \mu)$, $f \geq 0$, where μ is a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. From theorem (18), there exists a sequence $(s_n)_{n \geq 1}$ of simple functions on $(\Omega, \mathcal{B}(\Omega))$ such that $s_n \uparrow f$ (i.e. $s_n \leq s_{n+1}$ for all $n \geq 1$ and $s_n \to f$ pointwise). We define $t_1 = s_1$ and $t_n = s_n - s_{n-1}$ for all $n \geq 2$. In order to show that t_n is a simple function for all $n \geq 1$, we need to show that if s, t are simple functions on $(\Omega, \mathcal{B}(\Omega))$ with $s \leq t$, then $t - s$ is also a simple function on $(\Omega, \mathcal{B}(\Omega))$. Since s and t are measurable with values in \mathbb{R}^+, and $s \leq t$, the map $t - s$ is also measurable with values in \mathbb{R}^+. From:

\[t - s = \sum_{\alpha \in (t-s)(\Omega)} \alpha 1_{\{t-s=\alpha\}} \]

we conclude that $t - s$ is a simple function on $(\Omega, \mathcal{B}(\Omega))$.

2. Since each t_n is a simple function on $(\Omega, \mathcal{B}(\Omega))$, for all $n \geq 1$
there exists an integer $p_n \geq 1$ and some $\alpha_n^1, \ldots, \alpha_n^{p_n} \in \mathbb{R}^+$ and $A_n^1, \ldots, A_n^{p_n} \in \mathcal{B}(\Omega)$ such that:

$$t_n = \sum_{k=1}^{p_n} \alpha_n^k 1_{A_n^k}$$

Note that it is always possible to assume $\alpha_n^k \neq 0$, by setting $A_n^k = \emptyset$ if necessary. Since $s_N = \sum_{n=1}^{N} t_n$ for all $N \geq 1$, from $s_N \to f$ we obtain:

$$f = \sum_{n=1}^{+\infty} t_n = \sum_{n=1}^{+\infty} \sum_{k=1}^{p_n} \alpha_n^k 1_{A_n^k}$$

This last sum having a countable number of (non-negative) terms, it can be re-expressed as:

$$f = \sum_{n=1}^{+\infty} \alpha_n 1_{A_n}$$
where $\alpha_n \in \mathbb{R}^+ \setminus \{0\}$ and $A_n \in \mathcal{B}(\Omega)$ for all $n \geq 1$.

3. Since $f \in L^1_\mathbb{R}(\Omega, \mathcal{B}(\Omega), \mu)$ and $f \geq 0$, from 2, we have:

$$
\sum_{n=1}^{+\infty} \alpha_n \mu(A_n) = \sum_{n=1}^{+\infty} \alpha_n \int 1_{A_n} \, d\mu \\
= \int \left(\sum_{n=1}^{+\infty} \alpha_n 1_{A_n} \right) \, d\mu \\
= \int f \, d\mu < +\infty
$$

where the second equality is obtained from the linearity of the integral and an immediate application of the monotone convergence theorem (19). Since for all $n \geq 1$ we have $\alpha_n > 0$, we conclude that $\mu(A_n) < +\infty$.

4. Let $\epsilon > 0$ and $n \geq 1$. Define $\epsilon' = \epsilon/(\alpha_n 2^{n+2})$. Since (Ω, \mathcal{T}) is metrizable and σ-compact, while μ is a locally finite measure on
$(\Omega, \mathcal{B}(\Omega))$, from theorem (73) μ is a regular measure. Hence:

$$\mu(A_n) = \sup\{\mu(K) : K \subseteq A_n, K \text{ compact}\} = \inf\{\mu(V) : A_n \subseteq V, V \text{ open}\}$$

Since $\mu(A_n) < +\infty$, we have $\mu(A_n) < \mu(A_n) + \epsilon'$, and $\mu(A_n)$ being the greatest lower-bound of all $\mu(V)$’s as V runs through the set of all open subsets of Ω with $A_n \subseteq V$, $\mu(A_n) + \epsilon'$ cannot be such a lower-bound. There exists V_n open subset of Ω such that $A_n \subseteq V_n$, and:

$$\mu(V_n) < \mu(A_n) + \epsilon'$$

Similarly, from the fact that $\mu(A_n) - \epsilon' < \mu(A_n)$, there exists K_n compact subset of Ω such that $K_n \subseteq A_n$, and:

$$\mu(A_n) - \epsilon' < \mu(K_n)$$

From $K_n \subseteq A_n$ note in particular that $\mu(K_n) < +\infty$, and con-
sequently we have $K_n \subseteq A_n \subseteq V_n$ with:

$$
\mu(V_n \setminus K_n) = \mu(V_n) - \mu(K_n) < 2\epsilon' = \frac{\epsilon}{\alpha_n^{2n+1}}
$$

5. Having proved in 3. that $\sum_{n \geq 1} \alpha_n \mu(A_n) < +\infty$, given $\epsilon > 0$ there exists $N \geq 1$ such that:

$$
\left| \sum_{n=1}^{+\infty} \alpha_n \mu(A_n) - \sum_{n=1}^{N} \alpha_n \mu(A_n) \right| \leq \frac{\epsilon}{2}
$$

or equivalently:

$$
\sum_{n=N+1}^{+\infty} \alpha_n \mu(A_n) \leq \frac{\epsilon}{2}
$$

6. Let $u = \sum_{n=1}^{N} \alpha_n 1_{K_n}$. Since (Ω, T) is metrizable, in particular it is a Hausdorff topological space. Since K_n is a compact subset of Ω, from theorem (35) K_n is a closed subset of Ω. It follows from 13. of exercise (1) that 1_{K_n} is upper-semi-continuous. Using 7. and 9. of exercise (1), we conclude that u is also u.s.c.
7. Let \(v = \sum_{n=1}^{+\infty} \alpha_n 1_{V_n} \). Since \(V_n \) is an open subset of \(\Omega \), from 12. of exercise (1) the map \(1_{V_n} \) is lower-semi-continuous. It follows from 6. and 8. of this same exercise that every partial sum \(\sum_{n=1}^{k} \alpha_n 1_{V_n} \) is itself l.s.c. Since \(v \) is the supremum of these partial sums, we conclude from exercise (2) that \(v \) is l.s.c.

8. Since \(K_n \subseteq A_n \subseteq V_n \) and \(\alpha_n \in \mathbb{R}^+ \) for all \(n \geq 1 \):

\[
0 \leq \sum_{n=1}^{N} \alpha_n 1_{K_n} = u \\
\leq \sum_{n=1}^{N} \alpha_n 1_{A_n} \\
\leq \sum_{n=1}^{+\infty} \alpha_n 1_{A_n} = f \\
\leq \sum_{n=1}^{+\infty} \alpha_n 1_{V_n} = v
\]
We conclude that $0 \leq u \leq f \leq v$.

9. Since $K_n \subseteq V_n$ for all $n \geq 1$, we have:

$$v = \sum_{n=1}^{+\infty} \alpha_n 1_{V_n} = \sum_{n=1}^{+\infty} \alpha_n (1_{K_n} + 1_{V_n \backslash K_n})$$

$$= \sum_{n=1}^{+\infty} \alpha_n 1_{K_n} + \sum_{n=1}^{+\infty} \alpha_n 1_{V_n \backslash K_n}$$

$$= u + \sum_{n=N+1}^{+\infty} \alpha_n 1_{K_n} + \sum_{n=1}^{+\infty} \alpha_n 1_{V_n \backslash K_n}$$

10. Since $K_n \subseteq A_n$ for all $n \geq 1$, using 5. we have:

$$\sum_{n=N+1}^{+\infty} \alpha_n \mu(K_n) \leq \sum_{n=N+1}^{+\infty} \alpha_n \mu(A_n) \leq \frac{\epsilon}{2}$$

www.probability.net
Hence, using 9. and 4. we obtain:

\[
\int v \, d\mu = \int \left(u + \sum_{n=N+1}^{+\infty} \alpha_n 1_{K_n} + \sum_{n=1}^{+\infty} \alpha_n 1_{V_n \setminus K_n} \right) \, d\mu
\]

\[
= \int u \, d\mu + \sum_{n=N+1}^{+\infty} \alpha_n \int 1_{K_n} \, d\mu + \sum_{n=1}^{+\infty} \alpha_n \int 1_{V_n \setminus K_n} \, d\mu
\]

\[
= \int u \, d\mu + \sum_{n=N+1}^{+\infty} \alpha_n \mu(K_n) + \sum_{n=1}^{+\infty} \alpha_n \mu(V_n \setminus K_n)
\]

\[
\leq \int u \, d\mu + \frac{\epsilon}{2} + \sum_{n=1}^{+\infty} \alpha_n \cdot \frac{\epsilon}{\alpha_n 2^{n+1}}
\]

\[
= \int u \, d\mu + \epsilon
\]

where the second equality stems from the linearity of the integral and an application of the monotone convergence theorem (19).
Note that since $\mu(K_n) < +\infty$ for all $n \geq 1$, in particular:

$$\int ud\mu = \sum_{n=1}^{N} \alpha_n \mu(K_n) < +\infty$$

Hence, we conclude that:

$$\int vd\mu \leq \int ud\mu + \epsilon < +\infty$$

11. The map u is \mathbb{R}-valued, Borel measurable with:

$$\int |u|d\mu = \int ud\mu < +\infty$$

So $u \in L^1_\mathbb{R}(\Omega, \mathcal{B}(\Omega), \mu)$.

12. The map v is Borel measurable with:

$$\int |v|d\mu = \int vd\mu < +\infty$$
However, it has values in \([0, +\infty]\), i.e. \(v(\omega) = +\infty\) is possible for some \(\omega \in \Omega\). The condition \(\int v \, d\mu < +\infty\) does imply that \(v(\omega) < +\infty\) for \(\mu\)-almost every \(\omega \in \Omega\). As we shall see in the next question, \(v\) is therefore \(\mu\)-almost surely equal to an element of \(L_1^R(\Omega, B(\Omega), \mu)\). But strictly speaking, it may not be itself an element of this space, because its range \(v(\Omega)\) may fail to be a subset of \(\mathbb{R}\).

13. Since \(\int v \, d\mu < +\infty\), we have \(v < +\infty\) \(\mu\)-a.s since:

\[
(+\infty) \cdot \mu(\{v = +\infty\}) = \int_{\{v = +\infty\}} v \, d\mu \leq \int v \, d\mu < +\infty
\]

Hence, if \(N = \{v = +\infty\}\), we have \(N \in B(\Omega)\) and \(\mu(N) = 0\). Let \(v^* = v 1_N^c\). Then \(v^*\) has values in \(\mathbb{R}\), is Borel measurable and:

\[
\int |v^*| \, d\mu = \int v 1_N^c \, d\mu = \int v \, d\mu < +\infty
\]

So \(v^* \in L_1^R(\Omega, B(\Omega), \mu)\). Since \(v^* = v\) \(\mu\)-a.s. we conclude that \(v\) is \(\mu\)-almost surely equal to an element of \(L_1^R(\Omega, B(\Omega), \mu)\).
14. Note that from 8. we have $0 \leq u \leq v$ and consequently $v - u$ is non-negative and measurable, and the integral $\int (v - u) d\mu$ makes sense. In fact, even if $u \leq v$ did not hold, since $u \in L^1$ and v is almost surely equal to an element of L^1, it would be possible to give meaning to $\int (v - u) d\mu$ in the obvious way. Now from 10. we have:

$$\int ud\mu + \int (v - u) d\mu = \int vd\mu$$

$$\leq \int ud\mu + \epsilon$$

and since $\int ud\mu < +\infty$ we conclude that $\int (v - u) d\mu \leq \epsilon$.

15. Having considered a metrizable and σ-compact topological space (Ω, T) and a locally finite measure μ on $(\Omega, B(\Omega))$, given $\epsilon > 0$ and $f \in L^1_\mathbb{R}(\Omega, B(\Omega), \mu)$ with $f \geq 0$, we have found two measurable maps $u, v : \Omega \to [0, +\infty]$ (where in fact u has values in \mathbb{R}^+), which are μ-almost surely equal to elements of $L^1_\mathbb{R}(\Omega, B(\Omega), \mu)$
(in fact \(u\) is itself an element of \(L^1\)) and such that \(u \leq f \leq v\), \(u\) is u.s.c, \(v\) is l.s.c. and:

\[
\int (v - u) d\mu \leq \epsilon
\]

Now let \(f \in L^1_\mathbb{R}(\Omega, \mathcal{B}(\Omega), \mu)\) which we no longer assume to be non-negative. Let \(f^+\) and \(f^-\) be respectively the positive and negative parts of \(f\). Then \(f = f^+ - f^-\) and given \(\epsilon > 0\), it is possible to apply the result of this exercise to \(f^+\) and \(f^-\) separately, with \(\epsilon/2\) instead of \(\epsilon\). Hence, there exist four measurable maps \(u^+, v^+, u^-, v^-\) where \(u^+, u^-\) have values in \(\mathbb{R}^+\) and \(v^+, v^-\) have values in \([0, +\infty]\), which are \(\mu\)-almost surely equal elements of \(L^1\), and satisfy the conditions \(u^+ \leq f^+ \leq v^+, u^- \leq f^- \leq v^-\), \(u^+, u^-\) are u.s.c, \(v^+, v^-\) are l.s.c, and:

\[
\int (v^+ - u^+) d\mu \leq \frac{\epsilon}{2}
\]
Solutions to Exercises together with:

\[\int (v^- - u^-)d\mu \leq \frac{\epsilon}{2} \]

We define \(u = u^+ - v^- \) and \(v = v^+ - u^- \). Since \(u^+, u^- \) have values in \(\mathbb{R} \), given \(\omega \in \Omega \), the differences \(u^+(\omega) - v^- (\omega) \) and \(v^+(\omega) - u^- (\omega) \) are always well-defined elements of \(\overline{\mathbb{R}} \). It follows that \(u, v : \Omega \rightarrow \overline{\mathbb{R}} \) are well-defined measurable maps. Furthermore, it is clear that both \(u \) and \(v \) are \(\mu \)-almost surely equal to an element of \(L^1 \). From \(u^+ \leq f^+ \leq v^+ \), \(u^- \leq f^- \leq v^- \) and \(f = f^+ - f^- \) we obtain \(u \leq f \leq v \). Furthermore, since \(u^+ \) is \(\mathbb{R} \)-valued and u.s.c while \(v^- \) is l.s.c, from exercise (1) \(u = u^+ - v^- \) is u.s.c, and similarly \(v = v^+ - u^- \) is l.s.c. Finally, since \(u \leq f \leq v \) and \(f \) is \(\mathbb{R} \)-valued, given \(\omega \in \Omega \) the difference \(v(\omega) - u(\omega) \) is always a well-defined element of \([0, +\infty]\). So \(v - u \) is a well-defined non-negative and measurable map, and the integral \(\int (v - u)d\mu \) is meaningful. We have:

\[\int (v - u)d\mu = \int (v^+ - u^- - u^+ + v^-)d\mu \]
\[= \int (v^+ - u^+ + v^- - u^-) d\mu \]
\[= \int (v^+ - u^+) d\mu + \int (v^- - u^-) d\mu \]
\[\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \]

This completes the proof of theorem (94).
Exercise 4.

