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13. Regular Measure
In the following, K denotes R or C.

Definition 99 Let (2, F) be a measurable space. We say that a map s : Q — C
is a complex simple function on (2, F), if and only if it is of the form:

n
s = g o;la,
i=1

where n > 1, a; € C and A; € F for all i € N,,. The set of all complex simple
functions on (Q, F) is denoted Sc(Q, F). The set of all R-valued complex simple
functions in (Q,F) is denoted Sr (2, F).

Recall that a simple function on (§2, F), as defined in (40), is just a non-negative
element of Sr(Q2, F).

EXERCISE 1. Let (Q,F, 1) be a measure space and p € [1, +o0].

1. Suppose s: Q2 — C is of the form

n
s = E ol g,
i=1

where n > 1, o; € C, A; € F and pu(A;) < o0 for all i € N,,. Show that
s € L&(Q, F, ) N Sc(Q,F).

2. Show that any s € Sc(€2, F) can be written as:

n
5220@'1&
i=1
where n > 1, o; € C\ {0}, A; € F and A; N A; =0 for i # j.
3. Show that any s € L%(Q, F, pn) N Sc(2, F) is of the form:

s = Z ol g,
i=1
where n > 1, a; € C, 4; € F and pu(4;) < 400, for all i € N,,.
4. Show that LE (Q, F, 1) N Sc(Q, F) = Sc(Q, F).
EXERCISE 2. Let (2, F, ) be a measure space and p € [1,+o0[. Let f be a
non-negative element of L% (Q, F, u).

1. Show the existence of a sequence (s,)n>1 of non-negative functions in
L% (Q, F, p) N Sr(Q, F) such that s,, 1 f.

2. Show that:
lim /|sn — fIPdpu =0

n—-+o0o
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3. Show that there exists s € L (Q, F, p) N Sr(Q2, F) such that || f —s||, <,
for all € > 0.

4. Show that Ly (Q, F, u) N Sk (Q, F) is dense in L (Q, F, p).

EXERCISE 3. Let (2, F, 1) be a measure space. Let f be a non-negative element
of LE(, F, ). For all n > 1, we define:

n2"—1

A k
sn= D, grlk/zegs<rn e +nlin<y
k=0
1. Show that for all n > 1, s, is a simple function.
2. Show there exists ng > 1 and N € F with pu(N) = 0, such that:

Ywe N¢, 0< f(w) <ng
3. Show that for all n > ng and w € N€, we have:

0< f(w) = 50l) < 3
4. Conclude that:

ngr_{}w [f = snllec =0

5. Show the following;:

Theorem 67 Let (2, F, 1) be a measure space and p € [1,+00]. Then, LY (2, F, )N
Sk(Q,F) is dense in LY (Q, F, p).

EXERCISE 4. Let (Q,7) be a metrizable topological space, and u be a finite
measure on (2, B(2)). We define 3 as the set of all B € B(€2) such that for all
€ > 0, there exist F' closed and G open in 2, with:

FCBCG, u(G\F)<e
Given a metric d on (2, 7) inducing the topology 7, we define:
d(z, A) 2 inf{d(z,y): ye A}
forall AC Q and x € Q.
1. Show that z — d(z, A) from 2 to R is continuous for all A C Q.

2. Show that if F'is closed in 2, x € F' is equivalent to d(z, F) = 0.

EXERCISE 5. Further to exercise (4), we assume that F is a closed subset of Q.
For all n > 1, we define:

G, 2 {zeq: d(x,F)<%}
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A

. Show that G, is open for all n > 1.

Show that G,, | F.

Show that F' € ¥.

Was it important to assume that p is finite?
Show that 2 € 3.

Show that if B € X, then B¢ € X..

EXERCISE 6. Further to exercise (5), let (By)n>1 be a sequence in ¥. Define
B =U!> B, and let € > 0.

1

. Show that for all n, there is F), closed and G,, open in Q, with:
€

. Show the existence of some N > 1 such that:

(U (Ur)) =

Define G = Uf>G,, and F = UY_, F,,. Show that F is closed, G is open
and ' C B C (.
Show that:
+o0o +oo
G\FCaQ\ (U Fn> g (U Fn> \ F
n=1 n=1
Show that:

+oo +oo
G\ <U Fn> clJGn\Fu
n=1 n=1

Show that u(G\ F) < 2e.

. Show that ¥ is a o-algebra on 2, and conclude that ¥ = B(Q).

Theorem 68 Let (Q,7) be a metrizable topological space, and p be a finite
measure on (2, B(Q)). Then, for all B € B(Y) and € > 0, there exist F' closed

and

G open in Q such that:
FCBCG, w(G\F)<e

Definition 100 Let (2, 7) be a topological space. We denote C%(S2) the K-
vector space of all continuous, bounded maps ¢ : Q@ — K, where K =R or
K=C.
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EXERCISE 7. Let (2,7) be a metrizable topological space with some metric d.
Let p be a finite measure on (2, B(€2)) and F be a closed subset of 2. For all
n > 1, we define ¢, : @ — R by:

V2 €Q, dn(z) 21— 1A (nd(z, F))
1. Show that for all p € [1,400], we have C% (Q) C LY (Q, B(Q), p).
Show that for all n > 1, ¢,, € C&(Q).
Show that ¢, — 1p.

= LN

Show that for all p € [1, 4+o00[, we have:

lim /|q§n —1pPdu=0

n—-+oo

5. Show that for all p € [1,+oo[ and € > 0, there exists ¢ € C% () such that
¢ —1rlp <e

6. Let v € M'(Q,B(Q)). Show that C4(Q) C L&(Q, B(2),v) and:

7. Prove the following:

Theorem 69 Let (2, T) be a metrizable topological space and u,v be two com-
plex measures on (2, B(Q)) such that:

Vo € CE(Q / ddp = / odv
Then p = v.

EXERCISE 8. Let (2,7) be a metrizable topological space and p be a finite
measure on (2, B(Q2)). Let s € Sc(2, B(2)) be a complex simple function:

n
s = E o;la,
i=1

where n > 1, a; € C, 4; € B(Q) for all i € N,,. Let p € [1, 4+00].

1. Show that given € > 0, for all i« € N,, there is a closed subset F; of 2 such
that F; C A; and u(A; \ F;) <e. Let:

A n
s = g a;lp,
i=1

n
lls = s'llp < <Z Iaz‘|> €
i=1

2. Show that:
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3. Conclude that given e > 0, there exists ¢ € C%(€2) such that:
¢ —sllp <e

4. Prove the following:

Theorem 70 Let (2, 7T) be a metrizable topological space and p be a finite mea-
sure on (2, B(S2)). Then, for allp € [1,4o00[, C () is dense in Ly (Q, B(2), u).

Definition 101 A topological space (2, T) is said to be o-compact if and only
if, there exists a sequence (K, )n>1 of compact subsets of Q such that K,, T .

EXERCISE 9. Let (2,7) be a metrizable and o-compact topological space, with
metric d. Let Q' be open in Q. For all n > 1, we define:

Fo,2{eeq: da ()°) > 1/n}
Let (K,)n>1 be a sequence of compact subsets of Q such that K, T .
1. Show that for all n > 1, F;, is closed in €.
. Show that F,, T €.
. Show that F, N K, T €.

