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13. Regular Measure
In the following, K denotes R or C.

Definition 99 Let (Ω,F) be a measurable space. We say that a map s : Ω→ C
is a complex simple function on (Ω,F), if and only if it is of the form:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ C and Ai ∈ F for all i ∈ Nn. The set of all complex simple
functions on (Ω,F) is denoted SC(Ω,F). The set of all R-valued complex simple
functions in (Ω,F) is denoted SR(Ω,F).

Recall that a simple function on (Ω,F), as defined in (40), is just a non-negative
element of SR(Ω,F).

Exercise 1. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞[.

1. Suppose s : Ω→ C is of the form

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ C, Ai ∈ F and µ(Ai) < +∞ for all i ∈ Nn. Show that
s ∈ LpC(Ω,F , µ) ∩ SC(Ω,F).

2. Show that any s ∈ SC(Ω,F) can be written as:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ C \ {0}, Ai ∈ F and Ai ∩Aj = ∅ for i 6= j.

3. Show that any s ∈ LpC(Ω,F , µ) ∩ SC(Ω,F) is of the form:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ C, Ai ∈ F and µ(Ai) < +∞, for all i ∈ Nn.

4. Show that L∞C (Ω,F , µ) ∩ SC(Ω,F) = SC(Ω,F).

Exercise 2. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞[. Let f be a
non-negative element of LpR(Ω,F , µ).

1. Show the existence of a sequence (sn)n≥1 of non-negative functions in
LpR(Ω,F , µ) ∩ SR(Ω,F) such that sn ↑ f .

2. Show that:
lim

n→+∞

∫
|sn − f |pdµ = 0
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3. Show that there exists s ∈ LpR(Ω,F , µ)∩SR(Ω,F) such that ‖f−s‖p ≤ ε,
for all ε > 0.

4. Show that LpK(Ω,F , µ) ∩ SK(Ω,F) is dense in LpK(Ω,F , µ).

Exercise 3. Let (Ω,F , µ) be a measure space. Let f be a non-negative element
of L∞R (Ω,F , µ). For all n ≥ 1, we define:

sn
4
=

n2n−1∑
k=0

k

2n
1{k/2n≤f<(k+1)/2n} + n1{n≤f}

1. Show that for all n ≥ 1, sn is a simple function.

2. Show there exists n0 ≥ 1 and N ∈ F with µ(N) = 0, such that:

∀ω ∈ N c , 0 ≤ f(ω) < n0

3. Show that for all n ≥ n0 and ω ∈ N c, we have:

0 ≤ f(ω)− sn(ω) <
1
2n

4. Conclude that:
lim

n→+∞
‖f − sn‖∞ = 0

5. Show the following:

Theorem 67 Let (Ω,F , µ) be a measure space and p ∈ [1,+∞]. Then, LpK(Ω,F , µ)∩
SK(Ω,F) is dense in LpK(Ω,F , µ).

Exercise 4. Let (Ω, T ) be a metrizable topological space, and µ be a finite
measure on (Ω,B(Ω)). We define Σ as the set of all B ∈ B(Ω) such that for all
ε > 0, there exist F closed and G open in Ω, with:

F ⊆ B ⊆ G , µ(G \ F ) ≤ ε
Given a metric d on (Ω, T ) inducing the topology T , we define:

d(x,A)
4
= inf{d(x, y) : y ∈ A}

for all A ⊆ Ω and x ∈ Ω.

1. Show that x→ d(x,A) from Ω to R̄ is continuous for all A ⊆ Ω.

2. Show that if F is closed in Ω, x ∈ F is equivalent to d(x, F ) = 0.

Exercise 5. Further to exercise (4), we assume that F is a closed subset of Ω.
For all n ≥ 1, we define:

Gn
4
= {x ∈ Ω : d(x, F ) <

1
n
}
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1. Show that Gn is open for all n ≥ 1.

2. Show that Gn ↓ F .

3. Show that F ∈ Σ.

4. Was it important to assume that µ is finite?

5. Show that Ω ∈ Σ.

6. Show that if B ∈ Σ, then Bc ∈ Σ.

Exercise 6. Further to exercise (5), let (Bn)n≥1 be a sequence in Σ. Define
B = ∪+∞

n=1Bn and let ε > 0.

1. Show that for all n, there is Fn closed and Gn open in Ω, with:

Fn ⊆ Bn ⊆ Gn , µ(Gn \ Fn) ≤ ε

2n

2. Show the existence of some N ≥ 1 such that:

µ

((
+∞⋃
n=1

Fn

)
\
(

N⋃
n=1

Fn

))
≤ ε

3. Define G = ∪+∞
n=1Gn and F = ∪Nn=1Fn. Show that F is closed, G is open

and F ⊆ B ⊆ G.

4. Show that:

G \ F ⊆ G \
(

+∞⋃
n=1

Fn

)
]
(

+∞⋃
n=1

Fn

)
\ F

5. Show that:

G \
(

+∞⋃
n=1

Fn

)
⊆

+∞⋃
n=1

Gn \ Fn

6. Show that µ(G \ F ) ≤ 2ε.

7. Show that Σ is a σ-algebra on Ω, and conclude that Σ = B(Ω).

Theorem 68 Let (Ω, T ) be a metrizable topological space, and µ be a finite
measure on (Ω,B(Ω)). Then, for all B ∈ B(Ω) and ε > 0, there exist F closed
and G open in Ω such that:

F ⊆ B ⊆ G , µ(G \ F ) ≤ ε

Definition 100 Let (Ω, T ) be a topological space. We denote CbK(Ω) the K-
vector space of all continuous, bounded maps φ : Ω → K, where K = R or
K = C.
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Exercise 7. Let (Ω, T ) be a metrizable topological space with some metric d.
Let µ be a finite measure on (Ω,B(Ω)) and F be a closed subset of Ω. For all
n ≥ 1, we define φn : Ω→ R by:

∀x ∈ Ω , φn(x)
4
= 1− 1 ∧ (nd(x, F ))

1. Show that for all p ∈ [1,+∞], we have CbK(Ω) ⊆ LpK(Ω,B(Ω), µ).

2. Show that for all n ≥ 1, φn ∈ CbR(Ω).

3. Show that φn → 1F .

4. Show that for all p ∈ [1,+∞[, we have:

lim
n→+∞

∫
|φn − 1F |pdµ = 0

5. Show that for all p ∈ [1,+∞[ and ε > 0, there exists φ ∈ CbR(Ω) such that
‖φ− 1F‖p ≤ ε.

6. Let ν ∈M1(Ω,B(Ω)). Show that CbC(Ω) ⊆ L1
C(Ω,B(Ω), ν) and:

ν(F ) = lim
n→+∞

∫
φndν

7. Prove the following:

Theorem 69 Let (Ω, T ) be a metrizable topological space and µ, ν be two com-
plex measures on (Ω,B(Ω)) such that:

∀φ ∈ CbR(Ω) ,
∫
φdµ =

∫
φdν

Then µ = ν.

Exercise 8. Let (Ω, T ) be a metrizable topological space and µ be a finite
measure on (Ω,B(Ω)). Let s ∈ SC(Ω,B(Ω)) be a complex simple function:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ C, Ai ∈ B(Ω) for all i ∈ Nn. Let p ∈ [1,+∞[.

1. Show that given ε > 0, for all i ∈ Nn there is a closed subset Fi of Ω such
that Fi ⊆ Ai and µ(Ai \ Fi) ≤ ε. Let:

s′
4
=

n∑
i=1

αi1Fi

2. Show that:

‖s− s′‖p ≤
(

n∑
i=1

|αi|
)
ε

1
p
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3. Conclude that given ε > 0, there exists φ ∈ CbC(Ω) such that:

‖φ− s‖p ≤ ε

4. Prove the following:

Theorem 70 Let (Ω, T ) be a metrizable topological space and µ be a finite mea-
sure on (Ω,B(Ω)). Then, for all p ∈ [1,+∞[, CbK(Ω) is dense in LpK(Ω,B(Ω), µ).

Definition 101 A topological space (Ω, T ) is said to be σ-compact if and only
if, there exists a sequence (Kn)n≥1 of compact subsets of Ω such that Kn ↑ Ω.

Exercise 9. Let (Ω, T ) be a metrizable and σ-compact topological space, with
metric d. Let Ω′ be open in Ω. For all n ≥ 1, we define:

Fn
4
= {x ∈ Ω : d(x, (Ω′)c) ≥ 1/n}

Let (Kn)n≥1 be a sequence of compact subsets of Ω such that Kn ↑ Ω.

1. Show that for all n ≥ 1, Fn is closed in Ω.

2. Show that Fn ↑ Ω′.

3. Show that Fn ∩Kn ↑ Ω′.

4. Show that Fn ∩Kn is closed in Kn for all n ≥ 1.

5. Show that Fn ∩Kn is a compact subset of Ω′ for all n ≥ 1.

6. Prove the following:

Theorem 71 Let (Ω, T ) be a metrizable and σ-compact topological space. Then,
for all Ω′ open subsets of Ω, the induced topological space (Ω′, T|Ω′) is itself
metrizable and σ-compact.

Definition 102 Let (Ω, T ) be a topological space and µ be a measure on
(Ω,B(Ω)). We say that µ is locally finite, if and only if, every x ∈ Ω has
an open neighborhood of finite µ-measure, i.e.

∀x ∈ Ω , ∃U ∈ T , x ∈ U , µ(U) < +∞

Definition 103 If µ is a measure on a Hausdorff topological space Ω:
We say that µ is inner-regular, if and only if, for all B ∈ B(Ω):

µ(B) = sup{µ(K) : K ⊆ B , K compact}
We say that µ is outer-regular, if and only if, for all B ∈ B(Ω):

µ(B) = inf{µ(G) : B ⊆ G , G open}
We say that µ is regular if it is both inner and outer-regular.
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Exercise 10. Let (Ω, T ) be a Hausdorff topological space, µ a locally finite
measure on (Ω,B(Ω)), and K a compact subset of Ω.

1. Show the existence of open sets V1, . . . , Vn with µ(Vi) < +∞ for all i ∈ Nn

and K ⊆ V1 ∪ . . . ∪ Vn, where n ≥ 1.

2. Conclude that µ(K) < +∞.

Exercise 11. Let (Ω, T ) be a metrizable and σ-compact topological space. Let
µ be a finite measure on (Ω,B(Ω)). Let (Kn)n≥1 be a sequence of compact
subsets of Ω such that Kn ↑ Ω. Let B ∈ B(Ω). We define α = sup{µ(K) : K ⊆
B , K compact}.

1. Show that given ε > 0, there exists F closed in Ω such that F ⊆ B and
µ(B \ F ) ≤ ε.

2. Show that F \ (Kn ∩ F ) ↓ ∅.

3. Show that Kn ∩ F is closed in Kn.

4. Show that Kn ∩ F is compact.

5. Conclude that given ε > 0, there exists K compact subset of Ω such that
K ⊆ F and µ(F \K) ≤ ε.

6. Show that µ(B) ≤ µ(K) + 2ε.

7. Show that µ(B) ≤ α and conclude that µ is inner-regular.

Exercise 12. Let (Ω, T ) be a metrizable and σ-compact topological space.
Let µ be a locally finite measure on (Ω,B(Ω)). Let (Kn)n≥1 be a sequence of
compact subsets of Ω such that Kn ↑ Ω. Let B ∈ B(Ω), and α ∈ R be such
that α < µ(B).