1. Let \((\Omega, T)\) be a topological space. Suppose it is connected and \(\Omega = A \cup B\) where \(A, B\) are disjoint open sets. Then \(A^c = B\) so \(A\) is closed and consequently \(A\) is both open and closed. Hence, \(\Omega\) being connected, we have \(A = \emptyset\) or \(A = \Omega\), i.e. \(A = \emptyset\) or \(B = \emptyset\). Conversely, suppose \(\Omega = A \cup B\) with \(A, B\) disjoint open sets implies that \(A = \emptyset\) or \(B = \emptyset\). Then if \(A\) is both open and closed in \(\Omega\), with have \(\Omega = A \cup A^c\) where \(A, A^c\) are disjoint open sets. So \(A = \emptyset\) or \(A^c = \emptyset\), i.e. \(A = \emptyset\) or \(A = \Omega\). This shows that \(\Omega\) is connected. We have proved that \(\Omega\) is connected if and only if whenever \(\Omega = A \cup B\) with \(A, B\) disjoint open sets, we have \(A = \emptyset\) or \(B = \emptyset\).

2. If \(\Omega = A \cup B\) with \(A, B\) disjoint open sets, then \(\Omega = A^c \cup B^c\) with \(A^c, B^c\) disjoint closed sets, and conversely if \(\Omega = A \cup B\) with \(A, B\) disjoint closed sets, then \(\Omega = A^c \cup B^c\) with \(A^c, B^c\)
disjoint open sets. Hence, the statements:

(i) $\Omega = A \cup B$, A, B disjoint and open $\Rightarrow A = \emptyset$ or $B = \emptyset$

(ii) $\Omega = A \cup B$, A, B disjoint and closed $\Rightarrow A = \emptyset$ or $B = \emptyset$

are equivalent. We conclude from 1, that Ω is connected, if and only if whenever $\Omega = A \cup B$ with A, B disjoint closed sets, we have $A = \emptyset$ or $B = \emptyset$.

Exercise 4
Exercise 5.

1. Let A be an open and closed subset of \mathbb{R}, with $A \neq \emptyset$ and $A^c \neq \emptyset$. Let $x \in A^c$. We have:

$$A = (A \cap]-\infty, x]) \cup (A \cap [x, +\infty[)$$

and since $A \neq \emptyset$, we have $A \cap]-\infty, x] \neq \emptyset$ or $A \cap [x, +\infty[\neq \emptyset$.

2. Let $B = A \cap [x, +\infty[$ and suppose $B \neq \emptyset$. Both A and $[x, +\infty[$ are closed subsets of \mathbb{R}. So B is a closed subset of \mathbb{R}. However, since $x \in A^c$, we have:

$$B = A \cap [x, +\infty[$$

$$= (A \cap \{x\}) \cup (A \cap [x, +\infty[)$$

$$= A \cap [x, +\infty[$$

and since both A and $[x, +\infty[$ are open subsets of \mathbb{R}, B is also an open subset of \mathbb{R}. Note that the assumption $B \neq \emptyset$ has not been used so far.
3. Let \(b = \inf B \). We have proved in exercise (9) (part 5) of Tutorial 8 that if \(B \) is a non-empty closed subset of \(\mathbb{R} \), then \(\inf B \in B \). Unfortunately, this result does not apply to non-empty closed subsets of \(\mathbb{R} \) (indeed \(\mathbb{R} \), is a non-empty closed subset of \(\mathbb{R} \) and \(\inf \mathbb{R} = -\infty \not\in \mathbb{R} \)). So we cannot apply exercise (9) of Tutorial 8, at least not without a little bit of care. However, the following can be done: since \(B \neq \emptyset \), there exists \(y \in B = A \cap [x, +\infty[\). Then it is clear that \(B^* = A \cap [x, y] \) is a non-empty closed subset of \(\mathbb{R} \), and consequently since \(b = \inf B^* \), applying exercise (9) of Tutorial 8, we have \(b \in B^* \). So \(b \in B \subseteq \mathbb{R} \). For those who wish to have a more detailed argument, the following can be said: the fact that \(B^* \neq \emptyset \) is a consequence of \(y \in B^* \). If we define \(b^* = \inf B^* \), the fact that \(b^* = b \) can be shown as follows: since \(B^* \subseteq B \), any lower-bound of \(B \) is also a lower-bound of \(B^* \), and consequently \(b \) is a lower-bound of \(B^* \) which shows that \(b \leq b^* \). To show the reverse inequality, consider \(u \in B \). Then if \(u \leq y \) we have \(u \in B^* \) and therefore \(b^* \leq u \). But if \(y < u \), then \(b^* \leq y < u \) and we see

www.probability.net
that $b^* \leq u$ is true in all cases. So b^* is a lower-bound of B which shows that $b^* \leq b$. We have proved that $b = b^*$. To show that B^* is a closed subset of \mathbb{R}, we first argue that it is a closed subset of \mathbb{R} since A is closed and $[x, y]$ is closed. However, the topology of \mathbb{R} is induced by the topology of \mathbb{R} itself. It is a simple exercise to show that any closed subset of \mathbb{R} can be written as $F \cap \mathbb{R}$ where F is a closed subset of \mathbb{R}. Hence, there is a closed subset F of \mathbb{R} such that $B^* = F \cap \mathbb{R}$. But then:

\[
B^* = A \cap [x, y] \\
= A \cap [x, y] \cap [x, y] \\
= B^* \cap [x, y] \\
= (F \cap \mathbb{R}) \cap [x, y] \\
= F \cap [x, y]
\]

and since $[x, y]$ is also closed in \mathbb{R}, we conclude that B^* is indeed closed in \mathbb{R}. This concludes our proof that $b \in B$. All this may seem like a lot of work, made necessary by our desperate attempt
to apply exercise (9) of Tutorial 8. For those who believe that a direct proof is more convenient, here is the following: Since $B = A \cap [x,+\infty]$, it is clear that x is a lower bound of B and consequently $x \leq b$. To show that $b \in B$, we only need to show that $b \in A$. Since $B \neq \emptyset$, there exist $y \in B \subseteq \mathbb{R}$ and from $b \leq y$ we obtain in particular $b < +\infty$. Hence, there exists a sequence $(t_n)_{n \geq 1}$ in \mathbb{R} such that $t_n \downarrow b$ (i.e. $t_n \to b$ with $b < t_{n+1} \leq t_n$ for all $n \geq 1$). Since $b < t_n$, it is impossible that t_n be a lower-bound of B. Hence, for all $n \geq 1$ there exists some $x_n \in B \subseteq A$ such that $b \leq x_n < t_n$. From $t_n \to b$ we see that $x_n \to b$ and since $x_n \in A$ while A is a closed subset of \mathbb{R}, we conclude that $b \in A$. This completes our second proof of $b \in B$.

4. Having proved in 2. that B is an open subset of \mathbb{R}, since $b \in B$ there exists $\epsilon > 0$ such that $]b - \epsilon, b + \epsilon[\subseteq B$.

5. To show that $(\mathbb{R}, \mathcal{T}_{\mathbb{R}})$ is connected, we need to show that if A is an open and closed subset of \mathbb{R}, then $A = \emptyset$ or $A = \mathbb{R}$. Suppose this is not the case and $A \neq \emptyset$ together with $A^c \neq \emptyset$. We have
shown in 2. that \(A \cap [x, +\infty] \neq \emptyset \) or \(A \cap]-\infty, x[\neq \emptyset \). If we assume that \(B = A \cap [x, +\infty] \) and \(B \neq \emptyset \), then \(b = \inf B \in \mathbb{R} \) and we have proved in 4. that there exists \(\epsilon > 0 \) such that \(]b-\epsilon, b+\epsilon[\subseteq B \). This is a contradiction. Indeed, since \(b - \epsilon/2 < b \), the fact that \(b - \epsilon/2 \in B \) contradicts the fact that \(b \) is a lower-bound of \(B \).

So the only possible case is that \(C \neq \emptyset \) where \(C = A \cap]-\infty, x[\). However, if \(c = \sup C \), then a similar proof to that of 3. will show that \(c \in C \) (in particular \(c \in \mathbb{R} \)) and \(C \) being open in \(\mathbb{R} \), there exists \(\epsilon > 0 \) with \(]c-\epsilon, c+\epsilon[\subseteq C \), leading to a contradiction.

Hence, we see that all possible cases lead to a contradiction. We conclude that the initial assumption is absurd, i.e. that \(A = \emptyset \) or \(A = \mathbb{R} \). So \((\mathbb{R}, T_\mathbb{R})\) is a connected topological space, which completes the proof of theorem (95).

Exercise 5
Exercise 6.

1. Let \((\Omega, T)\) be a topological space and \(A \subseteq \Omega\) be a connected subset of \(\Omega\). Let \(B\) be a subset of \(\Omega\) such that \(A \subseteq B \subseteq \bar{A}\), where \(\bar{A}\) is the closure of \(A\) in \(\Omega\). Let \(V_1, V_2\) be disjoint open subsets of \(B\) such that \(B = V_1 \cup V_2\). From definition (23) of the induced topology \(T|_B\), there exist \(U_1, U_2\) open subsets of \(\Omega\) such that \(V_1 = B \cap U_1\) and \(V_2 = B \cap U_2\).

2. Since \(A \subseteq B\), using 1. we have:
 \[
 A = A \cap B = A \cap (V_1 \cup V_2) = A \cap [(B \cap U_1) \cup (B \cap U_2)] = (A \cap B \cap U_1) \cup (A \cap B \cap U_2) = (A \cap U_1) \cup (A \cap U_2)
 \]

Now since \(U_1, U_2\) are open subsets of \(\Omega\), \(A \cap U_1\) and \(A \cap U_2\) are open subsets of \(A\). Furthermore, since \(V_1\) and \(V_2\) are disjoint,
we have $V_1 \cap V_2 = B \cap U_1 \cap U_2 = \emptyset$. and in particular since $A \subseteq B$, $A \cap U_1 \cap U_2 = \emptyset$. So $A \cap U_1$ and $A \cap U_2$ are disjoint open subsets of A with $A = (A \cap U_1) \cup (A \cap U_2)$. Having assumed that A is a connected subset of Ω, the topological space (A, T_A) is connected and consequently using exercise (4), it follows that $A \cap U_1 = \emptyset$ or $A \cap U_2 = \emptyset$.

3. Suppose that $A \cap U_1 = \emptyset$. Let $x \in \bar{A}$. Then for all U open subsets of Ω with $x \in U$, we have $A \cap U \neq \emptyset$. Hence, since U_1 is an open subset of Ω and $A \cap U_1 = \emptyset$, it is necessary that $x \notin U_1$. So $x \in U_1^c$ and we have proved that $\bar{A} \subseteq U_1^c$.

4. Having assumed that $B \subseteq \bar{A}$, it follows from 3. that $B \subseteq U_1^c$, i.e. $V_1 = B \cap U_1 = \emptyset$.

5. From 3. and 4. we have seen that if $A \cap U_1 = \emptyset$, then $V_1 = \emptyset$. Similarly, if $A \cap U_2 = \emptyset$, then $V_2 = \emptyset$. However, we have shown in 2. that $A \cap U_1 = \emptyset$ or $A \cap U_2 = \emptyset$. So $V_1 = \emptyset$ or $V_2 = \emptyset$. Having considered $B \subseteq \Omega$ such that $A \subseteq B \subseteq \bar{A}$, and V_1, V_2
disjoint open subsets of B such that $B = V_1 \uplus V_2$, we have proved that $V_1 = \emptyset$ or $V_2 = \emptyset$. From exercise (4), this shows that the topological space (B, T_B) is connected, or equivalently that B is a connected subset of Ω. Hence, if A is a connected subset of Ω and $A \subseteq B \subseteq \bar{A}$, then B is also a connected subset of Ω. In particular, \bar{A} is a connected subset of Ω.

Exercise 6
Exercise 7. Let (Ω, \mathcal{T}) and (Ω', \mathcal{T}') be two topological spaces, and f be a continuous map $f: \Omega \to \Omega'$. We assume that (Ω, \mathcal{T}) is connected. We claim that $f(\Omega)$ is a connected subset of Ω', or equivalently that the topological space $(f(\Omega), \mathcal{T}'_{f(\Omega)})$ is connected. In order to prove this, we shall use exercise (4) and consider A, B two disjoint open subsets of $f(\Omega)$ such that $f(\Omega) = A \cup B$. There exist U', V' open subsets of Ω' such that $A = f(\Omega) \cap U'$ and $B = f(\Omega) \cap V'$. Since f is continuous, $f^{-1}(U')$ and $f^{-1}(V')$ are open subsets of Ω. Furthermore, it is clear that:

$$f^{-1}(U') = f^{-1}(f(\Omega) \cap U') = f^{-1}(A)$$

and similarly $f^{-1}(V') = f^{-1}(B)$. So $f^{-1}(A)$ and $f^{-1}(B)$ are open subsets of Ω. Since A and B are disjoint, $f^{-1}(A)$ and $f^{-1}(B)$ are also disjoint. Since $f(\Omega) = A \cup B$, for all $x \in \Omega$ we have $f(x) \in A$ or $f(x) \in B$. So $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$. It follows that $f^{-1}(A)$ and $f^{-1}(B)$ are two disjoint open subsets of Ω, such that $\Omega = f^{-1}(A) \cup f^{-1}(B)$. Since Ω is connected, from exercise (4) it follows that $f^{-1}(A) = \emptyset$ or $f^{-1}(B) = \emptyset$. Suppose that $f^{-1}(A) = \emptyset$.

www.probability.net
We claim that $A = \emptyset$. Otherwise there exists $y \in A \subseteq f(\Omega)$. Let $x \in \Omega$ be such that $y = f(x)$. Then $f(x) \in A$ and consequently $x \in f^{-1}(A)$ which contradicts $f^{-1}(A) = \emptyset$. So $f^{-1}(A) = \emptyset$ implies that $A = \emptyset$, and similarly $f^{-1}(B) = \emptyset$ implies that $B = \emptyset$. It follows that $A = \emptyset$ or $B = \emptyset$. Having assumed that $f(\Omega) = A \cup B$ where A, B are disjoint open subsets of $f(\Omega)$, we have proved that $A = \emptyset$ or $B = \emptyset$. From exercise (4), this shows that the topological space $(f(\Omega), T_{f(\Omega)})$ is connected, or equivalently that $f(\Omega)$ is a connected subset of Ω'. This completes the proof of theorem (96).

