
Tutorial 11: Complex Measures 1

11. Complex Measures
In the following, (Ω,F) denotes an arbitrary measurable space.

Definition 90 Let (an)n≥1 be a sequence of complex numbers. We
say that (an)n≥1 has the permutation property if and only if, for
all bijections σ : N∗ → N∗, the series

∑+∞
k=1 aσ(k) converges in C1

Exercise 1. Let (an)n≥1 be a sequence of complex numbers.

1. Show that if (an)n≥1 has the permutation property, then the
same is true of (Re(an))n≥1 and (Im(an))n≥1.

2. Suppose an ∈ R for all n ≥ 1. Show that if
∑+∞

k=1 ak converges:

+∞∑
k=1

|ak| = +∞ ⇒
+∞∑
k=1

a+
k =

+∞∑
k=1

a−
k = +∞

1which excludes ±∞ as limit.
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Exercise 2. Let (an)n≥1 be a sequence in R, such that the series∑+∞
k=1 ak converges, and

∑+∞
k=1 |ak| = +∞. Let A > 0. We define:

N+ �
= {k ≥ 1 : ak ≥ 0} , N− �

= {k ≥ 1 : ak < 0}
1. Show that N+ and N− are infinite.

2. Let φ+ : N∗ → N+ and φ− : N∗ → N− be two bijections. Show
the existence of k1 ≥ 1 such that:

k1∑
k=1

aφ+(k) ≥ A

3. Show the existence of an increasing sequence (kp)p≥1 such that:

kp∑
k=kp−1+1

aφ+(k) ≥ A
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for all p ≥ 1, where k0 = 0.

4. Consider the permutation σ : N∗ → N∗ defined informally by:

(φ−(1), φ+(1), . . . , φ+(k1)︸ ︷︷ ︸, φ−(2), φ+(k1 + 1), . . . , φ+(k2)︸ ︷︷ ︸, . . .)
representing (σ(1), σ(2), . . .). More specifically, define k∗

0 = 0
and k∗

p = kp + p for all p ≥ 1. For all n ∈ N∗ and p ≥ 1 with: 2

k∗
p−1 < n ≤ k∗

p (1)

we define:

σ(n) =
{

φ−(p) if n = k∗
p−1 + 1

φ+(n − p) if n > k∗
p−1 + 1 (2)

Show that σ : N∗ → N∗ is indeed a bijection.
2Given an integer n ≥ 1, there exists a unique p ≥ 1 such that (1) holds.
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5. Show that if
∑+∞

k=1 aσ(k) converges, there is N ≥ 1, such that:

n ≥ N , p ≥ 1 ⇒
∣∣∣∣∣

n+p∑
k=n+1

aσ(k)

∣∣∣∣∣ < A

6. Explain why (an)n≥1 cannot have the permutation property.

7. Prove the following theorem:

Theorem 56 Let (an)n≥1 be a sequence of complex numbers such
that for all bijections σ : N∗ → N∗, the series

∑+∞
k=1 aσ(k) converges.

Then, the series
∑+∞

k=1 ak converges absolutely, i.e.

+∞∑
k=1

|ak| < +∞
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Definition 91 Let (Ω,F) be a measurable space and E ∈ F . We
call measurable partition of E, any sequence (En)n≥1 of pairwise
disjoint elements of F , such that E = �n≥1En.

Definition 92 We call complex measure on a measurable space
(Ω,F) any map μ : F → C, such that for all E ∈ F and (En)n≥1

measurable partition of E, the series
∑+∞

n=1 μ(En) converges to μ(E).
The set of all complex measures on (Ω,F) is denoted M1(Ω,F).

Definition 93 We call signed measure on a measurable space
(Ω,F), any complex measure on (Ω,F) with values in R.3

Exercise 3.

1. Show that a measure on (Ω,F) may not be a complex measure.

2. Show that for all μ ∈ M1(Ω,F) , μ(∅) = 0.

3In these tutorials, signed measure may not have values in {−∞, +∞}.
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3. Show that a finite measure on (Ω,F) is a complex measure with
values in R+, and conversely.

4. Let μ ∈ M1(Ω,F). Let E ∈ F and (En)n≥1 be a measurable
partition of E. Show that:

+∞∑
n=1

|μ(En)| < +∞

5. Let μ be a measure on (Ω,F) and f ∈ L1
C(Ω,F , μ). Define:

∀E ∈ F , ν(E)
�
=

∫
E

fdμ

Show that ν is a complex measure on (Ω,F).
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Definition 94 Let μ be a complex measure on a measurable space
(Ω,F). We call total variation of μ, the map |μ| : F → [0, +∞],
defined by:

∀E ∈ F , |μ|(E)
�
= sup

+∞∑
n=1

|μ(En)|

where the ’sup’ is taken over all measurable partitions (En)n≥1 of E.

Exercise 4. Let μ be a complex measure on (Ω,F).

1. Show that for all E ∈ F , |μ(E)| ≤ |μ|(E).

2. Show that |μ|(∅) = 0.

Exercise 5. Let μ be a complex measure on (Ω,F). Let E ∈ F and
(En)n≥1 be a measurable partition of E.

1. Show that there exists (tn)n≥1 in R, with tn < |μ|(En) for all n.
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2. Show that for all n ≥ 1, there exists a measurable partition
(Ep

n)p≥1 of En such that:

tn <

+∞∑
p=1

|μ(Ep
n)|

3. Show that (Ep
n)n,p≥1 is a measurable partition of E.

4. Show that for all N ≥ 1, we have
∑N

n=1 tn ≤ |μ|(E).

5. Show that for all N ≥ 1, we have:
N∑

n=1

|μ|(En) ≤ |μ|(E)

6. Suppose that (Ap)p≥1 is another arbitrary measurable partition
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of E. Show that for all p ≥ 1:

|μ(Ap)| ≤
+∞∑
n=1

|μ(Ap ∩ En)|

7. Show that for all n ≥ 1:
+∞∑
p=1

|μ(Ap ∩ En)| ≤ |μ|(En)

8. Show that:
+∞∑
p=1

|μ(Ap)| ≤
+∞∑
n=1

|μ|(En)

9. Show that |μ| : F → [0, +∞] is a measure on (Ω,F).
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Exercise 6. Let a, b ∈ R, a < b. Let F ∈ C1([a, b];R), and define:

∀x ∈ [a, b] , H(x)
�
=

∫ x

a

F ′(t)dt

1. Show that H ∈ C1([a, b];R) and H ′ = F ′.

2. Show that:

F (b) − F (a) =
∫ b

a

F ′(t)dt

3. Show that:
1
2π

∫ +π/2

−π/2

cos θdθ =
1
π

4. Let u ∈ Rn and τu : Rn → Rn be the translation τu(x) = x+u.
Show that the Lebesgue measure dx on (Rn,B(Rn)) is invariant
by translation τu, i.e. dx({τu ∈ B}) = dx(B) for all B ∈ B(Rn).
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5. Show that for all f ∈ L1
C(Rn,B(Rn), dx), and u ∈ Rn:∫

Rn

f(x + u)dx =
∫
Rn

f(x)dx

6. Show that for all α ∈ R, we have:∫ +π

−π

cos+(α − θ)dθ =
∫ +π−α

−π−α

cos+ θdθ

7. Let α ∈ R and k ∈ Z such that k ≤ α/2π < k + 1. Show:

−π − α ≤ −2kπ − π < π − α ≤ −2kπ + π

8. Show that: ∫ −2kπ−π

−π−α

cos+ θdθ =
∫ −2kπ+π

π−α

cos+ θdθ
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9. Show that:∫ +π−α

−π−α

cos+ θdθ =
∫ −2kπ+π

−2kπ−π

cos+ θdθ =
∫ +π

−π

cos+ θdθ

10. Show that for all α ∈ R:

1
2π

∫ +π

−π

cos+(α − θ)dθ =
1
π

Exercise 7. Let z1, . . . , zN be N complex numbers. Let αk ∈ R be
such that zk = |zk|eiαk , for all k = 1, . . . , N . For all θ ∈ [−π, +π], we
define S(θ) = {k = 1, . . . , N : cos(αk − θ) > 0}.