2

3

4. Show that F,, N K, is closed in K, for all n > 1.

5. Show that F,, N K,, is a compact subset of ' for all n > 1.
6

. Prove the following:

Theorem 71 Let (2, T) be a metrizable and o-compact topological space. Then,
for all ' open subsets of Q, the induced topological space (Q’,T‘Q,) 1s itself
metrizable and o-compact.

Definition 102 Let (2,7) be a topological space and p be a measure on
(Q,B(2)). We say that pu is locally finite, if and only if, every x € Q has
an open neighborhood of finite p-measure, i.e.

VeeQ,WeT,xelU, plU) <+

Definition 103 If i is a measure on a Hausdorff topological space :
We say that p is inner-regular, if and only if, for all B € B():

w(B) =sup{u(K): K C B, K compact}
We say that p is outer-regular, if and only if, for all B € B(Q):
w(B) =inf{u(G): BC G, G open}

We say that p is regular if it is both inner and outer-regular.
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EXERCISE 10. Let (©2,7) be a Hausdorfl topological space, p a locally finite
measure on (2, B(2)), and K a compact subset of ).

1. Show the existence of open sets V1, ..., V,, with u(V;) < 400 foralli € N,
and K C Vi U...UV,, where n > 1.

2. Conclude that p(K) < +o0.

EXERCISE 11. Let (2, 7) be a metrizable and o-compact topological space. Let
p be a finite measure on (2, B()). Let (K,),>1 be a sequence of compact
subsets of © such that K,, T Q. Let B € B(€2). We define a = sup{u(K): K C
B, K compact}.

1. Show that given e > 0, there exists F' closed in € such that FF C B and
w(B\F) <e

2. Show that F'\ (K, NF) | 0.
Show that K,, N F is closed in K,,.

Show that K,, N F' is compact.

ook W

Conclude that given € > 0, there exists K compact subset of €2 such that
K CFand u(F\K) <e.

6. Show that u(B) < pu(K) + 2e.

7. Show that p(B) < « and conclude that u is inner-regular.

EXERCISE 12. Let (£2,7) be a metrizable and o-compact topological space.
Let p be a locally finite measure on (£2, B(f2)). Let (K,,)n>1 be a sequence of
compact subsets of Q such that K,, T . Let B € B(2), and o € R be such
that a < p(B).

1. Show that u(K, N B) 1 p(B).
2. Show the existence of K C ) compact, with o < u(K N B).

3. Let u® = u(K N +). Show that p€ is a finite measure, and conclude that
u"(B) = sup{uf(K*): K* C B, K* compact}.

4. Show the existence of a compact subset K* of €2, such that K* C B and
a < p(KNK").

Show that K* is closed in €.
Show that K N K* is closed in K.

Show that K N K* is compact.

® N o o

Show that o < sup{u(K’): K’ C B, K’ compact}.
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9. Show that p(B) <sup{u(K'): K'C B, K’ compact}.

10. Conclude that p is inner-regular.

EXERCISE 13. Let (Q,7) be a metrizable topological space.
1. Show that (€2,7) is separable if and only if it has a countable base.

2. Show that if (2, 7) is compact, for all n > 1, € can be covered by a finite
number of open balls with radius 1/n.

3. Show that if (€2,7) is compact, then it is separable.

EXERCISE 14. Let (€2, 7) be a metrizable and o-compact topological space with
metric d. Let (K,),>1 be a sequence of compact subsets of © such that K, T Q.

1. For all n > 1, give a metric on K, inducing the topology 7|k, .
2. Show that (K., 7|k, ) is separable.

3. Let (#7),>1 be an at most countable sequence of (K., 7|k, ), which is
dense. Show that (), p>1 is an at most countable dense family of (2, 7),
and conclude with the following:

Theorem 72 Let (2, T) be a metrizable and o-compact topological space. Then,
(Q,T) is separable and has a countable base.

EXERCISE 15. Let (2, 7) be a metrizable and o-compact topological space. Let
i be a locally finite measure on (£2, B(€2)). Let H be a countable base of (2, 7).
We define H' = {V e H: pu(V) < +o0}.

1. Show that for all U open in 2 and x € U, there is U, open in ) such that
x €Uy CU and p(Uy) < +00.

2. Show the existence of V,, € H such that x € V, C U,.
3. Conclude that H’ is a countable base of (Q2,7).

4. Show the existence of a sequence (V4,),>1 of open sets in € with:

+oo
Q=JVu. u(Vi) <400, ¥n>1
n=1

EXERCISE 16. Let (2, 7) be a metrizable and o-compact topological space. Let
p be a locally finite measure on (2, 5(£2)). Let (V,),>1 a sequence of open
subsets of 2 such that:

+oo
Q= Vu, u(Va) <+o0, ¥n>1
n=1

Let B € B(Q2) and o = inf{(G): BC G, G open}.
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1. Given € > 0, show that there exists G, open in ) such that B C GG,, and
pV" (G \ B) < €/2", where pV» = pu(V,, N -).

2. Let G = U2 (V,, N G,). Show that G is open in €, and B C G.
Show that G\ B = UV, N (G, \ B).

Show that u(G) < u(B) +e.

Show that a < p(B).

Conclude that is p outer-regular.

N ok w

Show the following:

Theorem 73 Let i be a locally finite measure on a metrizable and o-compact
topological space (Q,7T). Then, u is regular, i.e.:

w(B) = sup{p(K): KC B, K compact}
= inf{u(G): BC G, G open}
for all B € B(%).

EXERCISE 17. Show the following:

Theorem 74 Let 2 be an open subset of R™, where n > 1. Any locally finite
measure on (Q, B(Q)) is reqular.

Definition 104 We call strongly o-compact topological space, a topological
space (2, T), for which there exists a sequence (Vy,)n>1 of open sets with compact
closure, such that V,, T Q.

Definition 105 We call locally compact topological space, a topological
space (2, 7T), for which every x € Q has an open neighborhood with compact
closure, i.e. such that:

VeeQ,3UeT: zeU, U is compact

EXERCISE 18. Let (€2, 7) be a o-compact and locally compact topological space.
Let (K,)n>1 be a sequence of compact subsets of Q such that K, T Q.

1. Show that for all n > 1, there are open sets V",..., V' p, > 1, such

that K, CV"U...UV" and | 2L Vp’i are compact subsets of 2.

2. Define W,, = VU ... U Vo and V,, = Up_ Wy, for n > 1. Show that
(Vi)n>1 is a sequence of open sets in Q with V,, T Q.

3. Show that W,, = ‘_/1" U...u Vp’jL for all n > 1.
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4. Show that W,, is compact for all n > 1.

D.
6.

Show that V,, is compact for all n > 1

Conclude with the following:

Theorem 75 A topological space (2, T) is strongly o-compact, if and only if
it is o-compact and locally compact.

EXERCISE 19. Let (Q2,7) be a topological space and Q' be a subset of Q. Let
A C Q. We denote A% the closure of A in the induced topological space
(Y, Tio), and A its closure in €.

1.
2.
3.
4.

5.

Show that A C Q' N A.

Show that ' N A is closed in Q.

Show that A% C Q' N A.

Let x € Q' N A. Show that if z € U’ € 7)oy, then ANU’ # 0.

Show that AY = Q' N A.

EXERCISE 20. Let (€2, d) be a metric space.

1.