1. Show that µ(Kn ∩B) ↑ µ(B).

2. Show the existence of K ⊆ Ω compact, with α < µ(K ∩B).

3. Let µK = µ(K ∩ · ). Show that µK is a finite measure, and conclude that
µK(B) = sup{µK(K∗) : K∗ ⊆ B , K∗ compact}.

4. Show the existence of a compact subset K∗ of Ω, such that K∗ ⊆ B and
α < µ(K ∩K∗).

5. Show that K∗ is closed in Ω.

6. Show that K ∩K∗ is closed in K.

7. Show that K ∩K∗ is compact.

8. Show that α < sup{µ(K ′) : K ′ ⊆ B , K ′ compact}.
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9. Show that µ(B) ≤ sup{µ(K ′) : K ′ ⊆ B , K ′ compact}.

10. Conclude that µ is inner-regular.

Exercise 13. Let (Ω, T ) be a metrizable topological space.

1. Show that (Ω, T ) is separable if and only if it has a countable base.

2. Show that if (Ω, T ) is compact, for all n ≥ 1, Ω can be covered by a finite
number of open balls with radius 1/n.

3. Show that if (Ω, T ) is compact, then it is separable.

Exercise 14. Let (Ω, T ) be a metrizable and σ-compact topological space with
metric d. Let (Kn)n≥1 be a sequence of compact subsets of Ω such that Kn ↑ Ω.

1. For all n ≥ 1, give a metric on Kn inducing the topology T|Kn .

2. Show that (Kn, T|Kn) is separable.

3. Let (xpn)p≥1 be an at most countable sequence of (Kn, T|Kn), which is
dense. Show that (xpn)n,p≥1 is an at most countable dense family of (Ω, T ),
and conclude with the following:

Theorem 72 Let (Ω, T ) be a metrizable and σ-compact topological space. Then,
(Ω, T ) is separable and has a countable base.

Exercise 15. Let (Ω, T ) be a metrizable and σ-compact topological space. Let
µ be a locally finite measure on (Ω,B(Ω)). Let H be a countable base of (Ω, T ).
We define H′ = {V ∈ H : µ(V ) < +∞}.

1. Show that for all U open in Ω and x ∈ U , there is Ux open in Ω such that
x ∈ Ux ⊆ U and µ(Ux) < +∞.

2. Show the existence of Vx ∈ H such that x ∈ Vx ⊆ Ux.

3. Conclude that H′ is a countable base of (Ω, T ).

4. Show the existence of a sequence (Vn)n≥1 of open sets in Ω with:

Ω =
+∞⋃
n=1

Vn , µ(Vn) < +∞ , ∀n ≥ 1

Exercise 16. Let (Ω, T ) be a metrizable and σ-compact topological space. Let
µ be a locally finite measure on (Ω,B(Ω)). Let (Vn)n≥1 a sequence of open
subsets of Ω such that:

Ω =
+∞⋃
n=1

Vn , µ(Vn) < +∞ , ∀n ≥ 1

Let B ∈ B(Ω) and α = inf{µ(G) : B ⊆ G , G open}.
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1. Given ε > 0, show that there exists Gn open in Ω such that B ⊆ Gn and
µVn(Gn \B) ≤ ε/2n, where µVn = µ(Vn ∩ · ).

2. Let G = ∪+∞
n=1(Vn ∩Gn). Show that G is open in Ω, and B ⊆ G.

3. Show that G \B = ∪+∞
n=1Vn ∩ (Gn \B).

4. Show that µ(G) ≤ µ(B) + ε.

5. Show that α ≤ µ(B).

6. Conclude that is µ outer-regular.

7. Show the following:

Theorem 73 Let µ be a locally finite measure on a metrizable and σ-compact
topological space (Ω, T ). Then, µ is regular, i.e.:

µ(B) = sup{µ(K) : K ⊆ B , K compact}
= inf{µ(G) : B ⊆ G , G open}

for all B ∈ B(Ω).

Exercise 17. Show the following:

Theorem 74 Let Ω be an open subset of Rn, where n ≥ 1. Any locally finite
measure on (Ω,B(Ω)) is regular.

Definition 104 We call strongly σ-compact topological space, a topological
space (Ω, T ), for which there exists a sequence (Vn)n≥1 of open sets with compact
closure, such that Vn ↑ Ω.

Definition 105 We call locally compact topological space, a topological
space (Ω, T ), for which every x ∈ Ω has an open neighborhood with compact
closure, i.e. such that:

∀x ∈ Ω , ∃U ∈ T : x ∈ U , Ū is compact

Exercise 18. Let (Ω, T ) be a σ-compact and locally compact topological space.
Let (Kn)n≥1 be a sequence of compact subsets of Ω such that Kn ↑ Ω.

1. Show that for all n ≥ 1, there are open sets V n1 , . . . , V
n
pn , pn ≥ 1, such

that Kn ⊆ V n1 ∪ . . . ∪ V npn and V̄ n1 , . . . , V̄
n
pn are compact subsets of Ω.

2. Define Wn = V n1 ∪ . . . ∪ V npn and Vn = ∪nk=1Wk, for n ≥ 1. Show that
(Vn)n≥1 is a sequence of open sets in Ω with Vn ↑ Ω.

3. Show that W̄n = V̄ n1 ∪ . . . ∪ V̄ npn for all n ≥ 1.
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4. Show that W̄n is compact for all n ≥ 1.

5. Show that V̄n is compact for all n ≥ 1

6. Conclude with the following:

Theorem 75 A topological space (Ω, T ) is strongly σ-compact, if and only if
it is σ-compact and locally compact.

Exercise 19. Let (Ω, T ) be a topological space and Ω′ be a subset of Ω. Let
A ⊆ Ω′. We denote ĀΩ′ the closure of A in the induced topological space
(Ω′, T|Ω′), and Ā its closure in Ω.

1. Show that A ⊆ Ω′ ∩ Ā.

2. Show that Ω′ ∩ Ā is closed in Ω′.

3. Show that ĀΩ′ ⊆ Ω′ ∩ Ā.

4. Let x ∈ Ω′ ∩ Ā. Show that if x ∈ U ′ ∈ T|Ω′ , then A ∩ U ′ 6= ∅.

5. Show that ĀΩ′ = Ω′ ∩ Ā.

Exercise 20. Let (Ω, d) be a metric space.

1. Show that for all x ∈ Ω and ε > 0, we have:

B(x, ε) ⊆ {y ∈ Ω : d(x, y) ≤ ε}

2. Take Ω = [0, 1/2[∪{1}. Show that B(0, 1) = [0, 1/2[.

3. Show that [0, 1/2[ is closed in Ω.

4. Show that B(0, 1) = [0, 1/2[.

5. Conclude that B(0, 1) 6= {y ∈ Ω : |y| ≤ 1} = Ω.

Exercise 21. Let (Ω, d) be a locally compact metric space. Let Ω′ be an open
subset of Ω. Let x ∈ Ω′.

1. Show there exists U open with compact closure, such that x ∈ U .

2. Show the existence of ε > 0 such that B(x, ε) ⊆ U ∩Ω′.

3. Show that B(x, ε/2) ⊆ Ū .

4. Show that B(x, ε/2) is closed in Ū .

5. Show that B(x, ε/2) is a compact subset of Ω.

6. Show that B(x, ε/2) ⊆ Ω′.
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7. Let U ′ = B(x, ε/2) ∩ Ω′ = B(x, ε/2). Show x ∈ U ′ ∈ T|Ω′ , and:

Ū ′Ω
′

= B(x, ε/2)

8. Show that the induced topological space Ω′ is locally compact.

9. Prove the following:

Theorem 76 Let (Ω, T ) be a metrizable and strongly σ-compact topological
space. Then, for all Ω′ open subsets of Ω, the induced topological space (Ω′, T|Ω′)
is itself metrizable and strongly σ-compact.

Definition 106 Let (Ω, T ) be a topological space, and φ : Ω → C be a map.
We call support of φ, the closure of the set {φ 6= 0}, i.e.:

supp(φ)
4
= {ω ∈ Ω : φ(ω) 6= 0}

Definition 107 Let (Ω, T ) be a topological space. We denote CcK(Ω) the K-
vector space of all continuous map with compact support φ : Ω→ K, where
K = R or K = C.

Exercise 22. Let (Ω, T ) be a topological space.

1. Show that 0 ∈ CcK(Ω).

2. Show that CcK(Ω) is indeed a K-vector space.

3. Show that CcK(Ω) ⊆ CbK(Ω).

Exercise 23. let (Ω, d) be a locally compact metric space. let K be a compact
subset of Ω, and G be open in Ω, with K ⊆ G.

1. Show the existence of open sets V1, . . . , Vn such that:

K ⊆ V1 ∪ . . . ∪ Vn
and V̄1, . . . , V̄n are compact subsets of Ω.

2. Show that V = (V1 ∪ . . . ∪ Vn) ∩G is open in Ω, and K ⊆ V ⊆ G.

3. Show that V̄ ⊆ V̄1 ∪ . . . ∪ V̄n.

4. Show that V̄ is compact.

5. We assume K 6= ∅ and V 6= Ω, and we define φ : Ω→ R by:

∀x ∈ Ω , φ(x)
4
=

d(x, V c)
d(x, V c) + d(x,K)

Show that φ is well-defined and continuous.
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6. Show that {φ 6= 0} = V .

7. Show that φ ∈ CcR(Ω).

8. Show that 1K ≤ φ ≤ 1G.

9. Show that if K = ∅, there is φ ∈ CcR(Ω) with 1K ≤ φ ≤ 1G.

10. Show that if V = Ω then Ω is compact.

11. Show that if V = Ω, there φ ∈ CcR(Ω) with 1K ≤ φ ≤ 1G.

Theorem 77 Let (Ω, T ) be a metrizable and locally compact topological space.
Let K be a compact subset of Ω, and G be an open subset of Ω such that K ⊆ G.
Then, there exists φ ∈ CcR(Ω), real-valued continuous map with compact support,
such that:

1K ≤ φ ≤ 1G

Exercise 24. Let (Ω, T ) be a metrizable and strongly σ-compact topological
space. Let µ be a locally finite measure on (Ω,B(Ω)). Let B ∈ B(Ω) be such
that µ(B) < +∞. Let p ∈ [1,+∞[.

1. Show that CcK(Ω) ⊆ LpK(Ω,B(Ω), µ).

2. Let ε > 0. Show the existence of K compact and G open, with:

K ⊆ B ⊆ G , µ(G \K) ≤ ε

3. Where did you use the fact that µ(B) < +∞?

4. Show the existence of φ ∈ CcR(Ω) with 1K ≤ φ ≤ 1G.

5. Show that: ∫
|φ− 1B|pdµ ≤ µ(G \K)

6. Conclude that for all ε > 0, there exists φ ∈ CcR(Ω) such that:

‖φ− 1B‖p ≤ ε

7. Let s ∈ SC(Ω,B(Ω)) ∩ LpC(Ω,B(Ω), µ). Show that for all ε > 0, there
exists φ ∈ CcC(Ω) such that ‖φ− s‖p ≤ ε.

8. Prove the following:

Theorem 78 Let (Ω, T ) be a metrizable and strongly σ-compact topological
space1. Let µ be a locally finite measure on (Ω,B(Ω)). Then, for all p ∈ [1,+∞[,
the space CcK(Ω) of K-valued, continuous maps with compact support, is dense
in LpK(Ω,B(Ω), µ).