1. Show that for all θ ∈ [−π, +π], we have:∣∣∣∣∣∣
∑

k∈S(θ)

zk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈S(θ)

zke−iθ

∣∣∣∣∣∣ ≥
∑

k∈S(θ)

|zk| cos(αk − θ)
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2. Define φ : [−π, +π] → R by φ(θ) =
∑N

k=1 |zk| cos+(αk − θ).
Show the existence of θ0 ∈ [−π, +π] such that:

φ(θ0) = sup
θ∈[−π,+π]

φ(θ)

3. Show that:
1
2π

∫ +π

−π

φ(θ)dθ =
1
π

N∑
k=1

|zk|

4. Conclude that:
1
π

N∑
k=1

|zk| ≤
∣∣∣∣∣∣

∑
k∈S(θ0)

zk

∣∣∣∣∣∣
Exercise 8. Let μ ∈ M1(Ω,F). Suppose that |μ|(E) = +∞ for some
E ∈ F . Define t = π(1 + |μ(E)|) ∈ R+.
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1. Show that there is a measurable partition (En)n≥1 of E, with:

t <

+∞∑
n=1

|μ(En)|

2. Show the existence of N ≥ 1 such that:

t <

N∑
n=1

|μ(En)|

3. Show the existence of S ⊆ {1, . . . , N} such that:

N∑
n=1

|μ(En)| ≤ π

∣∣∣∣∣
∑
n∈S

μ(En)

∣∣∣∣∣
4. Show that |μ(A)| > t/π, where A = �n∈SEn.

5. Let B = E \ A. Show that |μ(B)| ≥ |μ(A)| − |μ(E)|.
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6. Show that E = A � B with |μ(A)| > 1 and |μ(B)| > 1.

7. Show that |μ|(A) = +∞ or |μ|(B) = +∞.

Exercise 9. Let μ ∈ M1(Ω,F). Suppose that |μ|(Ω) = +∞.

1. Show the existence of A1, B1 ∈ F , such that Ω = A1 � B1,
|μ(A1)| > 1 and |μ|(B1) = +∞.

2. Show the existence of a sequence (An)n≥1 of pairwise disjoint
elements of F , such that |μ(An)| > 1 for all n ≥ 1.

3. Show that the series
∑+∞

n=1 μ(An) does not converge to μ(A)
where A = �+∞

n=1An.

4. Conclude that |μ|(Ω) < +∞.
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Theorem 57 Let μ be a complex measure on a measurable space
(Ω,F). Then, its total variation |μ| is a finite measure on (Ω,F).

Exercise 10. Show that M1(Ω,F) is a C-vector space, with:

(λ + μ)(E)
�
= λ(E) + μ(E)

(αλ)(E)
�
= α.λ(E)

where λ, μ ∈ M1(Ω,F), α ∈ C, and E ∈ F .

Definition 95 Let H be a K-vector space, where K = R or C. We
call norm on H, any map N : H → R+, with the following properties:

(i) ∀x ∈ H , (N(x) = 0 ⇔ x = 0)
(ii) ∀x ∈ H, ∀α ∈ K , N(αx) = |α|N(x)

(iii) ∀x, y ∈ H , N(x + y) ≤ N(x) + N(y)
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Exercise 11.

1. Explain why ‖.‖p may not be a norm on Lp
K(Ω,F , μ).

2. Show that ‖·‖ =
√〈·, ·〉 is a norm, when 〈·, ·〉 is an inner-product.

3. Show that ‖μ‖ �
= |μ|(Ω) defines a norm on M1(Ω,F).

Exercise 12. Let μ ∈ M1(Ω,F) be a signed measure. Show that:

μ+ �
=

1
2
(|μ| + μ)

μ− �
=

1
2
(|μ| − μ)

are finite measures such that:

μ = μ+ − μ− , |μ| = μ+ + μ−

Exercise 13. Let μ ∈ M1(Ω,F) and l : R2 → R be a linear map.
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1. Show that l is continuous.

2. Show that l ◦ μ is a signed measure on (Ω,F). 4

3. Show that all μ ∈ M1(Ω,F) can be decomposed as:

μ = μ1 − μ2 + i(μ3 − μ4)

where μ1, μ2, μ3, μ4 are finite measures.

4l ◦ µ refers strictly speaking to l(Re(µ), Im(µ)).
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Solutions to Exercises
Exercise 1.

1. Suppose (an)n≥1 has the permutation property, and let σ :
N∗ → N∗ be an arbitrary bijection. Then, the series

∑+∞
k=1 aσ(k)

converges to some l ∈ C. However, for all n ≥ 1, we have:∣∣∣∣∣
n∑

k=1

Re(aσ(k)) − Re(l)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=1

aσ(k) − l

∣∣∣∣∣
It follows that the series

∑+∞
k=1 Re(aσ(k)) converges to Re(l), and

similarly the series
∑+∞

k=1 Im(aσ(k)) converges to Im(l). We con-
clude that (Re(an))n≥1 and (Im(an))n≥1 have the permutation
property.

2. Suppose that an ∈ R for all n ≥ 1, and the series
∑+∞

k=1 ak

converges. Since a+
k = (|ak| + ak)/2, the series

∑+∞
k=1 a+

k and∑+∞
k=1 |ak| are either both convergent, or both divergent. In
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particular:
+∞∑
k=1

|ak| = +∞ ⇒
+∞∑
k=1

a+
k = +∞

Similarly, from a−
k = (|ak| − ak)/2, we have:

+∞∑
k=1

|ak| = +∞ ⇒
+∞∑
k=1

a−
k = +∞

Exercise 1
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Exercise 2.

1. Suppose N+ is finite. Then N+ ⊆ {1, . . . , n0} for some n0 ≥ 1.
It follows that an < 0 for n > n0, and in particular we have
an = −|an| for n > n0. This contradicts the fact that

∑+∞
k=1 ak

is a convergent series, whereas
∑+∞

k=1 |ak| is a divergent series.
We conclude that N+ is an infinite set. Similarly, if N− is finite,
then an = |an| for n large enough, leading to a contradiction.
We have proved that both N+ and N− are infinite.

2. Since
∑+∞

k=1 ak converges and
∑+∞

k=1 |ak| = +∞, from ex. (1):

+∞ =
+∞∑
k=1

a+
k =

∑
k∈N+

ak =
+∞∑
k=1

aφ+(k)

where we have used the fact that φ+ : N∗ → N+ is a bijection.
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It follows that there exists k1 ≥ 1 such that:
k1∑

k=1

aφ+(k) ≥ A

3. Let n ≥ 1 and suppose we have k1 < . . . < kn such that:
kp∑

k=kp−1+1

aφ+(k) ≥ A (3)

for all p = 1, . . . , n. Since
∑+∞

k=kn+1 aφ+(k) = +∞, there exists
kn+1 > kn such that:

kn+1∑
k=kn+1

aφ+(k) ≥ A

By induction (having found k1 from 2.), we construct an in-
creasing sequence (kp)p≥1 such that (3) holds for all p ≥ 1.
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4. To show that σ : N∗ → N∗ is a bijection, we need to show that
it is both injective and surjective. To show that σ is injective,
consider n, m ∈ N∗ such that σ(n) = σ(m). Let p, q ∈ N∗ be
such that k∗

p−1 < n ≤ k∗
p and k∗

q−1 < m ≤ k∗
q .