= W

Show that for all x € Q and € > 0, we have:
B(z,e) C{y e Q: d(z,y) <€}

. Take © =[0,1/2[U{1}. Show that B(0,1) =[0,1/2][.

Show that [0,1/2[ is closed in €.

Show that B(0,1) = [0,1/2[.

. Conclude that B(0,1) # {y € Q: |y| <1} = Q.

EXERCISE 21. Let (©,d) be a locally compact metric space. Let Q' be an open
subset of . Let 2 € .

1.

2.

Show there exists U open with compact closure, such that x € U.
Show the existence of € > 0 such that B(z,¢) C U N’

Show that B(z,¢/2

B(w,¢/2) C
Show that B(z,€/2) is closed in U.
Show that B(x,€/2) is a compact subset of Q.
B(w,¢/2)

Show that B(xz,¢e/2) C Q.
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7. Let U' = B(x,€/2) N QY = B(x,¢/2). Show z € U’ € T, and:
U =Bz, ¢/2)
8. Show that the induced topological space € is locally compact.
9. Prove the following:
Theorem 76 Let (2,7T) be a metrizable and strongly o-compact topological

space. Then, for all Q' open subsets of Q, the induced topological space (', Tior)
1s itself metrizable and strongly o-compact.

Definition 106 Let (Q2,7) be a topological space, and ¢ : Q — C be a map.
We call support of ¢, the closure of the set {¢ # 0}, i.e.:

supp(o) 2 {we: ¢(w)#0}

Definition 107 Let (Q2,7) be a topological space. We denote Cg(Q) the K-
vector space of all continuous map with compact support ¢ : Q — K, where
K=R orK=C.
EXERCISE 22. Let (Q,7) be a topological space.
1. Show that 0 € Cg ().
2. Show that Cg%(Q) is indeed a K-vector space.
3. Show that Cg(Q) C CL ().
EXERCISE 23. let (€2, d) be a locally compact metric space. let K be a compact
subset of €2, and G be open in 2, with K C G.
1. Show the existence of open sets Vi,...,V,, such that:
KCWviu...UV,
and Vi,...,V, are compact subsets of €.
2. Show that V.= (V3 U...UV,)NG isopenin 2, and K CV C G.
3. Show that VC Vi U...UV,.
4. Show that V is compact.

5. We assume K # () and V # ), and we define ¢ : Q — R by:
N d(z, V)

Q =
Vo € ) ¢($) d(J?,VC) I d(J?,K)

Show that ¢ is well-defined and continuous.
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Show that {¢ # 0} = V.
Show that ¢ € Cg ().

Show that 1x < ¢ < 1.

© o N e

Show that if K = 0, there is ¢ € C{ () with 1x < ¢ < 1¢.
10. Show that if V' = then  is compact.
11. Show that if V' = Q, there ¢ € C{(Q) with 1x < ¢ < 14.

Theorem 77 Let (Q,7T) be a metrizable and locally compact topological space.
Let K be a compact subset of Q, and G be an open subset of 0 such that K C G.
Then, there exists ¢ € Cg (), real-valued continuous map with compact support,
such that:

Ik <9 <lg

EXERCISE 24. Let (2,7) be a metrizable and strongly o-compact topological
space. Let p be a locally finite measure on (2, B(Q2)). Let B € B() be such
that u(B) < +oo. Let p € [1, +00].

1. Show that Cg () C LE(Q, B(Q), p).

2. Let € > 0. Show the existence of K compact and G open, with:
KCBCG, n(G\K)<e

3. Where did you use the fact that u(B) < 400?

4. Show the existence of ¢ € C{ () with 1x < ¢ < 1¢.

5. Show that:
/|¢ —1p[Pdp < p(G\ K)

6. Conclude that for all € > 0, there exists ¢ € C{(€) such that:

¢ —1pll, <€

7. Let s € Sc(,B(Q)) N LEL(Q,B(2), ). Show that for all e > 0, there
exists ¢ € C&(Q) such that ||¢ — ||, <e.

8. Prove the following:

Theorem 78 Let (2,7T) be a metrizable and strongly o-compact topological
space'. Let ju be a locally finite measure on (0, B(2)). Then, for all p € [1,+o0],
the space Cg () of K-valued, continuous maps with compact support, is dense
in L (9, B(Q), ).

1

i.e. a metrizable topological space for which there exists a sequence (Vi ),>1 of open sets
with compact closure, such that V,, T Q.
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EXERCISE 25. Prove the following:
Theorem 79 Let Q) be an open subset of R™, where n > 1. Then, for any

locally finite measure p on (Q,B(Q)) and p € [1,400[, C(2) is dense in
L (2, B(), ).
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Solutions to Exercises

Exercise 1.

1. From definition (99), s is clearly an element of Sc(Q2,F). Furthermore,
for all i € N,,, 14, is measurable, and:

Jiardi= [tadu=na) <400

So 1a, € LL(Q, F,p). s being a linear combination of the 14,’s is also
an element of L& (Q, F,u). We have proved that s is an element of
LE(Q,F, 1) N Sc(Q, F).

2. Let s € Sc(Q, F). From definition (99), s is of the form:

m

§ = Zﬁlej (1)
j=1

where m > 1, B; € C, and B; € F for all j € N,,. If s =0, it can be
written as s = 1 X 1y and there is nothing further to prove. We assume
that s # 0. The map 0 : {0,1}™ — C given by 0(e1,...,€y) = 27:1 Bj€;
being defined on a finite set, has a finite range. Since s(Q2) is a subset of
0({0,1}™), s(£2) is also a finite set. Having assumed that s # 0, the set
s(€2) \ {0} is therefore non-empty and finite. Let n > 1 be its cardinal,
and a : N, — s(2) \ {0} be an arbitrary bijection. For all w € Q, we

have:
n

s(w) =D i) s=ati) (2)
i=1
Since B; € F for all j’s, s is a measurable map. If we define 4; = {s =
a(i)} for i € N, we have A; € F. Furthermore, it is clear that A,NA; =0
for i # j. We conclude from (2) that s can be written as:

n

s = Za(i)lAi

i=1
where n > 1, a(i) € C\ {0}, 4, € F,and A;NA; =0 for i # j.

3. Let s € LEL(Q, F, 1) N Sc(Q, F). From 2. s can be expressed as:
n
S:ZailAi (3)
i=1
wheren > 1, a; #0, A; € Fand A;NA;j =0fori#j. Let A=A 4. .

Ap. Then s(w) =0 for all w € A° and furthermore 14 =14, + ...+ 14, .
Hence:

JlsPan=3" [l tadi =3 josPu(as) < 400
=1 1=1
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Since a; # 0, it follows that u(A;) < 400 for all i € N,,. We have been
able to express s as (3), where n > 1, a; € C (in fact oy € C*), 4; € F
and p(A;) < oo for all 4 € N,,. This is a converse of 1.

4. Let s € Sc(Q,F). Then s is bounded and measurable.

Exercise 1

Exercise 2.

1. f being non-negative and measurable, from theorem (18) there exists a
sequence (sp)n>1 of simple functions on (2, F) such that s, T f. In
particular, each s, is a non-negative element of Sr(2, F). Furthermore,
sp < f for all n > 1 and having assumed that f € L (Q, F, u), we have:

/sﬁduﬁ/fpdu<+oo

We conclude that (s,),>1 is a sequence of non-negative elements of L (2, F, )N
Sr(Q, F) such that s, T f.