1i.e. a metrizable topological space for which there exists a sequence (Vn)n≥1 of open sets
with compact closure, such that Vn ↑ Ω.

www.probability.net

http://www.probability.net


Tutorial 13: Regular Measure 12

Exercise 25. Prove the following:

Theorem 79 Let Ω be an open subset of Rn, where n ≥ 1. Then, for any
locally finite measure µ on (Ω,B(Ω)) and p ∈ [1,+∞[, CcK(Ω) is dense in
LpK(Ω,B(Ω), µ).
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Solutions to Exercises
Exercise 1.

1. From definition (99), s is clearly an element of SC(Ω,F). Furthermore,
for all i ∈ Nn, 1Ai is measurable, and:∫

|1Ai |pdµ =
∫

1Aidµ = µ(Ai) < +∞

So 1Ai ∈ L
p
C(Ω,F , µ). s being a linear combination of the 1Ai ’s is also

an element of LpC(Ω,F , µ). We have proved that s is an element of
LpC(Ω,F , µ) ∩ SC(Ω,F).

2. Let s ∈ SC(Ω,F). From definition (99), s is of the form:

s =
m∑
j=1

βj1Bj (1)

where m ≥ 1, βj ∈ C, and Bj ∈ F for all j ∈ Nm. If s = 0, it can be
written as s = 1 × 1∅ and there is nothing further to prove. We assume
that s 6= 0. The map θ : {0, 1}m → C given by θ(ε1, . . . , εm) =

∑m
j=1 βjεj

being defined on a finite set, has a finite range. Since s(Ω) is a subset of
θ({0, 1}m), s(Ω) is also a finite set. Having assumed that s 6= 0, the set
s(Ω) \ {0} is therefore non-empty and finite. Let n ≥ 1 be its cardinal,
and α : Nn → s(Ω) \ {0} be an arbitrary bijection. For all ω ∈ Ω, we
have:

s(ω) =
n∑
i=1

α(i)1{s=α(i)} (2)

Since Bj ∈ F for all j’s, s is a measurable map. If we define Ai = {s =
α(i)} for i ∈ Nn, we have Ai ∈ F . Furthermore, it is clear that Ai∩Aj = ∅
for i 6= j. We conclude from (2) that s can be written as:

s =
n∑
i=1

α(i)1Ai

where n ≥ 1, α(i) ∈ C \ {0}, Ai ∈ F , and Ai ∩Aj = ∅ for i 6= j.

3. Let s ∈ LpC(Ω,F , µ) ∩ SC(Ω,F). From 2. s can be expressed as:

s =
n∑
i=1

αi1Ai (3)

where n ≥ 1, αi 6= 0, Ai ∈ F and Ai∩Aj = ∅ for i 6= j. Let A = A1] . . .]
An. Then s(ω) = 0 for all ω ∈ Ac and furthermore 1A = 1A1 + . . .+ 1An .
Hence: ∫

|s|pdµ =
n∑
i=1

∫
|s|p1Aidµ =

n∑
i=1

|αi|pµ(Ai) < +∞
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Since αi 6= 0, it follows that µ(Ai) < +∞ for all i ∈ Nn. We have been
able to express s as (3), where n ≥ 1, αi ∈ C (in fact αi ∈ C∗), Ai ∈ F
and µ(Ai) < +∞ for all i ∈ Nn. This is a converse of 1.

4. Let s ∈ SC(Ω,F). Then s is bounded and measurable.

Exercise 1

Exercise 2.

1. f being non-negative and measurable, from theorem (18) there exists a
sequence (sn)n≥1 of simple functions on (Ω,F) such that sn ↑ f . In
particular, each sn is a non-negative element of SR(Ω,F). Furthermore,
sn ≤ f for all n ≥ 1 and having assumed that f ∈ LpR(Ω,F , µ), we have:∫

spndµ ≤
∫
fpdµ < +∞

We conclude that (sn)n≥1 is a sequence of non-negative elements of LpR(Ω,F , µ)∩
SR(Ω,F) such that sn ↑ f .

2. Since sn → f , we have |sn − f |p → 0 as n→ +∞. Furthermore:

|sn − f |p ≤ (sn + f)p ≤ 2pfp ∈ L1
R(Ω,F , µ)

From the dominated convergence theorem (23), we obtain:

lim
n→+∞

∫
|sn − f |pdµ = 0

3. Given ε > 0, from 2. there exists N ≥ 1 such that:

n ≥ N ⇒
∫
|sn − f |pdµ ≤ εp

In particular, taking s = sN , we have found s belonging to the set
LpR(Ω,F , µ) ∩ SR(Ω,F) such that ‖f − s‖p ≤ ε.

4. LetAK = LpK(Ω,F , µ)∩SK(Ω,F). We claim that AK is dense in LpK(Ω,F , µ),
i.e. that ĀK = LpK(Ω,F , µ) where ĀK is the closure of AK in LpK(Ω,F , µ).
Recall from definition (75) that for any open set U in LpK(Ω,F , µ) and
f ∈ U , there exists ε > 0 such that B(f, ε) ⊆ U . Hence, all we need
to prove is that given f ∈ LpK(Ω,F , µ) and ε > 0, there exists s ∈ AK

such that ‖f − s‖p ≤ ε. Indeed, if such property is proved, then for any
f ∈ LpK(Ω,F , µ) and U open containing f , we have AK ∩ U 6= ∅ and
consequently f ∈ ĀK. So LpK(Ω,F , µ) ⊆ ĀK. Now, if f ∈ LpR(Ω,F , µ)
and ε > 0, the existence of s ∈ AR such that ‖f − s‖p ≤ ε has al-
ready been proved when f is non-negative. Suppose f ∈ LpR(Ω,F , µ).
Then f = f+ − f− where each f+, f− is a non-negative element of
LpR(Ω,F , µ). There exists s+, s− ∈ AR such that ‖f+ − s+‖p ≤ ε/2
and ‖f− − s−‖p ≤ ε/2. Taking s = s+ − s−, we have found s ∈ AR such
that:

‖f − s‖p ≤ ‖f+ − s+‖p + ‖f− − s−‖p ≤ ε
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and the property is proved for f ∈ LpR(Ω,F , µ). If f is an element of
LpC(Ω,F , µ), then f = f1 + if2 where each f1, f2 lies in LpR(Ω,F , µ).
There exists s1, s2 ∈ AR such that ‖f1− s1‖p ≤ ε/2 and ‖f2− s2‖p ≤ ε/2.
Taking s = s1 + is2, we have found s ∈ AC such that:

‖f − s‖p ≤ ‖f1 − s1‖p + ‖f2 − s2‖p ≤ ε

and the property is proved for f ∈ LpC(Ω,F , µ).

Exercise 2

Exercise 3.

1. Given n ≥ 1, sn is of the form:

sn =
p∑
i=1

αi1Ai

where p ≥ 1, αi ∈ R+ and Ai ∈ F for all i ∈ Np. From definition (40),
it is therefore a simple function on (Ω,F) (or indeed a complex simple
function on (Ω,F) with values in R+).

2. Since f is an element of L∞R (Ω,F , µ), we have:

‖f‖∞
4
= inf{M ∈ R+ : |f | ≤M µ-a.s.} < +∞

It is therefore possible to find an integer n0 ≥ 1 such that ‖f‖∞ < n0.
Since ‖f‖∞ is the greatest lower bound all M ’s such that |f | ≤M µ-a.s.,
n0 cannot be such lower bound. Hence, there exists M0 ∈ R+ such that
|f | ≤ M0 µ-a.s. and M0 < n0. Thus, there exists N ∈ F with µ(N) = 0,
and:

∀ω ∈ N c , |f(ω)| ≤M0 < n0

In particular, since f is a non-negative element of L∞R (Ω,F , µ):

∀ω ∈ N c , 0 ≤ f(ω) < n0

3. Let n ≥ n0 and ω ∈ N c. From 2. we have 0 ≤ f(ω) < n0 and consequently
sn(ω) = k/2n, where k is the unique integer of {0, . . . , n2n − 1} such that
f(ω) ∈ [k/2n, (k + 1)/2n[. So:

0 ≤ f(ω)− sn(ω) <
1
2n

(4)

4. From 3. we have N ∈ F with µ(N) = 0 such that for all ω ∈ N c, inequal-
ity (4) holds for all n ≥ n0. So |f − sn| < 1/2n µ-a.s. for all n ≥ n0. Since
‖f − sn‖∞ is a lower bound of all M ’s such that |f − sn| ≤ M µ-a.s., we
conclude that ‖f − sn‖∞ ≤ 1/2n for all n ≥ n0, and in particular:

lim
n→+∞

‖f − sn‖∞ = 0 (5)
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5. Let p ∈ [1,+∞] be given and AK = LpK(Ω,F , µ) ∩ SK(Ω,F). If p ∈
[1,+∞[, we have already proved in exercise (2) that AK is dense in
LpK(Ω,F , µ). We assume that p = +∞ and we claim likewise that AK

is dense in L∞K (Ω,F , µ) (note that AK and SK(Ω,F) coincide when p =
+∞). Given f ∈ L∞K (Ω,F , µ) and ε > 0, we need to show the existence
of s ∈ AK such that ‖f − s‖∞ ≤ ε. When K = R and f is a non-negative
element of L∞R (Ω,F , µ), then such existence is guaranteed by (5), (keeping
in mind that simple functions on (Ω,F) are elements of SR(Ω,F) = AR).
If f ∈ L∞R (Ω,F , µ), then f = f+ − f− where each f+, f− is a non-
negative element of L∞R (Ω,F , µ). There exists s+, s− in AR such that
‖f+− s+‖∞ ≤ ε/2 and ‖f−− s−‖∞ ≤ ε/2. Taking s = s+− s− we obtain
s ∈ AR and ‖f−s‖∞ ≤ ε. This completes the proof of theorem (67) when
K = R. If f ∈ L∞C (Ω,F , µ), then f = f1 + if2 where each f1, f2 is an
element of L∞R (Ω,F , µ). Approximating f1 and f2 by elements s1, s2 of
AR, we obtain likewise an element s = s1 + is2 of AC with ‖f − s‖∞ ≤ ε.
This proves theorem (67).

Exercise 3

Exercise 4.

1. Let A ⊆ Ω. If A = ∅, then d(x,A) = +∞ for all x ∈ Ω. In particular,
the map x → d(x,A) is a continuous map. If A 6= ∅ and y ∈ A, then
d(x,A) ≤ d(x, y). In particular d(x,A) < +∞ for all x ∈ Ω. Furthermore,
for all x, x′ ∈ Ω and y ∈ A:

d(x,A) ≤ d(x, y) ≤ d(x, x′) + d(x′, y)

Consequently, d(x,A)−d(x, x′) is a lower bound of all d(x′, y), as y ranges
through A. d(x′, A) being the greatest of such lower bounds, we have:

d(x,A) ≤ d(x, x′) + d(x′, A)

Interchanging the roles of x and x′ we obtain:

d(x′, A) ≤ d(x, x′) + d(x,A)

from which we see that:

∀x, x′ ∈ Ω , |d(x,A) − d(x′, A)| ≤ d(x, x′) (6)

We conclude from (6) that x→ d(x,A) is continuous.

2. Let F be a closed subset of Ω. If x ∈ F , d(x, F ) ≤ d(x, x) = 0 and
consequently d(x, F ) = 0. Conversely, suppose d(x, F ) = 0. We shall
show that x 6∈ F is impossible. Indeed, if x ∈ F c, since F c is open,
there exists ε > 0 such that B(x, ε) ⊆ F c. However, d(x, F ) = 0 implies
in particular that d(x, F ) < ε. Since d(x, F ) is the greatest of all lower
bounds of d(x, y), as y range through F , ε cannot be such a lower bound.
Hence, there exists y ∈ F such that d(x, y) < ε. So y ∈ B(x, ε) ∩ F 6= ∅
which is a contradiction. We have proved that x ∈ F is equivalent to
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d(x, F ) = 0, whenever F is a closed subset of Ω. This exercise is in fact a
repetition of exercise (22) of Tutorial 4.