Case 1: suppose n = k∗
p−1 + 1 and m = k∗

q−1 + 1. From (2), we
have σ(n) = φ−(p) and σ(m) = φ−(q), and therefore φ−(p) =
φ−(q). Since φ− : N∗ → N− is injective , we have p = q and
consequently n = k∗

p−1 + 1 = k∗
q−1 + 1 = m.

Case 2: suppose n = k∗
p−1 + 1 and m > k∗

q−1 + 1. From (2), we
have σ(n) = φ−(p) ∈ N− and σ(m) = φ+(m − q) ∈ N+. Since
N− ∩ N+ = ∅, we conclude that this case cannot occur, having
assumed σ(n) = σ(m).

Case 3: suppose n > k∗
p−1 +1 and m = k∗

q−1 +1. Similarly, this
case cannot possibly occur, having assumed σ(n) = σ(m).

Case 4: suppose n > k∗
p−1 + 1 and m > k∗

q−1 + 1. From (2), we
have σ(n) = φ+(n − p) and σ(m) = φ+(m − q), and therefore
φ+(n − p) = φ+(m − q). Since φ+ : N∗ → N+ is injective, it
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follows that:
n − p = m − q (4)

Now, if we assume that p < q, then n ≤ k∗
p ≤ k∗

q−1 < m− 1 and
therefore:

m − 1 − n > k∗
q−1 − k∗

p = q − 1 − p + kq−1 − kp ≥ q − 1 − p

and so m − n > q − p, contradicting (4). Similarly, assuming
q < p leads to a contradiction, from which we conclude that
p = q. From (4), it follows that n = m.

Having assumed that σ(n) = σ(m), we have proved that nec-
essarily n = m. This shows that σ is injective. To show that
σ is surjective, given N ∈ N∗ we need to show the existence of
n ∈ N∗ such that σ(n) = N .

Case 1: suppose aN < 0. Then N ∈ N−. Since φ− : N∗ → N−

is surjective, there exists p ∈ N∗ such that N = φ−(p). Take
n = k∗

p−1 +1. From (2), we have σ(n) = φ−(p) = N . Hence, we
have found n ∈ N∗ such that σ(n) = N .
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Case 2: suppose aN ≥ 0. Then N ∈ N+. Since φ+ : N∗ → N+

is surjective, there exists m ∈ N∗ such that N = φ+(m). Let
p ∈ N∗ be such that kp−1 < m ≤ kp. Then, we have:

kp−1 + p < m + p < kp + p

or equivalently:
k∗

p−1 + 1 < m + p ≤ k∗
p

From (2), it follows that:

σ(m + p) = φ+(m + p − p) = φ+(m) = N

Hence, we have found n = m + p ∈ N∗ such that σ(n) = N .

We have proved that σ : N∗ → N∗ is surjective. Having proved
that it is also injective, we conclude that it is a bijection.

5. Suppose
∑+∞

k=1 aσ(k) converges. There exists l ∈ R such that for
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all ε > 0, there exists N ≥ 1 such that:

n ≥ N ⇒
∣∣∣∣∣

n∑
k=1

aσ(k) − l

∣∣∣∣∣ < ε

Taking ε = A/2, we have N ≥ 1, with:

n ≥ N ⇒
∣∣∣∣∣

n∑
k=1

aσ(k) − l

∣∣∣∣∣ < A/2 (5)

and also:

n ≥ N , p ≥ 1 ⇒
∣∣∣∣∣
n+p∑
k=1

aσ(k) − l

∣∣∣∣∣ < A/2 (6)

From the inequality, where n, p ≥ 1:∣∣∣∣∣
n+p∑

k=n+1

aσ(k)

∣∣∣∣∣ ≤
∣∣∣∣∣
n+p∑
k=1

aσ(k) − l

∣∣∣∣∣ +

∣∣∣∣∣
n∑

k=1

aσ(k) − l

∣∣∣∣∣
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Using (5) and (6), we have found N ≥ 1 such that:

n ≥ N , p ≥ 1 ⇒
∣∣∣∣∣

n+p∑
k=n+1

aσ(k)

∣∣∣∣∣ < A

6. Suppose (an)n≥1 has the permutation property. From defi-
nition (90), the series

∑+∞
k=1 aτ(k) converges, for all bijections

τ : N∗ → N∗. In particular, the series
∑+∞

k=1 aσ(k) converges,
where σ is the bijection defined in part 4.. From 5., there exists
N ≥ 1 such that:

n ≥ N , q ≥ 1 ⇒
∣∣∣∣∣

n+q∑
k=n+1

aσ(k)

∣∣∣∣∣ < A (7)

However, from 3., the sequence (kp)p≥1 is such that:∣∣∣∣∣∣
kp∑

k=kp−1+1

aφ+(k)

∣∣∣∣∣∣ ≥
kp∑

k=kp−1+1

aφ+(k) ≥ A (8)
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for all p ≥ 1. Furthermore, if kp−1 + 1 ≤ k ≤ kp then we have
k∗

p−1 + 2 ≤ k + p ≤ k∗
p, and going back to the definition of σ

in equation (2), we see that σ(k + p) = φ+(k + p − p) = φ+(k).
Hence, from (8) we obtain:∣∣∣∣∣∣

kp∑
k=kp−1+1

aσ(k+p)

∣∣∣∣∣∣ ≥ A

or equivalently: ∣∣∣∣∣∣
k∗

p∑
k=k∗

p−1+2

aσ(k)

∣∣∣∣∣∣ ≥ A (9)

Since k∗
p ↑ +∞, we can choose p sufficiently large so as to have

k∗
p−1 + 1 ≥ N . Taking q = k∗

p − k∗
p−1 − 1 ≥ 1 and applying (7),

we obtain: ∣∣∣∣∣∣
k∗

p∑
k=k∗

p−1+2

aσ(k)

∣∣∣∣∣∣ < A
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which contradicts (9). We conclude that the series
∑+∞

k=1 aσ(k)

does not converge, and consequently that (an)n≥1 cannot have
the permutation property.

7. Let (an)n≥1 be a complex sequence which has the permutation
property. From exercise (1), both (Re(an))n≥1 and (Im(an))n≥1

are real valued sequences which have the permutation prop-
erty. In particular, the series

∑+∞
k=1 Re(ak) converges. If we had∑+∞

k=1 |Re(ak)| = +∞, then from 6. of the present exercise, we
would conclude that (Re(an))n≥1 cannot have the permutation
property. It follows that:

+∞∑
k=1

|Re(ak)| < +∞

and similarly:
+∞∑
k=1

|Im(ak)| < +∞
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From |ak| ≤ |Re(ak)|+ |Im(ak)| for all k ≥ 1, we conclude that:
+∞∑
k=1

|ak| < +∞

which shows that the series
∑+∞

k=1 ak is absolutely convergent.
This proves theorem (56).

Exercise 2
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Exercise 3.

1. Define μ : F → [0, +∞] by μ(∅) = 0 and μ(A) = +∞ for all
A ∈ F , A �= ∅. Then μ is a measure on (Ω,F). However, μ
is not a map with values in C. Hence it cannot be a complex
measure.

