11. Complex Measures

In the following, (Ω, \mathcal{F}) denotes an arbitrary measurable space.
Definition 90 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of complex numbers. We say that $\left(a_{n}\right)_{n \geq 1}$ has the permutation property if and only if, for all bijections $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$, the series $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges in \mathbf{C}^{1}

Exercise 1. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of complex numbers.

1. Show that if $\left(a_{n}\right)_{n \geq 1}$ has the permutation property, then the same is true of $\left(\operatorname{Re}\left(a_{n}\right)\right)_{n \geq 1}$ and $\left(\operatorname{Im}\left(a_{n}\right)\right)_{n \geq 1}$.
2. Suppose $a_{n} \in \mathbf{R}$ for all $n \geq 1$. Show that if $\sum_{k=1}^{+\infty} a_{k}$ converges:

$$
\sum_{k=1}^{+\infty}\left|a_{k}\right|=+\infty \Rightarrow \sum_{k=1}^{+\infty} a_{k}^{+}=\sum_{k=1}^{+\infty} a_{k}^{-}=+\infty
$$

${ }^{1}$ which excludes $\pm \infty$ as limit.

Exercise 2. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence in \mathbf{R}, such that the series $\sum_{k=1}^{+\infty} a_{k}$ converges, and $\sum_{k=1}^{+\infty}\left|a_{k}\right|=+\infty$. Let $A>0$. We define:

$$
N^{+} \triangleq\left\{k \geq 1: a_{k} \geq 0\right\} \quad, \quad N^{-} \triangleq\left\{k \geq 1: a_{k}<0\right\}
$$

1. Show that N^{+}and N^{-}are infinite.
2. Let $\phi^{+}: \mathbf{N}^{*} \rightarrow N^{+}$and $\phi^{-}: \mathbf{N}^{*} \rightarrow N^{-}$be two bijections. Show the existence of $k_{1} \geq 1$ such that:

$$
\sum_{k=1}^{k_{1}} a_{\phi^{+}(k)} \geq A
$$

3. Show the existence of an increasing sequence $\left(k_{p}\right)_{p \geq 1}$ such that:

$$
\sum_{k=k_{p-1}+1}^{k_{p}} a_{\phi^{+}(k)} \geq A
$$

for all $p \geq 1$, where $k_{0}=0$.
4. Consider the permutation $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ defined informally by:

$$
(\phi^{-}(1), \underbrace{\phi^{+}(1), \ldots, \phi^{+}\left(k_{1}\right)}, \phi^{-}(2), \underbrace{\phi^{+}\left(k_{1}+1\right), \ldots, \phi^{+}\left(k_{2}\right)}, \ldots)
$$

representing $(\sigma(1), \sigma(2), \ldots)$. More specifically, define $k_{0}^{*}=0$ and $k_{p}^{*}=k_{p}+p$ for all $p \geq 1$. For all $n \in \mathbf{N}^{*}$ and $p \geq 1$ with:

$$
\begin{equation*}
k_{p-1}^{*}<n \leq k_{p}^{*} \tag{1}
\end{equation*}
$$

we define:

$$
\sigma(n)=\left\{\begin{array}{lll}
\phi^{-}(p) & \text { if } & n=k_{p-1}^{*}+1 \tag{2}\\
\phi^{+}(n-p) & \text { if } & n>k_{p-1}^{*}+1
\end{array}\right.
$$

Show that $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is indeed a bijection.
${ }^{2}$ Given an integer $n \geq 1$, there exists a unique $p \geq 1$ such that (1) holds.
5. Show that if $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges, there is $N \geq 1$, such that:

$$
n \geq N, p \geq 1 \Rightarrow\left|\sum_{k=n+1}^{n+p} a_{\sigma(k)}\right|<A
$$

6. Explain why $\left(a_{n}\right)_{n \geq 1}$ cannot have the permutation property.
7. Prove the following theorem:

Theorem 56 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of complex numbers such that for all bijections $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$, the series $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges. Then, the series $\sum_{k=1}^{+\infty} a_{k}$ converges absolutely, i.e.

$$
\sum_{k=1}^{+\infty}\left|a_{k}\right|<+\infty
$$

Definition 91 Let (Ω, \mathcal{F}) be a measurable space and $E \in \mathcal{F}$. We call measurable partition of E, any sequence $\left(E_{n}\right)_{n \geq 1}$ of pairwise disjoint elements of \mathcal{F}, such that $E=\uplus_{n \geq 1} E_{n}$.

Definition 92 We call complex measure on a measurable space (Ω, \mathcal{F}) any map $\mu: \mathcal{F} \rightarrow \mathbf{C}$, such that for all $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ measurable partition of E, the series $\sum_{n=1}^{+\infty} \mu\left(E_{n}\right)$ converges to $\mu(E)$. The set of all complex measures on (Ω, \mathcal{F}) is denoted $M^{1}(\Omega, \mathcal{F})$.

Definition 93 We call signed measure on a measurable space (Ω, \mathcal{F}), any complex measure on (Ω, \mathcal{F}) with values in $\mathbf{R} .{ }^{3}$

Exercise 3.

1. Show that a measure on (Ω, \mathcal{F}) may not be a complex measure.
2. Show that for all $\mu \in M^{1}(\Omega, \mathcal{F}), \mu(\emptyset)=0$.

[^0]3. Show that a finite measure on (Ω, \mathcal{F}) is a complex measure with values in \mathbf{R}^{+}, and conversely.
4. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. Let $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E. Show that:
$$
\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|<+\infty
$$
5. Let μ be a measure on (Ω, \mathcal{F}) and $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Define:
$$
\forall E \in \mathcal{F}, \nu(E) \triangleq \int_{E} f d \mu
$$

Show that ν is a complex measure on (Ω, \mathcal{F}).

Definition 94 Let μ be a complex measure on a measurable space (Ω, \mathcal{F}). We call total variation of μ, the map $|\mu|: \mathcal{F} \rightarrow[0,+\infty]$, defined by:

$$
\forall E \in \mathcal{F},|\mu|(E) \triangleq \sup \sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|
$$

where the 'sup' is taken over all measurable partitions $\left(E_{n}\right)_{n \geq 1}$ of E.

Exercise 4. Let μ be a complex measure on (Ω, \mathcal{F}).

1. Show that for all $E \in \mathcal{F},|\mu(E)| \leq|\mu|(E)$.
2. Show that $|\mu|(\emptyset)=0$.

Exercise 5. Let μ be a complex measure on (Ω, \mathcal{F}). Let $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E.

1. Show that there exists $\left(t_{n}\right)_{n \geq 1}$ in \mathbf{R}, with $t_{n}<|\mu|\left(E_{n}\right)$ for all n.
2. Show that for all $n \geq 1$, there exists a measurable partition $\left(E_{n}^{p}\right)_{p \geq 1}$ of E_{n} such that:

$$
t_{n}<\sum_{p=1}^{+\infty}\left|\mu\left(E_{n}^{p}\right)\right|
$$

3. Show that $\left(E_{n}^{p}\right)_{n, p \geq 1}$ is a measurable partition of E.
4. Show that for all $N \geq 1$, we have $\sum_{n=1}^{N} t_{n} \leq|\mu|(E)$.
5. Show that for all $N \geq 1$, we have:

$$
\sum_{n=1}^{N}|\mu|\left(E_{n}\right) \leq|\mu|(E)
$$

6. Suppose that $\left(A_{p}\right)_{p \geq 1}$ is another arbitrary measurable partition

Tutorial 11: Complex Measures
of E. Show that for all $p \geq 1$:

$$
\left|\mu\left(A_{p}\right)\right| \leq \sum_{n=1}^{+\infty}\left|\mu\left(A_{p} \cap E_{n}\right)\right|
$$

7. Show that for all $n \geq 1$:

$$
\sum_{p=1}^{+\infty}\left|\mu\left(A_{p} \cap E_{n}\right)\right| \leq|\mu|\left(E_{n}\right)
$$

8. Show that:

$$
\sum_{p=1}^{+\infty}\left|\mu\left(A_{p}\right)\right| \leq \sum_{n=1}^{+\infty}|\mu|\left(E_{n}\right)
$$

9. Show that $|\mu|: \mathcal{F} \rightarrow[0,+\infty]$ is a measure on (Ω, \mathcal{F}).

Exercise 6. Let $a, b \in \mathbf{R}, a<b$. Let $F \in C^{1}([a, b] ; \mathbf{R})$, and define:

$$
\forall x \in[a, b], H(x) \triangleq \int_{a}^{x} F^{\prime}(t) d t
$$

1. Show that $H \in C^{1}([a, b] ; \mathbf{R})$ and $H^{\prime}=F^{\prime}$.
2. Show that:

$$
F(b)-F(a)=\int_{a}^{b} F^{\prime}(t) d t
$$

3. Show that:

$$
\frac{1}{2 \pi} \int_{-\pi / 2}^{+\pi / 2} \cos \theta d \theta=\frac{1}{\pi}
$$

4. Let $u \in \mathbf{R}^{n}$ and $\tau_{u}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the translation $\tau_{u}(x)=x+u$. Show that the Lebesgue measure $d x$ on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ is invariant by translation τ_{u}, i.e. $d x\left(\left\{\tau_{u} \in B\right\}\right)=d x(B)$ for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
5. Show that for all $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$, and $u \in \mathbf{R}^{n}$:

$$
\int_{\mathbf{R}^{n}} f(x+u) d x=\int_{\mathbf{R}^{n}} f(x) d x
$$

6. Show that for all $\alpha \in \mathbf{R}$, we have:

$$
\int_{-\pi}^{+\pi} \cos ^{+}(\alpha-\theta) d \theta=\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta
$$

7. Let $\alpha \in \mathbf{R}$ and $k \in \mathbf{Z}$ such that $k \leq \alpha / 2 \pi<k+1$. Show:

$$
-\pi-\alpha \leq-2 k \pi-\pi<\pi-\alpha \leq-2 k \pi+\pi
$$

8. Show that:

$$
\int_{-\pi-\alpha}^{-2 k \pi-\pi} \cos ^{+} \theta d \theta=\int_{\pi-\alpha}^{-2 k \pi+\pi} \cos ^{+} \theta d \theta
$$

9. Show that:

$$
\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta=\int_{-2 k \pi-\pi}^{-2 k \pi+\pi} \cos ^{+} \theta d \theta=\int_{-\pi}^{+\pi} \cos ^{+} \theta d \theta
$$

10. Show that for all $\alpha \in \mathbf{R}$:

$$
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \cos ^{+}(\alpha-\theta) d \theta=\frac{1}{\pi}
$$

Exercise 7 . Let z_{1}, \ldots, z_{N} be N complex numbers. Let $\alpha_{k} \in \mathbf{R}$ be such that $z_{k}=\left|z_{k}\right| e^{i \alpha_{k}}$, for all $k=1, \ldots, N$. For all $\theta \in[-\pi,+\pi]$, we define $S(\theta)=\left\{k=1, \ldots, N: \cos \left(\alpha_{k}-\theta\right)>0\right\}$.

