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9. LP-spaces, p € [1,+0]

In the following, (2, F, u) is a measure space.

EXERCISE 1. Let f,g: (2, F) — [0, 4+00] be non-negative and measurable maps.
Let p,q € RT, such that 1/p+1/¢ = 1.

1.
2.

9.

Show that 1 < p < +00 and 1 < ¢ < +00.
For all o €]0, +00[, we define ¢ : [0, +00] — [0, +00] by:

ar D x® if xeRT
d)(x){—i—oo if =+

Show that ¢% is a continuous map.

Define A = ([ fPdu)'/?, B = ([ g%dp)'/? and C = [ fgdu. Explain why
A, B and C' are well defined elements of [0, +o00].

Show that if A =0 or B =0 then C < AB.
Show that if A = +o00 or B = +o0o then C < AB.

We assume from now on that 0 < A < 400 and 0 < B < +o0co. Define
F = f/A and G = g/B. Show that:

/de,u:/Gpduzl
Q Q

Let a,b €]0, +o00[. Show that:

1 1
In(a) + In(b) < In <—ap + —bq)
p q

and: ) )
ab < —aP + -b?
p q

Prove this last inequality for all a,b € [0, +00].

Show that for all w € Q, we have:

Fw)G(w) <

Show that C' < AB.

Theorem 41 (Holder inequality) Let (Q2, % 1) be a measure space and f, g
(Q,F) — [0,+0c0] be two non-negative and measurable maps. Let p,q € R be
such that 1/p+1/q=1. Then:

oo (L) ([
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Theorem 42 (Cauchy-Schwarz inequality:first)
Let (2, F, 1) be a measure space and f, g : (2, F) — [0, +00] be two non-negative
and measurable maps. Then:

oo (L)’ ()

EXERCISE 2. Let f,g: (Q,F) — [0,400] be two non-negative and measurable
maps. Let p €]1,4o0c[. Define A = ([ fPdu)'/? and B = ([ gPdu)'/? and

1. Explain why A, B and C are well defined elements of [0, +o¢].
2. Show that for all a,b €]0, 4+o00[, we have:
(a+0b)P < 2P~ (aP 4 bP)
Prove this inequality for all a,b € [0, +00].
3. Show that if A = +o00 or B= +occ or C' =0 then C < A+ B.
4. Show that if A < 400 and B < 400 then C' < +o0.

5. We assume from now that A, B € [0,4o00[ and C €]0,+00[. Show the
existence of some ¢ € R* such that 1/p+1/q = 1.

6. Show that for all a,b € [0, +0oc], we have:

(a+b)P = (a+b).(a+b)P!
7. Show that:

/Qf'(f +gPtdp < ACT

/ g-(f+9)"'dp < BCH
Q

8. Show that:
/(f +g)Pdp < C7(A+ B)
Q

9. Show that C' < A + B.

10. Show that the inequality still holds if we assume that p = 1.

Theorem 43 (Minkowski inequality) Let (Q,F, ) be a measure space and
frg: (,F) — [0,+00] be two non-negative and measurable maps. Let p €
[1,400[. Then:

(frvors)' (L) + ()
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Definition 73 The LP-spaces, p € [1,+o0[, on (Q, F, u), are:

L% (Q,F, u)é{f:(Q,}")—%R, B(R)) measumble,/ [f1Pdu <+oo}
Q

L% (Q, F, u)é{f:(Q,}')—%C,B(C)) measumble,/ |f|Pdu <—|—oo}
Q

For all f € L% (Q, F, ), we put:

T ( / Ifl”du)p

EXERCISE 3. Let p € [1,4o00[. Let f,g € LL(Q, F, p).

1.

N ook W

Show that L% (2, F, ) = {f € LL(Q,F,pn) , f() CR}L
Show that LE (2, F, i) is closed under R-linear combinations.
Show that Lg,(Q, F, n) is closed under C-linear combinations.
Show that [[f + gll, < lf]l, + [lgll»-

Show that || f|l, =0 < f =0 p-as.

Show that for all a € C, |af||, = |a|.]| fllp-

Explain why (f,9) = [|f — gll, is not a metric on L(%, F, )

Definition 74 For all f : (Q,F) — (C,B(C)) measurable, Let:

Iflloo 2 inf{M € R* , |f| < M p-a.s.}

The L*>-spaces on a measure space (2, F, 1) are:

L (. F. m)={f:(2, F) — (R, B(R)) measurable, | f||so < +00}
LE (. F, m)={f+(2, F) — (C, B(C)) measurable, | f]loo < +00}

EXERCISE 4. Let f,g € LE(Q, F, ).

1.

A

Show that L¥ (0, F,u) ={f € LZ(Q, F,u), f(Q) CR}
Show that |f]| < || fleo p-a.s.

Show that ||£ + gllse < | flleo + glec

Show that LY (2, F, ) is closed under R-linear combinations.
Show that LE (2, F, u) is closed under C-linear combinations.

Show that || f|lco =0 < f =0 p-as..
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7. Show that for all o € C, |[af|ec = ||| f]lc0-

8. Explain why (f,g9) — ||f — ¢|l is not a metric on L (2, F, p)

Definition 75 Let p € [1,400]. Let K = R or C. For alle > 0 and f €
LY (Q, F, i), we define the so-called open ball in LY (Q, F, u):

A
B(f,e)={9:9 € Lk (Q,F n), If —gll, < e}
We call usual topology in Ly (Q,F, p), the set T defined by:
TE{U U CLE(Q,F, u),Yf € U,3e > 0, B(f,e) C U}

Note that if (f,g) — ||f — gl|, was a metric, the usual topology in L (2, F, 1),
would be nothing but the metric topology.