2. Since s, — f, we have [s,, — f|P — 0 as n — +o0. Furthermore:
|sn = fIP < (sn+ f)P <2°fP € L%{(Qvfaﬂ)

From the dominated convergence theorem (23), we obtain:

lim /|sn—f|pdu=O

n—-—+00

3. Given € > 0, from 2. there exists N > 1 such that:
n>N = /|sn—f|pdu§e”

In particular, taking s = sy, we have found s belonging to the set
LB (0, F, 1) N Sr(Q, F) such that || f — 5|/, < e

4. Let Ax = LY (Q, F, p)NSk (2, F). We claim that Ak is dense in LE (2, F, i),
i.e. that Ax = LY (Q, F, u) where Ak is the closure of Ak in LY (Q, F, u).
Recall from definition (75) that for any open set U in LY (Q, F, u) and
f € U, there exists ¢ > 0 such that B(f,¢) C U. Hence, all we need
to prove is that given f € Ly (Q,F,p) and € > 0, there exists s € Ag
such that ||f — s||, < e. Indeed, if such property is proved, then for any
f € Ly (2, F,p) and U open containing f, we have Ax N U # () and
consequently f € Ak. So Ly (Q,F,u) C Ak. Now, if f € L& (2 F,p)
and € > 0, the existence of s € Agr such that ||f — s||[, < € has al-
ready been proved when f is non-negative. Suppose f € L% (Q,F, p).
Then f = fT — f~ where each f*,f~ is a non-negative element of
L% (Q,F,p). There exists sT,s~ € Agr such that ||[ft — s, < €/2
and || f~ — s7 ||, < ¢/2. Taking s = st — s, we have found s € Ar such
that:

I1f=sllp <IfF =sTlp+ 117 —s7lp <e
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and the property is proved for f € L% (Q,F,p). If f is an element of
L%(Q, F,p), then f = fi + ifs where each fi, fo lies in L (0, F, p).
There exists s1,s2 € Ar such that || f1 —s1]|, < ¢/2 and || fo — s2]lp, < €/2.
Taking s = s1 + 82, we have found s € Ag such that:

If = sllp < Ilf1 = s1llp + [[f2 = s2llp <€

and the property is proved for f € LL(Q, F, p).
Exercise 2

Exercise 3.

1. Given n > 1, s,, is of the form:

P
Sp = E aila,
i=1

where p > 1, a; € RT and A; € F for all i € N,,. From definition (40),
it is therefore a simple function on (2, F) (or indeed a complex simple
function on (2, F) with values in R™).

2. Since f is an element of L (€2, F, i), we have:

I flloe 2 inf{M € RT : |f| < M pras.} < +o00

It is therefore possible to find an integer ng > 1 such that || f]lec < no.
Since || f|loo is the greatest lower bound all M’s such that |f| < M p-a.s.,
ng cannot be such lower bound. Hence, there exists My € RT such that
|f] < My p-a.s. and My < ng. Thus, there exists N € F with u(N) =0,
and:

Yw € N€ , |f(w)| < My < ng

In particular, since f is a non-negative element of Ly (2, F, p):

Ywe N, 0< f(w) <no

3. Let n > ng and w € N¢. From 2. we have 0 < f(w) < ng and consequently
sn(w) = k/2™, where k is the unique integer of {0, ...,n2"™ — 1} such that
flw) €lk/2™, (k+1)/2"]. So:

0< @)~ sulw) < 57 @

4. From 3. we have N € F with p(N) = 0 such that for all w € N°¢, inequal-
ity (4) holds for all n > ng. So |f —s,| < 1/2™ p-a.s. for all n > ng. Since
[/ = snllco is a lower bound of all M’s such that |f — s,| < M p-a.s., we
conclude that || f — sp|eo < 1/2" for all n > ng, and in particular:

lim [f = snflc =0 (5)

n—-+oo
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5. Let p € [1,+00] be given and Ax = LE(Q,F,p) N Sk(Q,F). Ifp €
[1,+00[, we have already proved in exercise (2) that Ak is dense in
LY (Q, F, ). We assume that p = +oo and we claim likewise that Ak
is dense in L (2, F, 1) (note that Ax and Sk (£, F) coincide when p =
+00). Given f € Lg(Q,F, ) and € > 0, we need to show the existence
of s € Ak such that || f — s|jcc < €. When K = R and f is a non-negative
element of Ly (2, F, 1), then such existence is guaranteed by (5), (keeping
in mind that simple functions on (2, F) are elements of Sg (2, F) = Ar).
If f e LgE,F,u), then f = fT — f~ where each f*,f” is a non-
negative element of L (2, F,p). There exists st,s™ in Agr such that
|t —sT|oo <€/2and || f~ — s |l < €/2. Taking s = s — s~ we obtain
s € Ar and ||f — s||oo < €. This completes the proof of theorem (67) when
K=R. If f € LEQ,F,pn), then f = fi + ifs where each fi, fo is an
element of LY (Q, F, ). Approximating fi and fo by elements s1,s2 of
AR, we obtain likewise an element s = s1 + is2 of Ac with ||f — s[je < €.
This proves theorem (67).

Exercise 3

Exercise 4.
1. Let A C Q. If A =0, then d(z,A) = 4o0o for all z € Q. In particular,
the map © — d(z, A) is a continuous map. If A # () and y € A, then

d(z, A) < d(z,y). In particular d(z, A) < o0 for all € Q. Furthermore,
for all x,2' € Q and y € A:

d(z, A) < d(z,y) < d(z,2") +d(a', y)

Consequently, d(x, A) —d(z, 2') is a lower bound of all d(z/,y), as y ranges
through A. d(z’, A) being the greatest of such lower bounds, we have:

d(z,A) < d(z,z') + d(2', A)
Interchanging the roles of z and 2’ we obtain:
d(z', A) <d(z,2") +d(z, A)
from which we see that:
Vo, 2" € Q, |d(x, A) —d(z', A)| < d(z,2") (6)
We conclude from (6) that © — d(z, A) is continuous.

2. Let F be a closed subset of 2. If v € F, d(x,F) < d(z,z) = 0 and
consequently d(z, F) = 0. Conversely, suppose d(z, F) = 0. We shall
show that = ¢ F' is impossible. Indeed, if x € F€, since F° is open,
there exists € > 0 such that B(x,e) C F°. However, d(z, F) = 0 implies
in particular that d(z, F) < e. Since d(z, F') is the greatest of all lower
bounds of d(z,y), as y range through F', e cannot be such a lower bound.

Hence, there exists y € F such that d(x,y) <e. Soy € B(x,e) NF # ()
which is a contradiction. We have proved that x € F is equivalent to
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d(z, F') = 0, whenever F'is a closed subset of 2. This exercise is in fact a
repetition of exercise (22) of Tutorial 4.

Exercise 4

Exercise 5.

1. G, = {z € Q:d(z, F)<1/n} can be written as ®.' ([~o0, 1 /n[) where ®
is the map defined on Q by ®r(z) = d(z, F). Having proved in exercise (4)
that ®r is continuous, and since [—oc, 1/n| is open in R, we conclude that
G, is an open subset of €.

