9. L^p -spaces, $p \in [1, +\infty]$ In the following, $(\Omega, \mathcal{F}, \mu)$ is a measure space. EXERCISE 1. Let $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$ be non-negative and measurable maps. Let $p, q \in \mathbb{R}^+$, such that 1/p + 1/q = 1. - 1. Show that $1 and <math>1 < q < +\infty$. - 2. For all $\alpha \in]0, +\infty[$, we define $\phi^{\alpha} : [0, +\infty] \to [0, +\infty]$ by: $$\phi^{\alpha}(x) \stackrel{\triangle}{=} \left\{ \begin{array}{ccc} x^{\alpha} & \text{if} & x \in \mathbf{R}^{+} \\ +\infty & \text{if} & x = +\infty \end{array} \right.$$ Show that ϕ^{α} is a continuous map. - 3. Define $A = (\int f^p d\mu)^{1/p}$, $B = (\int g^q d\mu)^{1/q}$ and $C = \int f g d\mu$. Explain why A, B and C are well defined elements of $[0, +\infty]$. - 4. Show that if A = 0 or B = 0 then $C \leq AB$. - 5. Show that if $A = +\infty$ or $B = +\infty$ then $C \le AB$. - 6. We assume from now on that $0 < A < +\infty$ and $0 < B < +\infty$. Define F = f/A and G = g/B. Show that: $$\int_{\Omega} F^p d\mu = \int_{\Omega} G^p d\mu = 1$$ 7. Let $a, b \in]0, +\infty[$. Show that: $$\ln(a) + \ln(b) \le \ln\left(\frac{1}{p}a^p + \frac{1}{q}b^q\right)$$ and: $$ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$$ Prove this last inequality for all $a, b \in [0, +\infty]$. 8. Show that for all $\omega \in \Omega$, we have: $$F(\omega)G(\omega) \le \frac{1}{p}(F(\omega))^p + \frac{1}{q}(G(\omega))^q$$ 9. Show that $C \leq AB$. **Theorem 41 (Holder inequality)** Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f, g : (\Omega, \mathcal{F}) \to [0, +\infty]$ be two non-negative and measurable maps. Let $p, q \in \mathbf{R}^+$ be such that 1/p + 1/q = 1. Then: $$\int_{\Omega} f g d\mu \le \left(\int_{\Omega} f^{p} d\mu\right)^{\frac{1}{p}} \left(\int_{\Omega} g^{q} d\mu\right)^{\frac{1}{q}}$$ # Theorem 42 (Cauchy-Schwarz inequality:first) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f, g : (\Omega, \mathcal{F}) \to [0, +\infty]$ be two non-negative and measurable maps. Then: $$\int_{\Omega} f g d\mu \leq \left(\int_{\Omega} f^2 d\mu\right)^{\frac{1}{2}} \left(\int_{\Omega} g^2 d\mu\right)^{\frac{1}{2}}$$ EXERCISE 2. Let $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$ be two non-negative and measurable maps. Let $p \in]1, +\infty[$. Define $A = (\int f^p d\mu)^{1/p}$ and $B = (\int g^p d\mu)^{1/p}$ and $C = (\int (f+g)^p d\mu)^{1/p}$. - 1. Explain why A, B and C are well defined elements of $[0, +\infty]$. - 2. Show that for all $a, b \in]0, +\infty[$, we have: $$(a+b)^p \le 2^{p-1}(a^p + b^p)$$ Prove this inequality for all $a, b \in [0, +\infty]$. - 3. Show that if $A = +\infty$ or $B = +\infty$ or C = 0 then $C \le A + B$. - 4. Show that if $A < +\infty$ and $B < +\infty$ then $C < +\infty$. - 5. We assume from now that $A, B \in [0, +\infty[$ and $C \in]0, +\infty[$. Show the existence of some $q \in \mathbb{R}^+$ such that 1/p + 1/q = 1. - 6. Show that for all $a, b \in [0, +\infty]$, we have: $$(a+b)^p = (a+b).(a+b)^{p-1}$$ 7. Show that: $$\int_{\Omega} f \cdot (f+g)^{p-1} d\mu \leq A C^{\frac{p}{q}}$$ $$\int_{\Omega} g \cdot (f+g)^{p-1} d\mu \leq B C^{\frac{p}{q}}$$ 8. Show that: $$\int_{\Omega} (f+g)^p d\mu \le C^{\frac{p}{q}}(A+B)$$ - 9. Show that $C \leq A + B$. - 10. Show that the inequality still holds if we assume that p=1. **Theorem 43 (Minkowski inequality)** Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$ be two non-negative and measurable maps. Let $p \in [1, +\infty[$. Then: $$\left(\int_{\Omega} (f+g)^p d\mu\right)^{\frac{1}{p}} \le \left(\int_{\Omega} f^p d\mu\right)^{\frac{1}{p}} + \left(\int_{\Omega} g^p d\mu\right)^{\frac{1}{p}}$$ **Definition 73** The L^p -spaces, $p \in [1, +\infty[$, on $(\Omega, \mathcal{F}, \mu)$, are: $$L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu) = \left\{ f : (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R})) \text{ measurable}, \int_{\Omega} |f|^{p} d\mu < +\infty \right\}$$ $$L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu) = \left\{ f : (\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C})) \text{ measurable}, \int_{\Omega} |f|^{p} d\mu < +\infty \right\}$$ For all $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we put: $$||f||_p \stackrel{\triangle}{=} \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}}$$ EXERCISE 3. Let $p \in [1, +\infty[$. Let $f, g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. - 1. Show that $L_{\mathbf{R}}^p(\Omega, \mathcal{F}, \mu) = \{ f \in L_{\mathbf{C}}^p(\Omega, \mathcal{F}, \mu) , f(\Omega) \subseteq \mathbf{R} \}.$ - 2. Show that $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ is closed under **R**-linear combinations. - 3. Show that $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is closed under C-linear combinations. - 4. Show that $||f + g||_p \le ||f||_p + ||g||_p$. - 5. Show that $||f||_p = 0 \Leftrightarrow f = 0 \mu$ -a.s. - 6. Show that for all $\alpha \in \mathbb{C}$, $\|\alpha f\|_p = |\alpha| \cdot \|f\|_p$. - 7. Explain why $(f,g) \to ||f-g||_p$ is not a metric on $L^p_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$ **Definition 74** For all $f:(\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ measurable, Let: $$||f||_{\infty} \stackrel{\triangle}{=} \inf\{M \in \mathbf{R}^+, |f| \le M \ \mu\text{-a.s.}\}$$ The L^{∞} -spaces on a measure space $(\Omega, \mathcal{F}, \mu)$ are: $$L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu) \stackrel{\triangle}{=} \{ f : (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R})) \text{ measurable}, ||f||_{\infty} < +\infty \}$$ $$L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu) \stackrel{\triangle}{=} \{ f : (\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C})) \text{ measurable}, ||f||_{\infty} < +\infty \}$$ EXERCISE 4. Let $f, g \in L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. - 1. Show that $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu) = \{ f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu) , f(\Omega) \subseteq \mathbf{R} \}.$ - 2. Show that $|f| \leq ||f||_{\infty} \mu$ -a.s. - 3. Show that $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$. - 4. Show that $L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ is closed under **R**-linear combinations. - 5. Show that $L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is closed under **C**-linear combinations. - 6. Show that $||f||_{\infty} = 0 \iff f = 0 \text{ μ-a.s.