1. Show that for all $\theta \in[-\pi,+\pi]$, we have:

$$
\left|\sum_{k \in S(\theta)} z_{k}\right|=\left|\sum_{k \in S(\theta)} z_{k} e^{-i \theta}\right| \geq \sum_{k \in S(\theta)}\left|z_{k}\right| \cos \left(\alpha_{k}-\theta\right)
$$

2. Define $\phi:[-\pi,+\pi] \rightarrow \mathbf{R}$ by $\phi(\theta)=\sum_{k=1}^{N}\left|z_{k}\right| \cos ^{+}\left(\alpha_{k}-\theta\right)$. Show the existence of $\theta_{0} \in[-\pi,+\pi]$ such that:

$$
\phi\left(\theta_{0}\right)=\sup _{\theta \in[-\pi,+\pi]} \phi(\theta)
$$

3. Show that:

$$
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \phi(\theta) d \theta=\frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right|
$$

4. Conclude that:

$$
\frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right| \leq\left|\sum_{k \in S\left(\theta_{0}\right)} z_{k}\right|
$$

Exercise 8. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. Suppose that $|\mu|(E)=+\infty$ for some $E \in \mathcal{F}$. Define $t=\pi(1+|\mu(E)|) \in \mathbf{R}^{+}$.

1. Show that there is a measurable partition $\left(E_{n}\right)_{n \geq 1}$ of E, with:

$$
t<\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|
$$

2. Show the existence of $N \geq 1$ such that:

$$
t<\sum_{n=1}^{N}\left|\mu\left(E_{n}\right)\right|
$$

3. Show the existence of $S \subseteq\{1, \ldots, N\}$ such that:

$$
\sum_{n=1}^{N}\left|\mu\left(E_{n}\right)\right| \leq \pi\left|\sum_{n \in S} \mu\left(E_{n}\right)\right|
$$

4. Show that $|\mu(A)|>t / \pi$, where $A=\uplus_{n \in S} E_{n}$.
5. Let $B=E \backslash A$. Show that $|\mu(B)| \geq|\mu(A)|-|\mu(E)|$.

Tutorial 11: Complex Measures
6. Show that $E=A \uplus B$ with $|\mu(A)|>1$ and $|\mu(B)|>1$.
7. Show that $|\mu|(A)=+\infty$ or $|\mu|(B)=+\infty$.

Exercise 9. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. Suppose that $|\mu|(\Omega)=+\infty$.

1. Show the existence of $A_{1}, B_{1} \in \mathcal{F}$, such that $\Omega=A_{1} \uplus B_{1}$, $\left|\mu\left(A_{1}\right)\right|>1$ and $|\mu|\left(B_{1}\right)=+\infty$.
2. Show the existence of a sequence $\left(A_{n}\right)_{n \geq 1}$ of pairwise disjoint elements of \mathcal{F}, such that $\left|\mu\left(A_{n}\right)\right|>1$ for all $n \geq 1$.
3. Show that the series $\sum_{n=1}^{+\infty} \mu\left(A_{n}\right)$ does not converge to $\mu(A)$ where $A=\uplus_{n=1}^{+\infty} A_{n}$.
4. Conclude that $|\mu|(\Omega)<+\infty$.

Theorem 57 Let μ be a complex measure on a measurable space (Ω, \mathcal{F}). Then, its total variation $|\mu|$ is a finite measure on (Ω, \mathcal{F}).

Exercise 10. Show that $M^{1}(\Omega, \mathcal{F})$ is a \mathbf{C}-vector space, with:

$$
\begin{aligned}
(\lambda+\mu)(E) & \triangleq \lambda(E)+\mu(E) \\
(\alpha \lambda)(E) & \triangleq \alpha \cdot \lambda(E)
\end{aligned}
$$

where $\lambda, \mu \in M^{1}(\Omega, \mathcal{F}), \alpha \in \mathbf{C}$, and $E \in \mathcal{F}$.
Definition 95 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We call norm on \mathcal{H}, any map $N: \mathcal{H} \rightarrow \mathbf{R}^{+}$, with the following properties:
(i)

$$
\begin{align*}
& \forall x \in \mathcal{H}, \quad(N(x)=0 \Leftrightarrow x=0) \\
& \forall x \in \mathcal{H}, \forall \alpha \in \mathbf{K}, N(\alpha x)=|\alpha| N(x) \tag{ii}\\
& \forall x, y \in \mathcal{H}, \quad N(x+y) \leq N(x)+N(y) \tag{iii}
\end{align*}
$$

Tutorial 11: Complex Measures

Exercise 11.

1. Explain why $\|\cdot\|_{p}$ may not be a norm on $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$.
2. Show that $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ is a norm, when $\langle\cdot, \cdot\rangle$ is an inner-product.
3. Show that $\|\mu\| \triangleq|\mu|(\Omega)$ defines a norm on $M^{1}(\Omega, \mathcal{F})$.

ExERCISE 12. Let $\mu \in M^{1}(\Omega, \mathcal{F})$ be a signed measure. Show that:

$$
\begin{aligned}
\mu^{+} & \triangleq \frac{1}{2}(|\mu|+\mu) \\
\mu^{-} & \triangleq \frac{1}{2}(|\mu|-\mu)
\end{aligned}
$$

are finite measures such that:

$$
\mu=\mu^{+}-\mu^{-} \quad, \quad|\mu|=\mu^{+}+\mu^{-}
$$

Exercise 13. Let $\mu \in M^{1}(\Omega, \mathcal{F})$ and $l: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be a linear map.

Tutorial 11: Complex Measures

1. Show that l is continuous.
2. Show that $l \circ \mu$ is a signed measure on (Ω, \mathcal{F}). ${ }^{4}$
3. Show that all $\mu \in M^{1}(\Omega, \mathcal{F})$ can be decomposed as:

$$
\mu=\mu_{1}-\mu_{2}+i\left(\mu_{3}-\mu_{4}\right)
$$

where $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ are finite measures.
${ }^{4} l \circ \mu$ refers strictly speaking to $l(\operatorname{Re}(\mu), \operatorname{Im}(\mu))$.

Solutions to Exercises

Exercise 1.

1. Suppose $\left(a_{n}\right)_{n \geq 1}$ has the permutation property, and let σ : $\mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ be an arbitrary bijection. Then, the series $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges to some $l \in \mathbf{C}$. However, for all $n \geq 1$, we have:

$$
\left|\sum_{k=1}^{n} \operatorname{Re}\left(a_{\sigma(k)}\right)-\operatorname{Re}(l)\right| \leq\left|\sum_{k=1}^{n} a_{\sigma(k)}-l\right|
$$

It follows that the series $\sum_{k=1}^{+\infty} \operatorname{Re}\left(a_{\sigma(k)}\right)$ converges to $R e(l)$, and similarly the series $\sum_{k=1}^{+\infty} \operatorname{Im}\left(a_{\sigma(k)}\right)$ converges to $\operatorname{Im}(l)$. We conclude that $\left(\operatorname{Re}\left(a_{n}\right)\right)_{n \geq 1}$ and $\left(\operatorname{Im}\left(a_{n}\right)\right)_{n \geq 1}$ have the permutation property.
2. Suppose that $a_{n} \in \mathbf{R}$ for all $n \geq 1$, and the series $\sum_{k=1}^{+\infty} a_{k}$ converges. Since $a_{k}^{+}=\left(\left|a_{k}\right|+a_{k}\right) / 2$, the series $\sum_{k=1}^{+\infty} a_{k}^{+}$and $\sum_{k=1}^{+\infty}\left|a_{k}\right|$ are either both convergent, or both divergent. In
particular:

$$
\sum_{k=1}^{+\infty}\left|a_{k}\right|=+\infty \Rightarrow \sum_{k=1}^{+\infty} a_{k}^{+}=+\infty
$$

Similarly, from $a_{k}^{-}=\left(\left|a_{k}\right|-a_{k}\right) / 2$, we have:

$$
\sum_{k=1}^{+\infty}\left|a_{k}\right|=+\infty \Rightarrow \sum_{k=1}^{+\infty} a_{k}^{-}=+\infty
$$

Exercise 1

Exercise 2.

1. Suppose N^{+}is finite. Then $N^{+} \subseteq\left\{1, \ldots, n_{0}\right\}$ for some $n_{0} \geq 1$. It follows that $a_{n}<0$ for $n>n_{0}$, and in particular we have $a_{n}=-\left|a_{n}\right|$ for $n>n_{0}$. This contradicts the fact that $\sum_{k=1}^{+\infty} a_{k}$ is a convergent series, whereas $\sum_{k=1}^{+\infty}\left|a_{k}\right|$ is a divergent series. We conclude that N^{+}is an infinite set. Similarly, if N^{-}is finite, then $a_{n}=\left|a_{n}\right|$ for n large enough, leading to a contradiction. We have proved that both N^{+}and N^{-}are infinite.
2. Since $\sum_{k=1}^{+\infty} a_{k}$ converges and $\sum_{k=1}^{+\infty}\left|a_{k}\right|=+\infty$, from ex. (1):

$$
+\infty=\sum_{k=1}^{+\infty} a_{k}^{+}=\sum_{k \in N^{+}} a_{k}=\sum_{k=1}^{+\infty} a_{\phi^{+}(k)}
$$

where we have used the fact that $\phi^{+}: N^{*} \rightarrow N^{+}$is a bijection.