Exercise 4

Exercise 5.

1. Gn = {x ∈ Ω : d(x, F )<1/n} can be written as Φ−1
F ([−∞, 1/n[) where ΦF

is the map defined on Ω by ΦF (x) = d(x, F ). Having proved in exercise (4)
that ΦF is continuous, and since [−∞, 1/n[ is open in R̄, we conclude that
Gn is an open subset of Ω.

2. It is clear that Gn+1 ⊆ Gn and F ⊆ ∩n≥1Gn. Suppose that x ∈ ∩n≥1Gn.
Then d(x, F ) < 1/n for all n ≥ 1 and consequently d(x, F ) = 0. From
exercise (4), F being a closed subset of Ω, it follows that x ∈ F . This
shows that ∩n≥1Gn ⊆ F and finally ∩n≥1Gn = F . So Gn ↓ F .

3. Since µ is a finite measure on (Ω,B(Ω)), from theorem (8) and Gn ↓ F
we obtain µ(Gn)→ µ(F ) as n→ +∞. Furthermore, since F ⊆ Gn for all
n ≥ 1, we have:

µ(Gn \ F ) = µ(Gn \ F ) + µ(F )− µ(F ) = µ(Gn)− µ(F )

It follows that µ(Gn \ F ) → 0 as n → +∞. Given ε > 0, there exists
N ≥ 1, such that:

n ≥ N ⇒ µ(Gn \ F ) ≤ ε
In particular, taking F ′ = F and G′ = GN , F ′ and G′ are respectively
closed and open subsets of Ω, with F ′ ⊆ F ⊆ G′ and µ(G′ \F ′) ≤ ε. This
shows that F ∈ Σ. We have proved that any closed subset F of Ω is an
element of Σ.

4. The application of theorem (8) requires some finiteness property.

5. Ω is a closed subset of Ω. So Ω ∈ Σ.

6. Let B ∈ Σ. For all ε > 0, there exist F and G respectively closed and
open subsets of Ω, such that F ⊆ B ⊆ G and µ(G \ F ) ≤ ε. Since
F c\Gc = F c∩G = G\F , it follows that Gc ⊆ Bc ⊆ F c and µ(F c\Gc) ≤ ε.
This shows that Bc ∈ Σ, since Gc and F c are respectively closed and open
subsets of Ω. We have proved that Σ is closed under complementation.

Exercise 5

Exercise 6.

1. Let n ≥ 1. By assumption Bn is an element of Σ. For all ε′ > 0, and
in particular for ε′ = ε/2n, there exist Fn and Gn respectively closed and
open subsets of Ω, with Fn ⊆ Bn ⊆ Gn and µ(Gn \ Fn) ≤ ε′.
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2. Let Hn = ∪nk=1Fk and H = ∪k≥1Fk. Then Hn ↑ H , and consequently
from theorem (7), µ(Hn)→ µ(H) as n→ +∞. µ being a finite measure,
we obtain:

lim
n→+∞

µ(H \Hn) = lim
n→+∞

µ(H)− µ(Hn) = 0

In particular, there exists N ≥ 1 such that µ(H \HN ) ≤ ε, or equivalently:

µ
((
∪+∞
n=1Fn

)
\
(
∪Nn=1Fn

))
≤ ε (7)

3. Let G = ∪n≥1Gn and F = ∪Nn=1Fn. G being a union of open subsets of
Ω, is itself an open subset of Ω. F being a finite union of closed subsets
of Ω, is itself a closed subset of Ω. Since Fn ⊆ Bn ⊆ Gn for all n ≥ 1 and
B = ∪n≥1Bn, it is clear that F ⊆ B ⊆ G.

4. Let H = ∪n≥1Fn. The sets G \H and H \F are clearly disjoint. Further-
more if x ∈ G \ F = G ∩ F c, then either x ∈ H or x 6∈ H . If x ∈ H then
x ∈ H \ F . If x 6∈ H then x ∈ G \H . In any case, x ∈ G \H ]H \ F .
This shows that G \ F ⊆ G \H ]H \ F .

5. Let H = ∪n≥1Fn and x ∈ G\H . Since x ∈ G, there exists n ≥ 1 such that
x ∈ Gn. But x ∈ Hc = ∩k≥1F

c
k . So in particular x ∈ F cn and consequently

x ∈ Gn \ Fn. This shows that G \H ⊆ ∪n≥1Gn \ Fn.

6. Applying 4. and 5. with H = ∪n≥1Fn, we have:

G \ F ⊆ (∪n≥1Gn \ Fn) ]H \ F
It follows that:

µ(G \ F ) ≤
+∞∑
n=1

µ(Gn \ Fn) + µ(H \ F )

Having chosen Fn and Gn such that µ(Gn\Fn) ≤ ε/2n and having defined
F from 2. such that µ(H \ F ) ≤ ε, we conclude that µ(G \ F ) ≤ 2ε.

7. Given a sequence (Bn)n≥1 in Σ and B = ∪n≥1Bn, given an arbitrary
ε > 0, we have shown the existence of F and G respectively closed and
open subsets of Ω, such that F ⊆ B ⊆ G (see 3.) and µ(G\F ) ≤ 2ε (see 6.).
It follows that B ∈ Σ. This shows that Σ is closed under countable union.
Since Ω ∈ Σ and Σ is closed under complementation (see exercise (5)),
Σ is therefore a σ-algebra on Ω. Furthermore, still from exercise (5), Σ
contains every closed subset of Ω. Being closed under complementation,
it also contains every open subset of Ω. In other words, the topology T
is a subset of Σ, i.e. T ⊆ Σ. The σ-algebra σ(T ) being the smallest
σ-algebra on Ω containing T (containing in the inclusion sense), the fact
that Σ is a σ-algebra on Ω implies that B(Ω) = σ(T ) ⊆ Σ. Σ being a
subset of the Borel σ-algebra B(Ω), we conclude that Σ = B(Ω). Hence,
for all B ∈ B(Ω) and ε > 0, there exist F and G respectively closed and
open subsets of Ω, such that F ⊆ B ⊆ G and µ(G \ F ) ≤ ε. This proves
theorem (68).

www.probability.net

http://www.probability.net


Solutions to Exercises 19

Exercise 6

Exercise 7.

1. Let p ∈ [1,+∞] and f ∈ CbK(Ω). Since f is continuous, f is Borel mea-
surable. Furthermore, since f is bounded, there exists M ∈ R+ such that
|f | ≤M . This implies that ‖f‖∞ ≤M and in particular ‖f‖∞ < +∞. So
f ∈ L∞K (Ω,B(Ω), µ). Moreover, if p ∈ [1,+∞[, µ being a finite measure
on (Ω,B(Ω)): ∫

|f |pdµ ≤Mpµ(Ω) < +∞

so f ∈ LpK(Ω,B(Ω), µ), and finally CbK(Ω) ⊆ LpK(Ω,B(Ω), µ).

2. Let n ≥ 1 and φn be defined by φn(x) = 1 − 1 ∧ (nd(x, F )). From
exercise (4), the map x→ d(x, F ) is continuous. So φn is also continuous,
and furthermore it is clear that |φn(x)| ≤ 1 for all x ∈ Ω. So φn ∈ CbR(Ω).

3. Let x ∈ Ω. If x ∈ F , then d(x, F ) = 0 and φn(x) = 1 for all n ≥ 1. In
particular, φn(x) → 1F (x) as n→ +∞. If x 6∈ F , then from exercise (4),
F being a closed subset of Ω, we have d(x, F ) > 0. It follows that:

lim
n→+∞

φn(x) = 1− lim
n→+∞

1 ∧ (nd(x, F )) = 0

In particular, φn(x)→ 1F (x) as n→ +∞. So φn → 1F .

4. Let p ∈ [1,+∞[. From 3. we have φn → 1F and consequently |φn−1F |p →
0 as n→ +∞. Furthermore, for all n ≥ 1:

|φn − 1F |p ≤ (|φn|+ |1F |)p ≤ 2p

µ being a finite measure on (Ω,B(Ω)), from the dominated convergence
theorem (23) we conclude that:

lim
n→+∞

∫
|φn − 1F |pdµ = 0

5. Let p ∈ [1,+∞[ and ε > 0. From 4. there is N ≥ 1 such that:

n ≥ N ⇒
∫
|φn − 1F |pdµ ≤ εp

In particular, taking φ = φN , φ ∈ CbR(Ω) and ‖φ− 1F ‖p ≤ ε.

6. Let ν be a complex measure on (Ω,B(Ω)). From theorem (57), the total
variation |ν| of ν is a finite measure on (Ω,B(Ω)). It follows that CbC(Ω) ⊆
L1

C(Ω,B(Ω), |ν|) = L1
C(Ω,B(Ω), ν). Let h ∈ L1

C(Ω,B(Ω), |ν|) be such that
|h| = 1 and ν =

∫
hd|ν|. Then:∣∣∣∣∫ φndν − ν(F )

∣∣∣∣ =
∣∣∣∣∫ φndν −

∫
1Fdν

∣∣∣∣
=

∣∣∣∣∫ (φn − 1F )hd|ν|
∣∣∣∣
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≤
∫
|φn − 1F |d|ν|

where the second equality stems from definition (97), and the last inequal-
ity from theorem (24). We conclude from 4. applied to µ = |ν| and p = 1,
that:

ν(F ) = lim
n→+∞

∫
φndν

7. Let (Ω, T ) be a metrizable topological space, and µ, ν be two complex
measures on (Ω,B(Ω)). We assume that:

∀φ ∈ CbR(Ω) ,
∫
φdµ =

∫
φdν (8)

and we claim that µ = ν. We define:

D = {E ∈ B(Ω) : µ(E) = ν(E)}

Let F be a closed subset of Ω. From 6. and (8) we have:

µ(F ) = lim
n→+∞

∫
φndµ = lim

n→+∞

∫
φndν = ν(F )

So F ∈ D. Hence, any closed subset of Ω is an element of D. In particular,
Ω ∈ D. Furthermore, if A,B ∈ D with A ⊆ B, then:

µ(B \A) = µ(B)− µ(A) = ν(B)− ν(A) = ν(B \A)

So B \ A ∈ D. Finally, if (En)n≥1 is a sequence of elements of D with
En ↑ E, then using exercise (13) of Tutorial 12 we have:

µ(E) = lim
n→+∞

µ(En) = lim
n→+∞

ν(En) = ν(E)

So E ∈ D, and we have proved that D is a Dynkin system on Ω. In
particular, D is closed under complementation, and since it contains every
closed subset of Ω, it also contains every open subset of Ω. So T ⊆ D and
finally, since T is closed under finite intersection, from the Dynkin system
theorem (1) we conclude that B(Ω) = σ(T ) ⊆ D. It follows that B(Ω) = D
and consequently µ = ν, which completes the proof of theorem (69).

Exercise 7

Exercise 8.