}.$ - 7. Show that for all $\alpha \in \mathbb{C}$, $\|\alpha f\|_{\infty} = |\alpha| \cdot \|f\|_{\infty}$. - 8. Explain why $(f,g) \to ||f-g||_{\infty}$ is not a metric on $L^{\infty}_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$ **Definition 75** Let $p \in [1, +\infty]$. Let $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . For all $\epsilon > 0$ and $f \in L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, we define the so-called **open ball** in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$: $$B(f, \epsilon) \stackrel{\triangle}{=} \{g : g \in L_{\mathbf{K}}^p(\Omega, \mathcal{F}, \mu), ||f - g||_p < \epsilon\}$$ We call usual topology in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, the set \mathcal{T} defined by: $$\mathcal{T} \stackrel{\triangle}{=} \{ U : U \subseteq L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu), \forall f \in U, \exists \epsilon > 0, B(f, \epsilon) \subseteq U \}$$ Note that if $(f,g) \to ||f-g||_p$ was a metric, the usual topology in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, would be nothing but the *metric* topology. EXERCISE 5. Let $p \in [1, +\infty]$. Suppose there exists $N \in \mathcal{F}$ with $\mu(N) = 0$ and $N \neq \emptyset$. Put $f = 1_N$ and g = 0 - 1. Show that $f, g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ and $f \neq g$. - 2. Show that any open set containing f also contains g. - 3. Show that $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ and $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ are not Hausdorff. EXERCISE 6. Show that the usual topology on $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ is induced by the usual topology on $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, where $p \in [1, +\infty]$. **Definition 76** Let (E, \mathcal{T}) be a topological space. A sequence $(x_n)_{n\geq 1}$ in E is said to **converge** to $x \in E$, and we write $x_n \stackrel{\mathcal{T}}{\to} x$, if and only if, for all $U \in \mathcal{T}$ such that $x \in U$, there exists $n_0 \geq 1$ such that: $$n > n_0 \implies x_n \in U$$ When $E = L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ or $E = L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, we write $x_n \stackrel{L^p}{\to} x$. EXERCISE 7. Let (E,T) be a topological space and $E' \subseteq E$. Let $T' = T_{|E'|}$ be the induced topology on E'. Show that if $(x_n)_{n\geq 1}$ is a sequence in E' and $x \in E'$, then $x_n \xrightarrow{T} x$ is equivalent to $x_n \xrightarrow{T'} x$. EXERCISE 8. Let $f, g, (f_n)_{n\geq 1}$ be in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ and $p \in [1, +\infty]$. - 1. Recall what the notation $f_n \to f$ means. - 2. Show that $f_n \stackrel{L^p}{\to} f$ is equivalent to $||f_n f||_p \to 0$. - 3. Show that if $f_n \stackrel{L^p}{\to} f$ and $f_n \stackrel{L^p}{\to} g$ then $f = g \mu$ -a.s. EXERCISE 9. Let $p \in [1, +\infty]$. Suppose there exists some $N \in \mathcal{F}$ such that $\mu(N) = 0$ and $N \neq \emptyset$. Find a sequence $(f_n)_{n \geq 1}$ in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ and f, g in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, $f \neq g$ such that $f_n \stackrel{L^p}{\to} f$ and $f_n \stackrel{L^p}{\to} g$. **Definition 77** Let $(f_n)_{n\geq 1}$ be a sequence in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, where $(\Omega, \mathcal{F}, \mu)$ is a measure space and $p \in [1, +\infty]$. We say that $(f_n)_{n\geq 1}$ is a Cauchy sequence, if and only if, for all $\epsilon > 0$, there exists $n_0 \geq 1$ such that: $$n, m \ge n_0 \implies ||f_n - f_m||_p \le \epsilon$$ EXERCISE 10. Let $f, (f_n)_{n\geq 1}$ be in
$L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ and $p \in [1, +\infty]$. Show that if $f_n \stackrel{L^p}{\to} f$, then $(f_n)_{n\geq 1}$ is a Cauchy sequence. EXERCISE 11. Let $(f_n)_{n\geq 1}$ be Cauchy in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu), p \in [1, +\infty]$. 1. Show the existence of $n_1 \ge 1$ such that: $$n \ge n_1 \implies ||f_n - f_{n_1}||_p \le \frac{1}{2}$$ 2. Suppose we have found $n_1 < n_2 < \ldots < n_k, k \ge 1$, such that: $$\forall j \in \{1, \dots, k\} \ , \ n \ge n_j \ \Rightarrow \ \|f_n - f_{n_j}\|_p \le \frac{1}{2^j}$$ Show the existence of n_{k+1} , $n_k < n_{k+1}$ such that: $$n \ge n_{k+1} \implies ||f_n - f_{n_{k+1}}||_p \le \frac{1}{2^{k+1}}$$ 3. Show that there exists a subsequence $(f_{n_k})_{k\geq 1}$ of $(f_n)_{n\geq 1}$ with: $$\sum_{k=1}^{+\infty} \|f_{n_{k+1}} - f_{n_k}\|_p < +\infty$$ EXERCISE 12. Let $p \in [1, +\infty]$, and $(f_n)_{n \geq 1}$ be in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, with: $$\sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p < +\infty$$ We define: $$g \stackrel{\triangle}{=} \sum_{n=1}^{+\infty} |f_{n+1} - f_n|$$ - 1. Show that $g:(\Omega,\mathcal{F})\to [0,+\infty]$ is non-negative and measurable. - 2. If $p = +\infty$, show that $g \leq \sum_{n=1}^{+\infty} ||f_{n+1} f_n||_{\infty} \mu$ -a.s. - 3. If $p \in [1, +\infty[$, show that for all $N \ge 1$, we have: $$\left\| \sum_{n=1}^{N} |f_{n+1} - f_n| \right\|_{p} \le \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_{p}$$ 4. If $p \in [1, +\infty[$, show that: $$\left(\int_{\Omega} g^p d\mu\right)^{\frac{1}{p}} \le \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p$$ - 5. Show that for $p \in [1, +\infty]$, we have $g < +\infty$ μ -a.s. - 6. Define $A = \{g < +\infty\}$. Show that for all $\omega \in A$, $(f_n(\omega))_{n \geq 1}$ is a Cauchy sequence in \mathbb{C} . We denote $z(\omega)$ its limit. - 7. Define $f:(\Omega,\mathcal{F})\to (\mathbf{C},\mathcal{B}(\mathbf{C}))$, by: $$f(\omega) \stackrel{\triangle}{=} \left\{ \begin{array}{ccc} z(\omega) & \text{if} & \omega \in A \\ 0 & \text{if} & \omega \notin A \end{array} \right.