EXERCISE 5. Let p € [1,+00]. Suppose there exists N € F with u(N) =0 and
N#(. Put f=1yand g=0

1. Show that f,g € LL(Q, F, ) and f # g.

2. Show that any open set containing f also contains g.

3. Show that L%(Q, F,p) and L% (Q, F, 1) are not Hausdorff.
EXERCISE 6. Show that the usual topology on L% (€, F, ) is induced by the
usual topology on L& (2, F, p), where p € [1, +00].

Definition 76 Let (E,T) be a topological space. A sequence (xy)p>1 in E is

said to converge to x € E, and we write x., KN x, if and only if, for allU € T
such that x € U, there exists ng > 1 such that:

n>ny = x, €U

When E = LL(Q, F, ) or E = LE(Q, F, ), we write x, L

EXERCISE 7. Let (E,7) be a topological space and E' C E. Let 7' = Tjp
be the induced topology on E’. Show that if (z,),>1 is a sequence in E’ and

T . . T’
x € E’, then z,, — x is equivalent to x,, — .

EXERCISE 8. Let f, g, (fn)n>1 be in LE(Q, F, 1) and p € [1, +o0].

1. Recall what the notation f, — f means.
2. Show that f, L—p> f is equivalent to || f, — f|l, — 0.
3. Show that if f, = fand f, = g then f =g p-a.s.

EXERCISE 9. Let p € [1,+00]. Suppose there exists some N € F such that
w(N) = 0 and N # (. Find a sequence (fn)p>1 in LE&(, F, ) and f,g in

L%(Qaf7/j/)) .f 7é g such that fn [;)3” f and fn [;)P g.
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Definition 77 Let (fn)n>1 be a sequence in L& (U, F, i), where (0, F, ) is a
measure space and p € [1,4+00]. We say that (fn)n>1 is a Cauchy sequence,
if and only if, for all € > 0, there exists ng > 1 such that:

n,mz=mng = ||fn _me;D <e

EXERCISE 10. Let f, (fn)n>1 be in L (Q, F, ) and p € [1,4+00]. Show that if

fn n f, then (fn)n>1 is a Cauchy sequence.
EXERCISE 11. Let (fy)n>1 be Cauchy in L (2, F, p), p € [1,400].

1. Show the existence of ny > 1 such that:

1
n>ny = |fa— folp < 3

2. Suppose we have found n; < ng < ... < ng, k> 1, such that:

. 1
vje{]-v"'ak}anznj = an_fnJHp§2_J

Show the existence of ngy1, ng < nk41 such that:

1
n>ngpr = [ fo— faeallp < pY==)

3. Show that there exists a subsequence (fy, )k>1 Of (fn)n>1 with:

+oo
Z Hfmc-H - fnka <+
k=1

EXERCISE 12. Let p € [1,400], and (fn)n>1 be in LEL(Q, F, 1), with:

+o0o
D I fatr = fallp < +o0
n=1

We define: N
A
9= N fnt1 = fal

n=1
1. Show that g : (2, F) — [0, +0o0] is non-negative and measurable.
2. If p = +o0, show that g < :g [ frs1 = fulloo p-a.s.

3. If p € [1,4+00[, show that for all N > 1, we have:

N +oo
D farr =Ll || <D fnsr = fully
n=1

P n=1
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4. If p € [1, 400, show that:

L fes
</ gde> SZanJrl_anp
Q n=1

5. Show that for p € [1,400], we have g < +00 p-a.s.

6. Define A = {g < +o0}. Show that for all w € A, (fn(w))n>1 is a Cauchy
sequence in C. We denote z(w) its limit.

7. Define [ : (Q,F) — (C,B(C)), by:

A zw) if weA
f(”){ 0 if wgA

Show that f is measurable and f,, — f p-a.s.

8. if p = +o00, show that for all n > 1, |f,] < |f1] + ¢ and conclude that
fe L, F,p).

9. If p € [1, +00[, show the existence of ng > 1, such that:
n>nyg = /Q|fn—fn0|pdu§ 1
Deduce from Fatou lemma that f — f,, € L% (Q, F, p).
10. Show that for p € [1, 4], f € LEL(Q, F, p).

11. Suppose that f, € Li(Q,F,p), for all n > 1. Show the existence of
[ € LL(Q,F, ), such that f, — f p-a.s.

EXERCISE 13. Let p € [1,400], and (fn)n>1 be in LL(Q, F, ), with:

“+oo
D I fatr = fallp < +o0

n=1
1. Does there exist f € LE(Q, F, ) such that f, — f p-a.s.