1. Let ε > 0 and i ∈ Nn. Since Ai ∈ B(Ω), µ is a finite measure on (Ω,B(Ω))
and (Ω, T ) is metrizable, from theorem (68) there exist Fi, Gi respectively
closed and open subsets of Ω, such that Fi ⊆ Ai ⊆ Gi and µ(Gi \Fi) ≤ ε.
In particular, Ai \ Fi ⊆ Gi \ Fi and we have µ(Ai \ Fi) ≤ ε.
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2. From s =
∑n

i=1 αi1Ai and s′ =
∑n

i=1 αi1Fi we obtain:

‖s− s′‖p =

∥∥∥∥∥
n∑
i=1

αi(1Ai − 1Fi)

∥∥∥∥∥
p

≤
n∑
i=1

|αi| · ‖1Ai − 1Fi‖p

=
n∑
i=1

|αi|
(∫
|1Ai − 1Fi |pdµ

) 1
p

=
n∑
i=1

|αi|
(∫

1Ai\Fidµ
) 1
p

=
n∑
i=1

|αi|µ(Ai \ Fi)
1
p

≤
(

n∑
i=1

|αi|
)
ε

1
p

3. Let ε > 0. Choosing ε′ > 0 sufficiently small such that:(
n∑
i=1

‖αi|
)
ε′1/p ≤ ε/2

and applying 2. to ε′, there exist closed subsets F1, . . . , Fn of Ω, such that
‖s− s′‖p ≤ ε/2, where s′ is defined as:

s′ =
n∑
i=1

αi1Fi

Furthermore for all i ∈ Nn, from 5. of exercise (7) there exists φi ∈ CbR(Ω)
such that |αi| · ‖φi − 1Fi‖p ≤ ε/2n. We Define:

φ =
n∑
i=1

αiφi

Then φ ∈ CbC(Ω) (in fact φ ∈ CbR(Ω) if αi ∈ R for all i’s), and:

‖φ− s′‖p =

∥∥∥∥∥
n∑
i=1

αi(φi − 1Fi)

∥∥∥∥∥
p

≤
n∑
i=1

|αi| · ‖φi − 1Fi‖p

≤ ε/2

Finally, we obtain ‖φ− s‖p ≤ ‖φ− s′‖p + ‖s− s′‖p ≤ ε.
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4. Suppose (Ω, T ) is a metrizable topological space, and µ is a finite measure
on (Ω,B(Ω)). For all p ∈ [1,+∞[, we clearly haveCbK(Ω) ⊆ LpK(Ω,B(Ω), µ)
and we claim that CbK(Ω) is in fact dense in LpK(Ω,B(Ω), µ). Given f ∈
LpK(Ω,B(Ω), µ) and ε > 0, we have to prove the existence of φ ∈ CbK(Ω)
such that ‖f − φ‖p ≤ ε. From theorem (67), the set SK(Ω,B(Ω)) (which
is a subset of LpK(Ω,B(Ω), µ) since µ is finite) is dense in LpK(Ω,B(Ω), µ).
There exists s ∈ SK(Ω,B(Ω)) such that ‖f − s‖p ≤ ε/2. Applying 3. to
the K-valued simple function s, there exists φ ∈ CbK(Ω) (φ can indeed be
chosen R-valued if K = R), such that ‖φ− s‖p ≤ ε/2. It follows that:

‖f − φ‖p ≤ ‖f − s‖p + ‖φ− s‖p ≤ ε
which completes the proof of theorem (70).

Exercise 8

Exercise 9.

1. Fn = φ−1([1/n,+∞]) where φ is the continuous map defined by φ(x) =
d(x,Ω′c). Since [1/n,+∞] is a closed subset of R̄, we conclude that Fn is
a closed subset of Ω.

2. For all n ≥ 1 it is clear that Fn ⊆ Fn+1. Let x ∈ Ω′. Since Ω′ is an
open subset of Ω, Ω′c is a closed subset of Ω and x 6∈ Ω′c. It follows
from exercise (4) that d(x,Ω′c) > 0. Hence, there exists n ≥ 1 such that
d(x,Ω′c) ≥ 1/n. So x ∈ Fn and we have proved that Ω′ ⊆ ∪n≥1Fn. To
prove the reverse inclusion, suppose x ∈ Fn for a some n ≥ 1. Then in
particular d(x,Ω′c) > 0 and x cannot be an element of Ω′c. So x ∈ Ω′.
This shows that Fn ⊆ Ω′ for all n ≥ 1, and we have proved that Fn ↑ Ω′.

3. Since Fn ⊆ Fn+1 and Kn ⊆ Kn+1, Fn∩Kn ⊆ Fn+1∩Kn+1. Furthermore,
it is clear that ∪n≥1Fn ∩ Kn ⊆ Ω′ since Fn ⊆ Ω′ for all n ≥ 1. Finally
if x ∈ Ω′, since Fn ↑ Ω′ there exists p ≥ 1 such that x ∈ Fp. Since
Kn ↑ Ω there exists q ≥ 1 such that x ∈ Kq. Taking n = max(p, q),
we have x ∈ Fn ∩ Kn. So Ω′ ⊆ ∪n≥1Fn ∩ Kn and we have proved that
Fn ∩Kn ↑ Ω′.

4. Let n ≥ 1. Since Fn is closed in Ω, F cn is open in Ω. By the very definition
of the induced topology on Kn, Kn \ Fn = Kn ∩ F cn is an open subset of
Kn. We conclude that Fn ∩Kn is a closed subset of Kn.

5. By assumption, each Kn is a compact subset of Ω. Equivalently, the
induced topological space (Kn, T|Kn) is compact. Having proved that Fn∩
Kn is a closed subset of Kn, from exercise (2) of Tutorial 8, Fn ∩Kn is a
compact subset of Kn, or equivalently a compact subset of Ω′.

6. We have found a sequence (Fn ∩ Kn)n≥1 of compact subsets of Ω′, such
that Fn∩Kn ↑ Ω′. This shows that the induced topological space (Ω′, T|Ω′)
is σ-compact. From theorem (12), it is also metrizable, which completes
the proof of theorem (71).
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Exercise 9

Exercise 10.

1. Let x ∈ K. Since µ is locally finite, there exists Ux open subset of Ω, such
that x ∈ Ux and µ(Ux) < +∞. It is clear that K ⊆ ∪x∈KUx, and K being
a compact subset of Ω, there exists a finite subset {x1, . . . , xn} of K such
that K ⊆ Ux1 ∪ . . . ∪ Uxn . Taking Vi = Uxi, we have found V1, . . . , Vn
open subsets of Ω, such that µ(Vi) < +∞ for all i ∈ Nn and:

K ⊆ V1 ∪ . . . ∪ Vn (9)

Note that if n = 0, K = ∅ and it is always possible to assume n = 1 by
taking V1 = ∅ (not a very important comment).

2. From (9) and exercise (13) of Tutorial 5, we obtain:

µ(K) ≤ µ(V1 ∪ . . . ∪ Vn) ≤
n∑
i=1

µ(Vi) < +∞

Exercise 10

Exercise 11.

1. Let ε > 0. Since (Ω, T ) is metrizable and µ is a finite measure, from
theorem (68) there exist F,G respectively closed and open subsets of Ω,
such that F ⊆ B ⊆ G and µ(G \ F ) ≤ ε. In particular, there exists F
closed with F ⊆ B and µ(B \ F ) ≤ ε.

2. Since Kn ⊆ Kn+1, F \ (Kn+1∩F ) ⊆ F \ (Kn∩F ) for all n ≥ 1. Moreover,
we have:

+∞⋂
n=1

F \ (Kn ∩ F ) =
+∞⋂
n=1

F ∩ (Kc
n ∪ F c) = F ∩

(
+∞⋃
n=1

Kn

)c
= ∅

It follows that F \ (Kn ∩ F ) ↓ ∅.

3. F being a closed subset of Ω, Kn∩F is closed with respect to the induced
topology on Kn. In other words, Kn ∩ F is a closed subset of Kn.

4. Since Kn is compact, and Kn ∩ F is closed in Kn, from exercise (2) of
Tutorial 8, Kn ∩ F is itself compact.

5. Since F \ (Kn ∩ F ) ↓ ∅ and µ is a finite measure, from theorem (8) we
have µ(F \ (Kn ∩ F )) → 0 as n → +∞. In particular, there exists n ≥ 1
such that µ(F \ (Kn ∩ F )) ≤ ε. Taking K = Kn ∩ F , from 4. K is a
compact subset of Kn, or equivalently a compact subset of Ω. Hence, we
have found a compact subset K of Ω, such that K ⊆ F and µ(F \K) ≤ ε.
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6. Since µ(B \ F ) ≤ ε and µ(F \K) ≤ ε, we have:

µ(B) = µ(B \ F ) + µ(F )
= µ(B \ F ) + µ(F \K) + µ(K)
≤ µ(K) + 2ε

7. We have proved in 6. that for all B ∈ B(Ω), there exists K compact with
K ⊆ B and µ(B) ≤ µ(K) + 2ε. α being an upper bound of all µ(K), as
K ranges through all compacts subsets with K ⊆ B, we have µ(K) ≤ α.
So µ(B) ≤ α+ 2ε. This being true for all ε > 0, it follows that µ(B) ≤ α.
Moreover, for all K compact with K ⊆ B, we have µ(K) ≤ µ(B). So
µ(B) is an upper bound of all µ(K), as K ranges through compacts with
K ⊆ B. α being the smallest of such upper bounds, we have α ≤ µ(B)
and finally:

µ(B) = α = sup{µ(K) : K ⊆ B , K compact}
This being true for all B ∈ B(Ω), from definition (103), µ is inner-regular.
We have proved that any finite measure on a metrizable, σ-compact topo-
logical space is inner-regular.

Exercise 11

Exercise 12.

1. Since Kn ↑ Ω, we have Kn ∩ B ↑ B. From theorem (7), it follows that
µ(Kn ∩B) ↑ µ(B).

2. Since α < µ(B) and µ(Kn ∩ B) → µ(B), there exists n ≥ 1 such that
α < µ(Kn ∩B). Taking K = Kn, we have found K compact subset of Ω
such that α < µ(K ∩B).

3. From exercise (10), µ being a locally finite measure and K being compact,
we have µ(K) < +∞. Hence, for all A ∈ B(Ω):

µK(A) = µ(K ∩A) ≤ µ(K) < +∞

So µK is a finite measure on (Ω,B(Ω)). Since (Ω, T ) is metrizable and
σ-compact, from exercise (11) it follows that µK is inner-regular. In par-
ticular:

µK(B) = sup{µK(K∗) : K∗ ⊆ B , K∗ compact}

4. It appears from 3. that µK(B) is the smallest upper bound of all µK(K∗),
as K∗ ranges through compacts with K∗ ⊆ B. Since α < µK(B), α cannot
be such an upper bound. Hence, there exists K∗ compact with K∗ ⊆ B,
such that α < µ(K ∩K∗).

5. (Ω, T ) being metrizable, it is a Hausdorff topological space. K∗ being a
compact subset of Ω, we conclude from theorem (35) that K∗ is a closed
subset of Ω.
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6. Having proved that K∗ is a closed subset of Ω, K ∩K∗ is closed relative
to the induced topology on K. In other words, K ∩K∗ is a closed subset
of K.

7. K∩K∗ being a closed subset of K, and K being compact, from exercise (2)
of Tutorial 8 we conclude that K ∩K∗ is itself compact.

8. We have shown that α < µ(K ∩K∗) and that K ∩K∗ is a compact subset
of Ω. Since K∗ ⊆ B, we have K ∩K∗ ⊆ B and we conclude that:

α < µ(K ∩K∗) ≤ sup{µ(K ′) : K ′ ⊆ B , K ′ compact} (10)

9. For all α ∈ R̄ with α < µ(B), inequality (10) holds. Hence:

µ(B) ≤ sup{µ(K ′) : K ′ ⊆ B , K ′ compact}

10. Is is clear that:

sup{µ(K ′) : K ′ ⊆ B , K ′ compact} ≤ µ(B)

We conclude that:

µ(B) = sup{µ(K ′) : K ′ ⊆ B , K ′ compact}

This being true for all B ∈ B(Ω), from definition (103), µ is inner-regular.
We have proved that any locally finite measure on a metrizable and σ-
compact topological space, is inner-regular.