$$ Show that f is measurable and $f_n \to f$ μ -a.s. - 8. if $p = +\infty$, show that for all $n \geq 1$, $|f_n| \leq |f_1| + g$ and conclude that $f \in L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. - 9. If $p \in [1, +\infty[$, show the existence of $n_0 \ge 1$, such that: $$n \ge n_0 \Rightarrow \int_{\Omega} |f_n - f_{n_0}|^p d\mu \le 1$$ Deduce from Fatou lemma that $f - f_{n_0} \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. - 10. Show that for $p \in [1, +\infty]$, $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. - 11. Suppose that $f_n \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, for all $n \geq 1$. Show the existence of $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, such that $f_n \to f$ μ -a.s. EXERCISE 13. Let $p \in [1, +\infty]$, and $(f_n)_{n \geq 1}$ be in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, with: $$\sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p < +\infty$$ - 1. Does there exist $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \to f$ μ -a.s. - 2. Suppose $p = +\infty$. Show that for all n < m, we have: $$|f_{m+1} - f_n| \le \sum_{k=n}^m ||f_{k+1} - f_k||_{\infty} \mu$$ -a.s. 3. Suppose $p = +\infty$. Show that for all $n \ge 1$, we have: $$||f - f_n||_{\infty} \le \sum_{k=n}^{+\infty} ||f_{k+1} - f_k||_{\infty}$$ 4. Suppose $p \in [1, +\infty[$. Show that for all n < m, we have: $$\left(\int_{\Omega} |f_{m+1} - f_n|^p d\mu \right)^{\frac{1}{p}} \le \sum_{k=n}^m ||f_{k+1} - f_k||_p$$ 5. Suppose $p \in [1, +\infty[$. Show that for all $n \ge 1$, we have: $$||f - f_n||_p \le \sum_{k=n}^{+\infty} ||f_{k+1} - f_k||_p$$ - 6. Show that for $p \in [1, +\infty]$, we also have $f_n \stackrel{L^p}{\to} f$. - 7. Suppose conversely that $g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is such that $f_n \xrightarrow{L^p} g$. Show that $f = g \ \mu$ -a.s.. Conclude that $f_n \to g \ \mu$ -a.s.. **Theorem 44** Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $p \in [1, +\infty]$, and $(f_n)_{n \geq 1}$ be a sequence in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that: $$\sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p < +\infty$$ Then, there exists $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \to f$ μ -a.s. Moreover, for all $g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, the convergence $f_n \to g$ μ -a.s. and $f_n \xrightarrow{L^p} g$ are equivalent. EXERCISE 14. Let $f, (f_n)_{n\geq 1}$ be in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \stackrel{L^p}{\to} f$, where $p \in [1, +\infty]$. 1. Show that there exists a sub-sequence $(f_{n_k})_{k\geq 1}$ of $(f_n)_{n\geq 1}$, with: $$\sum_{k=1}^{+\infty} \|f_{n_{k+1}} - f_{n_k}\|_p < +\infty$$ - 2. Show that there exists $g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_{n_k} \to g$ μ -a.s. - 3. Show that $f_{n_k} \stackrel{L^p}{\to} g$ and $g = f \mu$ -a.s. - 4. Conclude with the following: **Theorem 45** Let $(f_n)_{n\geq 1}$ be in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ and $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \stackrel{L^p}{\to} f$, where $p \in [1, +\infty]$. Then, we can extract a sub-sequence $(f_{n_k})_{k\geq 1}$ of $(f_n)_{n\geq 1}$ such that $f_{n_k} \to f$ μ -a.s. EXERCISE 15. Prove the last theorem for $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. EXERCISE 16. Let $(f_n)_{n\geq 1}$ be Cauchy in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu), p \in [1, +\infty]$. - 1. Show that there exists a subsequence $(f_{n_k})_{k\geq 1}$ of $(f_n)_{n\geq 1}$ and f belonging to $L^p_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$, such that $f_{n_k}\stackrel{L^p}{\to} f$. - 2. Using the fact that $(f_n)_{n\geq 1}$ is Cauchy, show that $f_n \stackrel{L^p}{\to} f$. **Theorem 46** Let $p \in [1, +\infty]$. Let $(f_n)_{n\geq 1}$ be a Cauchy sequence in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Then, there exists $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \stackrel{L^p}{\to} f$. EXERCISE 17. Prove the last theorem for $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. #### Exercise 1. - 1. Since $p, q \in \mathbf{R}^+$, we have $p < +\infty$ and $q < +\infty$. From the inequality $1/p \le 1/p + 1/q = 1$, we obtain $p \ge 1$. If p = 1, then 1/q = 0, contradicting $q < +\infty$. So p > 1, and similarly q > 1. We have proved that $1 and <math>1 < q < +\infty$. - 2. Let $\alpha \in]0, +\infty[$ and $\phi = \phi^{\alpha}$. We want to prove that ϕ is continuous. For all $a \in \mathbf{R}^+$, it is clear that $\lim_{x \to a} \phi(x) = \phi(a)$. So ϕ is continuous at x = a. Furthermore, $\lim_{x \to +\infty} \phi(x) = \phi(+\infty)$. So ϕ is also continuous at $+\infty$. For many of us, this is sufficient proof of the fact that ϕ is a continuous map. However, for those who want to apply definition (27), the following can be said: let V be open in $[0, +\infty]$. We want to show that $\phi^{-1}(V)$ is open in $[0, +\infty]$. Let $a \in \phi^{-1}(V)$. Then $\phi(a) \in V$. Since ϕ is continuous at x = a, there exists U_a open in $[0, +\infty]$, containing a, such that $\phi(U_a) \subseteq V$. So $a \in U_a \subseteq \phi^{-1}(V)$. It follows that $\phi^{-1}(V)$ can be written as $\phi^{-1}(V) = \bigcup_{a \in \phi^{-1}(V)} U_a$, and $\phi^{-1}(V)$ is therefore open in $[0, +\infty]$. From definition (27), we conclude that $\phi: [0, +\infty] \to [0, +\infty]$ is a continuous map. - 3. f^p can be viewed as $f^p = \phi^p \circ f$, where ϕ^p is defined as in 2. We proved that ϕ^p is a continuous map. It is therefore measurable with respect to the Borel σ -algebra $B([0,+\infty])$ on $[0,+\infty]$. It follows that $f^p:(\Omega,\mathcal{F})\to [0,+\infty]$ is a measurable map, which is also non-negative. Hence, the integral $\int f^p d\mu$ is a well-defined element of $[0,+\infty]$, and $A=(\int f^p d\mu)^{1/p}$ is also well-defined, being understood that $(+\infty)^{1/p}=+\infty$. Similarly, $B=(\int f^q d\mu)^{1/q}$ is a well-defined element of $[0,+\infty]$. Finally, the map $fg:(\Omega,\mathcal{F})\to [0,+\infty]$ is non-negative and measurable, and $C=\int fgd\mu$ is a well-defined element of $[0+\infty]$. - 4. Suppose A=0. Then $\int f^p d\mu=0$, and since f^p is non-negative, we see that $f^p=0$ μ -a.s., and consequently f=0 μ -a.s. So fg=0 μ -a.s., and finally $C=\int fgd\mu=0$. So $C\leq AB$. Similarly, B=0 implies C=0, and therefore $C\leq AB$. - 5. Suppose $A = +\infty$. Then, either B = 0 or B > 0. If B = 0, then $C \le AB$ is true from 4. If B > 0, then $AB = +\infty$, and consequently $C \le AB$. In any case, we see that $C \le AB$. Similarly, $B = +\infty$ implies $C \le AB$. - 6. Suppose $A, B \in]0, +\infty[$. Let F = f/A and G = g/B. We have: $$\int F^p d\mu = \int (f/A)^p d\mu = \frac{1}{A^p} \int f^p d\mu = 1$$ and similarly, $\int G^p d\mu = 1$. 7. Let $a, b \in]0, +\infty[$. The map $x \to -\ln(x)$ being convex on $]0, +\infty[$, since 1/p + 1/q = 1, we have: $$-\ln(\frac{1}{p}a^p + \frac{1}{q}b^q) \le -\frac{1}{p}\ln(a^p) - \frac{1}{q}\ln(b^q) = -\ln(ab)$$ and consequently $\ln(ab) \leq \ln(a^p/p + b^q/q)$. The map $x \to e^x$ being non-decreasing, we conclude that: $$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q \tag{1}$$ It is easy to check that inequality (1) is in fact true for all $a, b \in [0, +\infty]$. 8. For all $\omega \in \Omega$, $F(\omega)$ and $G(\omega)$ are elements of $[0, +\infty]$. From 7.: $$F(\omega)G(\omega) \le \frac{1}{p}F(\omega)^p + \frac{1}{q}G(\omega)^q$$ 9. Integrating on both side of 8., we obtain: $$\int FGd\mu \le \frac{1}{p} \int F^p d\mu + \frac{1}{q} \int G^q d\mu = 1$$ where we have used the fact that $\int F^p d\mu = \int G^q d\mu = 1$. Since $\int FG d\mu = (\int fg d\mu)/AB = C/AB$, we conclude that $C \leq AB$. Exercise 1 #### Exercise 2. - 1. f^p , g^p and $(f+g)^p$