2. Suppose p = +o00. Show that for all n < m, we have:

|fre1 — ful < Z ([ fet1 — frlloo p-a.s.

k=n

3. Suppose p = +o0o. Show that for all n > 1, we have:

+o0o
Hf - anoo < Z ||fk+1 - fk”oo

k=n
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4. Suppose p € [1,+00[. Show that for all n < m, we have:

(/Q | fm41 — fn|pdﬂ> < Z [ o1 — frllp
k=n

5. Suppose p € [1,+oo[. Show that for all n > 1, we have:

+oo
1F = Fallp <Y I fera = fally

k=n
6. Show that for p € [1,400], we also have f, e I

7. Suppose conversely that g € L (Q, F, i) is such that f, = g. Show that
f =g pa.s.. Conclude that f, — g p-a.s..

Theorem 44 Let (2, F, p) be a measure space. Let p € [1,400], and (fn)n>1
be a sequence in L5(Q, F, ) such that:

+oo
D I fatr = fallp < +o0
n=1

Then, there exists f € L% (Q,F,p) such that f, — f fi-a.s. Moreover, for all
g € LL(Q,F, ), the convergence fr, — g p-a.s. and fr L g are equivalent.

EXERCISE 14. Let f, (fn)n>1 be in L%(Q, F, 1) such that f, = f, where p €
[1, +0o0].

1. Show that there exists a sub-sequence (fn, )k>1 of (fn)n>1, with:
+oo
Z ank+1 - fnkH:D < +o0
k=1

2. Show that there exists g € L% (Q, F, p) such that f,, — g p-a.s.

3. Show that f,, = gand g = f p-a.s.

4. Conclude with the following:

Theorem 45 Let (fn)n>1 be in LEL(Q,F,p) and f € LL(Q, F,p) such that

Jn 5 f, where p € [1,400]. Then, we can extract a sub-sequence (fn,)k>1 of
(fn)n>1 such that fn, — f p-a.s.

EXERCISE 15. Prove the last theorem for L (2, F, p1).
EXERCISE 16. Let (fy,)n>1 be Cauchy in L (Q, F, p), p € [1, +o0].
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1. Show that there exists a subsequence (fy, )x>1 of (f)n>1 and f belonging
to L& (2, F, ), such that fr, LY f.

2. Using the fact that (f,,),>1 is Cauchy, show that f, L—p> I

Theorem 46 Letp € [1,+00]. Let (fn)n>1 be a Cauchy sequence in LL (2, F, ).
Then, there exists f € LL(Q, F, p) such that f, = f-

EXERCISE 17. Prove the last theorem for L (2, F, p1).
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Solutions to Exercises

Exercise 1.

1. Since p,q € RT, we have p < +oco and ¢ < +oo. From the inequality
1/p<1/p+1/q=1, weobtainp > 1. If p = 1, then 1/q = 0, contradicting
q < +00. Sop > 1, and similarly ¢ > 1. We have proved that 1 < p < 400
and 1 < g < +o0.

2. Let o €]0, +00[ and ¢ = ¢*. We want to prove that ¢ is continuous. For
all a € R, it is clear that lim,_., ¢(x) = ¢(a). So ¢ is continuous at
x = a. Furthermore, lim,_, 4o ¢(x) = ¢(400). So ¢ is also continuous
at +o0o. For many of us, this is sufficient proof of the fact that ¢ is a
continuous map. However, for those who want to apply definition (27),
the following can be said: let V' be open in [0,+00]. We want to show
that ¢~1(V) is open in [0, +00]. Let a € ¢~1(V). Then ¢(a) € V. Since
¢ is continuous at x = a, there exists U, open in [0, +0oc], containing a,
such that ¢(U,) C V. Soa € U, C ¢~ (V). It follows that ¢~ (V) can
be written as ¢~ (V) = Uzeg-1(v)Ua, and ¢~ (V) is therefore open in
[0,4+00]. From definition (27), we conclude that ¢ : [0, +00] — [0, +00] is
a continuous map.

3. fP can be viewed as fP = ¢Po f, where ¢P is defined as in 2. We proved that
@P is a continuous map. It is therefore measurable with respect to the Borel
o-algebra B([0, 4+o00]) on [0, +o0]. It follows that fP : (2, F) — [0, +o0]isa
measurable map, which is also non-negative. Hence, the integral [ fPdpu is
a well-defined element of [0, +oc], and A = ([ fPdu)'/? is also well-defined,
being understood that (+00)Y/P = +o0. Similarly, B = ([ f9du)'/? is a
well-defined element of [0, +oc]. Finally, the map fg : (Q,F) — [0, +0o0]
is non-negative and measurable, and C = [ fgdu is a well-defined element
of [0+ oc.

4. Suppose A = 0. Then [ fPdu = 0, and since f? is non-negative, we see
that f? = 0 p-a.s., and consequently f = 0 p-a.s. So fg = 0 p-a.s., and
finally C' = [ fgdu = 0. So C' < AB. Similarly, B = 0 implies C' = 0, and
therefore C < AB.

5. Suppose A = 4o00. Then, either B=0or B> 0. If B=0, then C < AB
is true from 4. If B > 0, then AB = +00, and consequently C < AB. In
any case, we see that C' < AB. Similarly, B = +oo implies C < AB.

6. Suppose A, B €]0,4o00|. Let F = f/A and G = g/B. We have:

1
[ Fran= [t/ayin =75 [ rran=1
Ap
and similarly, [ GPdu = 1.

www.probability.net


http://www.probability.net

Solutions to Exercises 10

7. Let a,b €]0,4+00[. The map x — —In(z) being convex on |0, 4+o00[, since
1/p+1/q =1, we have:

1 1 1 1
—In(=a? + -b?) < —=1n(a?) — = In(b?) = — In(abd
(p . ) p (a?) . (07) (ab)

and consequently In(ab) < In(a?/p + b%/q). The map x — €® being non-
decreasing, we conclude that:

1 1
ab < —aP + =b? (1)
p q
It is easy to check that inequality (1) is in fact true for all a,b € [0, +00].