It follows that there exists $k_{1} \geq 1$ such that:

$$
\sum_{k=1}^{k_{1}} a_{\phi^{+}(k)} \geq A
$$

3. Let $n \geq 1$ and suppose we have $k_{1}<\ldots<k_{n}$ such that:

$$
\begin{equation*}
\sum_{k=k_{p-1}+1}^{k_{p}} a_{\phi^{+}(k)} \geq A \tag{3}
\end{equation*}
$$

for all $p=1, \ldots, n$. Since $\sum_{k=k_{n}+1}^{+\infty} a_{\phi^{+}(k)}=+\infty$, there exists $k_{n+1}>k_{n}$ such that:

$$
\sum_{k=k_{n}+1}^{k_{n+1}} a_{\phi^{+}(k)} \geq A
$$

By induction (having found k_{1} from 2.), we construct an increasing sequence $\left(k_{p}\right)_{p \geq 1}$ such that (3) holds for all $p \geq 1$.
4. To show that $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is a bijection, we need to show that it is both injective and surjective. To show that σ is injective, consider $n, m \in \mathbf{N}^{*}$ such that $\sigma(n)=\sigma(m)$. Let $p, q \in \mathbf{N}^{*}$ be such that $k_{p-1}^{*}<n \leq k_{p}^{*}$ and $k_{q-1}^{*}<m \leq k_{q}^{*}$.
Case 1: suppose $n=k_{p-1}^{*}+1$ and $m=k_{q-1}^{*}+1$. From (2), we have $\sigma(n)=\phi^{-}(p)$ and $\sigma(m)=\phi^{-}(q)$, and therefore $\phi^{-}(p)=$ $\phi^{-}(q)$. Since $\phi^{-}: \mathbf{N}^{*} \rightarrow N^{-}$is injective, we have $p=q$ and consequently $n=k_{p-1}^{*}+1=k_{q-1}^{*}+1=m$.
Case 2: suppose $n=k_{p-1}^{*}+1$ and $m>k_{q-1}^{*}+1$. From (2), we have $\sigma(n)=\phi^{-}(p) \in N^{-}$and $\sigma(m)=\phi^{+}(m-q) \in N^{+}$. Since $N^{-} \cap N^{+}=\emptyset$, we conclude that this case cannot occur, having assumed $\sigma(n)=\sigma(m)$.
Case 3: suppose $n>k_{p-1}^{*}+1$ and $m=k_{q-1}^{*}+1$. Similarly, this case cannot possibly occur, having assumed $\sigma(n)=\sigma(m)$.
Case 4: suppose $n>k_{p-1}^{*}+1$ and $m>k_{q-1}^{*}+1$. From (2), we have $\sigma(n)=\phi^{+}(n-p)$ and $\sigma(m)=\phi^{+}(m-q)$, and therefore $\phi^{+}(n-p)=\phi^{+}(m-q)$. Since $\phi^{+}: \mathbf{N}^{*} \rightarrow N^{+}$is injective, it
follows that:

$$
\begin{equation*}
n-p=m-q \tag{4}
\end{equation*}
$$

Now, if we assume that $p<q$, then $n \leq k_{p}^{*} \leq k_{q-1}^{*}<m-1$ and therefore:

$$
m-1-n>k_{q-1}^{*}-k_{p}^{*}=q-1-p+k_{q-1}-k_{p} \geq q-1-p
$$

and so $m-n>q-p$, contradicting (4). Similarly, assuming $q<p$ leads to a contradiction, from which we conclude that $p=q$. From (4), it follows that $n=m$.
Having assumed that $\sigma(n)=\sigma(m)$, we have proved that necessarily $n=m$. This shows that σ is injective. To show that σ is surjective, given $N \in \mathbf{N}^{*}$ we need to show the existence of $n \in \mathbf{N}^{*}$ such that $\sigma(n)=N$.
Case 1: suppose $a_{N}<0$. Then $N \in N^{-}$. Since $\phi^{-}: \mathbf{N}^{*} \rightarrow N^{-}$ is surjective, there exists $p \in \mathbf{N}^{*}$ such that $N=\phi^{-}(p)$. Take $n=k_{p-1}^{*}+1$. From (2), we have $\sigma(n)=\phi^{-}(p)=N$. Hence, we have found $n \in \mathbf{N}^{*}$ such that $\sigma(n)=N$.

Case 2: suppose $a_{N} \geq 0$. Then $N \in N^{+}$. Since $\phi^{+}: \mathbf{N}^{*} \rightarrow N^{+}$ is surjective, there exists $m \in \mathbf{N}^{*}$ such that $N=\phi^{+}(m)$. Let $p \in \mathbf{N}^{*}$ be such that $k_{p-1}<m \leq k_{p}$. Then, we have:

$$
k_{p-1}+p<m+p<k_{p}+p
$$

or equivalently:

$$
k_{p-1}^{*}+1<m+p \leq k_{p}^{*}
$$

From (2), it follows that:

$$
\sigma(m+p)=\phi^{+}(m+p-p)=\phi^{+}(m)=N
$$

Hence, we have found $n=m+p \in \mathbf{N}^{*}$ such that $\sigma(n)=N$.
We have proved that $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is surjective. Having proved that it is also injective, we conclude that it is a bijection.
5. Suppose $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges. There exists $l \in \mathbf{R}$ such that for
all $\epsilon>0$, there exists $N \geq 1$ such that:

$$
n \geq N \Rightarrow\left|\sum_{k=1}^{n} a_{\sigma(k)}-l\right|<\epsilon
$$

Taking $\epsilon=A / 2$, we have $N \geq 1$, with:

$$
\begin{equation*}
n \geq N \Rightarrow\left|\sum_{k=1}^{n} a_{\sigma(k)}-l\right|<A / 2 \tag{5}
\end{equation*}
$$

and also:

$$
\begin{equation*}
n \geq N, p \geq 1 \Rightarrow\left|\sum_{k=1}^{n+p} a_{\sigma(k)}-l\right|<A / 2 \tag{6}
\end{equation*}
$$

From the inequality, where $n, p \geq 1$:

$$
\left|\sum_{k=n+1}^{n+p} a_{\sigma(k)}\right| \leq\left|\sum_{k=1}^{n+p} a_{\sigma(k)}-l\right|+\left|\sum_{k=1}^{n} a_{\sigma(k)}-l\right|
$$

Using (5) and (6), we have found $N \geq 1$ such that:

$$
n \geq N, p \geq 1 \Rightarrow\left|\sum_{k=n+1}^{n+p} a_{\sigma(k)}\right|<A
$$

6. Suppose $\left(a_{n}\right)_{n \geq 1}$ has the permutation property. From definition (90), the series $\sum_{k=1}^{+\infty} a_{\tau(k)}$ converges, for all bijections $\tau: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$. In particular, the series $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ converges, where σ is the bijection defined in part 4.. From 5., there exists $N \geq 1$ such that:

$$
\begin{equation*}
n \geq N, q \geq 1 \Rightarrow\left|\sum_{k=n+1}^{n+q} a_{\sigma(k)}\right|<A \tag{7}
\end{equation*}
$$

However, from 3., the sequence $\left(k_{p}\right)_{p \geq 1}$ is such that:

$$
\begin{equation*}
\left|\sum_{k=k_{p-1}+1}^{k_{p}} a_{\phi^{+}(k)}\right| \geq \sum_{k=k_{p-1}+1}^{k_{p}} a_{\phi^{+}(k)} \geq A \tag{8}
\end{equation*}
$$

for all $p \geq 1$. Furthermore, if $k_{p-1}+1 \leq k \leq k_{p}$ then we have $k_{p-1}^{*}+2 \leq k+p \leq k_{p}^{*}$, and going back to the definition of σ in equation (2), we see that $\sigma(k+p)=\phi^{+}(k+p-p)=\phi^{+}(k)$. Hence, from (8) we obtain:

$$
\left|\sum_{k=k_{p-1}+1}^{k_{p}} a_{\sigma(k+p)}\right| \geq A
$$

or equivalently:

$$
\begin{equation*}
\left|\sum_{k=k_{p-1}^{*}+2}^{k_{p}^{*}} a_{\sigma(k)}\right| \geq A \tag{9}
\end{equation*}
$$

Since $k_{p}^{*} \uparrow+\infty$, we can choose p sufficiently large so as to have $k_{p-1}^{*}+1 \geq N$. Taking $q=k_{p}^{*}-k_{p-1}^{*}-1 \geq 1$ and applying (7), we obtain:

$$
\left|\sum_{k=k_{p-1}^{*}+2}^{k_{p}^{*}} a_{\sigma(k)}\right|<A
$$

which contradicts (9). We conclude that the series $\sum_{k=1}^{+\infty} a_{\sigma(k)}$ does not converge, and consequently that $\left(a_{n}\right)_{n \geq 1}$ cannot have the permutation property.
7. Let $\left(a_{n}\right)_{n \geq 1}$ be a complex sequence which has the permutation property. From exercise (1), both $\left(\operatorname{Re}\left(a_{n}\right)\right)_{n \geq 1}$ and $\left(\operatorname{Im}\left(a_{n}\right)\right)_{n \geq 1}$ are real valued sequences which have the permutation property. In particular, the series $\sum_{k=1}^{+\infty} R e\left(a_{k}\right)$ converges. If we had $\sum_{k=1}^{+\infty}\left|\operatorname{Re}\left(a_{k}\right)\right|=+\infty$, then from 6. of the present exercise, we would conclude that $\left(\operatorname{Re}\left(a_{n}\right)\right)_{n \geq 1}$ cannot have the permutation property. It follows that:

$$
\sum_{k=1}^{+\infty}\left|R e\left(a_{k}\right)\right|<+\infty
$$

and similarly:

$$
\sum_{k=1}^{+\infty}\left|\operatorname{Im}\left(a_{k}\right)\right|<+\infty
$$

From $\left|a_{k}\right| \leq\left|\operatorname{Re}\left(a_{k}\right)\right|+\left|\operatorname{Im}\left(a_{k}\right)\right|$ for all $k \geq 1$, we conclude that:

$$
\sum_{k=1}^{+\infty}\left|a_{k}\right|<+\infty
$$

which shows that the series $\sum_{k=1}^{+\infty} a_{k}$ is absolutely convergent. This proves theorem (56).

Exercise 2

Exercise 3.