2. Let μ ∈ M1(Ω,F). Let En = ∅ for all n ≥ 1. Then (En)n≥1 is a
measurable partition of ∅. It follows that the series

∑+∞
n=1 μ(En)

converges to μ(∅). Since μ(En) = μ(∅) for all n ≥ 1, this is only
possible if μ(∅) = 0.

3. Let μ be a finite measure on (Ω,F). Then μ(Ω) < +∞. Hence
for all A ∈ F , μ(A) ≤ μ(Ω) < +∞. So μ has values in R+

and therefore in C. Let E ∈ F and (En)n≥1 be a measurable
partition of E. Then E = �+∞

n=1En and μ being a measure:

μ(E) =
+∞∑
n=1

μ(En) (10)
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Since μ(E) < +∞, the series
∑+∞

n=1 μ(En) actually converges to
μ(E) in C. We have proved that μ is a complex measure with
values in R+. Conversely, suppose μ is a complex measure with
values in R+. Then it is a map μ : F → [0, +∞] which from
2. satisfies μ(∅) = 0. Furthermore, if E ∈ F and (En)n≥1 is
a measurable partition of E, then the series

∑+∞
n=1 μ(En) con-

verges to μ(E) in C. So equation (10) holds, and μ is therefore
a measure on (Ω,F). Since μ has values in R+, μ(Ω) < +∞
and μ is therefore a finite measure.

4. Let μ ∈ M1(Ω,F). Let E ∈ F and (En)n≥1 be a measurable
partition of E. Then (En)n≥1 is a sequence of pairwise disjoint
elements of F with E = �+∞

n=1En. Given σ : N∗ → N∗ bijective,
(Eσ(n))n≥1 is also a sequence of pairwise disjoint elements of F
with E = �+∞

n=1Eσ(n). In other words, (Eσ(n))n≥1 is a measur-
able partition of E. Since μ is a complex measure, the series∑+∞

n=1 μ(Eσ(n)) converges to μ(E). It follows that the series∑+∞
n=1 μ(Eσ(n)) converges for all bijections σ : N∗ → N∗. So
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(μ(En))n≥1 is a complex sequence which has the permutation
property. Applying theorem (56), we conclude that:

+∞∑
n=1

|μ(En)| < +∞

5. Since f ∈ L1
C(Ω,F , μ), ν(E) =

∫
E fdμ is a well-defined complex

number for all E ∈ F . So ν : F → C is a well-defined map with
values in C. Let E ∈ F and (En)n≥1 be a measurable partition
of E. Then (En)n≥1 is a sequence of pairwise disjoint elements
of F such that E = �+∞

n=1En. For all N ≥ 1, define:

gN =
N∑

n=1

f1En

From the linearity of the integral, we have:∫
gNdμ =

N∑
n=1

∫
f1Endμ =

N∑
n=1

ν(En) (11)
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Let ω ∈ Ω. If ω �∈ E then f1E(ω) = 0. Furthermore, ω �∈ En

for all n ≥ 1 and consequently gN(ω) = 0 for all N ≥ 1. In
particular, gN (ω) → f1E(ω) as N → +∞. If ω ∈ E, then
f1E(ω) = f(ω). Furthermore, there exists a unique n0 ≥ 1 such
that ω ∈ En0 . For all N ≥ n0, we have gN (ω) = f(ω). So
gN(ω) → f1E(ω) as N → +∞. We have proved that for all
ω ∈ Ω, gN (ω) → f1E(ω) as N → +∞. Since for all N ≥ 1,
we have |gN | ≤ |f | ∈ L1

R(Ω,F , μ), we can apply the dominated
convergence theorem (23), to obtain:

lim
N→+∞

∫
|gN − f1E|dμ = 0

and in particular, using the integral modulus inequality (24):

lim
N→+∞

∫
gNdμ =

∫
f1Edμ = ν(E) (12)

www.probability.net

http://www.probability.net


Solutions to Exercises 35

Comparing (11) with (12) we obtain:

lim
N→+∞

N∑
n=1

ν(En) = ν(E)

This shows the series
∑+∞

n=1 ν(En) converges to ν(E). This being
true for all E ∈ F and measurable partition (En)n≥1 of E, we
have proved that ν is a complex measure on (Ω,F).

Exercise 3
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Exercise 4.

1. Let E ∈ F . Define E1 = E and En = ∅ for n ≥ 2. From
definition (91), (En)n≥1 is a measurable partition of E. From
definition (94), we have

∑+∞
n=1 |μ(En)| ≤ |μ|(E). Using μ(∅) = 0

(see exercise (3)), we obtain |μ(E)| ≤ |μ|(E).

2. From 1. we have |μ(∅)| ≤ |μ|(∅) and therefore 0 ≤ |μ|(∅). Let
(En)n≥1 be a measurable partition of ∅. Then En = ∅ for all
n ≥ 1. Hence, we have:

+∞∑
n=1

|μ(En)| = 0 (13)

It follows that 0 is an upper-bound of all sums involved in (13),
where (En)n≥1 is a measurable partition of ∅. From defini-
tion (94), |μ|(∅) being the smallest of such upper-bound, we
have |μ|(∅) ≤ 0. We have proved that |μ|(∅) = 0.

Exercise 4
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Exercise 5.

1. From exercise (4), |μ(E)| ≤ |μ|(E) for all E ∈ F . In particular
0 ≤ |μ|(E). Hence, it is always possible to find t ∈ R such that
t < |μ|(E). It follows that we can find a sequence (tn)n≥1 in R,
such that tn < |μ|(En) for all n ≥ 1.

2. Let n ≥ 1. From definition (94), |μ|(En) is the smallest upper-
bound of all sums

∑+∞
p=1 |μ(Ep

n)| where (Ep
n)p≥1 is a measurable

partition of En. Since tn < |μ|(En), tn cannot be such upper-
bound. We conclude that there exists a measurable partition
(Ep

n)p≥1 of En, such that:

tn <

+∞∑
p=1

|μ(Ep
n)|

3. The family (Ep
n)n,p≥1 is indexed by the countable set N∗ ×N∗,

and is a family of measurable sets (i.e. elements of F). For all
n ≥ 1, (Ep

n)p≥1 is a family of pairwise disjoint sets such that
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En = �p≥1E
p
n. (En)n≥1 is a family of pairwise disjoint sets,

such that E = �n≥1En. It follows that (Ep
n)n,p≥1 is a family of

pairwise disjoint sets such that E = �n,p≥1E
p
n. This shows that

(Ep
n)n,p≥1 is a measurable partition of E.

4. Let N ≥ 1. Using 2. we have:
N∑

n=1

tn <

N∑
n=1

+∞∑
p=1

|μ(Ep
n)| ≤

+∞∑
n=1

+∞∑
p=1

|μ(Ep
n)| ≤ |μ|(E) (14)

where the last inequality follows from definition (94) and the
fact that (Ep

n)n,p≥1 is a measurable partition of E.