8. For all w € 2, F(w) and G(w) are elements of [0, +o0]. From 7.:

Fw)G(w) < 2P + Law)

D q
9. Integrating on both side of 8., we obtain:

1 1
/FGduS};/deu—i—a/qu,u:l

where we have used the fact that [ FPdp = [ G9dp = 1. Since [ FGdu =
(J fgdp)/AB = C/AB, we conclude that C' < AB.

Exercise 1

Exercise 2.

1. fP, g? and (f+g)? are all non-negative and measurable. All three integrals
[ fPdp, [ gPdp and [(f +g)Pdp are therefore well-defined. It follows that
A, B and C are well-defined elements of [0, +00].

2. Since p > 1, the map z — z? is convex on ]0, +o0[. In particular, for all
a,b €]0, +o0[, we have ((a + b)/2)? < (a? + bP)/2. We conclude that:

(a+b)P < 2P~ (aP + bP) (2)
In fact, it is easy to check that (2) holds for all a,b € [0, +00].

3. If A=+ooor B= 400, then A+ B =400, and C < A+ B. If C =0,
then clearly C' < A + B.

4. Using 2., for all w € Q, we have:
(f(w) +g@) <2771 (f ()" + g(w)?)

Integrating on both side of the inequality, we obtain:

/(f + g)Pdp < 2771 (/ fPdp + /g”du> (3)

If A < 400 and B < +o0, then both integrals [ fPdu and [ gPdu are
finite, and we see from (3) that [(f + g)Pdu is itself finite. So C' < +oo.
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5. Take ¢ = p/(p — 1). Since p €]1, +00[, ¢ is a well-defined element of R,
and 1/p+1/q=1.
6. Let a,b € [0,+00]. If a,b € RT, then:
(a+b)? = (a+b).(a+b)P" (4)
If a = +00 or b = 400, then a + b = +00 and both sides of (4) are equal
to +00. So (4) is true for all a,b € [0, +o0].
7. Using holder inequality (41), since g(p — 1) = p, we have:
1 1
[ 1+ aptan < ( / f”du) ( [+ g)q“"”du> —ack
and:
1 1
/g-(f +g)Pdp < (/ gpdu) (/(f + g)‘Z(pl)du) = BC
8. From 6., we have:
/(f +g)Pdp = /f.(f +9)"du+ /g~(f +g)Pdp
and using 7., we obtain:
[+ oransciasp
9. From 8., we have C? < C'% (A+B). Having assumed in 5. that C' €]0, 400,
we can divide both side of this inequality by C’g, to obtain CP~¢ < A+ B.
Since p — p/q = 1, we conclude that C' < A+ B.
10. If p =1, then C' = A + B is equivalent to:
/(f+g)du:/fdu+/gdu
which is true by linearity. In particular, C' < A + B. The purpose of this
exercise is to prove minkowski inequality (43).
Exercise 2
Exercise 3.
1. Let f: (Q,F) — (C,B(C)) be a map. Then, if f has values in R,

ie. f(©2) C R, then the measurability of f with respect to (C, B(C)) is
equivalent to its measurability with respect to (R, B(R)). Hence:

Lp(Q,F,p) ={f € Lc(, F, 1), F(Q) SR}

The equivalence of measurability with respect to B(C) and B(R) may
be taken for granted by many. It is easily proved from the fact that
B(R) = B(C)|g, i.e. the Borel o-algebra on R is the trace on R, of the
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W

ot

EN|

Borel o-algebra on C. This fact can be seen from the trace theorem (10),
and the fact that the usual topology on R is induced on R, by the usual
topology on C.

. Let f,g € LR(Q,F,pn) and @ € R. The map f + ag is R-valued and

measurable. Moreover, we have | f+ag| < |f|+|al.|g|. Since p > 1, (and in
particular p > 0), the map z — 2P is non-decreasing on R", so |f +ag|? <
(1f] + |al.lg])P. Hence, we see that [|f 4+ ag|Pdu < [(|f] + |al-|g|)Pdpu.
However, using minkowski inequality (43), we have:

(Jurs ) < (fur) (o)

We conclude that [|f+ ag|Pdu < +o00. So f+ ag € L (2, F, i), and we
have proved that L% (9, F, i) is closed under R-linear combinations.

. The fact that L (2, F, p) is closed under C-linear combinations, is proved
identically to 2., replacing R by C.

. Using |f + g|” < (|f] + |g])? and minkowski inequality (43):

(i)' <(fre) - (fore)

we see that |[f +gllp < [[fllp + [lgllp-

. Suppose || f|l, = 0. Then [ |f[Pdu = 0. Since | f|? is non-negative, | f|? = 0
p-a.s., and consequently f = 0 p-a.s. Conversely, if f = 0 p-a.s., then
|fIP =0 p-as., so [|f|Pdu =0 and finally || f||, = 0.

. Let o € C. We have:

sl = ( | Iocfl”)% At |f|”>% ~ ol

- If —gll, = 0 only implies f = g p-.a.s, and not necessarily f = g. So
(f,9) = If — gllp , may not be a metric on L%(Q, F, u).

Exercise 3

Exercise 4.