2. It is clear that Gp,41 € G, and F C Ny, >1G,,. Suppose that © € Ny>1G,.
Then d(z,F') < 1/n for all n > 1 and consequently d(z, F') = 0. From
exercise (4), F being a closed subset of Q, it follows that x € F. This
shows that N,>1G, C F and finally N,>1G, = F. So Gy, | F.

3. Since p is a finite measure on (2, B(€?)), from theorem (8) and G,, | F
we obtain p(G,) — u(F) as n — 4oo. Furthermore, since F C G, for all
n > 1, we have:

WG\ F) = (Gn \ F) + p(F) = p(F) = p(Gn) = p(F)
It follows that u(G, \ F) — 0 as n — +o00. Given € > 0, there exists
N > 1, such that:
n>N = pu(Gp\F)<e

In particular, taking F/ = F and G’ = Gy, F’' and G’ are respectively
closed and open subsets of Q, with F' C FF C G’ and p(G’ \ F') < e. This
shows that F' € . We have proved that any closed subset I’ of €2 is an
element of X.

4. The application of theorem (8) requires some finiteness property.

5. Q is a closed subset of Q2. So 2 € X.

6. Let B € X. For all € > 0, there exist F' and G respectively closed and
open subsets of €, such that ¥ C B C G and pu(G \ F) < e. Since
Fe\G°® = F°NG = G\ F, it follows that G¢ C B¢ C F° and u(F°\G°) <.
This shows that B¢ € X, since G¢ and F¢ are respectively closed and open
subsets of 2. We have proved that X is closed under complementation.

Exercise b

Exercise 6.

1. Let n > 1. By assumption B, is an element of ¥. For all ¢ > 0, and
in particular for € = €/2", there exist F,, and G, respectively closed and
open subsets of Q, with F,, C B,, C G, and p(G,, \ F),) < €.
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2. Let Hy, = U}_,Fy and H = Up>(Fy. Then H, T H, and consequently
from theorem (7), u(H,) — p(H) as n — +oo. p being a finite measure,
we obtain:

lim p(H\Hy) = lm p(H)—=p(Hy) =0

n—-+o0o

In particular, there exists N > 1 such that u(H\ Hy) < €, or equivalently:
p (U2 F) \ (UntaFa)) <€ (7)

3. Let G = Up>1G,, and F = UN_|F,,. G being a union of open subsets of
Q, is itself an open subset of ). F' being a finite union of closed subsets
of Q, is itself a closed subset of 2. Since F,, C B,, C G, for all n > 1 and
B =Up>1B,, it is clear that FF C B C G.

4. Let H = Up>1F,. The sets G\ H and H \ F are clearly disjoint. Further-
more if z € G\ F' = GN F¢, then either x € H or v ¢ H. If € H then
x€e€ H\F. If x ¢ H then x € G\ H. In any case, v € G\ HW H \ F.
This shows that G\ F C G\ HWH\ F.

5. Let H = Uy,>1F, and z € G\ H. Since x € G, there exists n > 1 such that
z € Gy. But v € H® = Ng>1F. So in particular x € F; and consequently
x € Gy \ F,. This shows that G\ H C Up,>1Gy, \ F,.

6. Applying 4. and 5. with H = Up,>1F),, we have:
G\ F C (Up>1Gp \ F)WH\ F

It follows that:
+oo
G\ F) < Gy \ Fo) + p(H \ F)
n=1
Having chosen F,, and G,, such that u(G,\ F,) < €/2™ and having defined
F from 2. such that u(H \ F) < e, we conclude that (G \ F) < 2e.

7. Given a sequence (Bp)n,>1 in ¥ and B = Up>1B,, given an arbitrary
€ > 0, we have shown the existence of F' and G respectively closed and
open subsets of €2, such that F' C B C G (see 3.) and u(G\ F') < 2¢ (see 6.).
It follows that B € 3. This shows that X is closed under countable union.
Since 2 € ¥ and ¥ is closed under complementation (see exercise (5)),
Y is therefore a o-algebra on Q. Furthermore, still from exercise (5), ¥
contains every closed subset of 2. Being closed under complementation,
it also contains every open subset of €2. In other words, the topology 7°
is a subset of 3, i.e. 7 C 3. The o-algebra o(7) being the smallest
o-algebra on ) containing 7 (containing in the inclusion sense), the fact
that ¥ is a o-algebra on §2 implies that B(Q) = ¢(7) C X. ¥ being a
subset of the Borel o-algebra B(2), we conclude that 3 = B(£2). Hence,
for all B € B(Q2) and € > 0, there exist F' and G respectively closed and
open subsets of €2, such that FF C B C G and p(G \ F') < e. This proves
theorem (68).
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Exercise 6

Exercise 7.

1. Let p € [1,+00] and f € C% (). Since f is continuous, f is Borel mea-
surable. Furthermore, since f is bounded, there exists M € RT such that
|f| < M. This implies that || f||oc < M and in particular || f||cc < +00. So
f e Lg(Q,B(Q),n). Moreover, if p € [1,400[, i being a finite measure
on (9, B(Q)):

[ 15dn < M7 < o
so f € Ly (Q,B(Q), u), and finally C5 () C LY (2, B(R2), p).

2. Let n > 1 and ¢, be defined by ¢,(x) = 1 — 1 A (nd(z, F')). From
exercise (4), the map @ — d(x, F) is continuous. So ¢,, is also continuous,
and furthermore it is clear that |¢, ()] < 1 for all z € Q. So ¢, € CR ().

3. Let x € Q. If x € F, then d(z, F) = 0 and ¢, () = 1 for all n > 1. In
particular, ¢,(x) — 1p(x) as n — +oo. If z € F, then from exercise (4),
F being a closed subset of 2, we have d(x, F) > 0. It follows that:

1ir4r_1 Pn(x)=1-— lirf 1A (nd(x,F)) =0

In particular, ¢, (z) — 1p(x) as n — +00. So ¢, — 1p.

4. Let p € [1,4o00[. From 3. we have ¢,, — 1r and consequently |¢, —1p[P —
0 as n — +oo. Furthermore, for all n > 1:

|6n = 1pl” < (I¢n] + [LF))P < 2°

i being a finite measure on (€2, B(€2)), from the dominated convergence
theorem (23) we conclude that:

lim /|¢n —1pPdu=0

n—-+oo

5. Let p € [1,4+00[ and € > 0. From 4. there is N > 1 such that:
n>N = /|¢n—1p|pdu§e”

In particular, taking ¢ = ¢n, ¢ € CR(Q2) and ||¢ — 15|, < e

6. Let v be a complex measure on (£, B(€2)). From theorem (57), the total
variation || of v is a finite measure on (€2, B(Q2)). It follows that C%(Q2) C
L&(Q,B(), |v]) = LE(Q,B(Q),v). Let h € L§(Q,B(2), |v]) be such that

|h| =1 and v = [ hd|v|. Then:
‘/(bndl/—/lpdl/

‘/%w_mm‘
(60 = 1ea
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/ (60 — 1rldy]

where the second equality stems from definition (97), and the last inequal-
ity from theorem (24). We conclude from 4. applied to u = |v| and p = 1,

that:
= 1l nd
[ ona

7. Let (Q,7) be a metrizable topological space, and pu,v be two complex
measures on (£, B(Q2)). We assume that:

v Ch(@) . [ odu= [ o (s)
and we claim that u = v. We define:
D={E€BQ) : u(E)= u(E)}
Let F be a closed subset of Q. From 6. and (8) we have:

)= 1 ndp =i ndv =
P= i [ s ,HHE/¢V HE

So I € D. Hence, any closed subset of ) is an element of D. In particular,
Q € D. Furthermore, if A, B € D with A C B, then:

u(B\ A) = u(B) - ju(A) = v(B) — v(A) = v(B \ 4)

So B\ A € D. Finally, if (E,),>1 is a sequence of elements of D with
E, 1 E, then using exercise (13) of Tutorial 12 we have:

W(E) = Tim p(Ea) = Tim v(Ea) = v(E)

So E € D, and we have proved that D is a Dynkin system on €. In
particular, D is closed under complementation, and since it contains every
closed subset of €2, it also contains every open subset of 2. So 7 C D and
finally, since 7 is closed under finite intersection, from the Dynkin system
theorem (1) we conclude that B(2) = o(7) C D. It follows that B(Q2) = D
and consequently p = v, which completes the proof of theorem (69).

Exercise 7

Exercise 8.

1. Let € > 0 and 7 € N,,. Since A; € B(2), p is a finite measure on (2, B(Q2))
and (£2,7) is metrizable, from theorem (68) there exist F;, G; respectively
closed and open subsets of 2, such that F; C A; C G; and pu(G; \ F;) < e.
In particular, A; \ F; € G; \ F; and we have u(A; \ F;) <e.
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2. From s = Y1, a;la, and 8’ = > | o1, we obtain:

n
Is=s'll, = || ai(la, —1r)
i=1 »
n
< Z o] - 11a, = 1p, P
i=1
" 5
= Dol </|1A,; - 1p, pdu)
i=1
n »
= ) |l (/1Ai\mdu)
i=1
- 1
= ) loulp(Ai \ Fy)?
i=1
<

3. Let € > 0. Choosing ¢’ > 0 sufficiently small such that:

(Z ||ai|) VP < )2
1=1

and applying 2. to €, there exist closed subsets F1, ..., F, of ©, such that
IIs — §'|lp, < €/2, where s’ is defined as:

n
s = E a;lp,
i=1

Furthermore for all i € N,,, from 5. of exercise (7) there exists ¢; € C% ()
such that |a;| - [|¢i — 1|, < €/2n. We Define:

o= i
i=1

Then ¢ € C4(Q) (in fact ¢ € CZ(Q) if a; € R for all i’s), and:

lp =5, = |D> ailéi—1r,)
i=1 »
< > el llgi = gl
=1
< €/2

Finally, we obtain [|¢ — s|[, < [[¢ — /[l + [|s = s'[[, < .
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4.

Suppose (€2, 7) is a metrizable topological space, and p is a finite measure
on (2, B()). Forallp € [1, +oc[, we clearly have C% (2) C LE (2, B(S2), u)
and we claim that Cj(€2) is in fact dense in L (9, B(Q2), ). Given f €
LY (€, B(Q), 1) and € > 0, we have to prove the existence of ¢ € C%(Q)
such that || f — é||, < e. From theorem (67), the set Sk (€2, B(Q2)) (which
is a subset of LY (Q, B(2), ) since p is finite) is dense in L (€, B(Q), u).
There exists s € Sk (2, B(Q2)) such that ||f — s||, < €/2. Applying 3. to
the K-valued simple function s, there exists ¢ € Cg(2) (¢ can indeed be
chosen R-valued if K = R), such that ||¢ — s||, < €/2. It follows that:

If = ¢l < NIf = sllp + I —sll, <€
which completes the proof of theorem (70).

Exercise 8

Exercise 9.

1.

F, = ¢~ !([1/n,+0c]) where ¢ is the continuous map defined by ¢(x) =
d(z,Q'¢). Since [1/n,+0o0] is a closed subset of R, we conclude that F, is
a closed subset of 2.

For all n > 1 it is clear that F,, C Fj,;1. Let 2 € . Since 0 is an
open subset of €, Q¢ is a closed subset of Q and = ¢ Q°. It follows
from exercise (4) that d(x,Q'°) > 0. Hence, there exists n > 1 such that
d(x,Q'°) > 1/n. So x € F,, and we have proved that Q" C U,>1F,. To
prove the reverse inclusion, suppose x € F,, for a some n > 1. Then in
particular d(z,Q°) > 0 and x cannot be an element of Q'°. So = € Q.
This shows that F,, C Q' for all n > 1, and we have proved that F,, T €.

Since F,, C F4q1 and K, € Kpq1, FN Ky, C Fp1 N Kpyq. Furthermore,
it is clear that U, >, N K,, C Q' since F,, C Q' for all n > 1. Finally
if z € Q) since F,, 1 Q' there exists p > 1 such that z € F,. Since
K, T Q there exists ¢ > 1 such that z € K,. Taking n = max(p, q),
we have z € F, N K,,. So ' C Un>1F, N K, and we have proved that
F.NK, 1.

Let n > 1. Since F), is closed in €2, F¢ is open in Q. By the very definition
of the induced topology on K,, K, \ F,, = K, N F¢ is an open subset of
K,,. We conclude that F,, N K, is a closed subset of K,,.

By assumption, each K, is a compact subset of ). Equivalently, the
induced topological space (K, 7|k, ) is compact. Having proved that F, N
K, is a closed subset of K, from exercise (2) of Tutorial 8, F,, N K, is a
compact subset of K,,, or equivalently a compact subset of €.

We have found a sequence (F,, N K,),>1 of compact subsets of ', such
that F,,NK,, 1 Q. This shows that the induced topological space (', Tjq/)
is o-compact. From theorem (12), it is also metrizable, which completes
the proof of theorem (71).

www.probability.net


http://www.probability.net

Solutions to Exercises 23

Exercise 9

Exercise 10.

1.

2.

Let x € K. Since p is locally finite, there exists U, open subset of €2, such
that « € U, and p(U;) < 4+o0. It is clear that K C U,eiU,,, and K being
a compact subset of €, there exists a finite subset {x1,...,2,} of K such
that K C Uy, U...UU,,. Taking V; = U,,, we have found Vi,...,V,
open subsets of €, such that p(V;) < +oo for all i € N,, and:

KCWVu...uV, 9)

Note that if n = 0, K = @) and it is always possible to assume n = 1 by
taking V1 = 0 (not a very important comment).

From (9) and exercise (13) of Tutorial 5, we obtain:

p(K) < p(ViU...UV,) Szn:,u(Vi) < +00

Exercise 10

Exercise 11.

1.

Let € > 0. Since (£2,7) is metrizable and p is a finite measure, from
theorem (68) there exist F, G respectively closed and open subsets of €2,
such that FF C B C G and u(G \ F) < e. In particular, there exists F'
closed with F' C B and u(B\ F) < e.

Since K, € Kpt1, F\ (Kn41NF) C F\ (K,NF) for all n > 1. Moreover,
we have:

“+o00 +oo +oo ¢
(N F\(K.nF)= () Fn(K;UF°)=Fn (U Kn> =0

n=1 n=1 n=1

It follows that F'\ (K, N F) | 0.

F being a closed subset of ), K,, N F' is closed with respect to the induced
topology on K,,. In other words, K,, N F'is a closed subset of K,.