are all non-negative and measurable. All three integrals $\int f^p d\mu$, $\int g^p d\mu$ and $\int (f+g)^p d\mu$ are therefore well-defined. It follows that A, B and C are well-defined elements of $[0, +\infty]$. - 2. Since p > 1, the map $x \to x^p$ is convex on $]0, +\infty[$. In particular, for all $a, b \in]0, +\infty[$, we have $((a+b)/2)^p \le (a^p + b^p)/2$. We conclude that: $$(a+b)^p \le 2^{p-1}(a^p + b^p) \tag{2}$$ In fact, it is easy to check that (2) holds for all $a, b \in [0, +\infty]$. - 3. If $A=+\infty$ or $B=+\infty$, then $A+B=+\infty$, and $C\leq A+B$. If C=0, then clearly $C\leq A+B$. - 4. Using 2., for all $\omega \in \Omega$, we have: $$(f(\omega) + g(\omega))^p \le 2^{p-1}(f(\omega)^p + g(\omega)^p)$$ Integrating on both side of the inequality, we obtain: $$\int (f+g)^p d\mu \le 2^{p-1} \left(\int f^p d\mu + \int g^p d\mu \right) \tag{3}$$ If $A < +\infty$ and $B < +\infty$, then both integrals $\int f^p d\mu$ and $\int g^p d\mu$ are finite, and we see from (3) that $\int (f+g)^p d\mu$ is itself finite. So $C < +\infty$. 5. Take q = p/(p-1). Since $p \in]1, +\infty[$, q is a well-defined element of \mathbf{R}^+ , and 1/p + 1/q = 1. 6. Let $a, b \in [0, +\infty]$. If $a, b \in \mathbb{R}^+$, then: $$(a+b)^p = (a+b).(a+b)^{p-1}$$ (4) If $a=+\infty$ or $b=+\infty$, then $a+b=+\infty$ and both sides of (4) are equal to $+\infty$. So (4) is true for all $a,b\in[0,+\infty]$. 7. Using holder inequality (41), since q(p-1) = p, we have: $$\int f \cdot (f+g)^{p-1} d\mu \le \left(\int f^p d\mu \right)^{\frac{1}{p}} \left(\int (f+g)^{q(p-1)} d\mu \right)^{\frac{1}{q}} = AC^{\frac{p}{q}}$$ and: $$\int g.(f+g)^{p-1}d\mu \leq \left(\int g^p d\mu\right)^{\frac{1}{p}} \left(\int (f+g)^{q(p-1)} d\mu\right)^{\frac{1}{q}} = BC^{\frac{p}{q}}$$ 8. From 6., we have: $$\int (f+g)^p d\mu = \int f \cdot (f+g)^{p-1} d\mu + \int g \cdot (f+g)^{p-1} d\mu$$ and using 7., we obtain: $$\int (f+g)^p d\mu \le C^{\frac{p}{q}}(A+B)$$ - 9. From 8., we have $C^p \leq C^{\frac{p}{q}}(A+B)$. Having assumed in 5. that $C \in]0, +\infty[$, we can divide both side of this inequality by $C^{\frac{p}{q}}$, to obtain $C^{p-\frac{p}{q}} \leq A+B$. Since p-p/q=1, we conclude that $C \leq A+B$. - 10. If p = 1, then C = A + B is equivalent to: $$\int (f+g)d\mu = \int fd\mu + \int gd\mu$$ which is true by linearity. In particular, $C \leq A + B$. The purpose of this exercise is to prove minkowski inequality (43). Exercise 2 11 #### Exercise 3. 1. Let $f:(\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be a map. Then, if f has values in \mathbf{R} , i.e. $f(\Omega) \subseteq \mathbf{R}$, then the measurability of f with respect to $(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ is equivalent to its measurability with respect to $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$. Hence: $$L^p_{\mathbf{R}}(\Omega,\mathcal{F},\mu) = \{ f \in L^p_{\mathbf{C}}(\Omega,\mathcal{F},\mu) \ , \ f(\Omega) \subseteq \mathbf{R} \}$$ The equivalence of measurability with respect to $\mathcal{B}(\mathbf{C})$ and $\mathcal{B}(\mathbf{R})$ may be taken for granted by many. It is easily proved from the fact that $\mathcal{B}(\mathbf{R}) = \mathcal{B}(\mathbf{C})_{|\mathbf{R}}$, i.e. the Borel σ -algebra on \mathbf{R} is the trace on \mathbf{R} , of the Borel σ -algebra on \mathbf{C} . This fact can be seen from the trace theorem (10), and the fact that the usual topology on \mathbf{R} is induced on \mathbf{R} , by the usual topology on \mathbf{C} . 2. Let $f,g \in L^p_{\mathbf{R}}(\Omega,\mathcal{F},\mu)$ and $\alpha \in \mathbf{R}$. The map $f + \alpha g$ is **R**-valued and measurable. Moreover, we have $|f + \alpha g| \le |f| + |\alpha| \cdot |g|$. Since $p \ge 1$, (and in particular $p \ge 0$), the map $x \to x^p$ is non-decreasing on \mathbf{R}^+ , so $|f + \alpha g|^p \le (|f| + |\alpha| \cdot |g|)^p$. Hence, we see that $\int |f + \alpha g|^p d\mu \le \int (|f| + |\alpha| \cdot |g|)^p d\mu$. However, using minkowski inequality (43), we have: $$\left(\int (|f|+|\alpha|.|g|)^p d\mu\right)^{\frac{1}{p}} \leq \left(\int |f|^p d\mu\right)^{\frac{1}{p}} + |\alpha|. \left(\int |g|^p d\mu\right)^{\frac{1}{p}}$$ We conclude that $\int |f + \alpha g|^p d\mu < +\infty$. So $f + \alpha g \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, and we have proved that $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ is closed under **R**-linear combinations. - 3. The fact that $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is closed under **C**-linear combinations, is proved identically to 2., replacing **R** by **C**. - 4. Using $|f+g|^p \leq (|f|+|g|)^p$ and minkowski inequality (43): $$\left(\int (|f|+|g|)^p d\mu\right)^{\frac{1}{p}} \le \left(\int |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int |g|^p d\mu\right)^{\frac{1}{p}}$$ we see that $||f + g||_p \le ||f||_p + ||g||_p$. - 5. Suppose $||f||_p = 0$. Then $\int |f|^p d\mu = 0$. Since $|f|^p$ is non-negative, $|f|^p = 0$ μ -a.s., and consequently f = 0 μ -a.s. Conversely, if f = 0 μ -a.s., then $|f|^p = 0$ μ -a.s., so $\int |f|^p d\mu = 0$ and finally $||f||_p = 0$. - 6. Let $\alpha \in \mathbf{C}$. We have: $$\|\alpha f\|_p = \left(\int |\alpha f|^p\right)^{\frac{1}{p}} = |\alpha| \cdot \left(\int |f|^p\right)^{\frac{1}{p}} = |\alpha| \cdot \|f\|_p$$ 7. $||f - g||_p = 0$ only implies $f = g \mu$ -.a.s, and not necessarily f = g. So $(f,g) \to ||f - g||_p$, may not be a metric on $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Exercise 3 # Exercise 4. 