1

2

. For all f: (2,F) — (C,B(C)) with values in R, the measurability of
f with respect to B(C) is equivalent to its measurability with respect to
B(R). Hence:

LR, Fop) ={f € LE(Q,F, ), f(2) CR}
. Since || f]loo < 400, for all n > 1, we have || f|loo < [[flloo + 1/n. || f]loo

being the greatest lower bound of all p-almost sure upper bounds of |f|,
| flloc +1/n cannot be such lower bound. There exists M € R*, such that
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If] < M pas., and M < || f|loo + 1/n. In particular, |f]| < || f|lcc + 1/n p-
a.s. Let A, be the set defined by A,, = {|| fllcc+1/n < |f|}. Then A,, € F
and p(A,) = 0. Moreover, A, C A,41 and US> A, = {||fllee < |f]}- Tt
follows that A, T {||fllec < |f|}, and from theorem (7), we see that:

p({lfll < 1£1) = Tim_pu(A,) =0
We conclude that |f]| < || f]leo p-a.s.
3. Since |f + g| < |f] + |g|, using 2., we have:

[f 49l <[ flloc + llglloc p-as.

Hence, ||f]lco + [|glloo is @ p-almost sure upper bound of |f + g|. ||f + gl
being a lower bound of all such upper bounds, we have [|f + gl <

[1fllso + llglloo-

4. Let f,g € LR (Q, F, 1) and o € R. Then f + ag is R-valued and measur-
able. Furthermore, using 2., we have:

|f +agl < |fl+lallgl < [ flloo + lel-llgllec p-ass.

It follows that || f + agllec < ||flloc + |]-|g]|cc < +00. We conclude that
f+ag € LE(Q,F,un), and we have proved that L (€, F, u) is closed
under R-linear combinations.

5. The fact that LE (Y, F, ) is closed under C-linear combinations can be
proved identically, replacing R by C.

6. Suppose ||f]loc = 0. Then |f| < 0 p-a.s., and consequently f = 0 u-a.s.
Conversely, if f = 0 p-a.s., then |f| < 0 p-a.s., and 0 is therefore a -
almost sure upper bound of |f|. So || f|lcc < 0. Since || f|loo is an infimum

of a subset of RT, it is either 400 (when such subset is empty), or lies in
R*. S0 || flloe > 0 and finally || ]| = 0.

7. We have |af| < |a|.||fllco p-a.s., and hence ||af|lco < ||| f]loo- if @ # 0,

we have: 1 1
[£lloo = ll=-(af)] o] (te7al

It follows that ||af]|ec = |a].||f|lec, (also true if o = 0).

8. |If — glle = 0 implies f = ¢ p-a.s., but not f = g. It follows that
(f.9) = |If — 9llc may not be a metric on L (X2, F, u).

Exercise 4
Exercise 5.

1. Since N # 0, 1y # 0, so f # g. Since N € F, the map f = 1y is
measurable, and being R-valued, it is also C-valued. Moreover, since
w(N) =0, ||fll, =0 < 400 (whether p = +o00 or lies in [1,4+00[), and
we see that f € L%(Q,F, ). Since g = 0, it is C-valued, measurable and
llgllp =0 < 400, so g € LEL(Q, F, p).
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2. Let U be open in LE(Q, F, n), such that f € U. By definition (75), there
exists € > 0, such that B(f,e) C U. However, ||f —gll, = ||fll, = 0
(p =400 or p € [1,4+00]). So in particular | f — g|l, < €. So g € B(f,¢)
and finally g € U.

3. If LL(Q, F, ) was Hausdorff, since f # g, there would exist U,V open
sets in L (Q, F, p) such that f € U, g € V and UNV = (. However from
2., this is impossible, as g would always be an element of U as well as V.
We conclude similarly that L% (2, F, 1) is not Hausdorff.

Exercise 5

Exercise 6. Let L and LY, denote L (2, F, p) and L (Q, F, i) respectively.
Let 7 be the usual topology on LY, and 7’ be the usual topology on L% . We
want to prove that 7’ = T‘LPR, i.e. that 77 is the topology on L% induced by
7. Given f € L and € > 0, let B(f, €) denote the open ball in L%, and B'(f,€)
denote the open ball the L%. Then B(f,e) = B(f,e) N Lk. It is a simple
exercise to show that any open ball in L} or L{, is in fact open with respect
to their usual topology. Let U’ € 7'. For all f € U’, there exists ey > 0 such
that f € B'(f,er) CU'. It follows that:

U'=Usev'B'(f,e5) = (Ugev' B(f,e5)) N Ly

and we see that U’ € Tjz». So T" C 7z Conversely, let U e Ty, There

exists U € 7 such that U' = U N L. Let f € U'. Then f € U. There exists

€ > 0 such that B(f,e) C U. It follows that B'(f,e) = B(f,e)NLy CU’. So U’

is open with respect to the usual topology in L, i.e. U € T'. We have proved
that Zj;» C 7', and finally 7/ = 7;» .
| R | R

Exercise 6

Exercise 7. let (E,T) be a topological space and E' C E. Let 7' = 7 be the
induced topology on E’. We assume that (z,),>1 is a sequence in E’, and that
x € E’. Suppose that z, Z 2. Let U' € T' be such that € U’. There exists

U € T such that U = UNE'. Since x € U and z,, z, x, there exists ng > 1
such that z,, € U for alln > ng. But z,, € E' foralln > 1. Sox,, €c UNE' = U’

for all n > ng, and we see that z, Z . Conversely, suppose that x,, Z 2. Let
U € T be such that x € U. Then UNE' € 7' and x € U N E’. There exists
ng > 1, such that z, € UNE’ for all n > ng. In particular, z, € U for all

T T’ T
n > ng, and we see that x,, — . We have proved that x,, — = and z,, — x are
equivalent.
Exercise 7

Exercise 8.