. Since K, is compact, and K,, N F is closed in K,, from exercise (2) of

Tutorial 8, K,, N F' is itself compact.

Since F'\ (K, N F) | ® and p is a finite measure, from theorem (8) we
have p(F \ (K, N F)) — 0 as n — +o0. In particular, there exists n > 1
such that p(F \ (K, N F)) < e. Taking K = K,, N F, from 4. K is a
compact subset of K,,, or equivalently a compact subset of ). Hence, we
have found a compact subset K of €, such that K C F and u(F\ K) <e.
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6. Since u(B\ F') < e and u(F \ K) <€, we have:

w(B\ F) + pu(F)
WB\F) + p(F\ K) + p(K)
w(K) + 2¢

w(B)

IN

7. We have proved in 6. that for all B € B(2), there exists K compact with

K C B and pu(B) < pu(K) + 2¢6. « being an upper bound of all u(K), as
K ranges through all compacts subsets with X' C B, we have u(K) < a.
So u(B) < a+ 2e. This being true for all € > 0, it follows that u(B) < a.
Moreover, for all K compact with K C B, we have u(K) < p(B). So
wu(B) is an upper bound of all u(K), as K ranges through compacts with
K C B. « being the smallest of such upper bounds, we have o < u(B)
and finally:

w(B) =a=sup{u(K): K C B, K compact}

This being true for all B € B(2), from definition (103), 4 is inner-regular.
We have proved that any finite measure on a metrizable, o-compact topo-
logical space is inner-regular.

Exercise 11

Exercise 12.

1.

Since K,, T 2, we have K, N B T B. From theorem (7), it follows that
p(Kn N B) T pu(B).

. Since a < p(B) and pu(K, N B) — u(B), there exists n > 1 such that

a < pu(K, N B). Taking K = K,,, we have found K compact subset of )
such that o < u(K N B).

From exercise (10), p being a locally finite measure and K being compact,
we have p(K) < +o00. Hence, for all A € B(Q):

P (A) = u(KNA) < p(K) < +o0

So uf is a finite measure on (9, B(Q)). Since (Q2,7) is metrizable and
o-compact, from exercise (11) it follows that p€ is inner-regular. In par-
ticular:

p(B) = sup{p(K*): K* C B, K* compact}

It appears from 3. that % (B) is the smallest upper bound of all u (K*),
as K* ranges through compacts with K* C B. Since a < pf(B), o cannot
be such an upper bound. Hence, there exists K* compact with K* C B,
such that o < p(K N K*).

(Q,7) being metrizable, it is a Hausdorff topological space. K* being a
compact subset of Q, we conclude from theorem (35) that K* is a closed
subset of (2.
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6.

10.

Having proved that K* is a closed subset of 2, K N K™ is closed relative
to the induced topology on K. In other words, K N K* is a closed subset
of K.

KNK* being a closed subset of K, and K being compact, from exercise (2)
of Tutorial 8 we conclude that K N K* is itself compact.

We have shown that o < pu(K NK*) and that K N K* is a compact subset
of Q. Since K* C B, we have K N K* C B and we conclude that:

a<pu(KNK*) <sup{u(K'): K' C B, K' compact} (10)

For all o € R with a < p(B), inequality (10) holds. Hence:
wu(B) <sup{u(K'): K' C B, K’ compact}

Is is clear that:

sup{u(K') : K' C B, K' compact} < u(B)
We conclude that:

wu(B) =sup{u(K'): K' C B, K’ compact}

This being true for all B € B(f2), from definition (103), p is inner-regular.
We have proved that any locally finite measure on a metrizable and o-
compact topological space, is inner-regular.

Exercise 12

Exercise 13.

1.

Let (2, 7) be a metrizable topological space. Suppose (2, T) is separable.
From definition (58), there exists a sequence (z,)n>1 of elements of €,
which are dense in 2. The set of open balls:

H={B(aa1/p) : n>1, p=1}

is easily seen to be a countable base of (2,7). Indeed, it is a subset of
the topology 7 which is at most countable, and for any open set U and
any x € U, on can easily find n > 1 and p > 1 such that:

x € B(zy,1/p) CU

So U is a union of elements of H. We have proved that if (2,7) is
separable, then it has a countable base. Conversely, suppose (£2,7) has
a countable base, say H. For all V. € H, V # 0, let xy be an arbitrary
element of V. Then, the set:

A={zy : VeH, V£0}

is at most countable, and is easily seen to be dense in 2. Indeed, for all
x € Q and € > 0, the open ball B(z,€) being a union of elements of H
(see definition (57) of a countable base), we have z € V C B(z,e€) for
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some V € H, V # (). In particular, we have found xy € A, such that
d(xz,zy) < e. This shows that (€2, 7)) is separable, and we have proved the
equivalence between the separability of (£2,7), and the fact that it has
a countable base. This equivalence was already proved in slightly more
detail, as part of exercise (19) of Tutorial 6.

2. We assume that (£2,7) is not only metrizable, but also compact. Let
n > 1. Then (B(x,1/n))zecq is a family of open sets whose union is equal
to Q itself. In other words, it is an open covering of . Since (,7) is
compact, this open covering has a finite sub-covering. In other words,
there exists an integer p > 1 and 1, ..., x, in €2, such that:

Q= B(z1,1/n)U...UB(xp,1/n)

We have proved that {2 can be covered by a finite number of open balls
with radius 1/n.

3. We assume that (£2,7) is not only metrizable but also compact. From 2.
given n > 1,  can be covered by a finite number, say p, > 1, of open
balls with radius 1/n. Let &1, ..., Zp, »n be the centers of such open balls.
Then, theset A = {xp, : n>1, k=1,...,py} is at most countable, and
we claim that it is dense in Q. Let € Q. We have to show that = € A,
i.e. that given U open containing z, we have U N A # (. (Q,7) being
metrizable, it is sufficient to show that given € > 0, B(x,€) N A # (). Let
n > 1 be such that 1/n <e. Since = belongs to an open ball B(zy ,,1/n)
for some k = 1,...,py, in particular we have d(z, zk,,) < €. This shows
that B(z,e)N A # ) and we have proved that A is dense in Q. This shows
that (€,7) is separable. The purpose of this exercise is to show that a
metrizable compact topological space is also separable.

Exercise 13

Exercise 14.

1. From theorem (12), the induced metric d|g, induces the induced topology
ﬂKn on Kn

2. By assumption, each K, is a compact subset of 2. In other words, the
topological space (K, 7|k, ) is compact. However from 1. it is also metriz-
able. It follows from exercise (13) that (K, 7|k, ) is separable.

3. Let A={a2 : n>1, p>1}. Then A is an at most countable set, and
we claim that A is dense in Q. Since (2, 7) is metrizable, given x € 2 and
e > 0, it is sufficient to show that A N B(z,€) # 0. Since @ = Up>1K,,
there is n > 1 such that = € K,,. By assumption, the sequence (z2),>1
is dense in K,. Hence, there exists p > 1 such that dx,(z,2}) < e
Equivalently, we have d(z,2P) < e. It follows that AN B(z,¢) # 0 and
we have proved that A is dense in Q. This shows that (€, 7) is separable.
The purpose of this exercise is to prove that a metrizable and o-compact
topological space, is also separable. This is the objective of theorem (72).
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Exercise 14
Exercise 15.