Exercise 12

Exercise 13.

1. Let (Ω, T ) be a metrizable topological space. Suppose (Ω, T ) is separable.
From definition (58), there exists a sequence (xn)n≥1 of elements of Ω,
which are dense in Ω. The set of open balls:

H = {B(xn, 1/p) : n ≥ 1, p ≥ 1}
is easily seen to be a countable base of (Ω, T ). Indeed, it is a subset of
the topology T which is at most countable, and for any open set U and
any x ∈ U , on can easily find n ≥ 1 and p ≥ 1 such that:

x ∈ B(xn, 1/p) ⊆ U

So U is a union of elements of H. We have proved that if (Ω, T ) is
separable, then it has a countable base. Conversely, suppose (Ω, T ) has
a countable base, say H. For all V ∈ H, V 6= ∅, let xV be an arbitrary
element of V . Then, the set:

A = {xV : V ∈ H, V 6= ∅}
is at most countable, and is easily seen to be dense in Ω. Indeed, for all
x ∈ Ω and ε > 0, the open ball B(x, ε) being a union of elements of H
(see definition (57) of a countable base), we have x ∈ V ⊆ B(x, ε) for
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some V ∈ H, V 6= ∅. In particular, we have found xV ∈ A, such that
d(x, xV ) < ε. This shows that (Ω, T ) is separable, and we have proved the
equivalence between the separability of (Ω, T ), and the fact that it has
a countable base. This equivalence was already proved in slightly more
detail, as part of exercise (19) of Tutorial 6.

2. We assume that (Ω, T ) is not only metrizable, but also compact. Let
n ≥ 1. Then (B(x, 1/n))x∈Ω is a family of open sets whose union is equal
to Ω itself. In other words, it is an open covering of Ω. Since (Ω, T ) is
compact, this open covering has a finite sub-covering. In other words,
there exists an integer p ≥ 1 and x1, . . . , xp in Ω, such that:

Ω = B(x1, 1/n) ∪ . . . ∪B(xp, 1/n)

We have proved that Ω can be covered by a finite number of open balls
with radius 1/n.

3. We assume that (Ω, T ) is not only metrizable but also compact. From 2.
given n ≥ 1, Ω can be covered by a finite number, say pn ≥ 1, of open
balls with radius 1/n. Let x1,n, . . . , xpn,n be the centers of such open balls.
Then, the set A = {xk,n : n ≥ 1, k = 1, . . . , pn} is at most countable, and
we claim that it is dense in Ω. Let x ∈ Ω. We have to show that x ∈ Ā,
i.e. that given U open containing x, we have U ∩ A 6= ∅. (Ω, T ) being
metrizable, it is sufficient to show that given ε > 0, B(x, ε) ∩ A 6= ∅. Let
n ≥ 1 be such that 1/n ≤ ε. Since x belongs to an open ball B(xk,n, 1/n)
for some k = 1, . . . , pn, in particular we have d(x, xk,n) < ε. This shows
that B(x, ε)∩A 6= ∅ and we have proved that A is dense in Ω. This shows
that (Ω, T ) is separable. The purpose of this exercise is to show that a
metrizable compact topological space is also separable.

Exercise 13

Exercise 14.

1. From theorem (12), the induced metric d|Kn induces the induced topology
T|Kn on Kn.

2. By assumption, each Kn is a compact subset of Ω. In other words, the
topological space (Kn, T|Kn) is compact. However from 1. it is also metriz-
able. It follows from exercise (13) that (Kn, T|Kn) is separable.

3. Let A = {xpn : n ≥ 1, p ≥ 1}. Then A is an at most countable set, and
we claim that A is dense in Ω. Since (Ω, T ) is metrizable, given x ∈ Ω and
ε > 0, it is sufficient to show that A ∩ B(x, ε) 6= ∅. Since Ω = ∪n≥1Kn,
there is n ≥ 1 such that x ∈ Kn. By assumption, the sequence (xpn)p≥1

is dense in Kn. Hence, there exists p ≥ 1 such that d|Kn(x, xpn) < ε.
Equivalently, we have d(x, xpn) < ε. It follows that A ∩ B(x, ε) 6= ∅ and
we have proved that A is dense in Ω. This shows that (Ω, T ) is separable.
The purpose of this exercise is to prove that a metrizable and σ-compact
topological space, is also separable. This is the objective of theorem (72).
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Exercise 14

Exercise 15.

1. Let U be open in Ω and x ∈ U . The measure µ being locally finite,
there exists some open set Wx such that x ∈ Wx and µ(Wx) < +∞.
Defining Ux = U ∩Wx, Ux is an open set in Ω such that x ∈ Ux ⊆ U and
µ(Ux) < +∞.

2. Since Ux is open, and H is a countable base of (Ω, T ), Ux can be expressed
as a union of elements of H. In particular, since x ∈ Ux, there exists some
Vx ∈ H such that x ∈ Vx ⊆ Ux.

3. H′ being a subset of H, and H being a countable base of (Ω, T ), H′ is
an at most countable set of open sets in Ω. Furthermore, given U open
in Ω and x ∈ U , it follows from 1. and 2. that there exists Vx ∈ H such
that x ∈ Vx ⊆ U and µ(Vx) < +∞. In other words, there exists Vx ∈ H′
such that x ∈ Vx ⊆ U . Consequently, U can be expressed as U = ∪x∈UVx
and we have proved that any open set in Ω can be written as a union of
elements of H′. This shows that H′ is a countable base of (Ω, T ).

4. Since Ω is an open set in Ω, and H′ is a countable base of (Ω, T ), Ω can be
written as a union of elements of H′. In other words, there exists a subset
G ⊆ H′ such that Ω = ∪V ∈GV . H′ being at most countable, G is itself
at most countable. There exists a map φ : N∗ → G which is surjective.
So Ω = ∪n≥1φ(n), and defining Vn = φ(n) we obtain Ω = ∪n≥1Vn where
each Vn is an element of G ⊆ H′. In particular, each Vn is an open set in
Ω with µ(Vn) < +∞.

Exercise 15

Exercise 16.

1. Let µVn = µ(Vn ∩ ·). Since µ(Vn) < +∞, µVn is a finite measure on
(Ω,B(Ω)). Furthermore, (Ω, T ) is a metrizable topological space. Apply-
ing theorem (68), since B ∈ B(Ω), there exist Fn closed and Gn open
such that Fn ⊆ B ⊆ Gn and µVn(Gn \ Fn) ≤ ε/2n. In particular,
since Gn \ B ⊆ Gn \ Fn, there exists Gn open such that B ⊆ Gn and
µVn(Gn \B) ≤ ε/2n.

2. Let G = ∪n≥1Vn ∩ Gn. Each Vn and Gn is an open set in Ω. So G is a
union of open sets in Ω. It follows thatG is an open set in Ω. Furthermore,
since Ω = ∪n≥1Vn and B ⊆ Gn for all n ≥ 1, we have:

B =
+∞⋃
n=1

Vn ∩B ⊆
+∞⋃
n=1

Vn ∩Gn = G

3. We have:

G \B = G ∩Bc =
+∞⋃
n=1

Vn ∩Gn ∩Bc =
+∞⋃
n=1

Vn ∩ (Gn \B)
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4. From 3. and 1. we obtain:

µ(G \B) ≤
+∞∑
n=1

µ(Vn ∩ (Gn \B)) =
+∞∑
n=1

µVn(Gn \B) ≤ ε

Since B ⊆ G, we have µ(G) = µ(B) + µ(G \B) and consequently µ(G) ≤
µ(B) + ε.

5. Since G is open and B ⊆ G, we have α ≤ µ(G). Using 4. it follows that
α ≤ µ(B) + ε. This being true for all ε > 0, we conclude that α ≤ µ(B).

6. For all G open with B ⊆ G, we have µ(B) ≤ µ(G). It follows that µ(B)
is a lower bound of all µ(G)’s where G is open with B ⊆ G. α being the
greatest of such lower bounds, we have µ(B) ≤ α. However, from 5. we
have α ≤ µ(B). It follows that α = µ(B). We have proved that for all
B ∈ B(Ω):

µ(B) = inf{µ(G) : B ⊆ G , G open}
This shows that µ is outer-regular.

7. In this exercise, we proved that a locally finite measure on a metrizable and
σ-compact topological space is outer-regular. However, in exercise (12),
we proved that it is also inner-regular. It follows that a locally finite
measure on a metrizable and σ-compact topological space is regular. This
proves theorem (73).

Exercise 16

Exercise 17. Let Ω be an open subset of Rn, and µ be a locally finite mea-
sure in (Ω,B(Ω)). Rn is a metrizable topological space, and furthermore from
theorem (48) any closed and bounded subset of Rn is compact. In particular,
Kp = [−p, p]n is a compact subset of Rn for all p ≥ 1. So Rn is both metriz-
able and σ-compact. From theorem (71) it follows that the induced topological
space (Ω, (TRn)|Ω) is also metrizable and σ-compact. Applying theorem (73),
we conclude that µ being locally finite, is a regular measure. We have proved
that any locally finite measure on an open subset of Rn is regular. This is the
objective of theorem (74).

Exercise 17

Exercise 18.

1. Since (Ω, T ) is locally compact, for all x ∈ Ω, there exists Wx open in
Ω such that x ∈ Wx and W̄x is compact. Let n ≥ 1. Kn is a compact
subset of Ω. Furthermore, (Kn ∩ Wx)x∈Kn is an open covering of Kn,
from which therefore we can extract a finite sub-covering. There exists an
integer pn ≥ 1 and xn1 , . . . , x

n
pn elements of Kn, such that:

Kn = (Kn ∩Wxn1
) ∪ . . . ∪ (Kn ∩Wxnpn

)

Setting V nk = Wxnk
for k = 1, . . . , pn, we have found V n1 , . . . , V

n
pn open

subsets of Ω such that Kn ⊆ V n1 ∪ . . . ∪ V npn and V̄ n1 , . . . , V̄
n
pn are compact

subsets of Ω.
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2. Let Wn = V n1 ∪ . . . ∪ V npn and Vn = ∪nk=1Wk for n ≥ 1. Since V n1 , . . . , V
n
pn

are open, each Wn is open, and consequently each Vn is open. So (Vn)n≥1

is a sequence of open sets in Ω, and it is clear that Vn ⊆ Vn+1 for all
n ≥ 1. Let x ∈ Ω. Since Kn ↑ Ω, in particular Ω = ∪n≥1Kn and there
exists n ≥ 1 such that x ∈ Kn. From 1. we have Kn ⊆ Wn, and since
Wn ⊆ Vn, it follows that x ∈ Vn. This shows that Ω = ∪n≥1Vn and we
have proved that (Vn)n≥1 is a sequence of open sets such that Vn ↑ Ω.

3. In order to show that W̄n = V̄ n1 ∪ . . .∪ V̄ npn it is sufficient to prove that for
all A, B subsets of Ω, we have A ∪B = Ā ∪ B̄. Recall from exercise (21)
of Tutorial 4 that the closure in Ω of any set A, is the smallest closed set
containing A (in the sense of inclusion). In particular, we have A ⊆ Ā and
B ⊆ B̄ and consequently A∪B ⊆ Ā∪B̄. However, Ā∪B̄ being closed, this
implies that A ∪B ⊆ Ā ∪ B̄. Furthermore since A ⊆ A ∪B ⊆ A ∪B and
A ∪B is closed, we have Ā ⊆ A ∪B and likewise B̄ ⊆ A ∪B. It follows
that Ā ∪ B̄ ⊆ A ∪B and we have proved the equality A ∪B = Ā ∪ B̄.