Exercise 7
Exercise 8.

1. Let $A \subseteq \mathbb{R}$ and suppose that A is an interval. Let $\alpha = \inf A$ and $\beta = \sup A$. We claim that:

$$]\alpha, \beta[\subseteq A \subseteq [\alpha, \beta]$$

If $A = \emptyset$, then $\alpha = +\infty$ and $\beta = -\infty$, so there is nothing to prove. So we assume that $A \neq \emptyset$. Then there is $x \in A$, and we have $\alpha \leq x$ as well as $x \leq \beta$. In particular, $\alpha \leq \beta$. Let $z \in A$. Since α is a lower-bound of A, $\alpha \leq z$. Since β is an upper-bound of A, $z \leq \beta$. So $z \in [\alpha, \beta]$ and we have proved that $A \subseteq [\alpha, \beta]$. Suppose $z \in]\alpha, \beta[$. From $\alpha < z$ we see that z cannot be a lower-bound of A (α is the greatest of such lower-bounds). There exists $x \in A$ such that $\alpha \leq x < z$. From $z < \beta$ we see that z cannot be an upper-bound of A. There exists $y \in A$ such that $z < y \leq \beta$. From $x < z < y$ we obtain in particular $z \in [x, y]$. Since $x, y \in A$ and A is assumed to be an interval, it follows from definition (118) that $z \in A$. We have proved that $]\alpha, \beta[\subseteq A$.

www.probability.net
2. Let \(A \subseteq \bar{\mathbb{R}} \). Suppose that \(A \) is of the form \([\alpha, \beta], [\alpha, \beta[, [\alpha, \beta] \) or \([\alpha, \beta] \) for some \(\alpha, \beta \in \mathbb{R} \). Suppose there exist \(x, y \in A \) with \(x \leq y \). Then for all \(z \in [x, y] \) we have \(x \leq z \leq y \). If \(\alpha \leq x \) then \(\alpha \leq z \). If \(\alpha < x \) then \(\alpha < z \). If \(y \leq \beta \) then \(z \leq \beta \). If \(y < \beta \) then \(z < \beta \). In any case, we see that \(z \in A \). This shows that \([x, y] \subseteq A\) for all \(x, y \in A, x \leq y \), and consequently from definition (118), \(A \) is an interval. Note that \(A \) can be the empty set without anything being flawed in the argument just given. Conversely, suppose that \(A \) is an interval. From 1. we have:

\[\alpha, \beta \subseteq A \subseteq [\alpha, \beta] \]

where \(\alpha = \inf A \) and \(\beta = \sup A \). We shall distinguish four cases: suppose \(\alpha \in A \) and \(\beta \in A \). Then:

\[[\alpha, \beta] = [\alpha, \beta] \cup \{\alpha\} \cup \{\beta\} \subseteq A \subseteq [\alpha, \beta] \]

and consequently \(A = [\alpha, \beta] \). Suppose \(\alpha \in A \) and \(\beta \notin A \). Then:

\[[\alpha, \beta] = [\alpha, \beta] \cup \{\alpha\} \subseteq A \subseteq [\alpha, \beta] \setminus \{\beta\} = [\alpha, \beta] \]
and consequently $A = [\alpha, \beta]$. Suppose $\alpha \notin A$ and $\beta \in A$. Then:

$$[\alpha, \beta] = \alpha, \beta \cup \{\beta\} \subseteq A \subseteq [\alpha, \beta] \setminus \{\alpha\} = [\alpha, \beta]$$

and consequently $A = [\alpha, \beta]$. Finally suppose $\alpha \notin A$ and $\beta \notin A$:

$$[\alpha, \beta] \subseteq A \subseteq [\alpha, \beta] \setminus \{\alpha, \beta\} = [\alpha, \beta]$$

and consequently $A = [\alpha, \beta]$. Hence, we have proved that A is of the form $[\alpha, \beta], [\alpha, \beta], [\alpha, \beta]$ or $[\alpha, \beta]$. Note that if $A = \emptyset$, there is nothing flawed in the argument just given.

3. Let $A =]-\infty, \alpha[$ where $\alpha \in \mathbb{R}$. Consider $\phi: \mathbb{R} \to]-1, 1[$ defined by $\phi(x) = x/(1 + |x|)$. Then ϕ is a bijection with $\phi^{-1}(y) = y/(1 - |y|)$. Let $\psi = \phi|_{A}$ be the restriction of ϕ to A. Then ψ is injective, and it is therefore a bijection from A to $\psi(A)$. We claim that $\psi(A) =]-1, \phi(\alpha)[$. Since $|\phi(x)| < 1$ for all $x \in \mathbb{R}$, it is clear that $\psi(A) \subseteq]-1, 1[$. Since $\phi(x) = 1 - 1/(1 + x)$ for $x > 0$ and $\phi(x) = 1 + 1/(1 - x)$ for $x < 0$, it is clear that ϕ is increasing. So $\psi(A) \subseteq]-1, \phi(\alpha)[$. To show the reverse
inclusion, consider \(y \in]-1, \phi(\alpha) [\). Since \(\phi^{-1} \) is also increasing, from \(y < \phi(\alpha) \) we obtain \(\phi^{-1}(y) < \alpha \). Hence, \(\phi^{-1}(y) \in A \) and \(y = \psi(\phi^{-1}(y)) \in \psi(A) \). We have proved that \(\psi(A) =]-1, \phi(\alpha) [\) and \(\psi \) is consequently a bijection from \(A \) to \(]-1, \phi(\alpha) [\). Since \(\phi \) is continuous, \(\psi = \phi|_A \) is also continuous. Since \(\phi^{-1} \) is continuous, \(\psi^{-1} = (\phi^{-1})|_{\psi(A)} \) is also continuous. We conclude that \(\psi : A \to]-1, \phi(\alpha) [\) is a homeomorphism. We have proved that for all \(\alpha \in \mathbb{R},]-\infty, \alpha [\) is homeomorphic to \(]-1, \alpha' [\) for some \(\alpha' \in \mathbb{R} \).

4. Let \(A =]\alpha, +\infty[\) where \(\alpha \in \mathbb{R} \). Then if \(\phi : \mathbb{R} \to]-1, 1[\) is defined as in 3. and \(\psi = \phi|_A \), then \(\psi(A) =]\phi(\alpha), 1[\) and \(\psi \) is a homeomorphism from \(A \) to \(]\phi(\alpha), 1[\). Hence, for all \(\alpha \in \mathbb{R},]\alpha, +\infty[\) is homeomorphic to \(]\alpha', 1[\) for some \(\alpha' \in \mathbb{R} \).

5. Let \(A =]\alpha, \beta[, \alpha, \beta \in \mathbb{R}, \alpha < \beta \). Define \(\phi :]-1, 1[\to]\alpha, \beta[\) by:

\[
\phi(x) = \alpha + \frac{\beta - \alpha}{2}(x + 1)
\]

Then it is easy to show that \(\phi \) is a continuous bijection, and that
\(\phi^{-1}\) is continuous. So \(\phi :]-1,1[\to]\alpha, \beta[\) is a homeomorphism.

6. \(\phi(x) = x/(1+|x|)\) is a homeomorphism between \(\mathbb{R}\) and \(-1,1[.\)

7. Let \(A\) be a non-empty open interval in \(\mathbb{R}\), i.e. a non-empty interval of \(\mathbb{R}\). Being an interval, from 2. it is of the form \([\alpha, \beta]\), \([\alpha, \beta[, \] \alpha, \beta[\) or \] \alpha, \beta[\) for some \(\alpha, \beta \in \mathbb{R}\). Suppose \(A\) is of the form \([\alpha, \beta]\). Being non-empty with have \(\alpha \leq \beta\). So \(\alpha \in [\alpha, \beta] \subseteq \mathbb{R}\). Being an open subset of \(\mathbb{R}\), there exists \(\epsilon > 0\) such that \(]\alpha - \epsilon, \alpha + \epsilon[\subset [\alpha, \beta]\). This is a contradiction since \(\alpha \in \mathbb{R}\). So \(A\) cannot be of the form \([\alpha, \beta]\) and we prove similarly that it cannot be of the form \([\alpha, \beta[\) and \] \alpha, \beta[\) either. So \(A\) is of the form \(]\alpha, \beta[\) for some \(\alpha, \beta \in \mathbb{R}\), \(\alpha < \beta\).

Suppose \(\alpha = -\infty\) and \(\beta = +\infty\). Then \(A = \mathbb{R}\) which is clearly homeomorphic to \(\mathbb{R}\). Suppose \(\alpha = -\infty\) and \(\beta \in \mathbb{R}\). Then from 3. \(A\) is homeomorphic to \(]-1, \alpha[\) for some \(\alpha \in \mathbb{R}\), which is itself homeomorphic to \(]-1,1[\), as we have proved in 5. Having proved in 6. that \(]-1,1[\) is homeomorphic to \(\mathbb{R}\), we conclude that \(A\) is homeomorphic to \(\mathbb{R}\). Suppose \(\alpha \in \mathbb{R}\) and \(\beta = +\infty\).
Then from 4. 5. and 6. we see that A is homeomorphic to \mathbb{R}. Suppose $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$. Then from 5. and 6. we see that A is homeomorphic to \mathbb{R}. Hence, in all possible cases, we see that A is homeomorphic to \mathbb{R}. We have proved that any non-empty open interval in \mathbb{R} is homeomorphic to \mathbb{R}.

8. Let A be an open interval of \mathbb{R}. If $A = \emptyset$, then the induced topology on A is reduced to $\{\emptyset\}$, and $(\emptyset, \{\emptyset\})$ is a connected topological space. So A is a connected subset of \mathbb{R}. If $A \neq \emptyset$, then from 7. A is homeomorphic to \mathbb{R}. In particular, there exists $f : \mathbb{R} \rightarrow A$ which is continuous and surjective. From theorem (95), \mathbb{R} is connected. Since f is continuous, from theorem (96) $f(\mathbb{R})$ is a connected subset of A. Since f is surjective, $f(\mathbb{R}) = A$ and consequently A is connected. We have proved that any open interval of \mathbb{R} is a connected subset of \mathbb{R}.

9. Let A be an interval of \mathbb{R}, i.e. an interval of $\bar{\mathbb{R}}$ with $A \subseteq \mathbb{R}$. If $A = \emptyset$ then A is connected. So we assume that $A \neq \emptyset$. From 1.
there exist $\alpha, \beta \in \bar{\mathbb{R}}$ such that:

$]\alpha, \beta[\subseteq A \subseteq [\alpha, \beta]$

and since $A \neq \emptyset$ we have $\alpha \leq \beta$. Since $]\alpha, \beta[$ is an open interval in \mathbb{R}, from 8, it is a connected subset of \mathbb{R}. Suppose $\alpha = -\infty$ and $\beta = +\infty$. Then $A = \mathbb{R}$ and:

$]\alpha, \beta[\subseteq A \subseteq [\alpha, \beta] =]\alpha, \beta[$

Suppose $\alpha = -\infty$ and $\beta \in \mathbb{R}$. Since $A \subseteq \mathbb{R}$ we have:

$]\alpha, \beta[\subseteq A \subseteq [\alpha, \beta] =]\alpha, \beta[$

Suppose $\alpha \in \mathbb{R}$ and $\beta = +\infty$. Then:

$]\alpha, \beta[\subseteq A \subseteq [\alpha, \beta] =]\alpha, \beta[$

And finally suppose that $\alpha, \beta \in \mathbb{R}$. Then:

$]\alpha, \beta[\subseteq A \subseteq [\alpha, \beta] =]\alpha, \beta[$
It follows that $]a, b[\subseteq A \subseteq [a, b]$ in all possible cases, where $]a, b[$ denotes the closure of $]a, b[$ in \mathbb{R}. Having proved that $]a, b[$ is a connected subset of \mathbb{R}, from exercise (6) we conclude that A is a connected subset of \mathbb{R}. We have proved that any interval in \mathbb{R} is a connected subset of \mathbb{R}.

Exercise 8
Exercise 9.

1. Let $A \subseteq \mathbb{R}$ be a non-empty connected subset of \mathbb{R}. Let $\alpha = \inf A$ and $\beta = \sup A$. We assume that there exists $x_0 \in A \cap \alpha, \beta$. In particular, we have $x_0 \in A^c$ and consequently, since $A \subseteq \mathbb{R}$:

 $$A = (A \cap]-\infty, x_0[) \cup (A \cap [x_0, +\infty[)$$ \hfill (2)

 However, $]-\infty, x_0[$ and $[x_0, +\infty[$ being open subsets of \mathbb{R}, the sets $A \cap]-\infty, x_0[$ and $A \cap [x_0, +\infty[$ are open in A, and they are clearly disjoint. Since A is connected, it follows from exercise (4) that $A \cap]-\infty, x_0[= \emptyset$ or $A \cap [x_0, +\infty[= \emptyset$.

2. Suppose $A \cap [x_0, +\infty[= \emptyset$. From (2) we have $A = A \cap]-\infty, x_0[$, and consequently x_0 is an upper-bound of A. Since β is the smallest of such upper-bounds, we obtain $\beta \leq x_0$ contradicting $x_0 \in \alpha, \beta$.