1. The notation f,, — f has been used throughout these tutorials, to refer
to a simple convergence, i.e. f,(w) — f(w) as n — +o0, for all w € Q.
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2. Suppose [, = f- Let € > 0. The open ball B(f,¢) being open with
respect to the usual topology in L& (€, F, i), there exists ng > 1, such
that f, € B(f,¢) for all n > ng, i.e.:

n>ng = |fn—fllp <e

So || fn — fllp — 0. Conversely, suppose ||f, — fll, — 0. Let U be open
in L%(Q, F, p), such that f € U. From definition (75), there exists € > 0
such that B(f,e) € U. By assumption, there exists ng > 0, such that
[fn — fllp < € for all n > ng. So f, € B(f,¢) for all n > ng. Hence, we

see that f, € U for all n > ng, and we have proved that f, L f- We

conclude that f, = fand || fn, — fllp — 0 are equivalent.

3. Suppose [y, = f and f, = g. From 2., we have ||f, — f]l, — 0 and
|l fn — gllp — 0. Using the triangle inequality (ex. (3) for p € [1,4o0[ and
ex. (4) for p = 4o00):

If = gllp < lfe = Fllp + I1fn = gllp

for all n > 1. It follows that we have ||f — g||, < € for all ¢ > 0, and
consequently ||f — g||, = 0. From ex. (3) and ex. (4) we conclude that

f =g pas.
Exercise 8

Exercise 9. Take f,, = 1y = f for all n > 1. Take g = 0. Then f,, f and g
are all elements of LL(Q, F, p), and f # g. Moreover, for all n > 1, we have

Wfn—1Fllp = Ilfn—9llp =0. So fx = fand f, = g. The purpose of this exercise
is to show that a limit in LP may not be unique (f # ¢). However, it is unique,
up to p-almost sure equality (See exercise (8)).

Exercise 9

Exercise 10. Suppose f, = f- Let € > 0. There exists ng > 1, with:
n=ng = |fo—fllp <e€/2
From the triangle inequality, for all n,m > 1:
1fn = fmllp S 0 fo = fllp + 1 fon = fllp
It follows that we have:
nmznog = |fo—fmlp <€

We conclude that (f,)n>1 is a Cauchy sequence in L{(Q, F, u).
Exercise 10

Exercise 11.

1. Take € = 1/2. There exists n; > 1, such that:

1
n,mz>mn; = ||fn _me;D < 5
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In particular, we have:

1
n>n = ||fn_fn1HP< 5

2. Let k> 1. We have ny < ... < ng, such that for all j =1,... k:

1
n2ng = fa—fulls < 5

Take € = 1/2k+1. There exists n;_H > 1, such that:

1
nm 2y = o= fulls < 5z

Take ng1 = max(ny + 1,n ;). Then ng < ngy1, and:

1
n2 et = | fa = fulle < 5

3. By induction from 2., we can construct a strictly increasing sequence of
integers (ng)r>1, such that for all k > 1:

1
n>ng = |[fo— fodlp < o

In particular, || fo,., — fu.|lp < 1/2F for all k > 1. It follows that we have
found a subsequence (fy, )x>1 of (fn)n>1, such that:

+oo
Z Hfmc-H - fnka < 400
k=1

Exercise 11
Exercise 12.

1. Each finite sum gy = Zgﬂ | fn+1 — fn| is well-defined and measurable.
It follows that g = supys; gn is itself measurable. It is obviously non-
negative.

2. Suppose p = +o0. From exercise (4), for all n > 1, we have:

|fn+1 - fn| < ||fn+1 - anoo ; H-a.S.

The set Ny, = {|fn+1 — fnl > || fnt1 — falloo} which lies in F, is such that
#(Nyp) = 0. It follows that if N = U,>1N,, then u(N) = 0. However, for
all w € N¢ we have:

+o0 too
9(@) =Y [fat1(@) = fa(@)] < D [ fas1 = falloo
n=1

n=1

We conclude that g < >°0° | || fa41 — fulloo p-aus.
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3. Let p e [1 +oo[ and N > 1. By the triangle inequality (ex. (3)):

— fal <Z|\fn+1 Fallp < Z||fn+1 Fallp

4. Let p € [1,400]. Given N > 1, let gy = Zﬁle |fn+1 — fn|- Then gy — g
as N — 4o00. The map z — aP being continuous on [0, 400], we have
g% — ¢P, and in particular g? = liminf g% as N — 4o0. Using Fatou
lemma (20), we see that:

/g”du < 1ig1>i{1f/9%du (5)

However, from 3., we have [[gnl, < S0 (| fos1 — fallp, for all N > 1.
Since p > 0, the map & — P is non-decreasing on [0, +0oc], and therefore:

+00 p
/gﬁzdu < (Z an-i—l - fn”p) (6)

From inequalities (5) and (6), we conclude that:

+o0 p
/gpd# < <Z | frs1 — fn||p>
n=1

T
(/ gpdu) < fusr = Fully
n=1

5. Let p € [1,400]. If p = 400, from 2. we have:

and finally:

+o0o
9< Y Nfnt1r = fallp » p-acs. (7)

By assumption, the series in (7) is finite. So g < 400 p-a.s.
If p € [1,+o0], from 4. we have:

P JFOO
(/9de> <D Masr = fally
n=1
So fgpdu < +o00. Since (+oo)u({gP = +o0}) < fgpdu, we see that
u({gP = 4+o0}) = 0 and finally g < +oo p-a.s.