1. Define $\mu: \mathcal{F} \rightarrow[0,+\infty]$ by $\mu(\emptyset)=0$ and $\mu(A)=+\infty$ for all $A \in \mathcal{F}, A \neq \emptyset$. Then μ is a measure on (Ω, \mathcal{F}). However, μ is not a map with values in \mathbf{C}. Hence it cannot be a complex measure.
2. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. Let $E_{n}=\emptyset$ for all $n \geq 1$. Then $\left(E_{n}\right)_{n \geq 1}$ is a measurable partition of \emptyset. It follows that the series $\sum_{n=1}^{+\infty} \mu\left(E_{n}\right)$ converges to $\mu(\emptyset)$. Since $\mu\left(E_{n}\right)=\mu(\emptyset)$ for all $n \geq 1$, this is only possible if $\mu(\emptyset)=0$.
3. Let μ be a finite measure on (Ω, \mathcal{F}). Then $\mu(\Omega)<+\infty$. Hence for all $A \in \mathcal{F}, \mu(A) \leq \mu(\Omega)<+\infty$. So μ has values in \mathbf{R}^{+} and therefore in C. Let $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E. Then $E=\uplus_{n=1}^{+\infty} E_{n}$ and μ being a measure:

$$
\begin{equation*}
\mu(E)=\sum_{n=1}^{+\infty} \mu\left(E_{n}\right) \tag{10}
\end{equation*}
$$

Since $\mu(E)<+\infty$, the series $\sum_{n=1}^{+\infty} \mu\left(E_{n}\right)$ actually converges to $\mu(E)$ in \mathbf{C}. We have proved that μ is a complex measure with values in \mathbf{R}^{+}. Conversely, suppose μ is a complex measure with values in \mathbf{R}^{+}. Then it is a map $\mu: \mathcal{F} \rightarrow[0,+\infty]$ which from 2. satisfies $\mu(\emptyset)=0$. Furthermore, if $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ is a measurable partition of E, then the series $\sum_{n=1}^{+\infty} \mu\left(E_{n}\right)$ converges to $\mu(E)$ in \mathbf{C}. So equation (10) holds, and μ is therefore a measure on (Ω, \mathcal{F}). Since μ has values in $\mathbf{R}^{+}, \mu(\Omega)<+\infty$ and μ is therefore a finite measure.
4. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. Let $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E. Then $\left(E_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{F} with $E=\uplus_{n=1}^{+\infty} E_{n}$. Given $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ bijective, $\left(E_{\sigma(n)}\right)_{n \geq 1}$ is also a sequence of pairwise disjoint elements of \mathcal{F} with $E=\uplus_{n=1}^{+\infty} E_{\sigma(n)}$. In other words, $\left(E_{\sigma(n)}\right)_{n \geq 1}$ is a measurable partition of E. Since μ is a complex measure, the series $\sum_{n=1}^{+\infty} \mu\left(E_{\sigma(n)}\right)$ converges to $\mu(E)$. It follows that the series $\sum_{n=1}^{+\infty} \mu\left(E_{\sigma(n)}\right)$ converges for all bijections $\sigma: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$. So
$\left(\mu\left(E_{n}\right)\right)_{n \geq 1}$ is a complex sequence which has the permutation property. Applying theorem (56), we conclude that:

$$
\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|<+\infty
$$

5. Since $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu), \nu(E)=\int_{E} f d \mu$ is a well-defined complex number for all $E \in \mathcal{F}$. So $\nu: \mathcal{F} \rightarrow \mathbf{C}$ is a well-defined map with values in \mathbf{C}. Let $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E. Then $\left(E_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{F} such that $E=\uplus_{n=1}^{+\infty} E_{n}$. For all $N \geq 1$, define:

$$
g_{N}=\sum_{n=1}^{N} f 1_{E_{n}}
$$

From the linearity of the integral, we have:

$$
\begin{equation*}
\int g_{N} d \mu=\sum_{n=1}^{N} \int f 1_{E_{n}} d \mu=\sum_{n=1}^{N} \nu\left(E_{n}\right) \tag{11}
\end{equation*}
$$

Let $\omega \in \Omega$. If $\omega \notin E$ then $f 1_{E}(\omega)=0$. Furthermore, $\omega \notin E_{n}$ for all $n \geq 1$ and consequently $g_{N}(\omega)=0$ for all $N \geq 1$. In particular, $g_{N}(\omega) \rightarrow f 1_{E}(\omega)$ as $N \rightarrow+\infty$. If $\omega \in E$, then $f 1_{E}(\omega)=f(\omega)$. Furthermore, there exists a unique $n_{0} \geq 1$ such that $\omega \in E_{n_{0}}$. For all $N \geq n_{0}$, we have $g_{N}(\omega)=f(\omega)$. So $g_{N}(\omega) \rightarrow f 1_{E}(\omega)$ as $N \rightarrow+\infty$. We have proved that for all $\omega \in \Omega, g_{N}(\omega) \rightarrow f 1_{E}(\omega)$ as $N \rightarrow+\infty$. Since for all $N \geq 1$, we have $\left|g_{N}\right| \leq|f| \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, we can apply the dominated convergence theorem (23), to obtain:

$$
\lim _{N \rightarrow+\infty} \int\left|g_{N}-f 1_{E}\right| d \mu=0
$$

and in particular, using the integral modulus inequality (24):

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \int g_{N} d \mu=\int f 1_{E} d \mu=\nu(E) \tag{12}
\end{equation*}
$$

Comparing (11) with (12) we obtain:

$$
\lim _{N \rightarrow+\infty} \sum_{n=1}^{N} \nu\left(E_{n}\right)=\nu(E)
$$

This shows the series $\sum_{n=1}^{+\infty} \nu\left(E_{n}\right)$ converges to $\nu(E)$. This being true for all $E \in \mathcal{F}$ and measurable partition $\left(E_{n}\right)_{n \geq 1}$ of E, we have proved that ν is a complex measure on (Ω, \mathcal{F}).

Exercise 3

Exercise 4.

1. Let $E \in \mathcal{F}$. Define $E_{1}=E$ and $E_{n}=\emptyset$ for $n \geq 2$. From definition (91), $\left(E_{n}\right)_{n \geq 1}$ is a measurable partition of E. From definition (94), we have $\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right| \leq|\mu|(E)$. Using $\mu(\emptyset)=0$ (see exercise (3)), we obtain $|\mu(E)| \leq|\mu|(E)$.
2. From 1. we have $|\mu(\emptyset)| \leq|\mu|(\emptyset)$ and therefore $0 \leq|\mu|(\emptyset)$. Let $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of \emptyset. Then $E_{n}=\emptyset$ for all $n \geq 1$. Hence, we have:

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|=0 \tag{13}
\end{equation*}
$$

It follows that 0 is an upper-bound of all sums involved in (13), where $\left(E_{n}\right)_{n>1}$ is a measurable partition of \emptyset. From definition (94), $|\mu|(\emptyset)$ being the smallest of such upper-bound, we have $|\mu|(\emptyset) \leq 0$. We have proved that $|\mu|(\emptyset)=0$.

Exercise 4

Exercise 5.

1. From exercise (4), $|\mu(E)| \leq|\mu|(E)$ for all $E \in \mathcal{F}$. In particular $0 \leq|\mu|(E)$. Hence, it is always possible to find $t \in \mathbf{R}$ such that $t<|\mu|(E)$. It follows that we can find a sequence $\left(t_{n}\right)_{n \geq 1}$ in \mathbf{R}, such that $t_{n}<|\mu|\left(E_{n}\right)$ for all $n \geq 1$.
2. Let $n \geq 1$. From definition (94), $|\mu|\left(E_{n}\right)$ is the smallest upperbound of all sums $\sum_{p=1}^{+\infty}\left|\mu\left(E_{n}^{p}\right)\right|$ where $\left(E_{n}^{p}\right)_{p \geq 1}$ is a measurable partition of E_{n}. Since $t_{n}<|\mu|\left(E_{n}\right), t_{n}$ cannot be such upperbound. We conclude that there exists a measurable partition $\left(E_{n}^{p}\right)_{p \geq 1}$ of E_{n}, such that:

$$
t_{n}<\sum_{p=1}^{+\infty}\left|\mu\left(E_{n}^{p}\right)\right|
$$

3. The family $\left(E_{n}^{p}\right)_{n, p \geq 1}$ is indexed by the countable set $\mathbf{N}^{*} \times \mathbf{N}^{*}$, and is a family of measurable sets (i.e. elements of \mathcal{F}). For all $n \geq 1,\left(E_{n}^{p}\right)_{p \geq 1}$ is a family of pairwise disjoint sets such that
$E_{n}=\uplus_{p \geq 1} E_{n}^{p} .\left(E_{n}\right)_{n \geq 1}$ is a family of pairwise disjoint sets, such that $E=\uplus_{n \geq 1} E_{n}$. It follows that $\left(E_{n}^{p}\right)_{n, p \geq 1}$ is a family of pairwise disjoint sets such that $E=\uplus_{n, p \geq 1} E_{n}^{p}$. This shows that $\left(E_{n}^{p}\right)_{n, p \geq 1}$ is a measurable partition of E.
4. Let $N \geq 1$. Using 2 . we have:

$$
\begin{equation*}
\sum_{n=1}^{N} t_{n}<\sum_{n=1}^{N} \sum_{p=1}^{+\infty}\left|\mu\left(E_{n}^{p}\right)\right| \leq \sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty}\left|\mu\left(E_{n}^{p}\right)\right| \leq|\mu|(E) \tag{14}
\end{equation*}
$$

where the last inequality follows from definition (94) and the fact that $\left(E_{n}^{p}\right)_{n, p \geq 1}$ is a measurable partition of E.
5. Suppose $|\mu|\left(E_{k}\right)=+\infty$ for some $k=1, \ldots, N$. Then any choice of $t_{k} \in \mathbf{R}$ is such that $t_{k}<|\mu|\left(E_{k}\right)$. Since $\sum_{n=1}^{N} t_{n}<|\mu|(E)$ obtained in 4. is valid for any t_{1}, \ldots, t_{N} in \mathbf{R} such that for all $n, t_{n}<|\mu|\left(E_{n}\right)$, we see that $A<|\mu|(E)$ for any $A \in \mathbf{R}$ (choose $t_{k}=A-\sum_{n \neq k} t_{n}$). It follows that $|\mu|(E)=+\infty$, and
in particular:

$$
\begin{equation*}
\sum_{n=1}^{N}|\mu|\left(E_{n}\right) \leq|\mu|(E) \tag{15}
\end{equation*}
$$

Suppose that $|\mu|\left(E_{n}\right)<+\infty$ for all n 's. Then $\sum_{n=1}^{N} t_{n}<|\mu|(E)$ can be written as $\phi\left(t_{1}, \ldots, t_{N}\right)<|\mu|(E)$, where ϕ is the continuous map $\phi: \mathbf{R}^{N} \rightarrow \mathbf{R}$ defined by $\phi\left(t_{1}, \ldots, t_{N}\right)=t_{1}+\ldots+t_{N}$. Given $k \geq 1$, the assumption $|\mu|\left(E_{n}\right)<\infty$ implies that we have $|\mu|\left(E_{n}\right)-1 / k<|\mu|\left(E_{n}\right)$, and consequently:

$$
\begin{equation*}
\phi\left(|\mu|\left(E_{1}\right)-1 / k, \ldots,|\mu|\left(E_{N}\right)-1 / k\right)<|\mu|(E) \tag{16}
\end{equation*}
$$