3. Similarly, if $A \cap]-\infty, x_0[= \emptyset$, then x_0 is a lower-bound of A and consequently $x_0 \leq \alpha$ contradicting $x_0 \in \alpha, \beta$. We have seen
in 1. that $A \cap -\infty, x_0 = \emptyset$ or $A \cap \mathbb{R} = \emptyset$. However, both of these cases lead to a contradiction. We conclude that our initial assumption was absurd, i.e. that there exists no x_0 in $A \cap \mathbb{R}$. In other words, $A \cap \mathbb{R} = \emptyset$ or equivalently $\alpha, \beta \subseteq A$. The fact that $A \subseteq [\alpha, \beta]$ follows immediately from the fact that α and β are respectively a lower-bound and an upper-bound of A. We have proved that $\alpha, \beta \subseteq A \subseteq [\alpha, \beta]$.

4. Let $A \subseteq \mathbb{R}$. Suppose that A is a connected subset of \mathbb{R}. If $A = \emptyset$ then in particular A is an interval, as can be seen from definition (118). If $A \neq \emptyset$, then A is a non-empty connected subset of \mathbb{R}, and we have just proved that $[\alpha, \beta] \subseteq A \subseteq [\alpha, \beta]$ where $\alpha = \inf A$ and $\beta = \sup A$. In a similar fashion to 2. of exercise (8) (depending on whether α, β lie in A or not), we conclude that A is of the form $[\alpha, \beta], [\alpha, \beta], [\alpha, \beta]$, or $[\alpha, \beta]$. From this same exercise, this is equivalent to A being an interval. So any connected subset of \mathbb{R} is an interval. Conversely, suppose that A is an interval of \mathbb{R}. Then from exercise (8), A is a
connected subset of \mathbb{R}. We have proved that for all $A \subseteq \mathbb{R}$, A is connected, if and only if A is an interval. This completes the proof of theorem (97).

Exercise 9
Exercise 10. Let \(f : \Omega \to \mathbf{R} \) be a continuous map, where \((\Omega, T)\) is a connected topological space. Let \(a, b \in \Omega \) with \(f(a) \leq f(b) \). From theorem (96), \(f(\Omega) \) is a connected subset of \(\mathbf{R} \). From theorem (97), \(f(\Omega) \) is therefore an interval of \(\mathbf{R} \). Since \(f(a), f(b) \) are elements of \(f(\Omega) \) and \(f(a) \leq f(b) \), it follows from definition (118) that for all \(z \in [f(a), f(b)] \) we have \(z \in f(\Omega) \). So there exists \(x \in \Omega \) such that \(z = f(x) \). This completes the proof of theorem (98).
Exercise 11.

1. Let \(a, b \in \mathbb{R}, \ a < b \). Let \(f : [a, b] \to \mathbb{R} \) be a map such that \(f'(x) \) exists for all \(x \in [a, b] \). Note in particular that \(f \) is continuous and therefore measurable. For all \(n \geq 1 \), let \(\phi_n : [a, b] \to [a, b] : \)

\[
\forall x \in [a, b], \ \phi_n(x) = \begin{cases}
 x + \frac{(b-x)}{n}, & \text{if } x \in [a, b] \\
 \frac{b - (b-a)}{n}, & \text{if } x = b
\end{cases}
\]

Then \(\phi_n \) is well-defined on \([a, b] \) and has indeed values in \([a, b] \). The particular definition of \(\phi_n \) is however not very important. What we need to note is that \(\phi_n \) is Borel measurable, satisfies \(\phi_n(x) \to x \) while \(\phi_n(x) \neq x \) for all \(x \in [a, b] \). Given \(n \geq 1 \), we now define \(g_n : [a, b] \to \mathbb{R} \) as:

\[
\forall x \in [a, b], \ g_n(x) = \frac{f \circ \phi_n(x) - f(x)}{\phi_n(x) - x}
\]

Then \(g_n : ([a, b], \mathcal{B}([a, b])) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \) is well-defined and measurable, and furthermore \(g_n(x) \to f'(x) \) for all \(x \in [a, b] \). It fol-
follows that \(f' \) is the pointwise limit of the sequence \((g_n)_{n \geq 1} \), and we conclude from theorem (17) that \(f' \) is itself Borel measurable.

2. Since \(f' \) is measurable and \(\mathbb{R} \)-valued, the condition:
\[
\int_a^b |f'(t)| dt < +\infty
\]
is equivalent to \(f' \in L^1_\mathbb{R}([a, b], B([a, b]), dx) \).

3. We assume that \(f' \in L^1_\mathbb{R}([a, b], B([a, b]), dx) \). Let \(\epsilon > 0 \). The topological space \([a, b]\) is metrizable and compact, and in particular \(\sigma \)-compact. The Lebesgue measure \(dx \) on \([a, b]\) is finite, and in particular locally finite. Since \(f' \in L^1_\mathbb{R}([a, b], B([a, b]), dx) \), we can apply Vitali-Caratheodory theorem (94): there exists measurable maps \(u, v : [a, b] \to \bar{\mathbb{R}} \) which are almost surely equal to elements of \(L^1 \), such that \(u \leq f' \leq v \), \(u \) is u.s.c, \(v \) is l.s.c and furthermore:
\[
\int_a^b (v(t) - u(t)) dt \leq \epsilon
\]
In particular, denoting \(g = v \), we have found \(g : [a, b] \to \mathbb{R} \) almost surely equal to an element of \(L^1 \), such that \(f' \leq g \) and \(g \) is l.s.c. Note that the integral \(\int_a^b g(t)dt \) is meaningful, and:

\[
\int_a^b g(t)dt = \int_a^b (f'(t) + g(t) - f'(t))dt \\
= \int_a^b f'(t)dt + \int_a^b (g(t) - f'(t))dt \\
\leq \int_a^b f'(t)dt + \int_a^b (v(t) - u(t))dt \\
\leq \int_a^b f'(t)dt + \epsilon
\]

4. Let \(\alpha > 0 \). Since \(f' \leq g \) we have \(f' < g + \alpha \). Indeed, suppose \(f'(x) = g(x) + \alpha \), \(x \in [a, b] \). Then \(f'(x) = g(x) = g(x) + \alpha \) and consequently \(g(x) \in \{-\infty, +\infty\} \) contradicting the fact that \(f' \) is \(\mathbb{R} \)-valued. Having proved that \(f' < g + \alpha \), note that \(g + \alpha \) is
also a lower-semi-continuous map, which furthermore is almost surely equal to an element of L^1, since the Lebesgue measure on $[a, b]$ is finite. Furthermore, we have:

$$
\int_a^b (g + \alpha)(t)dt = \int_a^b g(t)dt + \alpha(b - a) \\
\leq \int_a^b f'(t)dt + \epsilon + \alpha(b - a)
$$

Hence, taking $\alpha > 0$ small enough, it is possible to achieve:

$$
\int_a^b (g + \alpha)(t)dt \leq \int_a^b f'(t)dt + 2\epsilon
$$

Replacing g by $g + \alpha$, we have found $g : [a, b] \to \overline{\mathbb{R}}$ almost surely equal to an element of L^1, which is l.s.c. and satisfies $f' < g$ together with:

$$
\int_a^b g(t)dt \leq \int_a^b f'(t)dt + 2\epsilon
$$
Since $\epsilon > 0$ was arbitrary, it is possible to find g such that:

$$\int_a^b g(t)\,dt \leq \int_a^b f'(t)\,dt + \epsilon$$

In other words, without loss of generality, we have been able to find a map g as in 3., with the additional condition $f' < g$.

5. Let ν be the complex measure defined by $\nu = \int g\,dx$. Note that strictly speaking, g is not an element of L^1 (it may have values in $\{-\infty, +\infty\}$). If h is an element of $L^1_{\mathbb{R}}([a, b], \mathcal{B}([a, b]), dx)$ such that $g = h\,dx$-almost surely, then for all $E \in \mathcal{B}([a, b])$, $\nu(E)$ is defined as:

$$\nu(E) = \int_E h(x)\,dx$$

Note that ν is in fact a signed measure (i.e. a complex measure with values in \mathbb{R}). Since $dx(E) = 0$ implies $\nu(E) = 0$, the measure ν is absolutely continuous with respect to the Lebesgue measure.
measure on \([a, b]\). From theorem (58), we have:

\[
\forall \epsilon' > 0, \exists \delta > 0, \forall E \in \mathcal{B}([a, b]), \, dx(E) \leq \delta \Rightarrow |\nu(E)| \leq \epsilon'
\]

6. Let \(\eta > 0\) and \(x \in [a, b]\). We define:

\[
F_{\eta}(x) = \int_{a}^{x} g(t)dt - f(x) + f(a) + \eta(x - a)
\]

Then \(F_{\eta} : [a, b] \to \mathbb{R}\) is well-defined, and we claim that it is continuous. It is sufficient to show that \(x \to \int_{a}^{x} g(t)dt\) is continuous. Let \(\epsilon' > 0\) be given, and consider \(\delta > 0\) such that the statement of 5. is satisfied. Let \(u, u' \in [a, b]\) such that \(|u' - u| \leq \delta\). Without loss of generality, we may assume that \(u \leq u'\). Then \(dx([u, u']) \leq \delta\) and consequently from 5., \(|\nu([u, u'])| \leq \epsilon'\). So:

\[
\left| \int_{a}^{u'} g(t)dt - \int_{a}^{u} g(t)dt \right| = \left| \int_{[a, u']} g(t)dt - \int_{[a, u]} g(t)dt \right|
\]
\[= \left| \int_{[u, u']} g(t) dt \right| = |\nu([u, u'])| \leq \epsilon' \]

This shows that \(x \to \int_a^x g(t) dt \) is indeed continuous on \([a, b]\) (in fact uniformly continuous), and \(F_\eta : [a, b] \to \mathbb{R} \) is indeed a continuous map.

7. Given \(\eta > 0 \), let \(x = \sup F_\eta^{-1}([0]) \). It is clear that \(F_\eta(a) = 0 \) and consequently \(a \in F_\eta^{-1}([0]) \). So \(a \leq x \). Since \(F_\eta^{-1}([0]) \subseteq [a, b] \), in particular \(b \) is an upper-bound of \(F_\eta^{-1}([0]) \). So \(x \leq b \).

We have proved that \(x \in [a, b] \). In particular, \(x \in \mathbb{R} \) and for all \(n \geq 1 \) we have \(x - 1/n < x \). Since \(x \) is the lowest upper-bound of \(F_\eta^{-1}([0]) \), \(x - 1/n \) cannot be such an upper-bound. There exists \(x_n \in F_\eta^{-1}([0]) \) such that \(x - 1/n < x_n \leq x \). We have thus constructed a sequence \((x_n)_{n \geq 1} \) in \(F_\eta^{-1}([0]) \) such that \(x_n \to x \) as \(n \to +\infty \). Since \(F_\eta(x_n) = 0 \) for all \(n \geq 1 \), from the continuity of \(F_\eta \) we obtain \(F_\eta(x) = 0 \).

8. Suppose \(x \in [a, b] \). Having proved in 4. that \(f' < g \), in particular

\(\text{www.probability.net} \)
\[f'(x) < g(x). \] Since \(g \) is l.s.c, the set \(\{ f'(x) < g \} \) is an open subset of \([a, b]\), which contains \(x \). Hence, there exists \(\delta_1 > 0 \) such that:

\[|x - \delta_1, x + \delta_1[\cap [a, b] \subseteq \{ f'(x) < g \} \]

In particular we have:

\[t \in]x, x + \delta_1[\cap [a, b] \Rightarrow f'(x) < g(t) \]

Furthermore, by definition of the derivative \(f'(x) \), since \(\eta > 0 \), there exists \(\delta_2 > 0 \) such that:

\[t \in]x - \delta_2, x + \delta_2[\cap [a, b], t \neq x \Rightarrow \left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \eta \]

In particular, we have:

\[t \in]x, x + \delta_2[\cap [a, b] \Rightarrow \frac{f(t) - f(x)}{t - x} < f'(x) + \eta \]
Taking $\delta = \min(\delta_1, \delta_2)$, for all $t \in [x, x + \delta \cap [a, b]$ we have:

\[
f'(x) < g(t) \quad \text{and} \quad \frac{f(t) - f(x)}{t - x} < f'(x) + \eta
\]

Note that this conclusion is not very interesting if $x = b$, which is why we have assumed $x \in [a, b]$.

9. Let $t \in [x, x + \delta \cap [a, b]$. Using 8. we have:

\[
F_\eta(t) = \int_a^t g(u)du - f(t) + f(a) + \eta(t - a)
\]
\[
= F_\eta(x) + \int_x^t g(u)du + f(x) - f(t) + \eta(t - x)
\]
\[
> F_\eta(x) + \int_x^t g(u)du - f'(x)(t - x)
\]
\[
\geq F_\eta(x) + \int_x^t f'(x)du - f'(x)(t - x)
\]
\[
= F_\eta(x) = 0
\]
10. From 9. we have found $\delta > 0$ such that $F_\eta(t) > 0$ for all t in the set $[x, x + \delta] \cap [a, b]$. Having assumed in 8. that $x \in [a, b]$, in particular $x < b$. So it is possible to find $t_0 \in [x, b]$ such that $t_0 \in [x, x + \delta] \cap [a, b]$. In particular $F_\eta(t_0) > 0$. We have proved the existence of $t_0 \in [x, b]$ such that $F_\eta(t_0) > 0$.

11. Suppose $F_\eta(b) < 0$. From 10. we have $t_0 \in [x, b]$ such that $F_\eta(t_0) > 0$. From 6. the map $F_\eta : [a, b] \to \mathbb{R}$ is continuous. Let $h = (F_\eta)|_{[t_0, b]}$ be the restriction of F_η to the interval $[t_0, b]$.

Then h is also continuous. From theorem (97), $[t_0, b]$ is a connected topological space. Since $0 \in [F_\eta(b), F_\eta(t_0)]$, from theorem (98) there exists $u \in [t_0, b]$ such that $F_\eta(u) = 0$. Since $x = \sup F_\eta^{-1}(\{0\})$, in particular $u \leq x$. Hence, we obtain the contradiction $x < t_0 \leq u \leq x$.