4. Since W̄n = V̄ n1 ∪ . . . ∪ V̄ npn and each V̄ nk is a compact subset of Ω, in
order to prove that W̄n is compact, it is sufficient to show that if A and
B are compact subsets of Ω, then A ∪ B is also a compact subset of Ω.
For that purpose we shall use the characterization of compact subsets
proved in exercise (2) of Tutorial 8. Let (Ui)i∈I be a family of open sets
in Ω such that A ∪ B ⊆ ∪i∈IUi. Then in particular A ⊆ ∪i∈IUi and
A being a compact subset of Ω, there exists I1 finite subset of I such
that A ⊆ ∪i∈I1Ui. Similarly, there exists I2 finite subset of I such that
B ⊆ ∪i∈I2Ui, It follows that A ∪B ⊆ ∪i∈I1∪I2Ui and I1 ∪ I2 being finite,
we conclude that A ∪B is a compact subset of Ω.

5. Let n ≥ 1. From 2. we have Vn = ∪nk=1Wk. Using a similar argument
as in 3. we see that V̄n = ∪nk=1W̄k. Using a similar argument as in 4.,
each W̄k being compact by virtue of 4. itself, we conclude that V̄n is itself
compact.

6. Let (Ω, T ) be a topological space. If (Ω, T ) is σ-compact and locally
compact, we have been able to construct a sequence (Vn)n≥1 of open sets in
Ω, such that Vn ↑ Ω and V̄n is compact for all n ≥ 1. So (Ω, T ) is strongly
σ-compact. Conversely, suppose that (Ω, T ) is strongly σ-compact, and
let (Vn)n≥1 be a sequence of open sets in Ω, such that Vn ↑ Ω and each
V̄n is compact. Then V̄n ↑ Ω and Ω is therefore σ-compact. Furthermore,
for all x ∈ Ω, there exists n ≥ 1 such that x ∈ Vn. Since Vn is open and
V̄n is compact, this shows that Ω is locally compact. This completes the
proof of theorem (75).

Exercise 18

Exercise 19.

1. Since A ⊆ Ω′ and A ⊆ Ā, we have A ⊆ Ω′ ∩ Ā.
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2. The complement of Ω′ ∩ Ā in Ω′ is:

Ω′ \ (Ω′ ∩ Ā) = Ω′ ∩ (Ω′c ∪ Āc) = Ω′ ∩ Āc

Since Ā is closed in Ω, Āc is open in Ω and consequently by definition of
the induced topology, Ω′∩ Āc is open in Ω′. It follows that Ω′∩ Ā is closed
in Ω′. Note more generally that if F is closed in Ω, then Ω′ ∩ F is closed
in Ω′.

3. The closure ĀΩ′ ofA in Ω′ being the smallest closed subset of Ω′ containing
A, we conclude from A ⊆ Ω′∩Ā and Ω′∩Ā closed in Ω′, that ĀΩ′ ⊆ Ω′∩Ā.

4. Let x ∈ Ω′ ∩ Ā. Suppose U ′ ∈ T|Ω′ and x ∈ U ′. There exists U ∈ T such
that U ′ = U ∩Ω′. From x ∈ U ′, we have x ∈ U and since x ∈ Ā, we obtain
that A ∩ U 6= ∅. However by assumption, A is a subset of Ω′. Hence:

A ∩ U ′ = A ∩ (U ∩Ω′) = (A ∩Ω′) ∩ U = A ∩ U 6= ∅

So we have proved that A ∩ U ′ 6= ∅.

5. It follows from 4. that Ω′∩Ā ⊆ ĀΩ′ . However from 3.we have ĀΩ′ ⊆ Ω′∩Ā.
We conclude that ĀΩ′ = Ω′ ∩ Ā.

Exercise 19

Exercise 20.

1. Let x ∈ Ω and ε > 0. Let y ∈ B(x, ε). For all U open in Ω such that
y ∈ U , we have U ∩ B(x, ε) 6= ∅. In particular, for all η > 0, we have
B(y, η) ∩ B(x, ε) 6= ∅. Let z ∈ Ω be such that d(y, z) < η and d(x, z) < ε.
From the triangle inequality:

d(x, y) ≤ d(x, z) + d(y, z) < ε+ η

This being true for all η > 0, it follows that d(x, y) ≤ ε. We have proved
that:

B(x, ε) ⊆ {y ∈ Ω : d(x, y) ≤ ε}

2. Let Ω = [0, 1/2[∪{1} together with its usual metric. Then, the open ball
B(0, 1) is given by:

B(0, 1) = {x ∈ Ω : |x| < 1} = [0, 1/2[

3. The complement of [0, 1/2[ in Ω is {1}, which can be written as ]1/2, 2[∩Ω
and is therefore open in Ω, since ]1/2, 2[ is open in R. It follows that
[0, 1/2[ is closed in Ω.

4. From 2. we have B(0, 1) = [0, 1/2[ and from 3. [0, 1/2[ is a closed subset
of Ω, and is therefore equal to its closure. Hence:

B(0, 1) = [0, 1/2[ = [0, 1/2[

www.probability.net

http://www.probability.net


Solutions to Exercises 31

5. Since Ω = {y ∈ Ω : |y| ≤ 1} and [0, 1/2[6= Ω, we conclude that:

B(0, 1) 6= {y ∈ Ω : |y| ≤ 1}
The purpose of this exercise is to provide a counter-example to the belief
that the inclusion proved in 1.:

B(x, ε) ⊆ {y ∈ Ω : d(x, y) ≤ ε}
can be shown to be an equality.

Exercise 20

Exercise 21.

1. Ω being locally compact, there exists U open with compact closure such
that x ∈ U .

2. Since x ∈ Ω′ and x ∈ U , we have x ∈ U ∩ Ω′. Furthermore, both U and
Ω′ being open in Ω, U ∩Ω′ is open in Ω. The topology on Ω being metric,
there exists ε > 0 such that B(x, ε) ⊆ U ∩ Ω′.

3. From B(x, ε/2) ⊆ B(x, ε) ⊆ U ∩Ω′ ⊆ U we conclude that B(x, ε/2) ⊆ Ū .

4. From 3. we have B(x, ε/2) = B(x, ε/2) ∩ Ū and B(x, ε/2) being closed in
Ω, we conclude that it is also closed in Ū .

5. Since Ū is compact and B(x, ε/2) is a closed subset of Ū , it follows from
exercise (2) of Tutorial 8 that B(x, ε/2) is a compact subset of Ū , and
consequently also a compact subset of Ω.

6. Let y ∈ B(x, ε/2). From 1. of exercise (20), d(x, y) ≤ ε/2 and in particular
d(x, y) < ε. From 2. we have B(x, ε) ⊆ Ω′ and consequently y ∈ Ω′. This
shows that B(x, ε/2) ⊆ Ω′.

7. Let U ′ = B(x, ε/2) ∩ Ω′ = B(x, ε/2). It is clear that x ∈ U ′ and further-
more B(x, ε/2) being open in Ω, U ′ is open in Ω′, i.e. U ′ ∈ T|Ω′ . Using 6.
and exercise (19), we obtain:

Ū ′Ω
′

= Ū ′ ∩ Ω′ = B(x, ε/2) ∩ Ω′ = B(x, ε/2)

In particular Ū ′Ω
′

is compact, as can be seen from 5.

8. Given x ∈ Ω′, we have found U ′ open in Ω′ such that x ∈ U ′ and Ū ′Ω
′

is
compact. This shows that (Ω′, T|Ω′) is locally compact.

9. Let (Ω, T ) be a metrizable and strongly σ-compact topological space. Let
Ω′ be an open subset of Ω. From theorem (75), (Ω, T ) is metrizable,
σ-compact and locally compact. Since Ω′ is open, it follows from the-
orem (71) that the induced topological space (Ω′, T|Ω′) is itself metriz-
able and σ-compact. Furthermore, we have proved in this exercise that
(Ω′, T|Ω′) is also locally compact. So (Ω′, T|Ω′) is metrizable, σ-compact
and locally compact. Using theorem (75) once more, we conclude that
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(Ω′, T|Ω′) is metrizable and strongly σ-compact. This completes the proof
of theorem (76).

Exercise 21

Exercise 22.

1. The constant map φ : x → 0 is continuous. Indeed for any U open in
K, φ−1(U) is either equal to ∅ or to Ω itself. In any case φ−1(U) is an
open subset of Ω. Furthermore, supp(φ) = ∅ and is therefore compact (see
exercise (2) of Tutorial 8). This shows that φ ∈ CcK(Ω).

2. CcK(Ω) being a non-empty subset of the set of all maps φ : Ω → K, to
show that CcK(Ω) is a K-vector space, it is sufficient to show that given
φ, ψ ∈ CcK(Ω) and λ ∈ K, the map φ + λψ is also an element of CcK(Ω).
To show that φ + λψ is continuous, one may proceed as follows: define
Φ : K2 → K by Φ(x, y) = x+λy, and Ψ : Ω→ K2 by Ψ(ω) = (φ(ω), ψ(ω)).
Then φ+λψ = Φ ◦Ψ and Φ being continuous, it is sufficient to show that
Ψ is itself a continuous map. However, the continuity of Ψ follows from
the fact that each coordinate mapping φ and ψ is continuous. Indeed if
U × V is an open rectangle in K2, then Ψ−1(U × V ) = φ−1(U) ∩ ψ−1(V )
and is therefore open in Ω. Any open set W in K2 being a union of
open rectangles, it is clear that Ψ−1(W ) is open in Ω. So much for the
continuity of φ+ λψ. From the inclusion:

{φ+ λψ 6= 0} ⊆ {φ 6= 0} ∪ {ψ 6= 0}
and the fact that given A,B subsets of Ω, A ∪B = Ā ∪ B̄ (see the proof
of 3. in exercise (18)), we obtain:

supp(φ+ λψ) ⊆ supp(φ) ∪ supp(ψ)

Since φ and ψ lie in CcK(Ω), both supp(φ) and supp(ψ) are compact and
consequently A = supp(φ) ∪ supp(ψ) is itself compact (see the proof of
4. in exercise (18)). Furthermore, supp(φ + λψ) being closed in Ω while
being a subset of A, it is also closed in A. From exercise (2) of Tutorial 8,
supp(φ+λψ) is therefore compact. We have proved that φ+λψ ∈ CcK(Ω).

3. Let φ ∈ CcK(Ω). If φ = 0 then φ ∈ CbK(Ω). We assume that φ 6= 0. Let
A = supp(φ). Then |φ||A is a continuous map defined on the non-empty
compact topological space (A, T|A). From theorem (37), |φ||A attains its
maximum, i.e. there exists xM ∈ A such that:

|φ(xM )| = sup
x∈A
|φ(x)|

Since φ(x) = 0 for all x ∈ Ac, we have:

|φ(xM )| = sup
x∈Ω
|φ(x)|

which shows in particular that supx∈Ω |φ(x)| < +∞. So φ ∈ CbK(Ω) and
we have proved that CcK(Ω) ⊆ CbK(Ω).
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Exercise 22

Exercise 23.