5. Suppose |μ|(Ek) = +∞ for some k = 1, . . . , N . Then any choice
of tk ∈ R is such that tk < |μ|(Ek). Since

∑N
n=1 tn < |μ|(E)

obtained in 4. is valid for any t1, . . . , tN in R such that for
all n, tn < |μ|(En), we see that A < |μ|(E) for any A ∈ R
(choose tk = A − ∑

n	=k tn). It follows that |μ|(E) = +∞, and
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in particular:
N∑

n=1

|μ|(En) ≤ |μ|(E) (15)

Suppose that |μ|(En) < +∞ for all n’s. Then
∑N

n=1 tn < |μ|(E)
can be written as φ(t1, . . . , tN ) < |μ|(E), where φ is the contin-
uous map φ : RN→R defined by φ(t1, . . . , tN ) = t1 + . . .+ tN .
Given k ≥ 1, the assumption |μ|(En) < ∞ implies that we have
|μ|(En) − 1/k < |μ|(En), and consequently:

φ(|μ|(E1) − 1/k, . . . , |μ|(EN ) − 1/k) < |μ|(E) (16)

Taking the limit as k → +∞ in (16), from the continuity of φ
we obtain:

φ(|μ|(E1), . . . , |μ|(EN )) ≤ |μ|(E)
which shows that inequality (15) is true. We have proved that
inequality (15) is true in all possible cases.

6. Let p ≥ 1. (En)n≥1 being a measurable partition of E, we have
E = �n≥1En. It follows that Ap = �n≥1Ap ∩ En. Since μ is

www.probability.net

http://www.probability.net


Solutions to Exercises 40

a complex measure, the series
∑+∞

n=1 μ(Ap ∩ En) converges to
μ(Ap). Taking the limit as N → +∞ on both sides of:∣∣∣∣∣

N∑
n=1

μ(Ap ∩ En)

∣∣∣∣∣ ≤
N∑

n=1

|μ(Ap ∩ En)|

we conclude that:

|μ(Ap)| ≤
+∞∑
n=1

|μ(Ap ∩ En)|

7. Let n ≥ 1. (Ap)p≥1 being a measurable partition of E, we have
E = �p≥1Ap. It follows that En = �p≥1Ap ∩ En. The family
(Ap ∩ En)p≥1 is therefore a measurable partition of En. We
conclude from definition (94) that;

+∞∑
p=1

|μ(Ap ∩ En)| ≤ |μ|(En)
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8. Using 6. and 7. we have:
+∞∑
p=1

|μ(Ap)| ≤
+∞∑
p=1

+∞∑
n=1

|μ(Ap ∩ En)| ≤
+∞∑
n=1

|μ|(En)

where specifically, the second inequality was obtained by first
inverting the order of summation, and then applying 7.

9. From exercise (4), |μ|(∅) = 0. Given E ∈ F and (En)n≥1 mea-
surable partition of E, we showed in 5. that for all N ≥ 1:

N∑
n=1

|μ|(En) ≤ |μ|(E) (17)

Taking the limit as N → +∞ in (17), we obtain:
+∞∑
n=1

|μ|(En) ≤ |μ|(E) (18)
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Also, if (Ap)p≥1 is a measurable partition of E, then from 8.:
+∞∑
p=1

|μ(Ap)| ≤
+∞∑
n=1

|μ|(En)

This shows that
∑+∞

n=1 |μ|(En) is an upper-bound of all sums∑+∞
p=1 |μ(Ap)|, where (Ap)p≥1 is a measurable partition of E.

|μ|(E) being the smallest of all such upper-bounds, we have:

|μ|(E) ≤
+∞∑
n=1

|μ|(En) (19)

From (18) and (19) we conclude that:

|μ|(E) =
+∞∑
n=1

|μ|(En)

We have proved that |μ| : F → [0, +∞] is a measure on (Ω,F).

Exercise 5

www.probability.net

http://www.probability.net


Solutions to Exercises 43

Exercise 6.

1. Since F ∈ C1([a, b];R), the derivative F ′ exists and is contin-
uous on [a,b]. In particular, the map F ′ : [a, b] → R is Borel
measurable5. Furthermore, the interval [a, b] being a compact
topological space (theorem (34)), F ′ attains its maximum and
its minimum (theorem (37)). In particular, F ′ is bounded on
[a, b]. It follows that F ′ is an element of L1

R([a, b],B([a, b]), dx),
and:

H(x) =
∫ x

a

F ′(t)dt
�
=

∫
1[a,x](t)F ′(t)dt

is well-defined and R-valued for all x ∈ [a, b].

Let x0 ∈ [a, b]. F ′ being continuous on [a, b], given ε > 0, there
exists δ > 0 such that:

x ∈ [a, b] , |x − x0| ≤ δ ⇒ |F ′(x) − F ′(x0)| ≤ ε (20)

5 See exercise (13) of Tutorial 4.
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Let h ∈ R \ {0} be such that x0 + h ∈ [a, b]. If h > 0, we have:

H(x0 + h) − H(x0) =
∫

1]x0,x0+h](t)F ′(t)dt

and if h < 0:

H(x0 + h) − H(x0) = −
∫

1]x0+h,x0](t)F
′(t)dt

where we have used the linearity of the integral, and the equality
1B −1A = 1B\A, valid whenever A ⊆ B. The Lebesgue measure
on [a, b] of the interval ]x0, x0 +h] being equal to h when h > 0,
it is always possible to write F ′(x0) as:

F ′(x0) =
1
h

∫
1]x0,x0+h](t)F ′(x0)dt

when h > 0, and similarly when h < 0:

F ′(x0) = − 1
h

∫
1]x0+h,x0]F

′(x0)dt
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It follows that in all cases, using theorem (24):∣∣∣∣H(x0 + h) − H(x0)
h

− F ′(x0)
∣∣∣∣ ≤ 1

|h|
∫

1A(t)|F ′(t) − F ′(x0)|dt

where A =]x0, x0 + h] if h > 0 and A =]x0 + h, x0] if h < 0.
From (20), it appears that given ε > 0, we have found δ > 0
such that for all h �= 0 with x0 + h ∈ [a, b]:

|h| ≤ δ ⇒
∣∣∣∣H(x0 + h) − H(x0)

h
− F ′(x0)

∣∣∣∣ ≤ ε

This shows that for all x0 ∈ [a, b], H is differentiable at x0 with
H ′(x0) = F ′(x0). We have proved that H is differentiable on
[a, b] with H ′ = F ′. Since F ′ is continuous, we see that H ′ is
continuous, and finally H ∈ C1([a, b];R).

2. Define G = F − H . Then G ∈ C1([a, b];R), and in particular
G is continuous on [a, b] and differentiable on ]a, b[. Applying
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taylor’s theorem (39), there exists c ∈]a, b[ such that:

G(b) − G(a) = G′(c)(b − a)

However from 1. G′(c) = 0 for all c ∈ [a, b]. We conclude that
G(b) = G(a), or equivalently:

F (b) − F (a) = H(b) − H(a) =
∫ b

a

F ′(t)dt

3. Applying 2. to F (θ) = sin θ on [−π/2, π/2], we obtain:

1
2π

∫ +π/2

−π/2

cos θdθ =
1
2π

(sin(π/2) − sin(−π/2)) =
1
π

4. u ∈ Rn being given, let μ : B(Rn) → [0, +∞] be the map de-
fined by μ(B) = dx({τu ∈ B}) for all B ∈ B(Rn). If (Bn)n≥1

is a sequence of pairwise disjoint elements of B(Rn), it follows
that (τ−1

u (Bn))n≥1 is also a sequence of pairwise disjoint ele-
ments of B(Rn). Indeed, τu being a continuous map, it is also
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Borel measurable. So each τ−1
u (Bn) is an element of B(Rn).