Taking the limit as $k \rightarrow+\infty$ in (16), from the continuity of ϕ we obtain:

$$
\phi\left(|\mu|\left(E_{1}\right), \ldots,|\mu|\left(E_{N}\right)\right) \leq|\mu|(E)
$$

which shows that inequality (15) is true. We have proved that inequality (15) is true in all possible cases.
6. Let $p \geq 1$. $\left(E_{n}\right)_{n \geq 1}$ being a measurable partition of E, we have $E=\uplus_{n \geq 1} E_{n}$. It follows that $A_{p}=\uplus_{n \geq 1} A_{p} \cap E_{n}$. Since μ is
a complex measure, the series $\sum_{n=1}^{+\infty} \mu\left(A_{p} \cap E_{n}\right)$ converges to $\mu\left(A_{p}\right)$. Taking the limit as $N \rightarrow+\infty$ on both sides of:

$$
\left|\sum_{n=1}^{N} \mu\left(A_{p} \cap E_{n}\right)\right| \leq \sum_{n=1}^{N}\left|\mu\left(A_{p} \cap E_{n}\right)\right|
$$

we conclude that:

$$
\left|\mu\left(A_{p}\right)\right| \leq \sum_{n=1}^{+\infty}\left|\mu\left(A_{p} \cap E_{n}\right)\right|
$$

7. Let $n \geq 1$. $\left(A_{p}\right)_{p \geq 1}$ being a measurable partition of E, we have $E=\uplus_{p \geq 1} A_{p}$. It follows that $E_{n}=\uplus_{p \geq 1} A_{p} \cap E_{n}$. The family $\left(A_{p} \cap E_{n}\right)_{p \geq 1}$ is therefore a measurable partition of E_{n}. We conclude from definition (94) that;

$$
\sum_{p=1}^{+\infty}\left|\mu\left(A_{p} \cap E_{n}\right)\right| \leq|\mu|\left(E_{n}\right)
$$

8. Using 6. and 7. we have:

$$
\sum_{p=1}^{+\infty}\left|\mu\left(A_{p}\right)\right| \leq \sum_{p=1}^{+\infty} \sum_{n=1}^{+\infty}\left|\mu\left(A_{p} \cap E_{n}\right)\right| \leq \sum_{n=1}^{+\infty}|\mu|\left(E_{n}\right)
$$

where specifically, the second inequality was obtained by first inverting the order of summation, and then applying 7 .
9. From exercise (4), $|\mu|(\emptyset)=0$. Given $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ measurable partition of E, we showed in 5 . that for all $N \geq 1$:

$$
\begin{equation*}
\sum_{n=1}^{N}|\mu|\left(E_{n}\right) \leq|\mu|(E) \tag{17}
\end{equation*}
$$

Taking the limit as $N \rightarrow+\infty$ in (17), we obtain:

$$
\begin{equation*}
\sum_{n=1}^{+\infty}|\mu|\left(E_{n}\right) \leq|\mu|(E) \tag{18}
\end{equation*}
$$

Also, if $\left(A_{p}\right)_{p \geq 1}$ is a measurable partition of E, then from 8.:

$$
\sum_{p=1}^{+\infty}\left|\mu\left(A_{p}\right)\right| \leq \sum_{n=1}^{+\infty}|\mu|\left(E_{n}\right)
$$

This shows that $\sum_{n=1}^{+\infty}|\mu|\left(E_{n}\right)$ is an upper-bound of all sums $\sum_{p=1}^{+\infty}\left|\mu\left(A_{p}\right)\right|$, where $\left(A_{p}\right)_{p \geq 1}$ is a measurable partition of E. $|\mu|(E)$ being the smallest of all such upper-bounds, we have:

$$
\begin{equation*}
|\mu|(E) \leq \sum_{n=1}^{+\infty}|\mu|\left(E_{n}\right) \tag{19}
\end{equation*}
$$

From (18) and (19) we conclude that:

$$
|\mu|(E)=\sum_{n=1}^{+\infty}|\mu|\left(E_{n}\right)
$$

We have proved that $|\mu|: \mathcal{F} \rightarrow[0,+\infty]$ is a measure on (Ω, \mathcal{F}).

Exercise 6.

1. Since $F \in C^{1}([a, b] ; \mathbf{R})$, the derivative F^{\prime} exists and is continuous on $[\mathrm{a}, \mathrm{b}]$. In particular, the map $F^{\prime}:[a, b] \rightarrow \mathbf{R}$ is Borel measurable ${ }^{5}$. Furthermore, the interval $[a, b]$ being a compact topological space (theorem (34)), F^{\prime} attains its maximum and its minimum (theorem (37)). In particular, F^{\prime} is bounded on $[a, b]$. It follows that F^{\prime} is an element of $L_{\mathbf{R}}^{1}([a, b], \mathcal{B}([a, b]), d x)$, and:

$$
H(x)=\int_{a}^{x} F^{\prime}(t) d t \triangleq \int 1_{[a, x]}(t) F^{\prime}(t) d t
$$

is well-defined and \mathbf{R}-valued for all $x \in[a, b]$.
Let $x_{0} \in[a, b] . F^{\prime}$ being continuous on $[a, b]$, given $\epsilon>0$, there exists $\delta>0$ such that:

$$
\begin{equation*}
x \in[a, b],\left|x-x_{0}\right| \leq \delta \Rightarrow\left|F^{\prime}(x)-F^{\prime}\left(x_{0}\right)\right| \leq \epsilon \tag{20}
\end{equation*}
$$

${ }^{5}$ See exercise (13) of Tutorial 4.

Let $h \in \mathbf{R} \backslash\{0\}$ be such that $x_{0}+h \in[a, b]$. If $h>0$, we have:

$$
H\left(x_{0}+h\right)-H\left(x_{0}\right)=\int 1_{] x_{0}, x_{0}+h\right]}(t) F^{\prime}(t) d t
$$

and if $h<0$:

$$
H\left(x_{0}+h\right)-H\left(x_{0}\right)=-\int 1_{] x_{0}+h, x_{0}\right]}(t) F^{\prime}(t) d t
$$

where we have used the linearity of the integral, and the equality $1_{B}-1_{A}=1_{B \backslash A}$, valid whenever $A \subseteq B$. The Lebesgue measure on $[a, b]$ of the interval $\left.] x_{0}, x_{0}+h\right]$ being equal to h when $h>0$, it is always possible to write $F^{\prime}\left(x_{0}\right)$ as:

$$
F^{\prime}\left(x_{0}\right)=\frac{1}{h} \int 1_{] x_{0}, x_{0}+h\right]}(t) F^{\prime}\left(x_{0}\right) d t
$$

when $h>0$, and similarly when $h<0$:

$$
F^{\prime}\left(x_{0}\right)=-\frac{1}{h} \int 1_{] x_{0}+h, x_{0}\right]} F^{\prime}\left(x_{0}\right) d t
$$

It follows that in all cases, using theorem (24):

$$
\left|\frac{H\left(x_{0}+h\right)-H\left(x_{0}\right)}{h}-F^{\prime}\left(x_{0}\right)\right| \leq \frac{1}{|h|} \int 1_{A}(t)\left|F^{\prime}(t)-F^{\prime}\left(x_{0}\right)\right| d t
$$

where $\left.A=] x_{0}, x_{0}+h\right]$ if $h>0$ and $\left.\left.A=\right] x_{0}+h, x_{0}\right]$ if $h<0$. From (20), it appears that given $\epsilon>0$, we have found $\delta>0$ such that for all $h \neq 0$ with $x_{0}+h \in[a, b]$:

$$
|h| \leq \delta \Rightarrow\left|\frac{H\left(x_{0}+h\right)-H\left(x_{0}\right)}{h}-F^{\prime}\left(x_{0}\right)\right| \leq \epsilon
$$

This shows that for all $x_{0} \in[a, b], H$ is differentiable at x_{0} with $H^{\prime}\left(x_{0}\right)=F^{\prime}\left(x_{0}\right)$. We have proved that H is differentiable on $[a, b]$ with $H^{\prime}=F^{\prime}$. Since F^{\prime} is continuous, we see that H^{\prime} is continuous, and finally $H \in C^{1}([a, b] ; \mathbf{R})$.
2. Define $G=F-H$. Then $G \in C^{1}([a, b] ; \mathbf{R})$, and in particular G is continuous on $[a, b]$ and differentiable on $] a, b[$. Applying
taylor's theorem (39), there exists $c \in] a, b[$ such that:

$$
G(b)-G(a)=G^{\prime}(c)(b-a)
$$

However from 1. $G^{\prime}(c)=0$ for all $c \in[a, b]$. We conclude that $G(b)=G(a)$, or equivalently:

$$
F(b)-F(a)=H(b)-H(a)=\int_{a}^{b} F^{\prime}(t) d t
$$

3. Applying 2. to $F(\theta)=\sin \theta$ on $[-\pi / 2, \pi / 2]$, we obtain:

$$
\frac{1}{2 \pi} \int_{-\pi / 2}^{+\pi / 2} \cos \theta d \theta=\frac{1}{2 \pi}(\sin (\pi / 2)-\sin (-\pi / 2))=\frac{1}{\pi}
$$

4. $u \in \mathbf{R}^{n}$ being given, let $\mu: \mathcal{B}\left(\mathbf{R}^{n}\right) \rightarrow[0,+\infty]$ be the map defined by $\mu(B)=d x\left(\left\{\tau_{u} \in B\right\}\right)$ for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$. If $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of $\mathcal{B}\left(\mathbf{R}^{n}\right)$, it follows that $\left(\tau_{u}^{-1}\left(B_{n}\right)\right)_{n \geq 1}$ is also a sequence of pairwise disjoint elements of $\mathcal{B}\left(\mathbf{R}^{n}\right)$. Indeed, τ_{u} being a continuous map, it is also

Borel measurable. So each $\tau_{u}^{-1}\left(B_{n}\right)$ is an element of $\mathcal{B}\left(\mathbf{R}^{n}\right)$. Furthermore, for all $x \in \mathbf{R}^{n}, x \in \tau_{u}^{-1}\left(B_{p}\right) \cap \tau_{u}^{-1}\left(B_{q}\right)$ is equivalent to $\tau_{u}(x) \in B_{p} \cap B_{q}$, which implies that $p=q$. If we denote $B=\uplus_{n \geq 1} B_{n}$, then $\tau_{u}^{-1}(B)=\uplus_{n \geq 1} \tau_{u}^{-1}\left(B_{n}\right)$ and we see that:

$$
\mu(B)=d x\left(\tau_{u}^{-1}(B)\right)=\sum_{n=1}^{+\infty} d x\left(\tau_{u}^{-1}\left(B_{n}\right)\right)=\sum_{n=1}^{+\infty} \mu\left(B_{n}\right)
$$