6. Let A = {g < +o0}. Let w € A. Then g(w) < 4o0o. The series
:z | fn+1(w) — fn(w)] is therefore finite. Let € > 0. There exists ng > 1,
such that:

+oo
n>ng = Y |[fr(w) = frw) <e

k=n
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Given m > n > ng, we have:

m—1
(@) = fa(@)] < D e (W) = frlw)| < e
k=n

We conclude that the sequence (f,(w))n>1 is Cauchy in C. It therefore
has a limit!, denoted z(w).

7. From 6., fp(w) — 2(w) = f(w) for allw € A. Since by definition, f(w) =0
for all w € A, we see that fp(w)la(w) — f(w) for all w € . Hence, we
have f,14 — f, and since f,14 is measurable for all n > 1, we see from
theorem (17) that f = lim f,,14 is itself measurable. Since u(A°) = 0 and
fan(w) = f(w) on A, we have f, — f p-a.s.

8. Suppose p = 4+o00. For all n > 1, we have:

n—1

[fo= Al <Y e = frl < g
k=1
So | fn] < |f1] + g. Taking the limit as n — +oo, we obtain |f| < |f1| + g
p-a.s. Let M = Z:ﬁ Il fn+1 — fnlloo- Then by assumption, M < +oo and
from 2. we have ¢ < M p-a.s. Moreover, since fi € LZ(Q, F, 1), using
exercise (4), we have |f1]| < | filleo p-a.s. with ||fi]jec < +00. Hence, we
see that |f]| < || fillcc + M p-a.s., and consequently:

“+oo
1fllso < filloo + D Nt = Falloo < 400

n=1

f is therefore C-valued, measurable and with [|f]lcc < +00. We have
proved that f € LZ(Q, F, p).

9. Let p € [1,+00[. The series 3.5 || fus1 — fullp being finite, there exists
no > 1, such that:

—+00
n>nyg = Z ||fk+1 - fk”p <1

k=n

Let n > ng. By the triangle inequality:

n—1
1= Fnollp < D M fier = fillp <1
k=n0
Hence, we see that:
n>ny = /|fn—fn0|pdu§1p:1 (8)

IThe completeness of C is proved in the next Tutorial.
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10.

11.

From 6., f,(w) — f(w) as n — +oo, for all w € A, where u(A°) = 0. In
particular:

1A|f - fnolp = liminf 1A|fn - fnolp
n>1

Using inequality (8) and Fatou lemma (20), we obtain:2

/|f—fn0|pdﬂ§hg1>i{lf/|fn_fno|pdN§ 1

In particular, [|f — fn,|Pdp < +o00. Since f — f,, is C-valued and mea-
surable, we conclude that f — f,, € L% (Q, F, p).

Let p € [1,+00]. If p = 400, then f € LE(Q,F, 1) was proved in 8. If
p € [1,+00[, we saw in 9. that f — f,, € LL(Q, F,u) for some ng > 1.
Since fy, is itself an element of L%, (€, F, 1), we conclude from exercise (3)
that f = (f — fno) + fno is also an element of LE(Q, F, p).

The purpose of this exercise is to prove that given a sequence (fn)n>1
in L%(Q,F,p) such that Z:g | fot1 — follp < 400, there exists f €
L%(Q, F, p), such that f, — f p-a.s. We now assume that all f,’s are
in fact R-valued, i.e. f, € Lx(Q, F, ). There exists f* € LL(Q, F, 1)
such that f, — f* p-a.s. However, f*(w) may not be R-valued for all
w € Q. Yet, if N € F is such that p(N) = 0 and fr(w) — [f*(w)
for all w € N€, then f* is R-valued on N¢ (as a limit of an R-valued
sequence). If we define f = f*1ye, then f is R-valued and measurable,
with || fll, = | f*|l, < +o0. So f € LR (Q,F, ) and furthermore since
f=["pas., fn— [ pas.

Exercise 12

Exercise 13.

1.

Yes, there does exist f € LEL(Q, F,p) such that f, — f p-a.s. This was
precisely the object of the previous exercise.

. Suppose p = +o0, and let n < m. From exercise (4), we have |f;,+1 —

fol < \1fm+1 — fullo p-a.s. Furthermore, from the triangle inequality,
[ fmt1 = falloo < 2052, [fe+1 = frlloo- Tt follows that:

|fm+1 - fn| < Z kaJrl - fk”oo ) H-a.S. (9)

k=n

Suppose p = 400 and let n > 1. For all m > n, let N,,, € F be such that
#(Np,) = 0, and inequality (9) holds for all w € N¢,. Furthermore, since
fm+1 — f pras., let M € F be such that p(M) = 0, and f41(w) — f(w)
for all w € M¢. Then, if N = M U (UpsnNp), we have N € F, u(N) =0
and for all w € N¢, fy,41(w) — f(w), together with, for all m > n:

| frm1(@) = Fa@)] <D k1 = Frlloo

k=n

2Note that n > ng = wu, < 1 is enough to ensure lim inf, >y up < 1.
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Taking the limit as m — +o00, we obtain:

+o0
(@) = fa@) <D I w1 = fill

k=n

This being true for all w € N¢, we have proved that:

+oo
If = fal < Z I fe+1 — frlloo s p-a.s.

k=n

From definition (74), we conclude that:

+oo
”f_ anoo < Z ||fk+1 - fk”oo
k=n

4. Let p € [1,400[ and n < m. From exercise (3), we have:
( [ 1 - fnl”du> e — Fally < 3 e — el
k=n

5. Let p € [1,400[ and n > 1. Let N € F be such that u(N) = 0, and
fmt1(w) — f(w) for all w € N¢. Then, we have:

[f = falPlve = Hinf | frpr = fulP Ly

Using Fatou lemma (20), we obtain:

/|f — fulPdp < hnr?;f}f/ | fn41 — fulPdp

Hence, from 4. we see that:

+00 p
/|f = falPdp < <Z [ frt — fk||p>
k=n

and consequently:

+oo
1= Fullo <> I frrr — fillp

k=n

6. Let p € [1,+00]. whether p = 400 or p € [1,+00[, from 3. and 5., for all
n > 1, we have |[f — fullp < 32825 || fer1 — fxllp- Since by assumption,
the series ZZ:{ [ fe+1 — frllp is finite, we conclude that || f — fnllp, — O,

as n — +oo. It follows that not only f, — f p-a.s., but also f, L—p> f-

7. Suppose g € L (Q, F, p) is such that f, = g. Then f, = f together with

fn = g. From ex. (8), f = g p-a.s. Furthermore, since f,, — f p-a.s., we
see that f, — ¢ p-a.s. The purpose of this exercise (and the previous) is
to prove theorem (44).
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Exercise 13
Exercise 14.

1. Since f, L [, from exercise (10), (f5)n>1 is a Cauchy sequence in L (2, F, ).
Using exercise (11), there exists a sub-sequence (fy, )k>1 of (fn)n>1, such

that Z:;xl) ||fnk+1 - fnka < +o0.

2. Applying theorem (44) to the sequence (fy, )r>1, there exists g € L% (Q, F, p),
such that f,, — g p-a.s.

3. Also from theorem (44), the convergence f,, — g p-a.s. and f,, L g are
equivalent. Hence, we also have f,,, = g. However, since by assumption
fn L—p> f, we see that f,, L—p> f, and consequently from exercise (8), f =g
J-a.s.

4. From 2., f,, — ¢ p-a.s., and from 3., f = g p-a.s. It follows that f,, — f

p-a.s. Given a sequence (f)n>1 and f in L% (Q, F, u), such that f, = f,
we have been able to extract a sub-sequence (f,, )k>1 such that f,, — f
p-a.s. This proves theorem (45).

Exercise 14

Exercise 15. Suppose (f,,)n>1 is a sequence in L (2, F, p), and f € L (Q, F, p)

such that f, L /. Then in particular, all f,,’s and f are elements of L (2, F, i)
with || f — fullp — 0 as n — 4o00. From theorem (45), we can extract a sub-
sequence (fn,)k>1 of (fn)n>1, such that f,, — f p-a.s. This proves theo-
rem (45), where L (Q, F, p) is replaced by L (2, F,u). Anyone who feels
there was very little to prove in this exercise, could make a very good point.
Exercise 15

Exercise 16.

1. Since (fn)n>1 is Cauchy in L%(Q, F, i), from exercise (11), we can extract
a sub-sequence (fp, )k>1 of (fn)n>1, such that:

“+oo
Z ank+1 - fnkH:D < +o0
k=1

From theorem (44), there exists f € L%(Q,F,u), such that f,, — f
p-a.s., as well as fp, L f.
2. Let € > 0. (fn)n>1 being Cauchy, there exists ng > 1, such that:
nm>no = |fm—fallp < 5
Furthermore, since f,, L f, there exists kg > 1, such that:

€
E2ho = I = fullp < 5
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However, ny, T 400 as k — +o0o. There exists k{, > 1, such that k£ > k{, =
ng > no. Choose an arbitrary k > max(ko, k(). Then |[f — fu,llp < €/2
together with ny > ng. Hence, for all n > ng, we have:

1f = fally < F = Fallp + ([ fre = fullp < €

We have found ng > 1 such that:

n>ng = [|f = fallp <€

This shows that f, L f. The purpose of this exercise, is to prove theo-
rem (46). It is customary to say in light of this theorem, that L{ (2, F, p)
is complete, even though as defined in these tutorials, L (€, F, i) is not
strictly speaking a metric space.

Exercise 16

Exercise 17. Let (fn)n>1 be a Cauchy sequence in L% (€, F, ). Then in
particular, it is a Cauchy sequence in L (92, F, p). From theorem (46), there

exists f* € L% (Q, F, p) such that f, = f*. Furthermore, from theorem (45),
there exists a sub-sequence (fy, )k>1 of (fn)n>1, such that f,, — f* p-as.
It follows that f* is in fact R-valued p-almost surely. There exists N € F,
w(N) = 0, such that f*(w) € R for all w € N°. Take f = f*lye. Then
[ is R-valued, measurable and || f|, = ||f*]l, < +o0. So f € LZ{(Q,F,pn).

Furthermore, [|f — full, = [ f* — fallp — 0, which shows that f, = f. This
proves theorem (46), where L, (Q, F, u) is replaced by L (2, F, p).
Exercise 17
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