1. For all $f:(\Omega,\mathcal{F})\to (\mathbf{C},\mathcal{B}(\mathbf{C}))$ with values in \mathbf{R} , the measurability of f with respect to $\mathcal{B}(\mathbf{C})$ is equivalent to its measurability with respect to $\mathcal{B}(\mathbf{R})$. Hence: $$L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu) = \{ f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu) , f(\Omega) \subseteq \mathbf{R} \}$$ 2. Since $||f||_{\infty} < +\infty$, for all $n \geq 1$, we have $||f||_{\infty} < ||f||_{\infty} + 1/n$. $||f||_{\infty}$ being the greatest lower bound of all μ -almost sure upper bounds of |f|, $||f||_{\infty} + 1/n$ cannot be such lower bound. There exists $M \in \mathbb{R}^+$, such that 13 $|f| \leq M$ μ -a.s., and $M < ||f||_{\infty} + 1/n$. In particular, $|f| < ||f||_{\infty} + 1/n$ μ -a.s. Let A_n be the set defined by $A_n = \{||f||_{\infty} + 1/n \leq |f|\}$. Then $A_n \in \mathcal{F}$ and $\mu(A_n) = 0$. Moreover, $A_n \subseteq A_{n+1}$ and $\bigcup_{n=1}^{+\infty} A_n = \{||f||_{\infty} < |f|\}$. It follows that $A_n \uparrow \{||f||_{\infty} < |f|\}$, and from theorem (7), we see that: $$\mu(\{\|f\|_{\infty} < |f|\}) = \lim_{n \to +\infty} \mu(A_n) = 0$$ We conclude that $|f| \leq ||f||_{\infty} \mu$ -a.s. 3. Since $|f+g| \le |f| + |g|$, using 2., we have: $$|f+g| \le ||f||_{\infty} + ||g||_{\infty} \mu$$ -a.s. Hence, $||f||_{\infty} + ||g||_{\infty}$ is a μ -almost sure upper bound of |f+g|. $||f+g||_{\infty}$ being a lower bound of all such upper bounds, we have $||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$. 4. Let $f, g \in L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ and $\alpha \in \mathbf{R}$. Then $f + \alpha g$ is **R**-valued and measurable. Furthermore, using 2., we have: $$|f + \alpha g| \le |f| + |\alpha| \cdot |g| \le ||f||_{\infty} + |\alpha| \cdot ||g||_{\infty} \mu$$ -a.s. It follows that $||f + \alpha g||_{\infty} \leq ||f||_{\infty} + |\alpha|.||g||_{\infty} < +\infty$. We conclude that $f + \alpha g \in L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, and we have proved that $L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{R} -linear combinations. - 5. The fact that $L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is closed under **C**-linear combinations can be proved identically, replacing **R** by **C**. - 6. Suppose $||f||_{\infty} = 0$. Then $|f| \le 0$ μ -a.s., and consequently f = 0 μ -a.s. Conversely, if f = 0 μ -a.s., then $|f| \le 0$ μ -a.s., and 0 is therefore a μ -almost sure upper bound of |f|. So $||f||_{\infty} \le 0$. Since $||f||_{\infty}$ is an infimum of a subset of \mathbf{R}^+ , it is either $+\infty$ (when such subset is empty), or lies in \mathbf{R}^+ . So $||f||_{\infty} \ge 0$ and finally $||f||_{\infty} = 0$. - 7. We have $|\alpha f| \leq |\alpha|.\|f\|_{\infty}$ μ -a.s., and hence $\|\alpha f\|_{\infty} \leq |\alpha|.\|f\|_{\infty}$. if $\alpha \neq 0$, we have: $$||f||_{\infty} = ||\frac{1}{\alpha} \cdot (\alpha f)||_{\infty} \le \frac{1}{|\alpha|} ||\alpha f||_{\infty}$$ It follows that $\|\alpha f\|_{\infty} = |\alpha| \cdot \|f\|_{\infty}$, (also true if $\alpha = 0$). 8. $||f - g||_{\infty} = 0$ implies f = g μ -a.s., but not f = g. It follows that $(f,g) \to ||f - g||_{\infty}$ may not be a metric on $L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Exercise 4 #### Exercise 5. 1. Since $N \neq \emptyset$, $1_N \neq 0$, so $f \neq g$. Since $N \in \mathcal{F}$, the map $f = 1_N$ is measurable, and being **R**-valued, it is also **C**-valued. Moreover, since $\mu(N) = 0$, $||f||_p = 0 < +\infty$ (whether $p = +\infty$ or lies in $[1, +\infty[$), and we see that $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Since g = 0, it is **C**-valued, measurable and $||g||_p = 0 < +\infty$, so $g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. 2. Let U be open in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, such that $f \in U$. By definition (75), there exists $\epsilon > 0$, such that $B(f, \epsilon) \subseteq U$. However, $||f - g||_p = ||f||_p = 0$ $(p = +\infty \text{ or } p \in [1, +\infty[)$. So in particular $||f - g||_p < \epsilon$. So $g \in B(f, \epsilon)$ and finally $g \in U$. 3. If $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ was Hausdorff, since $f \neq g$, there would exist U, V open sets in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f \in U, g \in V$ and
$U \cap V = \emptyset$. However from 2., this is impossible, as g would always be an element of U as well as V. We conclude similarly that $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ is not Hausdorff. Exercise 5 **Exercise 6.** Let $L^p_{\mathbf{R}}$ and $L^p_{\mathbf{C}}$ denote $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ and $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ respectively. Let \mathcal{T} be the usual topology on $L^p_{\mathbf{C}}$ and \mathcal{T}' be the usual topology on $L^p_{\mathbf{R}}$. We want to prove that $\mathcal{T}' = \mathcal{T}_{|L^p_{\mathbf{R}}}$, i.e. that \mathcal{T}' is the topology on $L^p_{\mathbf{R}}$ induced by \mathcal{T} . Given $f \in L^p_{\mathbf{R}}$ and $\epsilon > 0$, let $B(f, \epsilon)$ denote the open ball in $L^p_{\mathbf{C}}$ and $B'(f, \epsilon)$ denote the open ball the $L^p_{\mathbf{R}}$. Then $B'(f, \epsilon) = B(f, \epsilon) \cap L^p_{\mathbf{R}}$. It is a simple exercise to show that any open ball in $L^p_{\mathbf{R}}$ or $L^p_{\mathbf{C}}$, is in fact open with respect to their usual topology. Let $U' \in \mathcal{T}'$. For all $f \in U'$, there exists $\epsilon_f > 0$ such that $f \in B'(f, \epsilon_f) \subseteq U'$. It follows that: $$U' = \bigcup_{f \in U'} B'(f, \epsilon_f) = (\bigcup_{f \in U'} B(f, \epsilon_f)) \cap L_{\mathbf{R}}^p$$ and we see that $U' \in \mathcal{T}_{|L^p_{\mathbf{R}}}$. So $\mathcal{T}' \subseteq \mathcal{T}_{|L^p_{\mathbf{R}}}$. Conversely, let $U' \in \mathcal{T}_{|L^p_{\mathbf{R}}}$. There exists $U \in \mathcal{T}$ such that $U' = U \cap L^p_{\mathbf{R}}$. Let $f \in U'$. Then $f \in U$. There exists $\epsilon > 0$ such that $B(f, \epsilon) \subseteq U$. It follows that $B'(f, \epsilon) = B(f, \epsilon) \cap L^p_{\mathbf{R}} \subseteq U'$. So U' is open with respect to the usual topology in $L^p_{\mathbf{R}}$, i.e. $U' \in \mathcal{T}'$. We have proved that $\mathcal{T}_{|L^p_{\mathbf{R}}} \subseteq \mathcal{T}'$, and finally $\mathcal{T}' = \mathcal{T}_{|L^p_{\mathbf{R}}}$. Exercise 6 **Exercise 7.