Furthermore, for all x ∈ Rn, x ∈ τ−1
u (Bp) ∩ τ−1

u (Bq) is equiva-
lent to τu(x) ∈ Bp ∩ Bq, which implies that p = q. If we denote
B = �n≥1Bn, then τ−1

u (B) = �n≥1τ
−1
u (Bn) and we see that:

μ(B) = dx(τ−1
u (B)) =

+∞∑
n=1

dx(τ−1
u (Bn)) =

+∞∑
n=1

μ(Bn)

Since furthermore it is clear that μ(∅) = 0, we have proved that
μ is a measure on B(Rn). Let ai ≤ bi for all i ∈ Nn, and
B = [a1, b1] × . . . × [an, bn]. Then:

τ−1
u (B) = [a1 − u1, b1 − u1] × . . . × [an − un, bn − un] (21)

It follows from (21) and definition (63):

μ([a1, b1] × . . . × [an, bn]) = dx(τ−1
u (B)) =

n∏
i=1

(bi − ai) (22)

From definition (63), the Lebesgue measure on Rn is uniquely

www.probability.net

http://www.probability.net


Solutions to Exercises 48

determined by property (22). We conclude that μ and the
Lebesgue measure dx do in fact coincide, i.e. μ = dx. We
have proved that for all u ∈ Rn and B ∈ B(Rn), dx({τu ∈
B}) = dx(B) or in other words that the Lebesgue measure on
(Rn,B(Rn)) is invariant by translation.

5. Let u ∈ Rn and f ∈ L1
C(Rn,B(Rn), dx). We are aiming to

prove that: ∫
Rn

f(x + u)dx =
∫
Rn

f(x)dx (23)

If τu : Rn → Rn denotes the translation defined by τu(x) =
x + u, then τu is clearly continuous and therefore Borel mea-
surable. It follows that the map x → f(x + u), being equal to
f ◦ τu, is itself Borel measurable. Suppose equation (23) has
been established for non-negative and measurable maps. Then,
applying (23) to |f |, we obtain:∫

Rn

|f(x + u)|dx =
∫
Rn

|f(x)|dx < +∞
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which shows that x → f(x+u) is also integrable. Equation (23)
is therefore meaningful for all f ∈ L1

C(Rn,B(Rn), dx). Further-
more, writing f = v1 + iv2 and applying (23) to each positive
and negative part of v1 and v2, we obtain:∫

Rn

v+
1 (x + u)dx =

∫
Rn

v+
1 (x)dx

with a similar equality for v−1 , v+
2 and v−2 . From definition (48)

of the Lebesgue integral, we have:∫
Rn

fdx =
∫
Rn

v+
1 dx −

∫
Rn

v−1 dx + i

∫
Rn

v+
2 dx − i

∫
Rn

v−2 dx

with a similar equality involving x → f(x + u). We conclude
that equation (23) is true for all f ∈ L1

C(Rn,B(Rn), dx). We
have shown that it is sufficient to prove (23) in the case when
f : (Rn,B(Rn)) → [0, +∞] is a non-negative and measurable
map. Suppose f is of the form f = 1B for some B ∈ B(Rn).
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Using the invariance of the Lebesgue measure proved in 4.:∫
Rn

f(x + u)dx = dx({τu ∈ B}) = dx(B) =
∫
Rn

f(x)dx

and (23) is shown to be true. If f is a simple function, then
(23) is also true by linearity. Suppose f is a non-negative and
measurable map. From theorem (18), there exists a sequence
(sn)n≥1 of simple functions such that sn ↑ f . Given n ≥ 1:∫

Rn

sn(x + u)dx =
∫
Rn

sn(x)dx (24)

However, from the monotone convergence theorem (19):

lim
n→+∞

∫
Rn

sn(x)dx =
∫
Rn

f(x)dx

with a similar convergence involving sn(x + u) and f(x + u).
Taking the limit in (24) as n → +∞, we obtain (23).
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6. Let α ∈ R and define f(θ) = cos+(θ − α)1[−π,+π](θ). Then:∫ +π

−π

cos+(α − θ)dθ =
∫ +π

−π

cos+(θ − α)dθ =
∫
R

f(θ)dθ

Furthermore:∫
R

f(θ+α)dθ =
∫
R

(cos+ θ)1[−π,+π](θ+α)dθ =
∫ +π−α

−π−α

cos+ θdθ

Applying 5. to f ∈ L1
R(R,B(R), dθ) and u = α we obtain:∫

R

f(θ)dθ =
∫
R

f(θ + α)dθ

and we conclude that:∫ +π

−π

cos+(α − θ)dθ =
∫ +π−α

−π−α

cos+ θdθ

7. Let α ∈ R and k ∈ Z be such that k ≤ α/2π < k+1. From k ≤
α/2π we obtain 2kπ ≤ α and consequently −π −α ≤ −2kπ − π
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together with π−α ≤ −2kπ +π. From α/2π < k +1 we obtain
α < 2kπ + 2π and consequently −2kπ − π < π − α. Finally:

−π − α ≤ −2kπ − π < π − α ≤ −2kπ + π

8. Define f(θ) = (cos+ θ)1[−π−α,−2kπ−π](θ). Applying 5. to the
map f ∈ L1

R(R,B(R), dθ) and u = −2π, we obtain:∫ −2kπ−π

−π−α

cos+ θdθ =
∫
R

f(θ)dθ =
∫
R

f(θ−2π)dθ =
∫ −2kπ+π

π−α

cos+ θdθ

9. From 7. we have:∫ +π−α

−π−α

cos+ θdθ =
∫ −2kπ−π

−π−α

cos θdθ +
∫ +π−α

−2kπ−π

cos+ θdθ

However, from 8., we have:∫ −2kπ−π

−π−α

cos+ θdθ =
∫ −2kπ+π

π−α

cos+ θdθ
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It follows that: ∫ +π−α

−π−α

cos+ θdθ =
∫ −2kπ+π

−2kπ−π

cos+ θdθ (25)

Define f(θ) = (cos+ θ)1[−2kπ−π,−2kπ+π](θ). Applying 5. to the
map f ∈ L1

R(R,B(R), dθ) and u = −2kπ, we obtain:∫ −2kπ+π

−2kπ−π

cos+ θdθ =
∫
R

f(θ)dθ =
∫
R

f(θ − 2kπ)dθ =
∫ +π

−π

cos+ θdθ

Using (25), we conclude that:∫ +π−α

−π−α

cos+ θdθ =
∫ +π

−π

cos+ θdθ

10. For all α ∈ R, using 6. and 9.:∫ +π

−π

cos+(α − θ)dθ =
∫ +π

−π

cos+ θdθ
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However, given θ ∈ [−π, +π], we have cos θ ≥ 0 if and only if
θ ∈ [−π/2, +π/2]. It follows that:∫ +π

−π

cos+ θdθ =
∫ +π/2

−π/2

cos θdθ

Finally, using 3. we conclude that:

1
2π

∫ +π

−π

cos+(α − θ)dθ =
1
2π

∫ +π/2

−π/2

cos θdθ =
1
π

Exercise 6
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Exercise 7.

1. Let θ ∈ [−π, π]. Since |e−iθ| = 1, we have:∣∣∣∣∣∣
∑

k∈S(θ)

zk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈S(θ)

zke−iθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

k∈S(θ)

|zk|ei(αk−θ)

∣∣∣∣∣∣
≥ Re

⎛
⎝ ∑

k∈S(θ)

|zk|ei(αk−θ)

⎞
⎠

=
∑

k∈S(θ)

|zk| cos(αk − θ)

The fact that cos(αk − θ) > 0 for all k ∈ S(θ) was not used.