12. From 11. we see that $F_\eta(b) \geq 0$ must be true when $x \in [a, b]$. Having proved in 7. that $F_\eta(x) = 0$, if $x = b$, $F_\eta(b) = 0$ and in particular $F_\eta(b) \geq 0$ is still true. So $F_\eta(b) \geq 0$ in all cases.

www.probability.net
13. From $F_b(b) \geq 0$ we obtain:

$$\int_a^b g(t)dt - f(b) + f(a) + \eta(b-a) \geq 0$$

This being true for all $\eta > 0$, we have:

$$f(b) - f(a) \leq \int_a^b g(t)dt$$

Hence, using 3. we obtain:

$$f(b) - f(a) \leq \int_a^b f'(t)dt + \epsilon$$

and this being true for all $\epsilon > 0$, we have proved that:

$$f(b) - f(a) \leq \int_a^b f'(t)dt \quad (3)$$

Having considered $a, b \in \mathbb{R}$, $a < b$ and $f : [a, b] \to \mathbb{R}$ a map
such that \(f'(x) \) exists for all \(x \in [a, b] \) and:

\[
\int_a^b |f'(t)|\,dt < +\infty
\]

we have been able to prove inequality (3). Applying this result to \(-f\) instead of \(f\), we obtain:

\[
\int_a^b f'(t)\,dt \leq f(b) - f(a)
\]

and finally we conclude that:

\[
f(b) - f(a) = \int_a^b f'(t)\,dt
\]

This completes the proof of theorem (99).

Exercise 11
Exercise 12.

1. Let $\alpha > 0$ and $k_\alpha : \mathbb{R}^n \to \mathbb{R}^n$ defined by $k_\alpha(x) = \alpha x$. Then k_α is continuous, and in particular Borel measurable.

2. Let $\mu : \mathcal{B}(\mathbb{R}^n) \to [0, +\infty]$ be defined by:

$$\forall B \in \mathcal{B}(\mathbb{R}^n), \mu(B) = \alpha^n dx(\{k_\alpha \in B\})$$

where dx is the Lebesgue measure on \mathbb{R}^n. Note that μ is well-defined since $\{k_\alpha \in B\}$ is a Borel set for all $B \in \mathcal{B}(\mathbb{R}^n)$, k_α being measurable. It is clear that $\mu(\emptyset) = 0$ and furthermore, if $(B_p)_{p \geq 1}$ is sequence of pairwise disjoint elements of $\mathcal{B}(\mathbb{R}^n)$ and $B = \bigcup_{p \geq 1} B_p$, we have:

$$\mu(B) = \alpha^n dx \left(k^{-1}_\alpha \left(\bigcup_{p \geq 1} B_p \right) \right)$$
= \alpha^n dx \left(\biguplus_{p \geq 1} k^{-1}_\alpha(B_p) \right)
= \alpha^n \sum_{p=1}^{+\infty} dx(k^{-1}_\alpha(B_p))
= \sum_{p=1}^{+\infty} \alpha^n dx(\{k \alpha \in B_p\})
= \sum_{p=1}^{+\infty} \mu(B_p)

So \mu is a measure on \(\mathbb{R}^n \). Let \(a_i, b_i \in \mathbb{R}, a_i \leq b_i \) for \(i \in \mathbb{N}_n \). For all \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) the inequality \(a_i \leq \alpha x_i \leq b_i \) is equivalent to \(a_i / \alpha \leq x_i \leq b_i / \alpha \). Hence:

\[\mu([a_1, b_1] \times \ldots \times [a_n, b_n]) = \alpha^n dx \left(\alpha x \in \prod_{i=1}^{n} [a_i, b_i] \right) \]
From the uniqueness property of definition (63) we conclude that $\mu = dx$. Hence, we have proved that for all $B \in \mathcal{B}(\mathbb{R}^n)$:

$$dx(\{k_\alpha \in B\}) = \frac{1}{\alpha^n} \mu(B) = \frac{1}{\alpha^n} dx(B)$$

3. Let $\epsilon > 0$ and $x \in \mathbb{R}^n$. Let $B(x, \epsilon)$ be the open ball:

$$B(x, \epsilon) = \{y \in \mathbb{R}^n : \|x - y\| < \epsilon\}$$

where $\| \cdot \|$ denotes the usual Euclidean norm on \mathbb{R}^n. Given $u \in \mathbb{R}^n$ we consider $\tau_u : \mathbb{R}^n \to \mathbb{R}^n$ the translation mapping of

www.probability.net
vector u defined by $\tau_u(x) = u + x$. Then τ_u is clearly continuous, hence Borel measurable. Furthermore, for all $a, b \in \mathbb{R}^n$ such that $a_i \leq b_i$ for all $i \in \mathbb{N}_n$, we have:

$$dx \left(\left\{ \tau_u \in \prod_{i=1}^n [a_i, b_i] \right\} \right) = dx \left(\prod_{i=1}^n [a_i - u_i, b_i - u_i] \right)$$

$$= \prod_{i=1}^n (b_i - a_i)$$

and in a similar fashion to 2, we conclude from the uniqueness property of definition (63) that for all $B \in \mathcal{B}(\mathbb{R}^n)$:

$$dx(\{\tau_u \in B\}) = dx(B)$$

This equality expresses the idea that the Lebesgue measure is \textit{invariant by translation}. We shall see more on the subject in Tutorial 17. In the meantime, using 2, we obtain:

$$dx(B(x, \epsilon)) = dx(\{\tau_{-x} \in B(0, \epsilon)\})$$
Solutions to Exercises

\[
\begin{align*}
\ &= \, dx(B(0, \epsilon)) \\
\ &= \, dx(\{k_{1/\epsilon} \in B(0, 1)\}) \\
\ &= \, \epsilon^n dx(B(0, 1)) \\
\end{align*}
\]

So we have proved that \(dx(B(x, \epsilon)) = \epsilon^n dx(B(0, 1))\).

Exercise 12
Exercise 13.

1. Let μ be a complex measure on \mathbb{R}^n. Let $\lambda \in \mathbb{R}$ and suppose that $\lambda < 0$. Let $x \in \mathbb{R}^n$ and $\epsilon > 0$. Since $B(x, \epsilon)$ is an open subset of \mathbb{R}^n, in particular it is a Borel subset of \mathbb{R}^n. So $|\mu|(B(x, \epsilon))$ and $dx(B(x, \epsilon))$ are well-defined quantities of $[0, +\infty]$. In fact, from theorem (57), the total variation $|\mu|$ is a finite measure on \mathbb{R}^n, so $|\mu|(B(x, \epsilon))$ is an element of \mathbb{R}^+ (this is not relevant to the present question, but the fact that $|\mu|$ is a finite measure should not be forgotten). From the inclusions:

$$[-1/2\sqrt{n}, 1/2\sqrt{n}]^n \subseteq B(0, 1) \subseteq [-1, 1]^n$$

we obtain the crude estimates:

$$\left(\frac{1}{\sqrt{n}}\right)^n \leq dx(B(0, 1)) \leq 2^n$$

and it follows from 3. of exercise (12) that $dx(B(x, \epsilon))$ is an element of $]0, +\infty[$. Hence, we see that $|\mu|(B(x, \epsilon))/dx(B(x, \epsilon))$
is a well-defined element of \mathbb{R}^+. Since $(M_\mu)(x)$ is an upper-bound of all such ratios for $\epsilon > 0$, we have:
\[
\lambda < 0 \leq \frac{\mu(B(x, \epsilon))}{dx(B(x, \epsilon))} \leq (M_\mu)(x)
\]
So $x \in \{ \lambda < M_\mu \}$. This being true for all $x \in \mathbb{R}^n$, we conclude that $\{ \lambda < M_\mu \} = \mathbb{R}^n$.

2. Suppose $\lambda = 0$ and $\mu \neq 0$. There exists $E \in \mathcal{B}(\mathbb{R}^n)$ such that $\mu(E) \neq 0$. Since $|\mu(E)| \leq |\mu|(E)$, in particular $|\mu|(E) > 0$. Let $x \in \mathbb{R}^n$. Since $B(x, p) \uparrow \mathbb{R}^n$ as $p \to +\infty$, from theorem (7):
\[
0 < |\mu|(E) = \lim_{p \to +\infty} |\mu|(E \cap B(x, p))
\]
In particular, there exists $p \geq 1$ such that $|\mu|(E \cap B(x, p)) > 0$ and consequently $|\mu|(B(x, p)) > 0$. Hence, we have:
\[
0 < \frac{\mu(B(x, p))}{dx(B(x, p))} \leq (M_\mu)(x)
\]
and we have proved that \(x \in \{ \lambda < M \mu \} = \{ 0 < M \mu \} \). This being true for all \(x \in \mathbb{R}^n \), we have \(\{ \lambda < M \mu \} = \mathbb{R}^n \). Suppose now that \(\lambda = 0 \) with \(\mu = 0 \). Then \(|\mu| = 0 \) and it is clear that \((M\mu)(x) = 0 \) for all \(x \in \mathbb{R}^n \). So \(\{ \lambda < M \mu \} = \emptyset \).

3. Suppose \(\lambda > 0 \). Let \(x \in \{ \lambda < M \mu \} \). Then \(\lambda < (M\mu)(x) \). Since \((M\mu)(x) \) is the smallest upper-bound of all ratios:

\[
|\mu|(B(x, \epsilon))/dx(B(x, \epsilon))
\]

as \(\epsilon > 0 \), \(\lambda \) cannot be such an upper-bound. There exists \(\epsilon > 0 \) such that \(\lambda < |\mu|(B(x, \epsilon))/dx(B(x, \epsilon)) \). Defining:

\[
t = |\mu|(B(x, \epsilon))/dx(B(x, \epsilon))
\]

we have \(t > \lambda \) and \(|\mu|(B(x, \epsilon)) = tdx(B(x, \epsilon)) \).

4. Since \(1 < t/\lambda \) we have \(\epsilon^n < \epsilon^n t/\lambda \). Furthermore, it is clear that \(\lim_{\delta \to 0} (\epsilon + \delta)^n = \epsilon^n \). Hence, we have \((\epsilon + \delta)^n < \epsilon^n t/\lambda \), for \(\delta > 0 \) small enough.
5. Suppose \(y \in B(x, \delta) \) and let \(z \in B(x, \epsilon) \). Then:

\[
\|z - y\| \leq \|z - x\| + \|x - y\| < \epsilon + \delta
\]

So \(z \in B(y, \epsilon + \delta) \) and we have proved that \(B(x, \epsilon) \subseteq B(y, \epsilon + \delta) \).

6. Let \(y \in B(x, \delta) \). Since \(B(x, \epsilon) \subseteq B(y, \epsilon + \delta) \), we have:

\[
|\mu|(B(y, \epsilon + \delta)) \geq |\mu|(B(x, \epsilon))
\]

\[
= tdx(B(x, \epsilon))
\]

\[
= \epsilon^n tdx(B(0, 1))
\]

\[
= \frac{t^n}{(\epsilon + \delta)^n} dx(B(y, \epsilon + \delta))
\]

\[
> \lambda dx(B(y, \epsilon + \delta))
\]

where the second and third equalities stem from exercise (12).

7. For all \(y \in B(x, \delta) \), from 6. we have:

\[
\lambda < \frac{|\mu|(B(y, \epsilon + \delta))}{dx(B(y, \epsilon + \delta))} \leq (M\mu)(y)
\]

www.probability.net
So in particular $y \in \{\lambda < M\mu\}$ and we have proved that $B(x, \delta) \subseteq \{\lambda < M\mu\}$. Having considered $x \in \{\lambda < M\mu\}$ we have found $\delta > 0$ such that $B(x, \delta) \subseteq \{\lambda < M\mu\}$. This shows that $\{\lambda < M\mu\}$ is an open subset of \mathbb{R}^n, for all $\lambda \in \mathbb{R}$ with $\lambda > 0$. In fact, it follows from 1. and 2. that $\{\lambda < M\mu\}$ is also open if $\lambda \leq 0$. We conclude that $\{\lambda < M\mu\}$ is open for all $\lambda \in \mathbb{R}$, i.e. that the maximal function $M\mu$ is lower-semicontinuous. In particular, $\{\lambda < M\mu\}$ is a Borel subset of \mathbb{R}^n for all $\lambda \in \mathbb{R}$ and from theorem (15), $M\mu$ is measurable.

Exercise 13
Exercise 14.

1. Let \(B_i = B(x_i, \epsilon_i) \), \(i = 1, \ldots, N \), be a finite collection of open balls in \(\mathbb{R}^n \) where we have assumed that \(\epsilon_N \leq \ldots \leq \epsilon_1 \). We define \(J_0 = \{1, \ldots, N\} \) and for all \(k \geq 1 \):

\[
J_k \triangleq \left\{ \begin{array}{ll}
J_{k-1} \cap \{ j : j > i_k \} \cap B_{i_k} = \emptyset \\
\emptyset
\end{array} \right.
\]

where \(i_k = \min J_{k-1} \) if \(J_{k-1} \neq \emptyset \). Suppose \(k \geq 1 \) and \(J_{k-1} \neq \emptyset \). The fact that \(J_k \subseteq J_{k-1} \) is clear. However, the inclusion is strict. Indeed, since \(i_k = \min J_{k-1} \), in particular \(i_k \in J_{k-1} \). However, it is clear that \(i_k \notin J_k \). We have proved that \(J_k \subset J_{k-1} \).

2. Since \((J_k)_{k \geq 0} \) is a strictly decreasing sequence (in the inclusion sense) and \(J_0 \) is a finite set, there exists \(k \geq 1 \) such that \(J_k = \emptyset \). It follows that \(p = \min \{k \geq 1 : J_k = \emptyset\} \), as the smallest element of a non-empty subset of \(\mathbb{N} \), is well-defined.

3. Let \(S = \{i_1, \ldots, i_p\} \) where \(i_k = \min J_{k-1} \) for all \(k \geq 1 \) with \(J_{k-1} \neq \emptyset \). In order to show that \(S \) is well-defined, we need to
Solutions to Exercises 100

ensure that \(i_k \) is meaningful for \(k \in \mathbb{N}_p \), i.e. that \(J_{k-1} \neq \emptyset \). But if \(k \in \mathbb{N}_p \) and \(J_{k-1} = \emptyset \), since \(p \) is the smallest element of \(\{ k \geq 1 : J_k = \emptyset \} \) we obtain \(p \leq k - 1 \) and \(k \leq p \) which is a contradiction. So \(S \) is well-defined.