** let (E, \mathcal{T}) be a topological space and $E' \subseteq E$. Let $\mathcal{T}' = \mathcal{T}_{|E'|}$ be the induced topology on E'. We assume that $(x_n)_{n\geq 1}$ is a sequence in E', and that $x\in E'$. Suppose that $x_n\stackrel{\mathcal{T}}{\to} x$. Let $U'\in \mathcal{T}'$ be such that $x\in U'$. There exists $U\in \mathcal{T}$ such that $U'=U\cap E'$. Since $x\in U$ and $x_n\stackrel{\mathcal{T}}{\to} x$, there exists $n_0\geq 1$ such that $x_n\in U$ for all $n\geq n_0$. But $x_n\in E'$ for all $n\geq 1$. So $x_n\in U\cap E'=U'$ for all $n\geq n_0$, and we see that $x_n\stackrel{\mathcal{T}}{\to} x$. Conversely, suppose that $x_n\stackrel{\mathcal{T}}{\to} x$. Let $U\in \mathcal{T}$ be such that $x\in U$. Then $U\cap E'\in \mathcal{T}'$ and $x\in U\cap E'$. There exists $n_0\geq 1$, such that $x_n\in U\cap E'$ for all $n\geq n_0$. In particular, $x_n\in U$ for all $n\geq n_0$, and we see that $x_n\stackrel{\mathcal{T}}{\to} x$. We have proved that $x_n\stackrel{\mathcal{T}}{\to} x$ and $x_n\stackrel{\mathcal{T}}{\to} x$ are equivalent. Exercise 7 # Exercise 8. 1. The notation $f_n \to f$ has been used throughout these tutorials, to refer to a *simple* convergence, i.e. $f_n(\omega) \to f(\omega)$ as $n \to +\infty$, for all $\omega \in \Omega$. 2. Suppose $f_n \stackrel{L^p}{\to} f$. Let $\epsilon > 0$. The open ball $B(f, \epsilon)$ being open with respect to the usual topology in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, there exists $n_0 \geq 1$, such that $f_n \in B(f, \epsilon)$ for all $n \geq n_0$, i.e.: $$n \ge n_0 \implies ||f_n - f||_p < \epsilon$$ So $||f_n - f||_p \to 0$. Conversely, suppose $||f_n - f||_p \to 0$. Let U be open in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, such that $f \in U$. From definition (75), there exists $\epsilon > 0$ such that $B(f, \epsilon) \subseteq U$. By assumption, there exists $n_0 \geq 0$, such that $||f_n - f||_p < \epsilon$ for all $n \geq n_0$. So $f_n \in B(f, \epsilon)$ for all $n \geq n_0$. Hence, we see that $f_n \in U$ for all $n \geq n_0$, and we have proved that $f_n \stackrel{L^p}{\to} f$. We conclude that $f_n \stackrel{L^p}{\to} f$ and $||f_n - f||_p \to 0$ are equivalent. 3. Suppose $f_n \stackrel{L^p}{\to} f$ and $f_n \stackrel{L^p}{\to} g$. From 2., we have $||f_n - f||_p \to 0$ and $||f_n - g||_p \to 0$. Using the triangle inequality (ex. (3) for $p \in [1, +\infty[$ and ex. (4) for $p = +\infty$): $$||f - g||_p \le ||f_n - f||_p + ||f_n - g||_p$$ for all $n \ge 1$. It follows that we have $||f - g||_p < \epsilon$ for all $\epsilon > 0$, and consequently $||f - g||_p = 0$. From ex. (3) and ex. (4) we conclude that $f = g \mu$ -a.s. Exercise 8 **Exercise 9.** Take $f_n = 1_N = f$ for all $n \ge 1$. Take g = 0. Then f_n, f and g are all elements of $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, and $f \ne g$. Moreover, for all $n \ge 1$, we have $\|f_n - f\|_p = \|f_n - g\|_p = 0$. So $f_n \stackrel{L^p}{\to} f$ and $f_n \stackrel{L^p}{\to} g$. The purpose of this exercise is to show that a limit in L^p may not be unique $(f \ne g)$. However, it is unique, up to μ -almost sure equality (See exercise (8)). Exercise 9 **Exercise 10.** Suppose $f_n \stackrel{L^p}{\to} f$. Let $\epsilon > 0$. There exists $n_0 \ge 1$, with: $$n \ge n_0 \implies ||f_n - f||_p \le \epsilon/2$$ From the triangle inequality, for all $n, m \ge 1$: $$||f_n - f_m||_p \le ||f_n - f||_p + ||f_m - f||_p$$ It follows that we have: $$n, m \geq n_0 \Rightarrow \|f_n - f_m\|_p \leq \epsilon$$ We conclude that $(f_n)_{n\geq 1}$ is a Cauchy sequence in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Exercise 10 #### Exercise 11. 1. Take $\epsilon = 1/2$. There exists $n_1 \geq 1$, such that: $$n, m \ge n_1 \implies ||f_n - f_m||_p \le \frac{1}{2}$$ www.probability.net 16 In particular, we have: $$n \ge n_1 \implies ||f_n - f_{n_1}||_p \le \frac{1}{2}$$ 2. Let $k \ge 1$. We have $n_1 < \ldots < n_k$, such that for all $j = 1, \ldots, k$: $$n \ge n_j \implies \|f_n - f_{n_j}\|_p \le \frac{1}{2^j}$$ Take $\epsilon = 1/2^{k+1}$. There exists $n'_{k+1} \ge 1$, such that: $$n, m \ge n'_{k+1} \implies ||f_n - f_m||_p \le \frac{1}{2^{k+1}}$$ Take $n_{k+1} = \max(n_k + 1, n'_{k+1})$. Then $n_k < n_{k+1}$, and: $$n \ge n_{k+1} \implies ||f_n - f_{n_{k+1}}||_p \le \frac{1}{2^{k+1}}$$ 3. By induction from 2., we can construct a strictly increasing sequence of integers $(n_k)_{k\geq 1}$, such that for all $k\geq 1$: $$n \ge n_k \implies \|f_n - f_{n_k}\|_p \le \frac{1}{2^k}$$ In particular, $||f_{n_{k+1}} - f_{n_k}||_p \le 1/2^k$ for all $k \ge 1$. It follows that we have found a subsequence $(f_{n_k})_{k \ge 1}$ of $(f_n)_{n \ge 1}$, such that: $$\sum_{k=1}^{+\infty} \|f_{n_{k+1}} - f_{n_k}\|_p < +\infty$$ Exercise 11 #### Exercise 12. - 1. Each finite sum $g_N = \sum_{n=1}^N |f_{n+1} f_n|$ is well-defined and measurable. It follows that $g = \sup_{N \ge 1} g_N$ is itself measurable. It is obviously nonnegative. - 2. Suppose $p = +\infty$. From exercise (4), for all $n \ge 1$, we have: $$|f_{n+1} - f_n| \le ||f_{n+1} - f_n||_{\infty}$$, μ -a.s. The set $N_n = \{|f_{n+1} - f_n| > \|f_{n+1} - f_n\|_{\infty}\}$ which lies in \mathcal{F} , is such that $\mu(N_n) = 0$. It follows that if $N = \bigcup_{n \ge 1} N_n$, then $\mu(N) = 0$. However, for all $\omega \in N^c$, we have: $$g(\omega) = \sum_{n=1}^{+\infty} |f_{n+1}(\omega) - f_n(\omega)| \le \sum_{n=1}^{+\infty} ||f_{n+1} - f_n||_{\infty}$$ We conclude that $g \leq \sum_{n=1}^{\infty} ||f_{n+1} - f_n||_{\infty} \mu$ -a.s. 3. Let $p \in [1, +\infty[$ and $N \ge 1$. By the triangle inequality (ex. (3)): $$\left\| \sum_{n=1}^{N} |f_{n+1} - f_n| \right\|_p \le \sum_{n=1}^{N} \|f_{n+1} - f_n\|_p \le \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p$$ 4. Let $p \in [1, +\infty[$. Given $N \ge 1$, let $g_N = \sum_{n=1}^N |f_{n+1} - f_n|$. Then $g_N \to g$ as $N \to +\infty$. The map $x \to x^p$ being continuous on $[0, +\infty]$, we have $g_N^p \to g^p$, and in particular $g^p = \liminf g_N^p$ as $N \to +\infty$. Using Fatou lemma (20), we see that: $$\int g^p d\mu \le \liminf_{N>1} \int g_N^p d\mu \tag{5}$$ However, from 3., we have $||g_N||_p \le \sum_{n=1}^{+\infty} ||f_{n+1} - f_n||_p$, for all $N \ge 1$. Since $p \ge 0$, the map $x \to x^p$ is non-decreasing on $[0, +\infty]$, and therefore: $$\int g_N^p d\mu \le \left(\sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p\right)^p \tag{6}$$ From inequalities (5) and (6), we conclude that: $$\int g^p d\mu \le \left(\sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p\right)^p$$ and finally: $$\left(\int g^{p} d\mu\right)^{\frac{1}{p}} \le \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_{p}$$ 5. Let $p \in [1, +\infty]$. If $p = +\infty$, from 2. we have: $$g \le \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p , \ \mu\text{-a.s.