Since furthermore it is clear that $\mu(\emptyset)=0$, we have proved that μ is a measure on $\mathcal{B}\left(\mathbf{R}^{n}\right)$. Let $a_{i} \leq b_{i}$ for all $i \in \mathbf{N}_{n}$, and $B=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]$. Then:

$$
\begin{equation*}
\tau_{u}^{-1}(B)=\left[a_{1}-u_{1}, b_{1}-u_{1}\right] \times \ldots \times\left[a_{n}-u_{n}, b_{n}-u_{n}\right] \tag{21}
\end{equation*}
$$

It follows from (21) and definition (63):

$$
\begin{equation*}
\mu\left(\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]\right)=d x\left(\tau_{u}^{-1}(B)\right)=\prod_{i=1}^{n}\left(b_{i}-a_{i}\right) \tag{22}
\end{equation*}
$$

From definition (63), the Lebesgue measure on \mathbf{R}^{n} is uniquely
determined by property (22). We conclude that μ and the Lebesgue measure $d x$ do in fact coincide, i.e. $\mu=d x$. We have proved that for all $u \in \mathbf{R}^{n}$ and $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, $d x\left(\left\{\tau_{u} \in\right.\right.$ $B\})=d x(B)$ or in other words that the Lebesgue measure on ($\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)$) is invariant by translation.
5. Let $u \in \mathbf{R}^{n}$ and $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$. We are aiming to prove that:

$$
\begin{equation*}
\int_{\mathbf{R}^{n}} f(x+u) d x=\int_{\mathbf{R}^{n}} f(x) d x \tag{23}
\end{equation*}
$$

If $\tau_{u}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ denotes the translation defined by $\tau_{u}(x)=$ $x+u$, then τ_{u} is clearly continuous and therefore Borel measurable. It follows that the map $x \rightarrow f(x+u)$, being equal to $f \circ \tau_{u}$, is itself Borel measurable. Suppose equation (23) has been established for non-negative and measurable maps. Then, applying (23) to $|f|$, we obtain:

$$
\int_{\mathbf{R}^{n}}|f(x+u)| d x=\int_{\mathbf{R}^{n}}|f(x)| d x<+\infty
$$

which shows that $x \rightarrow f(x+u)$ is also integrable. Equation (23) is therefore meaningful for all $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$. Furthermore, writing $f=v_{1}+i v_{2}$ and applying (23) to each positive and negative part of v_{1} and v_{2}, we obtain:

$$
\int_{\mathbf{R}^{n}} v_{1}^{+}(x+u) d x=\int_{\mathbf{R}^{n}} v_{1}^{+}(x) d x
$$

with a similar equality for v_{1}^{-}, v_{2}^{+}and v_{2}^{-}. From definition (48) of the Lebesgue integral, we have:

$$
\int_{\mathbf{R}^{n}} f d x=\int_{\mathbf{R}^{n}} v_{1}^{+} d x-\int_{\mathbf{R}^{n}} v_{1}^{-} d x+i \int_{\mathbf{R}^{n}} v_{2}^{+} d x-i \int_{\mathbf{R}^{n}} v_{2}^{-} d x
$$

with a similar equality involving $x \rightarrow f(x+u)$. We conclude that equation (23) is true for all $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$. We have shown that it is sufficient to prove (23) in the case when $f:\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right) \rightarrow[0,+\infty]$ is a non-negative and measurable map. Suppose f is of the form $f=1_{B}$ for some $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.

Using the invariance of the Lebesgue measure proved in 4.:

$$
\int_{\mathbf{R}^{n}} f(x+u) d x=d x\left(\left\{\tau_{u} \in B\right\}\right)=d x(B)=\int_{\mathbf{R}^{n}} f(x) d x
$$

and (23) is shown to be true. If f is a simple function, then (23) is also true by linearity. Suppose f is a non-negative and measurable map. From theorem (18), there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions such that $s_{n} \uparrow f$. Given $n \geq 1$:

$$
\begin{equation*}
\int_{\mathbf{R}^{n}} s_{n}(x+u) d x=\int_{\mathbf{R}^{n}} s_{n}(x) d x \tag{24}
\end{equation*}
$$

However, from the monotone convergence theorem (19):

$$
\lim _{n \rightarrow+\infty} \int_{\mathbf{R}^{n}} s_{n}(x) d x=\int_{\mathbf{R}^{n}} f(x) d x
$$

with a similar convergence involving $s_{n}(x+u)$ and $f(x+u)$. Taking the limit in (24) as $n \rightarrow+\infty$, we obtain (23).
6. Let $\alpha \in \mathbf{R}$ and define $f(\theta)=\cos ^{+}(\theta-\alpha) 1_{[-\pi,+\pi]}(\theta)$. Then:

$$
\int_{-\pi}^{+\pi} \cos ^{+}(\alpha-\theta) d \theta=\int_{-\pi}^{+\pi} \cos ^{+}(\theta-\alpha) d \theta=\int_{\mathbf{R}} f(\theta) d \theta
$$

Furthermore:
$\int_{\mathbf{R}} f(\theta+\alpha) d \theta=\int_{\mathbf{R}}\left(\cos ^{+} \theta\right) 1_{[-\pi,+\pi]}(\theta+\alpha) d \theta=\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta$
Applying 5. to $f \in L_{\mathbf{R}}^{1}(\mathbf{R}, \mathcal{B}(\mathbf{R}), d \theta)$ and $u=\alpha$ we obtain:

$$
\int_{\mathbf{R}} f(\theta) d \theta=\int_{\mathbf{R}} f(\theta+\alpha) d \theta
$$

and we conclude that:

$$
\int_{-\pi}^{+\pi} \cos ^{+}(\alpha-\theta) d \theta=\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta
$$

7. Let $\alpha \in \mathbf{R}$ and $k \in \mathbf{Z}$ be such that $k \leq \alpha / 2 \pi<k+1$. From $k \leq$ $\alpha / 2 \pi$ we obtain $2 k \pi \leq \alpha$ and consequently $-\pi-\alpha \leq-2 k \pi-\pi$
together with $\pi-\alpha \leq-2 k \pi+\pi$. From $\alpha / 2 \pi<k+1$ we obtain $\alpha<2 k \pi+2 \pi$ and consequently $-2 k \pi-\pi<\pi-\alpha$. Finally:

$$
-\pi-\alpha \leq-2 k \pi-\pi<\pi-\alpha \leq-2 k \pi+\pi
$$

8. Define $f(\theta)=\left(\cos ^{+} \theta\right) 1_{[-\pi-\alpha,-2 k \pi-\pi]}(\theta)$. Applying 5. to the map $f \in L_{\mathbf{R}}^{1}(\mathbf{R}, \mathcal{B}(\mathbf{R}), d \theta)$ and $u=-2 \pi$, we obtain:

$$
\int_{-\pi-\alpha}^{-2 k \pi-\pi} \cos ^{+} \theta d \theta=\int_{\mathbf{R}} f(\theta) d \theta=\int_{\mathbf{R}} f(\theta-2 \pi) d \theta=\int_{\pi-\alpha}^{-2 k \pi+\pi} \cos ^{+} \theta d \theta
$$

9. From 7. we have:

$$
\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta=\int_{-\pi-\alpha}^{-2 k \pi-\pi} \cos \theta d \theta+\int_{-2 k \pi-\pi}^{+\pi-\alpha} \cos ^{+} \theta d \theta
$$

However, from 8., we have:

$$
\int_{-\pi-\alpha}^{-2 k \pi-\pi} \cos ^{+} \theta d \theta=\int_{\pi-\alpha}^{-2 k \pi+\pi} \cos ^{+} \theta d \theta
$$

It follows that:

$$
\begin{equation*}
\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta=\int_{-2 k \pi-\pi}^{-2 k \pi+\pi} \cos ^{+} \theta d \theta \tag{25}
\end{equation*}
$$

Define $f(\theta)=\left(\cos ^{+} \theta\right) 1_{[-2 k \pi-\pi,-2 k \pi+\pi]}(\theta)$. Applying 5. to the map $f \in L_{\mathbf{R}}^{1}(\mathbf{R}, \mathcal{B}(\mathbf{R}), d \theta)$ and $u=-2 k \pi$, we obtain:

$$
\int_{-2 k \pi-\pi}^{-2 k \pi+\pi} \cos ^{+} \theta d \theta=\int_{\mathbf{R}} f(\theta) d \theta=\int_{\mathbf{R}} f(\theta-2 k \pi) d \theta=\int_{-\pi}^{+\pi} \cos ^{+} \theta d \theta
$$

Using (25), we conclude that:

$$
\int_{-\pi-\alpha}^{+\pi-\alpha} \cos ^{+} \theta d \theta=\int_{-\pi}^{+\pi} \cos ^{+} \theta d \theta
$$

10. For all $\alpha \in \mathbf{R}$, using 6. and 9.:

$$
\int_{-\pi}^{+\pi} \cos ^{+}(\alpha-\theta) d \theta=\int_{-\pi}^{+\pi} \cos ^{+} \theta d \theta
$$

However, given $\theta \in[-\pi,+\pi]$, we have $\cos \theta \geq 0$ if and only if $\theta \in[-\pi / 2,+\pi / 2]$. It follows that:

$$
\int_{-\pi}^{+\pi} \cos ^{+} \theta d \theta=\int_{-\pi / 2}^{+\pi / 2} \cos \theta d \theta
$$

Finally, using 3. we conclude that:

$$
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \cos ^{+}(\alpha-\theta) d \theta=\frac{1}{2 \pi} \int_{-\pi / 2}^{+\pi / 2} \cos \theta d \theta=\frac{1}{\pi}
$$

Exercise 7.