2. The map φ(θ) =
∑N

k=1 |zk| cos+(αk − θ) being continuous and
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defined on the compact interval [−π, π], from theorem (37), it
attains its maximum. In other words, there exists θ0 ∈ [−π, π]
such that:

φ(θ0) = sup
θ∈[−π,π]

φ(θ)

3. Using 10. of exercise (6), for all k = 1, . . . , N :

1
2π

∫ +π

−π

cos+(αk − θ)dθ =
1
π

It follows that:

1
2π

∫ +π

−π

φ(θ)dθ =
N∑

k=1

|zk| 1
2π

∫ +π

−π

cos+(αk − θ)dθ =
1
π

N∑
k=1

|zk|

4. Applying 1. to θ0 as in 2., we have:∣∣∣∣∣∣
∑

k∈S(θ0)

zk

∣∣∣∣∣∣ ≥
∑

k∈S(θ0)

|zk| cos(αk − θ0)
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Since k ∈ S(θ0) is equivalent to cos(αk − θ0) > 0, we have:

∑
k∈S(θ0)

|zk| cos(αk − θ0) =
N∑

k=1

|zk| cos+(αk − θ0) = φ(θ0)

where φ is defined as in 2. Furthermore, using 2. and 3.:

φ(θ0) ≥ 1
2π

∫ +π

−π

φ(θ)dθ =
1
π

N∑
k=1

|zk|

We conclude that: ∣∣∣∣∣∣
∑

k∈S(θ0)

zk

∣∣∣∣∣∣ ≥
1
π

N∑
k=1

|zk|

The purpose of this exercise is to provide us with a very useful
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inequality. We are all familiar with the fact that:∣∣∣∣∣
N∑

k=1

zk

∣∣∣∣∣ ≤
N∑

k=1

|zk|

and we may informally say that the modulus of
∑N

k=1 zk is con-
trolled by the sum

∑N
k=1 |zk|. By showing that:

N∑
k=1

|zk| ≤ π

∣∣∣∣∣∣
∑

k∈S(θ0)

zk

∣∣∣∣∣∣
this exercise allows us to control

∑N
k=1 |zk| in terms of something

formally very close to the modulus of
∑N

k=1 zk, i.e. the modulus
of

∑
k∈S zk, for some subset S of {1, . . . , N}.

Exercise 7
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Exercise 8.

1. Since μ(E) ∈ C, t = π(1 + |μ(E)|) is an element of R+. In
particular, t < +∞. From definition (94), |μ|(E) is the smallest
upper-bound of all sums

∑+∞
n=1 |μ(En)|, as (En)n≥1 ranges over

all measurable partitions of E. Having assumed |μ|(E) = +∞, it
follows that t < |μ|(E) and consequently t cannot be such upper-
bound. We conclude that there exists a measurable partition
(En)n≥1 of E, such that:

t <

+∞∑
n=1

|μ(En)| (26)

2. The series
∑+∞

n=1 |μ(En)| being the supremum of all partial sums∑N
n=1 |μ(En)| for N ≥ 1, it is the smallest upper-bound of such

partial sums. It follows from (26) that t cannot be such upper-
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bound. We conclude that there exists N ≥ 1 such that:

t <

N∑
n=1

|μ(En))|

3. Applying 4. of exercise (7) to z1 = μ(E1), . . . , zN = μ(EN ),
there exists a subset S of {1, . . . , N} such that:

N∑
n=1

|μ(En)| ≤ π

∣∣∣∣∣
∑
n∈S

μ(En)

∣∣∣∣∣
4. Let A = �n∈SEn. μ being a complex measure, it is finitely

additive and therefore μ(A) =
∑

n∈S μ(En). Using 2. and 3. we
obtain:

|μ(A)| ≥ 1
π

N∑
n=1

|μ(En)| >
t

π
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5. Let B = E \ A. Since A ⊆ E, we have E = A � B. It follows
that μ(E) = μ(A) + μ(B) and consequently

|μ(A)| = |μ(E) − μ(B)| ≤ |μ(E)| + |μ(B)|
We conclude that |μ(B)| ≥ |μ(A)| − |μ(E)|.

6. Since A ⊆ E and B = E \ A, E = A � B. From 4. we obtain:

|μ(A)| >
t

π
= 1 + |μ(E)| ≥ 1

and from 4. and 5. we obtain:

|μ(B)| ≥ |μ(A)| − |μ(E)| >
t

π
− |μ(E)| = 1

We conclude that |μ(A)| > 1 and |μ(B)| > 1.

7. From exercise (5), the total variation |μ| is a measure on (Ω,F).
From E = A � B we obtain |μ|(E) = |μ|(A) + |μ|(B). Since
|μ|(E) = +∞ we conclude that |μ|(A) and |μ|(B) cannot be
both finite, i.e. |μ|(A) = +∞ or |μ|(B) = +∞. This exercise
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shows that if E ∈ F is such that |μ|(E) = +∞, then E can
be partitioned in two components A and B (i.e. E = A � B)
such that |μ(A)| > 1 and |μ(B)| > 1, and with |μ|(A) = +∞ or
|μ|(B) = +∞.

Exercise 8
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Exercise 9.

1. Since |μ|(Ω) = +∞, applying exercise (8), there exists A, B ∈ F
such that Ω = A � B, |μ(A)| > 1, |μ(B) > 1 and |μ|(A) = +∞
or |μ|(B) = +∞. If |μ|(B) = +∞, take A1 = A and B1 = B.
Otherwise, take A1 = B and B1 = A. In any case, we have
A1, B1 ∈ F , Ω = A1 � B1, |μ(A1)| > 1 and |μ|(B1) = +∞.

2. Given n ≥ 1, let Pn denote the following statement: there exist
A1, . . . , An pairwise disjoint elements of F with |μ(Ak)| > 1 for
all k ∈ Nn, and such that if Bn = (A1 � . . . � An)c, then we
have |μ|(Bn) = +∞. Note that from 1., the statement P1 is
true. Suppose the statement Pn is true for some n ≥ 1. Apply-
ing exercise (8), there exist A, B ∈ F such that Bn = A � B,
|μ(A)| > 1, |μ(B)| > 1 and |μ|(A) = +∞ or |μ|(B) = +∞.
Without loss of generality, we can assume that |μ|(B) = +∞.
Define An+1 = A. Then |μ(An+1)| > 1 and furthermore for all
k ∈ Nn, since Ak ⊆ Bc

n and An+1 ⊆ Bn, we have Ak∩An+1 = ∅.
Having assumed Pn to be true, A1, . . . , An are pairwise dis-
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joint, and it follows that A1, . . . , An+1 are also pairwise disjoint
elements of F . Finally, if Bn+1 = (A1 � . . . � An+1)c, then
Bc

n+1 = Bc
n � An+1 and consequently:

Bc
n+1 = (Ac ∩ Bc) � A = (Ac ∩ Bc) � (A ∩ Bc) = Bc

since A ∩ B = ∅. It follows that |μ|(Bn+1) = |μ|(B) = +∞.
This shows that having assumed the statement Pn to be true,
the sequence A1, . . . , An can be extended to A1, . . . , An+1 which
satisfies the requirements of statement Pn+1. By induction, we
can therefore construct a sequence (An)n≥1 of pairwise disjoint
elements of F , such that |μ(An)| > 1 for all n ≥ 1.

3. Since |μ(An)| > 1 for all n ≥ 1, the series
∑+∞

n=1 μ(An) cannot
be a convergent series. In particular, it does not converge to
μ(A) where A = �n≥1An. This contradicts definition (92) and
the fact that μ is a complex measure.

4. The initial assumption of |μ|(Ω) = +∞ in 1. has lead to the
contradiction shown in 3.. We conclude that |μ|(Ω) < +∞ for
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all complex measure μ. We showed on exercise (5) that the
total variation |μ| of a complex measure μ was a measure. This
exercise shows that |μ| is in fact a finite measure, which proves
theorem (57).