}$$ (7) By assumption, the series in (7) is finite. So $g < +\infty$ μ -a.s. If $p \in [1, +\infty[$, from 4. we have: $$\left(\int g^p d\mu\right)^{\frac{1}{p}} \le \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p$$ So $\int g^p d\mu < +\infty$. Since $(+\infty)\mu(\{g^p = +\infty\}) \leq \int g^p d\mu$, we see that $\mu(\{g^p = +\infty\}) = 0$ and finally $g < +\infty$ μ -a.s. 6. Let $A = \{g < +\infty\}$. Let $\omega \in A$. Then $g(\omega) < +\infty$. The series $\sum_{n=1}^{+\infty} |f_{n+1}(\omega) - f_n(\omega)|$ is therefore finite. Let $\epsilon > 0$. There exists $n_0 \ge 1$, such that: $$n \ge n_0 \implies \sum_{k=n}^{+\infty} |f_{k+1}(\omega) - f_k(\omega)| \le \epsilon$$ Given $m > n \ge n_0$, we have: $$|f_m(\omega) - f_n(\omega)| \le \sum_{k=n}^{m-1} |f_{k+1}(\omega) - f_k(\omega)| \le \epsilon$$ We conclude that the sequence $(f_n(\omega))_{n\geq 1}$ is Cauchy in **C**. It therefore has a limit¹, denoted $z(\omega)$. - 7. From 6., $f_n(\omega) \to z(\omega) = f(\omega)$ for all $\omega \in A$. Since by definition, $f(\omega) = 0$ for all $\omega \in A^c$, we see that
$f_n(\omega)1_A(\omega) \to f(\omega)$ for all $\omega \in \Omega$. Hence, we have $f_n1_A \to f$, and since f_n1_A is measurable for all $n \ge 1$, we see from theorem (17) that $f = \lim_{n \to \infty} f_n1_A$ is itself measurable. Since $\mu(A^c) = 0$ and $f_n(\omega) \to f(\omega)$ on A, we have $f_n \to f$ μ -a.s. - 8. Suppose $p = +\infty$. For all $n \ge 1$, we have: $$|f_n - f_1| \le \sum_{k=1}^{n-1} |f_{k+1} - f_k| \le g$$ So $|f_n| \leq |f_1| + g$. Taking the limit as $n \to +\infty$, we obtain $|f| \leq |f_1| + g$ μ -a.s. Let $M = \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_{\infty}$. Then by assumption, $M < +\infty$ and from 2. we have $g \leq M$ μ -a.s. Moreover, since $f_1 \in L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, using exercise (4), we have $|f_1| \leq \|f_1\|_{\infty}$ μ -a.s. with $\|f_1\|_{\infty} < +\infty$. Hence, we see that $|f| \leq \|f_1\|_{\infty} + M$ μ -a.s., and consequently: $$||f||_{\infty} \le ||f_1||_{\infty} + \sum_{n=1}^{+\infty} ||f_{n+1} - f_n||_{\infty} < +\infty$$ f is therefore C-valued, measurable and with $||f||_{\infty} < +\infty$. We have proved that $f \in L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. 9. Let $p \in [1, +\infty[$. The series $\sum_{n=1}^{+\infty} ||f_{n+1} - f_n||_p$ being finite, there exists $n_0 \ge 1$, such that: $$n \ge n_0 \implies \sum_{k=n}^{+\infty} \|f_{k+1} - f_k\|_p \le 1$$ Let $n \geq n_0$. By the triangle inequality: $$||f_n - f_{n_0}||_p \le \sum_{k=n_0}^{n-1} ||f_{k+1} - f_k||_p \le 1$$ Hence, we see that: $$n \ge n_0 \implies \int |f_n - f_{n_0}|^p d\mu \le 1^p = 1$$ (8) $^{^1}$ The completeness of ${f C}$ is proved in the next Tutorial. From 6., $f_n(\omega) \to f(\omega)$ as $n \to +\infty$, for all $\omega \in A$, where $\mu(A^c) = 0$. In particular: $$1_A|f - f_{n_0}|^p = \liminf_{n \ge 1} 1_A|f_n - f_{n_0}|^p$$ Using inequality (8) and Fatou lemma (20), we obtain:² $$\int |f - f_{n_0}|^p d\mu \le \liminf_{n \ge 1} \int |f_n - f_{n_0}|^p d\mu \le 1$$ In particular, $\int |f - f_{n_0}|^p d\mu < +\infty$. Since $f - f_{n_0}$ is **C**-valued and measurable, we conclude that $f - f_{n_0} \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. - 10. Let $p \in [1, +\infty]$. If $p = +\infty$, then $f \in L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ was proved in 8. If $p \in [1, +\infty[$, we saw in 9. that $f f_{n_0} \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ for some $n_0 \ge 1$. Since f_{n_0} is itself an element of $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we conclude from exercise (3) that $f = (f f_{n_0}) + f_{n_0}$ is also an element of $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. - 11. The purpose of this exercise is to prove that given a sequence $(f_n)_{n\geq 1}$ in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $\sum_{n=1}^{+\infty} \|f_{n+1} f_n\|_p < +\infty$, there exists $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, such that $f_n \to f$ μ -a.s. We now assume that all f_n 's are in fact \mathbf{R} -valued, i.e. $f_n \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. There exists $f^* \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \to f^*$ μ -a.s. However, $f^*(\omega)$ may not be \mathbf{R} -valued for all $\omega \in \Omega$. Yet, if $N \in \mathcal{F}$ is such that $\mu(N) = 0$ and $f_n(\omega) \to f^*(\omega)$ for all $\omega \in N^c$, then f^* is \mathbf{R} -valued on N^c (as a limit of an \mathbf{R} -valued sequence). If we define $f = f^*1_{N^c}$, then f is \mathbf{R} -valued and measurable, with $\|f\|_p = \|f^*\|_p < +\infty$. So $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ and furthermore since $f = f^*$ μ -a.s., $f_n \to f$ μ -a.s. Exercise 12 19 # Exercise 13. - 1. Yes, there does exist $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \to f$ μ -a.s. This was precisely the object of the previous exercise. - 2. Suppose $p = +\infty$, and let n < m. From exercise (4), we have $|f_{m+1} f_n| \le ||f_{m+1} f_n||_{\infty} \mu$ -a.s. Furthermore, from the triangle inequality, $||f_{m+1} f_n||_{\infty} \le \sum_{k=n}^m ||f_{k+1} f_k||_{\infty}$. It follows that: $$|f_{m+1} - f_n| \le \sum_{k=n}^{m} ||f_{k+1} - f_k||_{\infty} , \mu\text{-a.s.}$$ (9) 3. Suppose $p = +\infty$ and let $n \ge 1$. For all m > n, let $N_m \in \mathcal{F}$ be such that $\mu(N_m) = 0$, and inequality (9) holds for all $\omega \in N_m^c$. Furthermore, since $f_{m+1} \to f$ μ -a.s., let $M \in \mathcal{F}$ be such that $\mu(M) = 0$, and $f_{m+1}(\omega) \to f(\omega)$ for all $\omega \in M^c$. Then, if $N = M \cup (\cup_{m>n} N_m)$, we have $N \in \mathcal{F}$, $\mu(N) = 0$ and for all $\omega \in N^c$, $f_{m+1}(\omega) \to f(\omega)$, together with, for all m > n: $$|f_{m+1}(\omega) - f_n(\omega)| \le \sum_{k=n}^m ||f_{k+1} - f_k||_{\infty}$$ ²Note that $n \ge n_0 \ \Rightarrow \ u_n \le 1$ is enough to ensure $\liminf_{n \ge 1} u_n \le 1$. Taking the limit as $m \to +\infty$, we obtain: $$|f(\omega) - f_n(\omega)| \le \sum_{k=n}^{+\infty} ||f_{k+1} - f_k||_{\infty}$$ This being true for all $\omega \in N^c$, we have proved that: $$|f - f_n| \le \sum_{k=n}^{+\infty} ||f_{k+1} - f_k||_{\infty}, \ \mu\text{-a.s.