4. Suppose \(1 \leq k < k' \leq p \). We have \(i_{k'} \in J_{k'-1} \subseteq J_k \). So \(i_{k'} \in J_k \).

5. The family \((B_i)_{i \in S}\) is a family of open balls. Suppose \(i, j \in S \) with \(i < j \). There exist \(1 \leq k < k' \leq p \) such that \(i = i_k \) and \(j = i_{k'} \). From 4. we have \(j \in J_k \). This implies in particular that \(B_j \cap B_k = \emptyset \). So \(B_j \cap B_i = \emptyset \), and \((B_i)_{i \in S}\) is a family of pairwise disjoint open balls.

6. Let \(i \in \{1, \ldots, N\} \setminus S \) and \(k_0 = \min\{ k \in \mathbb{N}_p : i \not\in J_k \} \). In order to show that \(k_0 \) is well-defined, we need to check that \(\{ k \in \mathbb{N}_p : i \not\in J_k \} \) is not empty. This is clear from the fact that \(J_p = \emptyset \). So \(k_0 \) is well-defined. Note that this conclusion holds for any \(i \in \{1, \ldots, N\} \).

www.probability.net
Solutions to Exercises

7. \(k_0 \) being the smallest element of \(\{ k \in \mathbb{N} : i \notin J_k \} \), \(k_0 - 1 \) does not lie in this set. So either \(k_0 - 1 = 0 \) or \(i \in J_{k_0 - 1} \). Since \(J_0 = \{1, \ldots, N\} \), in any case we have \(i \in J_{k_0 - 1} \). In particular \(J_{k_0 - 1} \neq \emptyset \). So \(i_{k_0} \) is defined as the smallest element of \(J_{k_0 - 1} \). From \(i \in J_{k_0 - 1} \) we obtain \(i_{k_0} \leq i \).

8. Since \(J_{k_0 - 1} \neq \emptyset \), we have:

\[
J_{k_0} = J_{k_0 - 1} \cap \{ j : j > i_{k_0}, B_j \cap B_{i_{k_0}} = \emptyset \}
\]

\(k_0 \) being the smallest element of \(\{ k \in \mathbb{N} : i \notin J_k \} \), in particular it is an element of this set and consequently we know that \(i \notin J_{k_0} \). However, we have proved in 7. that \(i \in J_{k_0 - 1} \). Furthermore, we know that \(i_{k_0} \leq i \) and since by assumption \(i \in \{1, \ldots, N\} \setminus S \), in particular \(i \) is not an element of \(S \). So \(i \neq i_{k_0} \) and therefore \(i_{k_0} < i \). Since \(i \notin J_{k_0} \) we conclude that \(B_i \cap B_{i_{k_0}} \neq \emptyset \).

9. From 8. we have \(B_i \cap B_{i_{k_0}} = B(x_i, \epsilon_i) \cap B(x_{i_{k_0}}, \epsilon_{i_{k_0}}) \neq \emptyset \). Let \(x \) be an arbitrary element of \(B_i \cap B_{i_{k_0}} \). Then for all \(y \in B_i \), since

www.probability.net
\(i_{k_0} < i \) and \(\epsilon_N \leq \ldots \leq \epsilon_1 \), we have:
\[
\| y - x_{i_{k_0}} \| \leq \| y - x_i \| + \| x_i - x \| + \| x - x_{i_{k_0}} \| < \epsilon_i + \epsilon_i + \epsilon_{i_{k_0}} \leq 3\epsilon_{i_{k_0}}
\]
So \(y \in B(x_{i_{k_0}}, 3\epsilon_{i_{k_0}}) \) and we have proved \(B_i \subseteq B(x_{i_{k_0}}, 3\epsilon_{i_{k_0}}) \).

10. For all \(i \in \{1, \ldots, N\} \setminus S \), we found \(k_0 \in \mathbb{N}_p \) such that \(B_i \subseteq B(x_{i_{k_0}}, 3\epsilon_{i_{k_0}}) \). In other words, if we denote \(j(i) = i_{k_0} \), there exists some \(j(i) \in S \) such that we have \(B_i \subseteq B(x_{j(i)}, 3\epsilon_{j(i)}) \).
Hence:
\[
\begin{align*}
\bigcup_{i=1}^{N} B(x_i, \epsilon_i) & = \bigcup_{i \in S} B(x_i, \epsilon_i) \cup \left(\bigcup_{i \notin S} B(x_i, \epsilon_i) \right) \\
& \subseteq \bigcup_{i \in S} B(x_i, \epsilon_i) \cup \left(\bigcup_{i \notin S} B(x_{j(i)}, 3\epsilon_{j(i)}) \right)
\end{align*}
\]
So \(S = \{i_1, \ldots, i_p\} \) is a subset of \(\{1, \ldots, N\} \) such that \((B_i)_{i \in S} \) is a family of pairwise disjoint open balls, and:

\[
\bigcup_{i=1}^{N} B(x_i, \epsilon_i) \subseteq \bigcup_{i \in S} B(x_i, 3\epsilon_i)
\]

11. Using 10. and exercise (12), we have:

\[
dx\left(\bigcup_{i=1}^{N} B(x_i, \epsilon_i)\right) \leq \sum_{i \in S} dx(B(x_i, 3\epsilon_i))
\]
Solutions to Exercises

\[
= \sum_{i \in S} 3^n \epsilon_i^n dx(B(0,1)) \\
= 3^n \sum_{i \in S} dx(B(x_i, \epsilon_i))
\]

where the second inequality stems from the fact that a measure is always sub-additive, as can be seen from exercise (13) of Tutorial 5.

Exercise 14
Exercise 15.

1. Let μ be a complex measure on \mathbb{R}^n. Let $\lambda > 0$ and K be a non-empty compact subset of $\{\lambda < M\mu\}$. Let $x \in K$. Then $x \in \{\lambda < M\mu\}$, i.e. $\lambda < (M\mu)(x)$. Since $(M\mu)(x)$ is the smallest upper-bound of all ratios:

$$\frac{|\mu|(B(x, \epsilon))}{dx(B(x, \epsilon))}$$

as $\epsilon > 0$, it is impossible for λ to be such an upper-bound. There exists $\epsilon_x > 0$ such that:

$$\lambda < \frac{|\mu|(B(x, \epsilon_x))}{dx(B(x, \epsilon_x))} \quad (4)$$

Now it is clear that $K \subseteq \cup_{x \in K} B(x, \epsilon_x)$. Since K is compact, there exist $N \geq 1$ and $x_1, \ldots, x_N \in K$ such that:

$$K \subseteq B(x_1, \epsilon_{x_1}) \cup \ldots \cup B(x_N, \epsilon_{x_N})$$

Defining $\epsilon_i = \epsilon_{x_i}$ and $B_i = B(x_i, \epsilon_i)$, the collection $(B_i)_{i \in \mathbb{N}_N}$ is therefore a covering of K. From (4), for all $i = 1, \ldots, N$ we
have $\lambda dx(B_i) < |\mu|(B_i)$.

2. By re-indexing the B_i’s if necessary, without loss of generality we can assume that $\epsilon_N \leq \ldots \leq \epsilon_1$. From exercise (14), there exists a subset S of $\{1, \ldots, N\}$ such that the B_i’s for $i \in S$ are pairwise disjoint, and furthermore:

$$dx \left(\bigcup_{i=1}^{N} B(x_i, \epsilon_i) \right) \leq 3^n \sum_{i \in S} dx(B(x_i, \epsilon_i))$$

Hence, since $K \subseteq \bigcup_{i=1}^{N} B_i$, using 1. we obtain:

$$dx(K) \leq dx \left(\bigcup_{i=1}^{N} B(x_i, \epsilon_i) \right) \leq 3^n \sum_{i \in S} dx(B(x_i, \epsilon_i)) < 3^n \sum_{i \in S} \frac{1}{\lambda} |\mu|(B(x_i, \epsilon_i))$$
\[= \frac{3^n}{\lambda} |\mu| \left(\bigcup_{x \in S} B(x_i, \epsilon_i) \right) \]

where the last equality stems from the fact that all the \(B_i \)'s, \(i \in S \), are pairwise disjoint. We have effectively obtained a strict inequality, when only a large inequality was required.

3. Let \(\|\mu\| = |\mu|(\mathbb{R}^n) < +\infty \) be the total mass of \(|\mu| \). From 2:

\[dx(K) \leq 3^n \lambda^{-1} |\mu| \left(\bigcup_{i \in S} B(x_i, \epsilon_i) \right) \leq 3^n \lambda^{-1} \|\mu\| \]

4. Having considered a complex measure \(\mu \) on \(\mathbb{R}^n \), with maximal function \(M\mu \), given \(\lambda \in \mathbb{R}^+ \setminus \{0\} \), for all \(K \) non-empty compact subset of \(\{ \lambda < M\mu \} \), we have proved that:

\[dx(K) \leq 3^n \lambda^{-1} \|\mu\| \]

Note that this inequality is still valid if \(K = \emptyset \). The Lebesgue measure on \(\mathbb{R}^n \) being locally finite, from theorem (74) it is inner-
regular. In particular, we have:
\[dx(\{ \lambda < M \mu \}) = \sup \{ dx(K) : K \subseteq \{ \lambda < M \mu \}, K \text{ compact} \} \]
In other words, \(dx(\{ \lambda < M \mu \}) \) is the smallest upper-bound of all \(dx(K) \)'s, as \(K \) runs through the set of all compact subsets of \(\{ \lambda < M \mu \} \). Having proved that \(3^n \lambda^{-1} \| \mu \| \) is one of those upper-bounds, we conclude that:
\[dx(\{ \lambda < M \mu \}) \leq 3^n \lambda^{-1} \| \mu \| \]
This completes the proof of theorem (100).

Exercise 15
Exercise 16.

1. Let \(f \in L^1_C(\mathbb{R}^n, B(\mathbb{R}^n), dx) \), \(n \geq 1 \). From theorem (63), \(\mu = \int f dx \) is a well-defined complex measure on \(\mathbb{R}^n \), and its total variation \(|\mu| \) is given by \(|\mu| = \int |f| dx \). From definition (120), the maximal function \(Mf \) of \(f \) is exactly the maximal function \(M\mu \) of \(\mu \). Hence, for all \(x \in \mathbb{R}^n \):

\[
(Mf)(x) = (M\mu)(x) = \sup_{\epsilon > 0} \frac{|\mu|(B(x, \epsilon))}{dx(B(x, \epsilon))} = \sup_{\epsilon > 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f| dx
\]

2. If \(\mu = \int f dx \) then \(|\mu| = \int |f| dx \) and consequently:

\[
\|\mu\| = |\mu|(\mathbb{R}^n) = \int_{\mathbb{R}^n} |f| dx = \|f\|_1
\]
Applying theorem (100) to μ, for all $\lambda > 0$ we obtain:

$$dx(\{\lambda < Mf\}) = dx(\{\lambda < M\mu\})$$

$$\leq 3^n \lambda^{-1} \|\mu\|$$

$$= 3^n \lambda^{-1} \|f\|_1$$

Exercise 16
Exercise 17.

1. Let $f \in L^1_C(\mathbb{R}^n, B(\mathbb{R}^n), dx)$, $n \geq 1$. Let $x \in \mathbb{R}^n$. We assume that f is continuous at x. Let $\eta > 0$. There is $\delta > 0$ such that:

$$\forall y \in \mathbb{R}^n, \|x - y\| \leq \delta \Rightarrow |f(x) - f(y)| \leq \eta$$

Suppose $\epsilon > 0$ is such that $0 < \epsilon < \delta$. Then:

$$\frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)| dy \leq \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} \eta dy = \eta$$

We conclude that:

$$\lim_{\epsilon \downarrow 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)| dy = 0$$

and x is therefore a Lebesgue point of f.

2. Let $x \in \mathbb{R}^n$. We assume that x is a Lebesgue point of f. For
all $\epsilon > 0$, denoting $B_\epsilon = B(x, \epsilon)$ we have:

\[
\left| \frac{1}{d\mathcal{X}(B_\epsilon)} \int_{B_\epsilon} f(y) dy - f(x) \right| = \left| \frac{1}{d\mathcal{X}(B_\epsilon)} \int_{B_\epsilon} (f(y) - f(x)) dy \right| \\
\leq \frac{1}{d\mathcal{X}(B_\epsilon)} \int_{B_\epsilon} |f(y) - f(x)| dy
\]

Hence, from:

\[
\lim_{\epsilon \to 0} \frac{1}{d\mathcal{X}(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)| dy = 0
\]

we conclude that:

\[
f(x) = \lim_{\epsilon \to 0} \frac{1}{d\mathcal{X}(B(x, \epsilon))} \int_{B(x, \epsilon)} f(y) dy
\]

Exercise 17
Exercise 18.

1. Given \(f \in L^1_{C}(\mathbb{R}^n, B(\mathbb{R}^n), dx) \), for all \(\epsilon > 0 \) and \(x \in \mathbb{R}^n \), let:

\[
(T_\epsilon f)(x) = \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)| dy
\]

and:

\[
(T f)(x) = \inf_{\epsilon > 0} \sup_{u \in [0, \epsilon]} (T_u f)(x)
\]

From theorem (79), the space \(C^c_0(\mathbb{R}^n) \) of continuous \(C \)-valued functions defined on \(\mathbb{R}^n \) with compact support, is dense in \(L^1 \).

Given \(\eta > 0 \), there exists \(g \in C^c_0(\mathbb{R}^n) \) such that \(\|f - g\|_1 \leq \eta \).

2. Let \(h = f - g \). For all \(\epsilon > 0 \) and \(x \in \mathbb{R}^n \) we have:

\[
(T, h)(x) = \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |h(y) - h(x)| dy
\]

\[
\leq \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} (|h(y)| + |h(x)|) dy
\]
\[
= \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |h(y)| dy + |h(x)| \\
= \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |h| dx + |h(x)|
\]

3. Let \(x \in \mathbb{R}^n \). From exercise (16) we have:

\[
(Mh)(x) = \sup_{\epsilon > 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |h| dx
\]

In particular, for all \(\epsilon > 0 \), from 2. we obtain:

\[
(T_{\epsilon} h)(x) \leq (Mh)(x) + |h(x)|
\]

Hence, if \(\epsilon > 0 \) is given, \((Mh)(x) + |h(x)|\) is an upper-bound of all \((T_u h)(x)\) as \(u \in [0, \epsilon] \). It follows that:

\[
\sup_{u \in [0, \epsilon]} (T_u h)(x) \leq (Mh)(x) + |h(x)|
\]
and we have:

\[(Th)(x) = \inf_{\epsilon'>0} \sup_{u \in [0,\epsilon']} (Tu)h(x)\]

\[\leq \sup_{u \in [0,\epsilon']} (Tu)h(x)\]

\[\leq (Mh)(x) + |h(x)|\]

This being true for all \(x \in \mathbb{R}^n\), \(Th \leq Mh + |h|\).