Exercise 9
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Exercise 10. Let λ, μ ∈ M1(Ω,F) and E ∈ F . Let (En)n≥1

be a measurable partition of E. Then, the series
∑+∞

n=1 λ(En) and∑+∞
n=1 μ(En) converge to λ(E) and μ(E) respectively. It follows that

the series
∑+∞

n=1(λ + μ)(En) converges to (λ + μ)(E) and λ + μ is
therefore a complex measure on (Ω,F). If α ∈ C, then the series∑+∞

n=1(αμ)(En) converges to (αμ)(E) and αμ is therefore a complex
measure on (Ω,F). This shows that M1(Ω,F) is a sub-vector space
over C, of the set CF of all maps μ : F → C.

Exercise 10
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Exercise 11.

1. Given f ∈ Lp
K(Ω,F , μ), the condition ‖f‖p = 0 is equivalent to∫ |f |pdμ = 0. In particular, it does not guarantee that f = 0,

but only that f = 0 μ-almost surely. Hence, property (i) of
definition (95) is not satisfied in general, and ‖ · ‖p may fail to
be a norm on Lp

K(Ω,F , μ).

2. Let 〈·, ·〉 be an inner-product on a K-vector space H, and let
‖ · ‖ =

√〈·, ·〉. The fact that given x ∈ H ‖x‖ = 0 is equivalent
to x = 0, is a consequence of property (v) of definition (81).
So (i) of definition (95) is satisfied. Given α ∈ K, using (i)
and (iii) of definition (81), we have:

〈αx, αx〉 = αᾱ〈x, x〉 = |α|2〈x, x〉
and consequently ‖αx‖ = |α|‖x‖. So (ii) of definition (95) is
also satisfied. Finally, the triangle inequality:

‖x + y‖ ≤ ‖x‖ + ‖y‖
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has been proved in exercise (17) of Tutorial 10. So (iii) of
definition (95) is also satisfied. We have proved that ‖ · ‖ is
indeed a norm on H.

3. Suppose |μ|(Ω) = 0. Then for all E ∈ F , we have:

|μ(E)| ≤ |μ|(E) ≤ |μ|(Ω) = 0

and consequently μ = 0. Conversely, if μ = 0 it follows im-
mediately from definition (94) that |μ| = 0 and in particular
‖μ‖ = |μ|(Ω) = 0. So property (i) of definition (95) is satisfied.
Let α ∈ C. Given E ∈ F and (En)n≥1 measurable partition of
E, using definition (94) we have:

+∞∑
n=1

|αμ(En)| = |α|
+∞∑
n=1

|μ(En)| ≤ |α||μ|(E)

It follows that |α||μ|(E) is an upper-bound of all
∑+∞

n=1 |αμ(En)|
as (En)n≥1 ranges over all measurable partitions of E. From def-
inition (94), |αμ|(E) being the smallest of such upper-bounds,
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we obtain |αμ|(E) ≤ |α||μ|(E). In the case when α �= 0, replac-
ing α by α−1 and μ by αμ, we have:

|α||μ|(E) = |α||α−1(αμ)|(E) ≤ |α||α|−1|αμ|(E)

and consequently |α||μ|(E) ≤ |αμ|(E). This being also true for
α = 0, we have proved that |αμ|(E) = |α||μ|(E) for all complex
measure μ, E ∈ F and α ∈ C. Taking E = Ω we obtain:

‖αμ‖ = |αμ|(Ω) = |α||μ|(Ω) = |α|‖μ‖
and property (ii) of definition (95) is therefore satisfied. Let μ
and λ be two complex measures and E ∈ F . Let (En)n≥1 be a
measurable partition of E. We have:
+∞∑
n=1

|(λ + μ)(En)| ≤
+∞∑
n=1

|λ(En)|+
+∞∑
n=1

|μ(En)| ≤ |λ|(E) + |μ|(E)

and |λ|(E)+ |μ|(E) is an upper-bound of all
∑+∞

n=1 |(λ+μ)(En)|,
as (En)n≥1 ranges over all measurable partitions of E. From
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definition (94), |λ + μ|(E) being the smallest of such upper-
bounds, we obtain:

|λ + μ|(E) ≤ |λ|(E) + |μ|(E)

In particular for E = Ω, we have ‖λ + μ‖ ≤ ‖λ‖ + ‖μ‖. This
shows that property (iii) of definition (95) is satisfied. We have
proved that ‖μ‖ = |μ|(Ω) defines a norm on M1(Ω,F).

Exercise 11

www.probability.net

http://www.probability.net


Solutions to Exercises 71

Exercise 12. Let μ ∈ M1(Ω,F) and μ+ = (|μ| + μ)/2. From the-
orem (57), the total variation |μ| is a finite measure on (Ω,F), or
in other words, a complex measure with values in R+. Since μ is a
signed measure, it is a complex measure with values in R. It follows
that μ+ is a complex measure with values in R. Furthermore, the
fact that μ is a signed measure allows us to write −μ(E) ≤ |μ(E)|
for all E ∈ F . Since |μ(E)| ≤ |μ|(E) can be seen as an easy con-
sequence of definition (94), we conclude that −μ(E) ≤ |μ|(E), or
equivalently μ+(E) ≥ 0 for all E ∈ F . So μ+ is a complex mea-
sure with values in R+, or in other words, it is a finite measure on
(Ω,F). Since μ(E) ≤ |μ(E)| for all E ∈ F , we obtain similarly
that μ− = (|μ| − μ)/2 is a finite measure on (Ω,F). The fact that
μ = μ+ − μ− and |μ| = μ+ + μ− is clear.

Exercise 12
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Exercise 13.

1. Let (e1, e2) be the canonical basis of R2. For all (x, y) ∈ R2

and (x′, y′) ∈ R2, we have:

|l(x, y) − l(x′, y′)| = |(x − x′)l(e1) + (y − y′)l(e2)|
≤ α(|x − x′| + |y − y′|)

where α = max(|l(e1)|, |l(e2)|). Since the metric d defined by:

d[(x, y), (x′, y′)] = |x − x′| + |y − y′|
induces the product topology on R2, we conclude that l is a
continuous mapping.

2. Let E ∈ F and (En)n≥1 be a measurable partition of E. μ being
a complex measure on (Ω,F), the series

∑+∞
n=1 μ(En) converges

to μ(E) in C = R2. Since l is a continuous mapping, the series∑+∞
n=1 l ◦ μ(En) converges to l ◦ μ(E) in R. This being true for

all E ∈ F and (En)n≥1 measurable partition of E, l ◦ μ is a
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complex measure with values in R. In other words, l ◦ μ is a
signed measure on (Ω,F).

3. Let μ ∈ M1(Ω,F). It is always possible to write:

μ = Re(μ) + iIm(μ)

Since Re, Im : R2 → R are two linear mappings, it follows from
2. that Re(μ) and Im(μ) are two signed measures on (Ω,F).
From exercise (12), Re(μ) and Im(μ) can be decomposed as
Re(μ) = Re(μ)+ − Re(μ)− and Im(μ) = Im(μ)+ − Im(μ)−.
Taking μ1 = Re(μ)+, μ2 = Re(μ)−, μ3 = Im(μ)+ and finally
μ4 = Im(μ)−, we obtain:

μ = μ1 − μ2 + i(μ3 − μ4)

where μ1, μ2, μ3 and μ4 are finite measures on (Ω,F).

Exercise 13
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