1. Since Ω is locally compact, for all x ∈ Ω there exists an open set Wx

such that x ∈ Wx and W̄x is compact. From K ⊆ ∪x∈KWx and the
fact that K is a compact subset of Ω, we deduce the existence of n ≥ 1
and x1, . . . , xn ∈ K such that K ⊆ ∪nk=1Wxk . Setting Vk = Wxk for all
k = 1, . . . , n, we have found open sets V1, . . . , Vn such that:

K ⊆ V1 ∪ . . . ∪ Vn (11)

and each V̄k is compact.

2. An arbitrary union of open sets is open. A finite intersection of open sets
is open. Since V1, . . . , Vn and G are open, the set V = (V1∪ . . .∪Vn)∩G is
an open set in Ω. By assumption, K ⊆ G and it therefore follows from (11)
that K ⊆ V . The fact that V ⊆ G is clear. We have proved that V is
open and K ⊆ V ⊆ G.

3. Given A,B subsets of Ω, A ∪B = Ā∪ B̄ (see proof of 3. in exercise (18)).
From V ⊆ V1 ∪ . . . ∪ Vn we obtain:

V̄ ⊆ V1 ∪ . . . ∪ Vn = V̄1 ∪ . . . ∪ V̄n

4. If A,B are compact subsets of Ω, A ∪ B is a compact subset of Ω (see
proof of 4. in exercise (18)). It follows that K ′ = V̄1∪ . . .∪ V̄n is a compact
subset of Ω. Furthermore from 3. V̄ is a subset of K ′. Being closed in Ω,
V̄ is also closed in K ′ (it can be written as V̄ = F ∩K ′ where F is closed
in Ω, take F = V̄ ). Using exercise (2) of Tutorial 8, it follows that V̄ is
compact.

5. Given A subset of Ω, d(x,A) is well defined for all x ∈ Ω as:

d(x,A) = inf{d(x, y) : y ∈ A}
where it is understood that inf ∅ = +∞. Since K 6= ∅ and V 6= Ω, d(x,K)
and d(x, V c) are well-defined real numbers for all x ∈ Ω. Furthermore, for
all A closed in Ω, d(x,A) = 0 is equivalent to x ∈ A (see exercise (22) of
Tutorial 4). V being open in Ω, V c is a closed subset of Ω. So d(x, V c) = 0
is equivalent to x ∈ V c. K being a compact subset of Ω and Ω being a
Hausdorff topological space (it is metric), K is a closed subset of Ω (see
theorem (35)). So d(x,K) = 0 is equivalent to x ∈ K. It follows that
d(x, V c) + d(x,K) = 0 is equivalent to x ∈ K ∩ V c, which can never
happen since K ⊆ V . We have proved that for all x ∈ Ω, φ(x) is a well-
defined real number. So φ : Ω→ R is well-defined. For all A subsets of Ω,
the map x → d(x,A) is continuous (see exercise (22) of Tutorial 4). We
conclude that φ is also continuous.

6. φ(x) 6= 0 is equivalent to d(x, V c) 6= 0 which is itself equivalent to x 6∈ V c
(since V c is closed), i.e. x ∈ V . We have proved that {φ 6= 0} = V .
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7. From 7. {φ 6= 0} = V and consequently supp(φ) = V̄ . Having proved in 4.
that V̄ is compact, it follows that φ has compact support. So φ : Ω→ R
is continuous with compact support, i.e. φ ∈ CcR(Ω).

8. To show that 1K ≤ φ it is sufficient to show that x ∈ K implies 1 ≤ φ(x).
However, K being closed in Ω, x ∈ K is equivalent to d(x,K) = 0. In
particular, x ∈ K implies that φ(x) = 1. It is clear that φ(x) ≤ 1 for all
x ∈ Ω. To show that φ ≤ 1G, it is sufficient to show that x 6∈ G implies
φ(x) = 0. But V ⊆ G and consequently x 6∈ G implies x 6∈ V , i.e. x ∈ V c.
And V c being closed, x ∈ V c is equivalent to d(x, V c) = 0. In particular,
we see that x 6∈ G implies φ(x) = 0. So 1K ≤ φ ≤ 1G.

9. Suppose K = ∅. With φ = 0, φ ∈ CcR(Ω) and 1K ≤ φ ≤ 1G.

10. Suppose V = Ω. Then V̄ = Ω̄ = Ω. V̄ being compact (see 4.), it follows
that Ω is compact.

11. Suppose V = Ω. Since V ⊆ G, we have G = Ω, i.e. 1G = 1. Take
φ = 1. Then φ is continuous and supp(φ) = Ω is compact (see 10.). So
φ ∈ CcR(Ω) and 1K ≤ φ ≤ 1G. This proves theorem (77).

Exercise 23

Exercise 24.

1. Let φ ∈ CcK(Ω). Then φ is continuous and from exercise (13) of Tutorial 4,
the map φ : (Ω,B(Ω))→ (K,B(K)) is therefore measurable. Furthermore
from exercise (22), CcK(Ω) ⊆ CbK(Ω). So φ is also bounded. There exists
m ∈ R+ such that |φ| ≤ m. Let A = supp(φ). Then A is a compact
subset of Ω, and from exercise (10), µ being locally finite, µ(A) < +∞.
Since {φ 6= 0} ⊆ A, we have Ac ⊆ {φ = 0} and consequently φ = φ1A.
Hence: ∫

|φ|pdµ =
∫

1A|φ|pdµ ≤ mpµ(A) < +∞

So φ ∈ LpK(Ω,B(Ω), µ) and finally CcK(Ω) ⊆ LpK(Ω,B(Ω), µ).

2. Let ε > 0. Since (Ω, T ) is metrizable and strongly σ-compact, in par-
ticular from theorem (75), it is metrizable and σ-compact. Since µ is a
locally finite measure on (Ω,B(Ω)), from theorem (73) µ is regular. Hav-
ing assumed that µ(B) < +∞, we have µ(B) < µ(B) + ε/2. From the
outer-regularity of µ, µ(B) is the greatest lower-bound of all µ(G)’s where
G is open with B ⊆ G. So µ(B) + ε/2 cannot be such lower-bound. There
exists G open with B ⊆ G such that:

µ(G) < µ(B) +
ε

2
(12)

Likewise, µ(B) − ε/2 < µ(B) and from the inner-regularity of µ, µ(B) is
the lowest upper-bound of all µ(K)’s where K is compact with K ⊆ B.
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So µ(B)−ε/2 cannot be such upper-bound, and consequently, there exists
K compact with K ⊆ B such that:

µ(B) − ε

2
< µ(K) (13)

Hence, we have found K compact and G open with K ⊆ B ⊆ G, and
furthermore from (12) and (13) we have:

µ(G) < µ(B) +
ε

2
< µ(K) + ε

and consequently:

µ(K) + µ(G \K) = µ(G) < µ(K) + ε

K being compact and µ locally finite, from exercise (10) we have µ(K) <
+∞, and we conclude that µ(G \K) < ε. In particular µ(G \K) ≤ ε.

3. The fact that µ(B) < +∞ was used when writing the inequalities µ(B) <
µ(B) + ε/2 and µ(B) − ε/2 < µ(B). Without this assumption, these
inequalities would not be strict, and the argument developed in 2. would
fail.

4. Since (Ω, T ) is metrizable and strongly σ-compact, in particular from the-
orem (75), it is metrizable and locally compact. K being compact and G
open with K ⊆ G, from theorem (77), there exists φ ∈ CcR(Ω) such that
1K ≤ φ ≤ 1G.

5. Since 1K ≤ φ ≤ 1G, in particular 0 ≤ φ ≤ 1 and consequently we have
|φ − 1B|p ≤ 1. Suppose x 6∈ G. Then 1G(x) = 0 and therefore φ(x) = 0.
Since B ⊆ G, we also have 1B(x) = 0 and consequently |φ(x)− 1B(x)|p =
0. Suppose x ∈ K. Then 1K(x) = 1 and therefore φ(x) = 1. Since K ⊆ B
we also have 1B(x) = 1 and consequently |φ(x) − 1B(x)|p = 0. We have
proved that x 6∈ G \K implies that |φ(x) − 1B(x)|p = 0. It follows that
|φ− 1B|p ≤ 1G\K and finally:∫

|φ− 1B|pdµ ≤
∫

1G\Kdµ = µ(G \K)

6. Let ε > 0. Applying 2. to εp instead of ε itself, we can find K and G such
that µ(G \K) ≤ εp. From 4. and 5. there exists φ ∈ CcR(Ω) such that:∫

|φ− 1B|pdµ ≤ µ(G \K) ≤ εp

from which we conclude that ‖φ− 1B‖p ≤ ε.

7. Let s ∈ SC(Ω,B(Ω)) ∩ LpC(Ω,B(Ω), µ) and ε > 0. From 3. of exer-
cise (1) there exists an integer n ≥ 1, together with α1, . . . , αn ∈ C and
A1, . . . , An ∈ B(Ω) such that:

s =
n∑
i=1

αi1Ai
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and µ(Ai) < +∞ for all i ∈ Nn. Without loss of generality, we may
assume that αi 6= 0 for all i’s (if s = 0 then s ∈ CcC(Ω) and finding
φ ∈ CcC(Ω) such that ‖φ − s‖p ≤ ε is trivial). Applying 6. to B = Ai
(recall that Ai ∈ B(Ω) and µ(Ai) < +∞) and ε/n|αi| instead of ε, there
exists φ ∈ CcR(Ω) such that ‖φi−1Ai‖p ≤ ε/n|αi|. Since CcC(Ω) is a vector
space, the map φ =

∑n
i=1 αiφi is an element of CcC(Ω) and we have:

‖φ− s‖p =

∥∥∥∥∥
n∑
i=1

αiφi −
n∑
i=1

αi1Ai

∥∥∥∥∥
p

≤
n∑
i=1

|αi| · ‖φi − 1Ai‖p

≤
n∑
i=1

|αi| ·
(

ε

n|αi|

)
= ε

We have found φ ∈ CcC(Ω) such that ‖φ − s‖p ≤ ε. Note that if s ∈
SR(Ω,B(Ω)) then αi ∈ R for all i ∈ Nn, and φ =

∑n
i=1 αiφi is in fact an

element of CcR(Ω).

8. To show that CcK(Ω) is dense in LpK(Ω,B(Ω), µ), it is sufficient to show
that given f ∈ LpK(Ω,B(Ω), µ) and ε > 0, there exists φ ∈ CcK(Ω) such that
‖f −φ‖p ≤ ε. However, from theorem (67) there exists s ∈ SK(Ω,B(Ω))∩
LpK(Ω,B(Ω), µ) such that ‖f−s‖p ≤ ε/2. Applying 7. to s and ε/2 instead
of ε, there exists φ ∈ CcK(Ω) such that ‖φ− s‖p ≤ ε/2. It follows that we
have found φ ∈ CcK(Ω) such that ‖f−φ‖p ≤ ‖f−s‖p+‖φ−s‖p ≤ ε. This
completes the proof of theorem (78).

Exercise 24

Exercise 25. Let Ω be an open subset of Rn where n ≥ 1. Let µ be a locally
finite measure on (Ω,B(Ω)) and p ∈ [1,+∞[. For k ≥ 1, Vk =]−k, k[n is an open
subset of Rn with compact closure, and Vk ↑ Rn. From definition (104), Rn is
strongly σ-compact. Furthermore, it is metrizable. It follows from theorem (76)
that Ω being an open subset of Rn, is also metrizable and strongly σ-compact.
Applying theorem (78), we conclude that CcK(Ω) is dense in LpK(Ω,B(Ω), µ).
This completes the proof of theorem (79).

Exercise 25
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