4. Let \(x \in \mathbb{R}^n\) and \(\epsilon > 0\). Let \(B_\epsilon = B(x, \epsilon)\). Then:

\[(T_\epsilon f)(x) = \frac{1}{dx(\epsilon)} \int_{B_\epsilon} |f(y) - f(x)| dy\]

\[= \frac{1}{dx(\epsilon)} \int_{B_\epsilon} |g(y) - g(x) + h(y) - h(x)| dy\]

\[\leq \frac{1}{dx(\epsilon)} \left(\int_{B_\epsilon} |g(y) - g(x)| dy + \int_{B_\epsilon} |h(y) - h(x)| dy \right)\]

\[= (T_\epsilon g)(x) + (T_\epsilon h)(x)\]
This being true for all \(x \in \mathbb{R}^n \), \(T_\epsilon f \leq T_\epsilon g + T_\epsilon h \).

5. Let \(x \in \mathbb{R}^n \). Let \(\epsilon_1, \epsilon_2 > 0 \) be given and \(\epsilon = \min(\epsilon_1, \epsilon_2) \). For all \(u \in]0, \epsilon] \), using 4. we have:

\[
(T_u f)(x) \leq (T_u g)(x) + (T_u h)(x) \\
\leq \sup_{u \in]0, \epsilon_1]} (T_u g)(x) + \sup_{u \in]0, \epsilon_2]} (T_u h)(x)
\]

Hence, the right-hand-side of this inequality is an upper-bound of all \((T_u f)(x)\)'s as \(u \in]0, \epsilon] \). It follows that:

\[
(T f)(x) = \inf_{\epsilon' > 0} \sup_{u \in]0, \epsilon']} (T_u f)(x) \\
\leq \sup_{u \in]0, \epsilon]} (T_u f)(x) \\
\leq \sup_{u \in]0, \epsilon_1]} (T_u g)(x) + \sup_{u \in]0, \epsilon_2]} (T_u h)(x)
\]

Suppose \(\sup_{u \in]0, \epsilon_1]} (T_u g)(x) < +\infty \). Then this quantity can be safely subtracted from both sides of the previous inequality, to
obtain:

$$(Tf)(x) - \sup_{u \in [0, \epsilon_1]} (T_u g)(x) \leq \sup_{u \in [0, \epsilon_2]} (T_u h)(x)$$

Hence, $\epsilon_1 > 0$ being given, we see that the left-hand-side of this inequality is a lower-bound of all $\sup_{u \in [0, \epsilon_2]} (T_u h)(x)$'s, as $\epsilon_2 > 0$. Since $(Th)(x)$ is the greatest of such lower-bounds, we obtain:

$$(Tf)(x) - \sup_{u \in [0, \epsilon_1]} (T_u g)(x) \leq (Th)(x)$$

or equivalently:

$$(Tf)(x) \leq \sup_{u \in [0, \epsilon_1]} (T_u g)(x) + (Th)(x)$$

which is still valid when $\sup_{u \in [0, \epsilon_1]} (T_u g)(x) = +\infty$. Suppose now that $(Th)(x) < +\infty$. Then $(Th)(x)$ can be safely subtracted from both sides of the previous inequality, to obtain:

$$(Tf)(x) - (Th)(x) \leq \sup_{u \in [0, \epsilon_1]} (T_u g)(x)$$
This being established for all $\epsilon_1 > 0$, $(Tf)(x) - (Th)(x)$ is a lower-bound of all $\sup_{u \in [0, \epsilon_1]} (Tu,g)(x)$’s, as $\epsilon_1 > 0$. Since $(Tg)(x)$ is the greatest of such lower-bounds, we obtain:

$$(Tf)(x) - (Th)(x) \leq (Tg)(x)$$

or equivalently:

$$(Tf)(x) \leq (Tg)(x) + (Th)(x)$$

This being true for all $x \in \mathbb{R}^n$, $Tf \leq Tg + Th$.

6. Let $x \in \mathbb{R}^n$. Since $g \in C_c^\infty(\mathbb{R}^n)$, g is a continuous element of L^1. From exercise (17), x is therefore a Lebesgue point of g. Hence, from definition (121):

$$\lim_{\epsilon \downarrow 0} (T_\epsilon g)(x) = \lim_{\epsilon \downarrow 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |g(y) - g(x)| dy = 0$$

Let $\delta > 0$. There exists $\epsilon > 0$ such that:

$$u \in [0, \epsilon[\Rightarrow (T_u g)(x) \leq \delta$$
So δ is an upper-bound of all $(T_u g)(x)$’s as $u \in]0, \epsilon[$, and consequently $\sup_{u \in]0, \epsilon[}(T_u g)(x) \leq \delta$. Hence:

$$
(Tg)(x) = \inf_{\epsilon' > 0} \sup_{u \in]0, \epsilon'[} (T_u g)(x) \\
\leq \sup_{u \in]0, \epsilon[}(T_u g)(x) \\
\leq \delta
$$

This being true for all $\delta > 0$, we conclude that $(Tg)(x) = 0$. This being true for all $x \in \mathbb{R}^n$, we have proved that $Tg = 0$.

7. Using 3. and 5. together with $Tg = 0$, we obtain:

$$
Tf \leq Tg + Th = Th \leq Mh + |h|
$$

8. Let $\alpha > 0$. Let $x \in \mathbb{R}^n$ and suppose that $(Mh)(x) \leq \alpha$ together with $|h|(x) \leq \alpha$. Using 7. we obtain:

$$
(Tf)(x) \leq (Mh)(x) + |h|(x) \leq 2\alpha
$$
Hence, we have shown the inclusion:
\[\{ Mh \leq \alpha \} \cap \{ |h| \leq \alpha \} \subseteq \{ Tf \leq 2\alpha \} \]
from which we conclude that:
\[\{ 2\alpha < Tf \} \subseteq \{ \alpha < Mh \} \cup \{ \alpha < |h| \} \]

9. We have:
\[
\begin{align*}
dx(\{ \alpha < |h| \}) &= \alpha^{-1} \int \alpha 1_{(\alpha < |h|)} dx \\
& \leq \alpha^{-1} \int |h| 1_{(\alpha < |h|)} dx \\
& \leq \alpha^{-1} \int |h| dx \\
& = \alpha^{-1} \| h \|_1
\end{align*}
\]

10. Let \(\alpha > 0 \) and \(\eta > 0 \). From 1. we have the existence of \(g \in C_0^\infty(\mathbb{R}^n) \) such that \(\| h \|_1 \leq \eta \) where \(h = f - g \). Define \(M_{\alpha,\eta} = \)

www.probability.net
\{\alpha < Mh\} \cup \{\alpha < |h|\}. From exercise (13) applied to the complex measure \(\mu = \int hdx \), \(Mh \) is a Borel measurable map. Since \(|h|\) is also Borel measurable, we see that \(M_{\alpha,\eta} \in B(\mathbb{R}^n) \). Furthermore from 8. we have \(\{2\alpha < Tf\} \subseteq M_{\alpha,\eta} \). Finally, using 9. and exercise (16), we obtain:

\[
\begin{align*}
 dx(M_{\alpha,\eta}) &= dx(\{\alpha < Mh\} \cup \{\alpha < |h|\}) \\
 &\leq dx(\{\alpha < Mh\}) + dx(\{\alpha < |h|\}) \\
 &\leq 3^n \alpha^{-1} ||h||_1 + \alpha^{-1} ||h||_1 \\
 &= (3^n + 1)\alpha^{-1} ||h||_1 \\
 &\leq (3^n + 1)\alpha^{-1} \eta
\end{align*}
\]

Hence, given \(\alpha > 0 \) and \(\eta > 0 \), we have found \(M_{\alpha,\eta} \in B(\mathbb{R}^n) \) such that \(\{2\alpha < Tf\} \subseteq M_{\alpha,\eta} \) and \(dx(M_{\alpha,\eta}) \leq (3^n + 1)\alpha^{-1} \eta \). Take \(N_{\alpha,\eta} = M_{\alpha,\eta} \) where \(\eta'' = (3^n + 1)^{-1} \alpha \eta \). Then \(N_{\alpha,\eta} \in B(\mathbb{R}^n) \), \(\{2\alpha < Tf\} \subseteq N_{\alpha,\eta} \) and \(dx(N_{\alpha,\eta}) \leq \eta \), which is exactly what we want.
11. Let $\alpha > 0$. With an obvious change of notation, given $n \geq 1$, from 10. there exists $N_{\alpha,n} \in \mathcal{B}(\mathbb{R}^n)$ such that we have $\{2\alpha < Tf\} \subseteq N_{\alpha,n}$ and $dx(N_{\alpha,n}) \leq 1/n$. Let $N_\alpha = \cap_{n \geq 1} N_{\alpha,n}$. Then $N_\alpha \in \mathcal{B}(\mathbb{R}^n)$, $\{2\alpha < Tf\} \subseteq N_\alpha$ and furthermore for all $n \geq 1$:

$$dx(N_\alpha) = dx(\cap_{n \geq 1} N_{\alpha,n}) \leq dx(N_{\alpha,n}) \leq \frac{1}{n}$$

So $dx(N_\alpha) = 0$.

12. Let $n \geq 1$. With an obvious change of notation, from 11. there exists $N_n \in \mathcal{B}(\mathbb{R}^n)$ such that $\{2/n < Tf\} \subseteq N_n$ together with $dx(N_n) = 0$. Define $N = \cup_{n \geq 1} N_n$. Then $N \in \mathcal{B}(\mathbb{R}^n)$ and $dx(N) = 0$. Furthermore:

$$\{Tf > 0\} = \bigcup_{n \geq 1} \{2/n < Tf\} \subseteq \bigcup_{n \geq 1} N_n = N$$

www.probability.net
13. From 12, there exists $N \in \mathcal{B}(\mathbb{R}^n)$ with $dx(N) = 0$ such that

$\{Tf > 0\} \subseteq N$. Hence, for all $x \in \mathbb{R}^n$, we have $x \in N^c \Rightarrow

(Tf)(x) = 0$. We conclude that $Tf = 0 \ dx$-a.s.

14. Let $f \in L^1_{\text{loc}}(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), dx)$. Let $x \in \mathbb{R}^n$ and suppose that $(Tf)(x) = 0$. Let $\delta > 0$. Then $(Tf)(x) < \delta$. Since $(Tf)(x)$ is the greatest lower-bound of all $\sup_{u \in [0, \epsilon']} (T_u f)(x)$’s as $\epsilon' > 0$, δ cannot be such a lower-bound. There exists $\epsilon' > 0$ such that $\sup_{u \in [0, \epsilon']} (T_u f)(x) < \delta$. Hence for all $\epsilon \in [0, \epsilon']$, we have:

$$
\frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)| \, dy = (T_{\epsilon} f)(x)
\leq \sup_{u \in [0, \epsilon']} (T_u f)(x) < \delta
$$

We have proved that:

$$
\lim_{\epsilon \downarrow 0} \frac{1}{dx(B(x, \epsilon))} \int_{B(x, \epsilon)} |f(y) - f(x)| \, dy = 0
$$
i.e. that x is a Lebesgue point of f. So every $x \in \mathbb{R}^n$ such that $(Tf)(x) = 0$ is a Lebesgue point of f. Since $Tf = 0$ dx-almost surely, we conclude that dx-almost all $x \in \mathbb{R}^n$ are Lebesgue points of f. This completes the proof of theorem (101).

Exercise 18
Exercise 19.

1. Let \((\Omega, \mathcal{F}, \mu)\) be a measure space and \(\Omega' \in \mathcal{F}\). Let \(\mathcal{F}' = \mathcal{F}|_{\Omega'}\) and \(\mu' = \mu|_{\mathcal{F}'}\). Let \(A \in \mathcal{F}'\). Since \(\mathcal{F}'\) is the trace of \(\mathcal{F}\) on \(\Omega'\), from definition (22) there exists \(A \in \mathcal{F}\) such that \(A' = A \cap \Omega'\). Since \(\Omega' \in \mathcal{F}\), we see that \(A' \in \mathcal{F}\). This shows that \(\mathcal{F}' \subseteq \mathcal{F}\) and the restriction \(\mu' = \mu|_{\mathcal{F}'}\) is a well-defined measure on \((\Omega', \mathcal{F}')\).

2. For all maps \(f\) defined on \(\Omega'\) with values in \(\mathbb{C}\) or \([0, +\infty]\), we define an extension of \(f\) on \(\Omega\), denoted \(\tilde{f}\), by setting \(\tilde{f}(\omega) = 0\) for all \(\omega \in \Omega \setminus \Omega'\). Let \(A \in \mathcal{F}'\) and \(1'_A\) be the indicator function of \(A\) on \(\Omega'\). \(A\) is also a subset of \(\Omega\), and we denote \(1_A\) its indicator function on \(\Omega\). Let \(\omega \in \Omega\). If \(\omega \in A \subseteq \Omega'\), then:

\[
\tilde{1}'_A(\omega) \overset{\Delta}{=} 1'_A(\omega) = 1 = 1_A(\omega)
\]

If \(\omega \in \Omega' \setminus A\), then:

\[
\tilde{1}'_A(\omega) \overset{\Delta}{=} 1'_A(\omega) = 0 = 1_A(\omega)
\]
if $\omega \in \Omega \setminus \Omega'$, then:

$$\tilde{1}_A'(\omega) \triangleq 0 = 1_A(\omega)$$

In any case we have $\tilde{1}_A(\omega) = 1_A(\omega)$. So $\tilde{1}_A = 1_A$.