}$$ From definition (74), we conclude that: $$||f - f_n||_{\infty} \le \sum_{k=n}^{+\infty} ||f_{k+1} - f_k||_{\infty}$$ 4. Let $p \in [1, +\infty[$ and n < m. From exercise (3), we have: $$\left(\int |f_{m+1} - f_n|^p d\mu\right)^{\frac{1}{p}} = \|f_{m+1} - f_n\|_p \le \sum_{k=n}^m \|f_{k+1} - f_k\|_p$$ 5. Let $p \in [1, +\infty[$ and $n \ge 1$. Let $N \in \mathcal{F}$ be such that $\mu(N) = 0$, and $f_{m+1}(\omega) \to f(\omega)$ for all $\omega \in N^c$. Then, we have: $$|f - f_n|^p 1_{N^c} = \liminf_{m > n} |f_{m+1} - f_n|^p 1_{N^c}$$ Using Fatou lemma (20), we obtain: $$\int |f - f_n|^p d\mu \le \liminf_{m > n} \int |f_{m+1} - f_n|^p d\mu$$ Hence, from 4. we see that: $$\int |f - f_n|^p d\mu \le \left(\sum_{k=n}^{+\infty} \|f_{k+1} - f_k\|_p\right)^p$$ and consequently: $$||f - f_n||_p \le \sum_{k=n}^{+\infty} ||f_{k+1} - f_k||_p$$ - 6. Let $p \in [1, +\infty]$. whether $p = +\infty$ or $p \in [1, +\infty[$, from 3. and 5., for all $n \ge 1$, we have $||f f_n||_p \le \sum_{k=n}^{+\infty} ||f_{k+1} f_k||_p$. Since by assumption, the series $\sum_{k=1}^{+\infty} ||f_{k+1} f_k||_p$ is finite, we conclude that $||f f_n||_p \to 0$, as $n \to +\infty$. It follows that not only $f_n \to f$ μ -a.s., but also $f_n \xrightarrow{L^p} f$. - 7. Suppose $g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is such that $f_n \stackrel{L^p}{\to} g$. Then $f_n \stackrel{L^p}{\to} f$ together with $f_n \stackrel{L^p}{\to} g$. From ex. (8), f = g μ -a.s. Furthermore, since $f_n \to f$ μ -a.s., we see that $f_n \to g$ μ -a.s. The purpose of this exercise (and the previous) is to prove theorem (44). Exercise 13 # Exercise 14. - 1. Since $f_n \stackrel{L^p}{\to} f$, from exercise (10), $(f_n)_{n \geq 1}$ is a Cauchy sequence in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Using exercise (11), there exists a sub-sequence $(f_{n_k})_{k \geq 1}$ of $(f_n)_{n \geq 1}$, such that $\sum_{k=1}^{+\infty} \|f_{n_{k+1}} f_{n_k}\|_p < +\infty$. - 2. Applying theorem (44) to the sequence $(f_{n_k})_{k\geq 1}$, there exists $g\in L^p_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$, such that $f_{n_k}\to g$ μ -a.s. - 3. Also from theorem (44), the convergence $f_{n_k} \to g \ \mu$ -a.s. and $f_{n_k} \stackrel{L^p}{\to} g$ are equivalent. Hence, we also have $f_{n_k} \stackrel{L^p}{\to} g$. However, since by assumption $f_n \stackrel{L^p}{\to} f$, we see that $f_{n_k} \stackrel{L^p}{\to} f$, and consequently from exercise (8), $f = g \mu$ -a.s. - 4. From 2., $f_{n_k} \to g$ μ -a.s., and from 3., f = g μ -a.s. It follows that $f_{n_k} \to f$ μ -a.s. Given a sequence $(f_n)_{n\geq 1}$ and f in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, such that $f_n \stackrel{L^p}{\to} f$, we have been able to extract a sub-sequence $(f_{n_k})_{k\geq 1}$ such that $f_{n_k} \to f$ μ -a.s. This proves theorem (45). Exercise 14 Exercise 15. Suppose $(f_n)_{n\geq 1}$ is a sequence in $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, and $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \stackrel{L^p}{\to} f$. Then in particular, all f_n 's and f are elements of $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ with $||f - f_n||_p \to 0$ as $n \to +\infty$. From theorem (45), we can extract a subsequence $(f_{n_k})_{k\geq 1}$ of $(f_n)_{n\geq 1}$, such that $f_{n_k} \to f$ μ -a.s. This proves theorem (45), where $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is replaced by $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. Anyone who feels there was very little to prove in this exercise, could make a very good point. Exercise 15 #### Exercise 16. 1. Since $(f_n)_{n\geq 1}$ is Cauchy in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, from exercise (11), we can extract a sub-sequence $(f_{n_k})_{k\geq 1}$ of $(f_n)_{n\geq 1}$, such that: $$\sum_{k=1}^{+\infty} \|f_{n_{k+1}} - f_{n_k}\|_p < +\infty$$ From theorem (44), there exists $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, such that $f_{n_k} \to f$ μ -a.s., as well as $f_{n_k} \stackrel{L^p}{\longrightarrow} f$. 2. Let $\epsilon > 0$. $(f_n)_{n \geq 1}$ being Cauchy, there exists $n_0 \geq 1$, such that: $$n, m \ge n_0 \Rightarrow ||f_m - f_n||_p \le \frac{\epsilon}{2}$$ Furthermore, since $f_{n_k} \stackrel{L^p}{\to} f$, there exists $k_0 \ge 1$, such that: $$k \ge k_0 \implies ||f - f_{n_k}||_p \le \frac{\epsilon}{2}$$ However, $n_k \uparrow +\infty$ as $k \to +\infty$. There exists $k_0' \ge 1$, such that $k \ge k_0' \Rightarrow n_k \ge n_0$. Choose an arbitrary $k \ge \max(k_0, k_0')$. Then $||f - f_{n_k}||_p \le \epsilon/2$ together with $n_k \ge n_0$. Hence, for all $n \ge n_0$, we have: $$||f - f_n||_p \le ||f - f_{n_k}||_p + ||f_{n_k} - f_n||_p \le \epsilon$$ We have
found $n_0 \ge 1$ such that: $$n \ge n_0 \implies ||f - f_n||_p \le \epsilon$$ This shows that $f_n \stackrel{L^p}{\to} f$. The purpose of this exercise, is to prove theorem (46). It is customary to say in light of this theorem, that $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is *complete*, even though as defined in these tutorials, $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is not strictly speaking a metric space. Exercise 16 Exercise 17. Let $(f_n)_{n\geq 1}$ be a Cauchy sequence in $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. Then in particular, it is a Cauchy sequence in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. From theorem (46), there exists $f^* \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ such that $f_n \stackrel{L^p}{\longrightarrow} f^*$. Furthermore, from theorem (45), there exists a sub-sequence $(f_{n_k})_{k\geq 1}$ of $(f_n)_{n\geq 1}$, such that $f_{n_k} \to f^*$ μ -a.s. It follows that f^* is in fact \mathbf{R} -valued μ -almost surely. There exists $N \in \mathcal{F}$, $\mu(N) = 0$, such that $f^*(\omega) \in \mathbf{R}$ for all $\omega \in N^c$. Take $f = f^*1_{N^c}$. Then f is \mathbf{R} -valued, measurable and $||f||_p = ||f^*||_p < +\infty$. So $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. Furthermore, $||f - f_n||_p = ||f^* - f_n||_p \to 0$, which shows that $f_n \stackrel{L^p}{\to} f$. This proves theorem (46), where $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is replaced by $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. Exercise 17