1. Let $\theta \in[-\pi, \pi]$. Since $\left|e^{-i \theta}\right|=1$, we have:

$$
\begin{aligned}
\left|\sum_{k \in S(\theta)} z_{k}\right| & =\left|\sum_{k \in S(\theta)} z_{k} e^{-i \theta}\right| \\
& =\left|\sum_{k \in S(\theta)}\right| z_{k}\left|e^{i\left(\alpha_{k}-\theta\right)}\right| \\
& \geq R e\left(\sum_{k \in S(\theta)}\left|z_{k}\right| e^{i\left(\alpha_{k}-\theta\right)}\right) \\
& =\sum_{k \in S(\theta)}\left|z_{k}\right| \cos \left(\alpha_{k}-\theta\right)
\end{aligned}
$$

The fact that $\cos \left(\alpha_{k}-\theta\right)>0$ for all $k \in S(\theta)$ was not used.
2. The $\operatorname{map} \phi(\theta)=\sum_{k=1}^{N}\left|z_{k}\right| \cos ^{+}\left(\alpha_{k}-\theta\right)$ being continuous and
defined on the compact interval $[-\pi, \pi]$, from theorem (37), it attains its maximum. In other words, there exists $\theta_{0} \in[-\pi, \pi]$ such that:

$$
\phi\left(\theta_{0}\right)=\sup _{\theta \in[-\pi, \pi]} \phi(\theta)
$$

3. Using 10. of exercise (6), for all $k=1, \ldots, N$:

$$
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \cos ^{+}\left(\alpha_{k}-\theta\right) d \theta=\frac{1}{\pi}
$$

It follows that:

$$
\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \phi(\theta) d \theta=\sum_{k=1}^{N}\left|z_{k}\right| \frac{1}{2 \pi} \int_{-\pi}^{+\pi} \cos ^{+}\left(\alpha_{k}-\theta\right) d \theta=\frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right|
$$

4. Applying 1. to θ_{0} as in 2., we have:

$$
\left|\sum_{k \in S\left(\theta_{0}\right)} z_{k}\right| \geq \sum_{k \in S\left(\theta_{0}\right)}\left|z_{k}\right| \cos \left(\alpha_{k}-\theta_{0}\right)
$$

Since $k \in S\left(\theta_{0}\right)$ is equivalent to $\cos \left(\alpha_{k}-\theta_{0}\right)>0$, we have:

$$
\sum_{k \in S\left(\theta_{0}\right)}\left|z_{k}\right| \cos \left(\alpha_{k}-\theta_{0}\right)=\sum_{k=1}^{N}\left|z_{k}\right| \cos ^{+}\left(\alpha_{k}-\theta_{0}\right)=\phi\left(\theta_{0}\right)
$$

where ϕ is defined as in 2. Furthermore, using 2. and 3.:

$$
\phi\left(\theta_{0}\right) \geq \frac{1}{2 \pi} \int_{-\pi}^{+\pi} \phi(\theta) d \theta=\frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right|
$$

We conclude that:

$$
\left|\sum_{k \in S\left(\theta_{0}\right)} z_{k}\right| \geq \frac{1}{\pi} \sum_{k=1}^{N}\left|z_{k}\right|
$$

The purpose of this exercise is to provide us with a very useful
inequality. We are all familiar with the fact that:

$$
\left|\sum_{k=1}^{N} z_{k}\right| \leq \sum_{k=1}^{N}\left|z_{k}\right|
$$

and we may informally say that the modulus of $\sum_{k=1}^{N} z_{k}$ is controlled by the sum $\sum_{k=1}^{N}\left|z_{k}\right|$. By showing that:

$$
\sum_{k=1}^{N}\left|z_{k}\right| \leq \pi\left|\sum_{k \in S\left(\theta_{0}\right)} z_{k}\right|
$$

this exercise allows us to control $\sum_{k=1}^{N}\left|z_{k}\right|$ in terms of something formally very close to the modulus of $\sum_{k=1}^{N} z_{k}$, i.e. the modulus of $\sum_{k \in S} z_{k}$, for some subset S of $\{1, \ldots, N\}$.

Exercise 7

Exercise 8.

1. Since $\mu(E) \in \mathbf{C}, t=\pi(1+|\mu(E)|)$ is an element of \mathbf{R}^{+}. In particular, $t<+\infty$. From definition (94), $|\mu|(E)$ is the smallest upper-bound of all sums $\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|$, as $\left(E_{n}\right)_{n \geq 1}$ ranges over all measurable partitions of E. Having assumed $|\mu|(E)=+\infty$, it follows that $t<|\mu|(E)$ and consequently t cannot be such upperbound. We conclude that there exists a measurable partition $\left(E_{n}\right)_{n \geq 1}$ of E, such that:

$$
\begin{equation*}
t<\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right| \tag{26}
\end{equation*}
$$

2. The series $\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right|$ being the supremum of all partial sums $\sum_{n=1}^{N}\left|\mu\left(E_{n}\right)\right|$ for $N \geq 1$, it is the smallest upper-bound of such partial sums. It follows from (26) that t cannot be such upper-
bound. We conclude that there exists $N \geq 1$ such that:

$$
\left.t<\sum_{n=1}^{N} \mid \mu\left(E_{n}\right)\right) \mid
$$

3. Applying 4. of exercise (7) to $z_{1}=\mu\left(E_{1}\right), \ldots, z_{N}=\mu\left(E_{N}\right)$, there exists a subset S of $\{1, \ldots, N\}$ such that:

$$
\sum_{n=1}^{N}\left|\mu\left(E_{n}\right)\right| \leq \pi\left|\sum_{n \in S} \mu\left(E_{n}\right)\right|
$$

4. Let $A=\uplus_{n \in S} E_{n}$. μ being a complex measure, it is finitely additive and therefore $\mu(A)=\sum_{n \in S} \mu\left(E_{n}\right)$. Using 2. and 3. we obtain:

$$
|\mu(A)| \geq \frac{1}{\pi} \sum_{n=1}^{N}\left|\mu\left(E_{n}\right)\right|>\frac{t}{\pi}
$$

5. Let $B=E \backslash A$. Since $A \subseteq E$, we have $E=A \uplus B$. It follows that $\mu(E)=\mu(A)+\mu(B)$ and consequently

$$
|\mu(A)|=|\mu(E)-\mu(B)| \leq|\mu(E)|+|\mu(B)|
$$

We conclude that $|\mu(B)| \geq|\mu(A)|-|\mu(E)|$.
6. Since $A \subseteq E$ and $B=E \backslash A, E=A \uplus B$. From 4. we obtain:

$$
|\mu(A)|>\frac{t}{\pi}=1+|\mu(E)| \geq 1
$$

and from 4. and 5. we obtain:

$$
|\mu(B)| \geq|\mu(A)|-|\mu(E)|>\frac{t}{\pi}-|\mu(E)|=1
$$

We conclude that $|\mu(A)|>1$ and $|\mu(B)|>1$.
7. From exercise (5), the total variation $|\mu|$ is a measure on (Ω, \mathcal{F}). From $E=A \uplus B$ we obtain $|\mu|(E)=|\mu|(A)+|\mu|(B)$. Since $|\mu|(E)=+\infty$ we conclude that $|\mu|(A)$ and $|\mu|(B)$ cannot be both finite, i.e. $|\mu|(A)=+\infty$ or $|\mu|(B)=+\infty$. This exercise
shows that if $E \in \mathcal{F}$ is such that $|\mu|(E)=+\infty$, then E can be partitioned in two components A and B (i.e. $E=A \uplus B$) such that $|\mu(A)|>1$ and $|\mu(B)|>1$, and with $|\mu|(A)=+\infty$ or $|\mu|(B)=+\infty$.

Exercise 8

Exercise 9.

1. Since $|\mu|(\Omega)=+\infty$, applying exercise (8), there exists $A, B \in \mathcal{F}$ such that $\Omega=A \uplus B,|\mu(A)|>1, \mid \mu(B)>1$ and $|\mu|(A)=+\infty$ or $|\mu|(B)=+\infty$. If $|\mu|(B)=+\infty$, take $A_{1}=A$ and $B_{1}=B$. Otherwise, take $A_{1}=B$ and $B_{1}=A$. In any case, we have $A_{1}, B_{1} \in \mathcal{F}, \Omega=A_{1} \uplus B_{1},\left|\mu\left(A_{1}\right)\right|>1$ and $|\mu|\left(B_{1}\right)=+\infty$.
2. Given $n \geq 1$, let P_{n} denote the following statement: there exist A_{1}, \ldots, A_{n} pairwise disjoint elements of \mathcal{F} with $\left|\mu\left(A_{k}\right)\right|>1$ for all $k \in \mathbf{N}_{n}$, and such that if $B_{n}=\left(A_{1} \uplus \ldots \uplus A_{n}\right)^{c}$, then we have $|\mu|\left(B_{n}\right)=+\infty$. Note that from 1., the statement P_{1} is true. Suppose the statement P_{n} is true for some $n \geq 1$. Applying exercise (8), there exist $A, B \in \mathcal{F}$ such that $B_{n}=A \uplus B$, $|\mu(A)|>1,|\mu(B)|>1$ and $|\mu|(A)=+\infty$ or $|\mu|(B)=+\infty$. Without loss of generality, we can assume that $|\mu|(B)=+\infty$. Define $A_{n+1}=A$. Then $\left|\mu\left(A_{n+1}\right)\right|>1$ and furthermore for all $k \in \mathbf{N}_{n}$, since $A_{k} \subseteq B_{n}^{c}$ and $A_{n+1} \subseteq B_{n}$, we have $A_{k} \cap A_{n+1}=\emptyset$. Having assumed P_{n} to be true, A_{1}, \ldots, A_{n} are pairwise dis-
joint, and it follows that A_{1}, \ldots, A_{n+1} are also pairwise disjoint elements of \mathcal{F}. Finally, if $B_{n+1}=\left(A_{1} \uplus \ldots \uplus A_{n+1}\right)^{c}$, then $B_{n+1}^{c}=B_{n}^{c} \uplus A_{n+1}$ and consequently:

$$
B_{n+1}^{c}=\left(A^{c} \cap B^{c}\right) \uplus A=\left(A^{c} \cap B^{c}\right) \uplus\left(A \cap B^{c}\right)=B^{c}
$$

since $A \cap B=\emptyset$. It follows that $|\mu|\left(B_{n+1}\right)=|\mu|(B)=+\infty$. This shows that having assumed the statement P_{n} to be true, the sequence A_{1}, \ldots, A_{n} can be extended to A_{1}, \ldots, A_{n+1} which satisfies the requirements of statement P_{n+1}. By induction, we can therefore construct a sequence $\left(A_{n}\right)_{n \geq 1}$ of pairwise disjoint elements of \mathcal{F}, such that $\left|\mu\left(A_{n}\right)\right|>1$ for all $n \geq 1$.
3. Since $\left|\mu\left(A_{n}\right)\right|>1$ for all $n \geq 1$, the series $\sum_{n=1}^{+\infty} \mu\left(A_{n}\right)$ cannot be a convergent series. In particular, it does not converge to $\mu(A)$ where $A=\uplus_{n \geq 1} A_{n}$. This contradicts definition (92) and the fact that μ is a complex measure.
4. The initial assumption of $|\mu|(\Omega)=+\infty$ in 1 . has lead to the contradiction shown in 3.. We conclude that $|\mu|(\Omega)<+\infty$ for
all complex measure μ. We showed on exercise (5) that the total variation $|\mu|$ of a complex measure μ was a measure. This exercise shows that $|\mu|$ is in fact a finite measure, which proves theorem (57).