3. Let $f : (\Omega', \mathcal{F}') \to [0, +\infty]$ be a non-negative and measurable map. For all $B \in \mathcal{B}([0, +\infty])$ we have:

$$\{\tilde{f} \in B\} = \left(\left\{ f \in B \cap \Omega' \right\} \cup \left\{ f \in B \cap (\Omega \setminus \Omega') \right\}\right)$$

$$= \{ f \in B \} \cup \left\{ \{0 \in B \cap (\Omega \setminus \Omega') \right\}$$

where $\{0 \in B\}$ denotes Ω if $0 \in B$ and \emptyset if $0 \notin B$. Since f is measurable, we have $\{f \in B\} \in \mathcal{F}' \subseteq \mathcal{F}$. Since $\Omega' \in \mathcal{F}$, it is clear that $\{0 \in B \} \cap (\Omega \setminus \Omega') \in \mathcal{F}$. It follows that $\{\tilde{f} \in B\} \in \mathcal{F}$, and we have proved that \tilde{f} is a non-negative and measurable map. Suppose f is of the form $1_A'$ for some $A \in \mathcal{F}'$. Then:

$$\int_{\Omega'} 1_A' d\mu' = \mu'(A) = \int_{\Omega} 1_A d\mu = \int_{\Omega} \tilde{1}_A' d\mu$$

www.probability.net
Suppose now that \(f = \sum_{i=1}^{n} \alpha_i 1'_{A_i} \) is a simple function on \((\Omega', \mathcal{F}')\). To make our proof clearer, let us denote \(\tilde{\phi}(g) \) the extension \(\tilde{g} \) of any map \(g \) defined on \(\Omega' \). Then:

\[
\int_{\Omega'} f \, d\mu' = \int_{\Omega'} \left(\sum_{i=1}^{n} \alpha_i 1'_{A_i} \right) \, d\mu' = \sum_{i=1}^{n} \alpha_i \int_{\Omega'} 1'_{A_i} \, d\mu' = \sum_{i=1}^{n} \alpha_i \int_{\Omega} \phi(1'_{A_i}) \, d\mu = \int_{\Omega} \left(\sum_{i=1}^{n} \alpha_i \phi(1'_{A_i}) \right) \, d\mu = \int_{\Omega} \phi \left(\sum_{i=1}^{n} \alpha_i 1'_{A_i} \right) \, d\mu
\]
\[\int_{\Omega} \phi(f) d\mu = \int_{\Omega} \tilde{f} d\mu \]

Finally, if \(f : (\Omega', \mathcal{F}') \to [0, +\infty] \) is an arbitrary non-negative and measurable map, from theorem (18) there exists a sequence \((s_n)_{n \geq 1}\) of simple functions on \((\Omega', \mathcal{F}')\) such that \(s_n \uparrow f \), i.e. for all \(\omega \in \Omega' \), \(s_n(\omega) \leq s_{n+1}(\omega) \) for all \(n \geq 1 \), and \(s_n(\omega) \to f(\omega) \). It is clear that \(\tilde{s}_n \uparrow \tilde{f} \), and from the monotone convergence theorem (19) we obtain:

\[
\int_{\Omega'} f d\mu' = \lim_{n \to +\infty} \int_{\Omega'} s_n d\mu' \\
= \lim_{n \to +\infty} \int_{\Omega} \tilde{s}_n d\mu \\
= \int_{\Omega} \tilde{f} d\mu
\]

www.probability.net
4. Let \(f \in L^1_\mathbb{C}(\Omega', \mathcal{F}', \mu') \). Let \(u = \text{Re}(f) \) and \(v = \text{Im}(f) \). To make our proof clearer, we shall denote \(\phi(g) \) the extension \(\tilde{g} \) of any map \(g \) defined on \(\Omega' \). From \(f = u^+ - u^- + i(v^+ - v^-) \) we obtain \(\phi(f) = \phi(u^+) - \phi(u^-) + i(\phi(v^+) - \phi(v^-)) \). From 3. each \(\phi(u^\pm) \) and \(\phi(v^\pm) \) is measurable, and consequently \(\phi(f) \) is itself measurable. Note that given \(B \in \mathcal{B}(\mathbb{C}) \), it is not difficult to show directly that \(\{ \tilde{f} \in B \} \in \mathcal{F} \) just like we did in 3. with \(B \in \mathcal{B}([0, +\infty]) \). It is clear that \(|\phi(f)| = \phi(|f|) \), and applying 3. to the non-negative and measurable map \(|f| \) we obtain:

\[
\int_{\Omega} |\phi(f)| \, d\mu = \int_{\Omega} \phi(|f|) \, d\mu = \int_{\Omega'} |f| \, d\mu' < +\infty
\]

Hence, we have proved that \(\tilde{f} = \phi(f) \in L^1_\mathbb{C}(\Omega, \mathcal{F}, \mu) \). Finally, using 3. once more together with the linearity of the integral:

\[
\int_{\Omega'} f \, d\mu' = \int_{\Omega'} u^+ \, d\mu' - \int_{\Omega'} u^- \, d\mu'
\]
\begin{align*}
&+ i \left(\int_{\Omega'} v^+ d\mu' - \int_{\Omega'} v^- d\mu' \right) \\
&= \int_{\Omega} \phi(u^+) d\mu - \int_{\Omega} \phi(u^-) d\mu \\
&+ i \left(\int_{\Omega} \phi(v^+) d\mu - \int_{\Omega} \phi(v^-) d\mu \right) \\
&= \int_{\Omega} [\phi(u^+) - \phi(u^-) + i(\phi(v^+) - \phi(v^-))] d\mu \\
&= \int_{\Omega} \phi(f) d\mu = \int_{\Omega} \tilde{f} d\mu
\end{align*}

Exercise 19
Exercise 20.

1. Let $b : \mathbb{R}^+ \to \mathbb{C}$ be a map. Suppose b is absolutely continuous. From definition (122), b is right-continuous of finite variation, and furthermore it is absolutely continuous with respect to the right-continuous and non-decreasing map $a : \mathbb{R}^+ \to \mathbb{R}^+$ with $a(0) \geq 0$, defined by $a(t) = t$. From theorem (89), there exists $f \in L^1_{\text{loc}}(t)$ such that $b(t) = \int_0^t f(s)ds$ for all $t \in \mathbb{R}^+$. Conversely, suppose such an f exists. From theorem (88), $b = f.a$ is a right-continuous map of finite variation, and from theorem (89), it is in fact absolutely continuous with respect to $a(t) = t$. So b is absolutely continuous. We have proved that b is absolutely continuous, if and only if there exists $f \in L^1_{\text{loc}}(t)$ such that $b(t) = \int_0^t f(s)ds$ for all $t \in \mathbb{R}^+$.

2. Suppose b is absolutely continuous and let $f \in L^1_{\text{loc}}(t)$ be such that $b(t) = \int_0^t f(s)ds$ for all $t \in \mathbb{R}^+$. From theorem (88), we have $\Delta b = f \Delta t = 0$. Since b is right-continuous of finite varia-
tion, in particular it is cadlag. We conclude from exercise (29) (part 1) of Tutorial 14 that \(b \) is in fact continuous with \(b(0) = 0 \).

Exercise 20
Exercise 21.

1. Let \(b : \mathbb{R}^+ \to \mathbb{C} \) be absolutely continuous. Let \(f \in L^1_{\text{loc}}(t) \) be such that \(b(t) = \int_0^t f(s)ds \) for all \(t \in \mathbb{R}^+ \). For all \(n \geq 1 \), we define \(f_n : \mathbb{R} \to \mathbb{C} \) by:

\[
\begin{align*}
 f_n(t) &\triangleq \\
 &\begin{cases}
 f(t)1_{[0,n]}(t) &\text{if } t \in \mathbb{R}^+ \\
 0 &\text{if } t < 0
 \end{cases}
\end{align*}
\]

Applying exercise (19) to \((\Omega, \Omega') = (\mathbb{R}, \mathbb{R}^+)\), bearing in mind that \(\mathcal{B}(\mathbb{R}^+) = \mathcal{B}(\mathbb{R})|_{\mathbb{R}^+} \), we have \(f_n = \phi(f1_{[0,n]}) \) where \(\phi(g) \) denotes the extension \(\tilde{g} \) on \(\mathbb{R} \), of any map \(g \) defined on \(\mathbb{R}^+ \).

Since \(f \in L^1_{\text{loc}}(t) \), we have \(f1_{[0,n]} \in L^1_{\text{loc}}(\mathbb{R}^+, \mathcal{B}(\mathbb{R}^+), dx) \) and consequently \(f_n = \phi(f1_{[0,n]}) \in L^1_{\text{loc}}(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx) \). Note that we are using the same notation \(dx \) to denote successively the Lebesgue measure on \(\mathbb{R}^+ \) and the Lebesgue measure on \(\mathbb{R} \), the former being the restriction of the latter to \(\mathcal{B}(\mathbb{R}^+) \subseteq \mathcal{B}(\mathbb{R}) \).
n \geq 1 \text{ and } t \in [0, n]. \text{ Using exercise (19) once more:}

\begin{align*}
\int_0^t f_n dx &= \int_R f_n 1_{[0,t]} dx \\
&= \int_R \phi(f 1_{[0,n]} 1_{[0,t]}) dx \\
&= \int_{R^+} f 1_{[0,n]} 1_{[0,t]} dx \\
&= \int_{R^+} f 1_{[0,t]} dx \\
&= \int_0^t f(s) ds = b(t)
\end{align*}

Note that we use the same notations $1_{[0,t]}$ and $1_{[0,n]}$ to denote characteristic functions defined successively on \mathbb{R} and \mathbb{R}^+.

2. Since $f_n \in L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx)$, from theorem (101), dx-almost every $t \in \mathbb{R}$ is a Lebesgue point of f_n. Hence, there exists
$N_n \in \mathcal{B}(\mathbb{R})$ with $dx(N_n) = 0$ such that for all $t \in N_n^c$, t is a Lebesgue point of f_n.

3. Let $t \in \mathbb{R}$ and $\epsilon > 0$. Since $B(t, \epsilon) = [t - \epsilon, t + \epsilon]$, we have:

$$\frac{1}{\epsilon} \int_{t}^{t+\epsilon} |f_n(s) - f_n(t)|ds = \frac{2}{dx(B(t, \epsilon))} \int_{t}^{t+\epsilon} |f_n(s) - f_n(t)|ds$$

$$\leq \frac{2}{dx(B(t, \epsilon))} \int_{t-\epsilon}^{t+\epsilon} |f_n(s) - f_n(t)|ds$$

$$= \frac{2}{dx(B(t, \epsilon)) \int_{B(t, \epsilon)}} |f_n(s) - f_n(t)|ds$$

4. Let $t \in N_n^c$. Then t is a Lebesgue point of f_n. From the inequality obtained in 3, we have:

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_{t}^{t+\epsilon} |f_n(s) - f_n(t)|ds = 0$$
Furthermore, since:

\[\left| \frac{1}{\epsilon} \int_{t}^{t+\epsilon} f_n(s) ds - f_n(t) \right| = \frac{1}{\epsilon} \left| \int_{t}^{t+\epsilon} (f_n(s) - f_n(t)) ds \right| \leq \frac{1}{\epsilon} \int_{t}^{t+\epsilon} |f_n(s) - f_n(t)| ds \]

We conclude that:

\[\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{t}^{t+\epsilon} f_n(s) ds = f_n(t) \]

5. Similarly to 3. and 4. we have:

\[\left| \frac{1}{\epsilon} \int_{t-\epsilon}^{t} f_n(s) ds - f_n(t) \right| = \frac{1}{\epsilon} \left| \int_{t-\epsilon}^{t} (f_n(s) - f_n(t)) ds \right| \leq \frac{1}{\epsilon} \int_{t-\epsilon}^{t} |f_n(s) - f_n(t)| ds \]

www.probability.net
Solutions to Exercises

\[
\leq \frac{2}{dx(B(t, \epsilon))} \int_{B(t, \epsilon)} |f_n(s) - f_n(t)|ds
\]

Hence for all \(t \in N^{c}_n \), \(t \) being a Lebesgue point of \(f_n \):

\[
\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_{t-\epsilon}^{t} f_n(s)ds = f_n(t)
\]

6. Let \(t \in N^{c}_n \cap [0, n] \). From 1. we have \(b(t) = \int_{0}^{t} f_n(s)ds \). Furthermore, for \(\epsilon > 0 \) small enough we have \(t + \epsilon \in [0, n] \), and consequently \(b(t + \epsilon) = \int_{0}^{t+\epsilon} f_n(s)ds \). Hence:

\[
\lim_{\epsilon \downarrow 0} \frac{b(t + \epsilon) - b(t)}{\epsilon} = \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_{t}^{t+\epsilon} f_n(s)ds = f_n(t)
\]

Moreover, assuming \(t > 0 \), \(t - \epsilon \in [0, n] \) for \(\epsilon > 0 \) small enough, and consequently \(b(t - \epsilon) = \int_{0}^{t-\epsilon} f_n(s)ds \). Hence:

\[
\lim_{\epsilon \downarrow 0} \frac{b(t) - b(t - \epsilon)}{\epsilon} = \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_{t-\epsilon}^{t} f_n(s)ds = f_n(t)
\]
We conclude that for all \(t \in N^c \cap [0, n] \), if \(t = 0 \), the right-hand-side derivative \(b'(0) \) exists and is equal to \(f_n(0) \). If \(t > 0 \), the derivative \(b'(t) \) exists and is equal to \(f_n(t) \). However if \(t \in [0, n] \), \(f_n(t) = f(t) \). So for all \(t \in N^c_n \cap [0, n] \), \(b'(t) = f(t) \).

7. Define \(N = (\cup_{n \geq 1} N_n) \cap \mathbb{R}^+ \). Then \(N \in \mathcal{B}(\mathbb{R}^+) \) and \(dx(N) = 0 \). Let \(t \in N^c \). Choosing \(n \geq 1 \) such that \(t \in [0, n] \), from \(t \notin N \) we obtain \(t \notin N_n \) and consequently \(t \in N^c_n \cap [0, n] \). From 6, it follows that \(b'(t) \) exists and is equal to \(f(t) \). We have found \(N \in \mathcal{B}(\mathbb{R}^+) \) with \(dx(N) = 0 \), such that for all \(t \in N^c \), \(b'(t) \) exists and is equal to \(f(t) \).

8. We have shown in exercise (20) that a map \(b \) is absolutely continuous, if and only if there exists \(f \in L^1_{\text{loc}}(t) \) such that \(b = f.t \). Furthermore, it follows from 7, that if \(b \) is absolutely continuous, it is almost surely differentiable with \(b' = f \) \(dx \)-almost surely. This completes the proof of theorem (102).

Exercise 21

www.probability.net