Exercise 9

Exercise 10. Let $\lambda, \mu \in M^{1}(\Omega, \mathcal{F})$ and $E \in \mathcal{F}$. Let $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E. Then, the series $\sum_{n=1}^{+\infty} \lambda\left(E_{n}\right)$ and $\sum_{n=1}^{+\infty} \mu\left(E_{n}\right)$ converge to $\lambda(E)$ and $\mu(E)$ respectively. It follows that the series $\sum_{n=1}^{+\infty}(\lambda+\mu)\left(E_{n}\right)$ converges to $(\lambda+\mu)(E)$ and $\lambda+\mu$ is therefore a complex measure on (Ω, \mathcal{F}). If $\alpha \in \mathbf{C}$, then the series $\sum_{n=1}^{+\infty}(\alpha \mu)\left(E_{n}\right)$ converges to $(\alpha \mu)(E)$ and $\alpha \mu$ is therefore a complex measure on (Ω, \mathcal{F}). This shows that $M^{1}(\Omega, \mathcal{F})$ is a sub-vector space over \mathbf{C}, of the set $\mathbf{C}^{\mathcal{F}}$ of all maps $\mu: \mathcal{F} \rightarrow \mathbf{C}$.

Exercise 10

Exercise 11.

1. Given $f \in L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$, the condition $\|f\|_{p}=0$ is equivalent to $\int|f|^{p} d \mu=0$. In particular, it does not guarantee that $f=0$, but only that $f=0 \mu$-almost surely. Hence, property (i) of definition (95) is not satisfied in general, and $\|\cdot\|_{p}$ may fail to be a norm on $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$.
2. Let $\langle\cdot, \cdot\rangle$ be an inner-product on a \mathbf{K}-vector space \mathcal{H}, and let $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$. The fact that given $x \in \mathcal{H}\|x\|=0$ is equivalent to $x=0$, is a consequence of property (v) of definition (81). So (i) of definition (95) is satisfied. Given $\alpha \in \mathbf{K}$, using (i) and (iii) of definition (81), we have:

$$
\langle\alpha x, \alpha x\rangle=\alpha \bar{\alpha}\langle x, x\rangle=|\alpha|^{2}\langle x, x\rangle
$$

and consequently $\|\alpha x\|=|\alpha|\|x\|$. So (ii) of definition (95) is also satisfied. Finally, the triangle inequality:

$$
\|x+y\| \leq\|x\|+\|y\|
$$

has been proved in exercise (17) of Tutorial 10. So (iii) of definition (95) is also satisfied. We have proved that $\|\cdot\|$ is indeed a norm on \mathcal{H}.
3. Suppose $|\mu|(\Omega)=0$. Then for all $E \in \mathcal{F}$, we have:

$$
|\mu(E)| \leq|\mu|(E) \leq|\mu|(\Omega)=0
$$

and consequently $\mu=0$. Conversely, if $\mu=0$ it follows immediately from definition (94) that $|\mu|=0$ and in particular $\|\mu\|=|\mu|(\Omega)=0$. So property (i) of definition (95) is satisfied. Let $\alpha \in \mathbf{C}$. Given $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ measurable partition of E, using definition (94) we have:

$$
\sum_{n=1}^{+\infty}\left|\alpha \mu\left(E_{n}\right)\right|=|\alpha| \sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right| \leq|\alpha \||\mu|(E)
$$

It follows that $|\alpha||\mu|(E)$ is an upper-bound of all $\sum_{n=1}^{+\infty}\left|\alpha \mu\left(E_{n}\right)\right|$ as $\left(E_{n}\right)_{n \geq 1}$ ranges over all measurable partitions of E. From definition (94), $|\alpha \mu|(E)$ being the smallest of such upper-bounds,
we obtain $|\alpha \mu|(E) \leq|\alpha||\mu|(E)$. In the case when $\alpha \neq 0$, replacing α by α^{-1} and μ by $\alpha \mu$, we have:

$$
|\alpha||\mu|(E)=|\alpha|\left|\alpha^{-1}(\alpha \mu)\right|(E) \leq|\alpha||\alpha|^{-1}|\alpha \mu|(E)
$$

and consequently $|\alpha||\mu|(E) \leq|\alpha \mu|(E)$. This being also true for $\alpha=0$, we have proved that $|\alpha \mu|(E)=|\alpha||\mu|(E)$ for all complex measure $\mu, E \in \mathcal{F}$ and $\alpha \in \mathbf{C}$. Taking $E=\Omega$ we obtain:

$$
\|\alpha \mu\|=|\alpha \mu|(\Omega)=|\alpha||\mu|(\Omega)=|\alpha|\|\mu\|
$$

and property (ii) of definition (95) is therefore satisfied. Let μ and λ be two complex measures and $E \in \mathcal{F}$. Let $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E. We have:
$\sum_{n=1}^{+\infty}\left|(\lambda+\mu)\left(E_{n}\right)\right| \leq \sum_{n=1}^{+\infty}\left|\lambda\left(E_{n}\right)\right|+\sum_{n=1}^{+\infty}\left|\mu\left(E_{n}\right)\right| \leq|\lambda|(E)+|\mu|(E)$
and $|\lambda|(E)+|\mu|(E)$ is an upper-bound of all $\sum_{n=1}^{+\infty}\left|(\lambda+\mu)\left(E_{n}\right)\right|$, as $\left(E_{n}\right)_{n \geq 1}$ ranges over all measurable partitions of E. From
definition (94), $|\lambda+\mu|(E)$ being the smallest of such upperbounds, we obtain:

$$
|\lambda+\mu|(E) \leq|\lambda|(E)+|\mu|(E)
$$

In particular for $E=\Omega$, we have $\|\lambda+\mu\| \leq\|\lambda\|+\|\mu\|$. This shows that property (iii) of definition (95) is satisfied. We have proved that $\|\mu\|=|\mu|(\Omega)$ defines a norm on $M^{1}(\Omega, \mathcal{F})$.

Exercise 11

Exercise 12. Let $\mu \in M^{1}(\Omega, \mathcal{F})$ and $\mu^{+}=(|\mu|+\mu) / 2$. From theorem (57), the total variation $|\mu|$ is a finite measure on (Ω, \mathcal{F}), or in other words, a complex measure with values in \mathbf{R}^{+}. Since μ is a signed measure, it is a complex measure with values in \mathbf{R}. It follows that μ^{+}is a complex measure with values in \mathbf{R}. Furthermore, the fact that μ is a signed measure allows us to write $-\mu(E) \leq|\mu(E)|$ for all $E \in \mathcal{F}$. Since $|\mu(E)| \leq|\mu|(E)$ can be seen as an easy consequence of definition (94), we conclude that $-\mu(E) \leq|\mu|(E)$, or equivalently $\mu^{+}(E) \geq 0$ for all $E \in \mathcal{F}$. So μ^{+}is a complex measure with values in \mathbf{R}^{+}, or in other words, it is a finite measure on (Ω, \mathcal{F}). Since $\mu(E) \leq|\mu(E)|$ for all $E \in \mathcal{F}$, we obtain similarly that $\mu^{-}=(|\mu|-\mu) / 2$ is a finite measure on (Ω, \mathcal{F}). The fact that $\mu=\mu^{+}-\mu^{-}$and $|\mu|=\mu^{+}+\mu^{-}$is clear.

Exercise 12

Exercise 13.

1. Let $\left(e_{1}, e_{2}\right)$ be the canonical basis of \mathbf{R}^{2}. For all $(x, y) \in \mathbf{R}^{2}$ and $\left(x^{\prime}, y^{\prime}\right) \in \mathbf{R}^{2}$, we have:

$$
\begin{aligned}
\left|l(x, y)-l\left(x^{\prime}, y^{\prime}\right)\right| & =\left|\left(x-x^{\prime}\right) l\left(e_{1}\right)+\left(y-y^{\prime}\right) l\left(e_{2}\right)\right| \\
& \leq \alpha\left(\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|\right)
\end{aligned}
$$

where $\alpha=\max \left(\left|l\left(e_{1}\right)\right|,\left|l\left(e_{2}\right)\right|\right)$. Since the metric d defined by:

$$
d\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right]=\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|
$$

induces the product topology on \mathbf{R}^{2}, we conclude that l is a continuous mapping.
2. Let $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ be a measurable partition of E. μ being a complex measure on (Ω, \mathcal{F}), the series $\sum_{n=1}^{+\infty} \mu\left(E_{n}\right)$ converges to $\mu(E)$ in $\mathbf{C}=\mathbf{R}^{2}$. Since l is a continuous mapping, the series $\sum_{n=1}^{+\infty} l \circ \mu\left(E_{n}\right)$ converges to $l \circ \mu(E)$ in \mathbf{R}. This being true for all $E \in \mathcal{F}$ and $\left(E_{n}\right)_{n \geq 1}$ measurable partition of $E, l \circ \mu$ is a
complex measure with values in \mathbf{R}. In other words, $l \circ \mu$ is a signed measure on (Ω, \mathcal{F}).
3. Let $\mu \in M^{1}(\Omega, \mathcal{F})$. It is always possible to write:

$$
\mu=\operatorname{Re}(\mu)+i \operatorname{Im}(\mu)
$$

Since $R e, I m: \mathbf{R}^{2} \rightarrow \mathbf{R}$ are two linear mappings, it follows from 2. that $\operatorname{Re}(\mu)$ and $\operatorname{Im}(\mu)$ are two signed measures on (Ω, \mathcal{F}). From exercise (12), $\operatorname{Re}(\mu)$ and $\operatorname{Im}(\mu)$ can be decomposed as $\operatorname{Re}(\mu)=\operatorname{Re}(\mu)^{+}-\operatorname{Re}(\mu)^{-}$and $\operatorname{Im}(\mu)=\operatorname{Im}(\mu)^{+}-\operatorname{Im}(\mu)^{-}$. Taking $\mu_{1}=\operatorname{Re}(\mu)^{+}, \mu_{2}=\operatorname{Re}(\mu)^{-}, \mu_{3}=\operatorname{Im}(\mu)^{+}$and finally $\mu_{4}=\operatorname{Im}(\mu)^{-}$, we obtain:

$$
\mu=\mu_{1}-\mu_{2}+i\left(\mu_{3}-\mu_{4}\right)
$$

where $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} are finite measures on (Ω, \mathcal{F}).

[^0]: ${ }^{3}$ In these tutorials, signed measure may not have values in $\{-\infty,+\infty\}$.