1. Let U be open in 2 and = € U. The measure p being locally finite,
there exists some open set W, such that © € W, and p(W,) < +oo.
Defining U, = U N W,, U, is an open set in €2 such that z € U, C U and
w(Us) < +o00.

2. Since U,, is open, and H is a countable base of (2,7 ), U, can be expressed
as a union of elements of H. In particular, since x € U,, there exists some
V., € H such that x € V, C U,.

3. H' being a subset of H, and H being a countable base of (2,7), H' is
an at most countable set of open sets in ). Furthermore, given U open
in Q and « € U, it follows from 1. and 2. that there exists V, € H such
that © € V, C U and u(V,) < 4+oco. In other words, there exists V,, € H’
such that « € V, C U. Consequently, U can be expressed as U = U,y V,
and we have proved that any open set in {2 can be written as a union of
elements of H’. This shows that H’ is a countable base of (2, 7).

4. Since € is an open set in §2, and H' is a countable base of (2, 7), 2 can be
written as a union of elements of H’. In other words, there exists a subset
G C H' such that Q = UyegV. H' being at most countable, G is itself
at most countable. There exists a map ¢ : N* — G which is surjective.
So Q = Up>1¢(n), and defining V,, = ¢(n) we obtain Q = U,>1V,, where
each V,, is an element of G C H'. In particular, each V,, is an open set in
Q with u(V,,) < 4o0.

Exercise 15
Exercise 16.

1. Let p» = u(V,, n-). Since p(V,) < 400, p'» is a finite measure on
(Q,B(2)). Furthermore, (£2,7) is a metrizable topological space. Apply-
ing theorem (68), since B € B(), there exist F), closed and G,, open
such that F, € B C G, and u""(G, \ F,) < €/2". In particular,
since G, \ B C G,, \ F,, there exists G,, open such that B C G,, and
uV (G, \ B) < e/2m.

2. Let G = Up>1V,, NGy Each V,, and G,, is an open set in Q. So G is a
union of open sets in . It follows that G is an open set in ). Furthermore,
since @ = U,>1V,, and B C G, for all n > 1, we have:

+oo +oo
B=|JV.nBC | JVanG, =G
n=1 n=1
3. We have:
+oo +oo
G\B=GnB°=|JVanG.,nB*= | JV,N(Gn\B)
n=1 n=1
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4. From 3. and 1. we obtain:

+00 too
WG\ B) <> p(Van(Gu\B)=> p'"(G,\B) <
n=1 n=1
Since B C G, we have u(G) = u(B) + pu(G \ B) and consequently p(G) <

w(B) +e.

5. Since G is open and B C G, we have a < p(G). Using 4. it follows that
a < p(B) + e. This being true for all € > 0, we conclude that o < p(B).

6. For all G open with B C G, we have u(B) < u(G). It follows that u(B)
is a lower bound of all ;(G)’s where G is open with B C G. « being the
greatest of such lower bounds, we have p(B) < a. However, from 5. we
have a < p(B). Tt follows that o = u(B). We have proved that for all
B € B(Q):

w(B) =inf{u(G): BC G, G open}
This shows that p is outer-regular.

7. In this exercise, we proved that a locally finite measure on a metrizable and
o-compact topological space is outer-regular. However, in exercise (12),
we proved that it is also inner-regular. It follows that a locally finite
measure on a metrizable and o-compact topological space is regular. This
proves theorem (73).

Exercise 16

Exercise 17. Let €2 be an open subset of R™, and u be a locally finite mea-
sure in (Q,B(€2)). R™ is a metrizable topological space, and furthermore from
theorem (48) any closed and bounded subset of R™ is compact. In particular,
K, = [—p,p]™ is a compact subset of R" for all p > 1. So R" is both metriz-
able and o-compact. From theorem (71) it follows that the induced topological
space (2, (Trn)|q) is also metrizable and o-compact. Applying theorem (73),
we conclude that p being locally finite, is a regular measure. We have proved
that any locally finite measure on an open subset of R™ is regular. This is the
objective of theorem (74).

Exercise 17

Exercise 18.

1. Since (2,7) is locally compact, for all z € €, there exists W, open in
Q such that = € W, and W, is compact. Let n > 1. K, is a compact
subset of Q. Furthermore, (K, N W,).ck, is an open covering of K,
from which therefore we can extract a finite sub-covering. There exists an

integer p, > 1 and 7, ...,z elements of K, such that:

Ky = (Kn N Wep) U U (Kn N Wen )

Setting V' = Wyn for k = 1,...,p,, we have found Vi*,... V! open
subsets of (2 such that K, C V"U...UV! and Vit Vp” are compact
subsets of €.
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2. Let W, =V"U.. .UV and V,, = Up_, Wy, for n > 1. Since V/",..., V"
are open, each W, is open, and consequently each V;, is open. So (V;,)n>1
is a sequence of open sets in 2, and it is clear that V;, C V,, 41 for all
n > 1. Let z € ). Since K,, T €, in particular Q@ = U,>1K,, and there
exists n > 1 such that z € K,,. From 1. we have K,, C W, and since
W, CV,, it follows that « € V,,. This shows that Q = U,,>1V,, and we

have proved that (V,,),>1 is a sequence of open sets such that V,, 1 Q.

3. In order to show that W,, = V/*U... UV, it is sufficient to prove that for
all A, B subsets of Q, we have AU B = AU B. Recall from exercise (21)
of Tutorial 4 that the closure in € of any set A, is the smallest closed set
containing A (in the sense of inclusion). In particular, we have A C A and
B C B and consequently AUB C AUB. However, AUDB being closed, this
implies that AU B C AU B. Furthermore since A C AUB C AU B and
AU B is closed, we have A C AU B and likewise B C AU B. It follows
that AU B C AU B and we have proved the equality AU B = AUB.

4. Since W,, = Vj* U ... U ‘_/p” and each an is a compact subset of €2, in
order to prove that W,, is compact, it is sufficient to show that if A and
B are compact subsets of 2, then AU B is also a compact subset of Q.
For that purpose we shall use the characterization of compact subsets
proved in exercise (2) of Tutorial 8. Let (U;);er be a family of open sets
in Q such that AU B C U;e;U;. Then in particular A C U;;U; and
A being a compact subset of ), there exists I; finite subset of I such
that A C U;er, U;. Similarly, there exists 5 finite subset of I such that
B C Uier, U;, Tt follows that AU B C Ujer,un,U; and I1 U Iy being finite,
we conclude that AU B is a compact subset of €.

5. Let n > 1. From 2. we have V,, = U}_;W}. Using a similar argument
as in 3. we see that V,, = u;;:ka. Using a similar argument as in 4.,
each W}, being compact by virtue of 4. itself, we conclude that V;, is itself
compact.

6. Let (2,7) be a topological space. If (2,7) is o-compact and locally
compact, we have been able to construct a sequence (V;,),,>1 of open sets in
€, such that V,, T Q and V,, is compact for all n > 1. So (Q,7) is strongly
o-compact. Conversely, suppose that (£2,7) is strongly o-compact, and
let (Vi)n>1 be a sequence of open sets in €, such that V,, T Q and each
V,, is compact. Then V,, T ©Q and Q is therefore o-compact. Furthermore,
for all z € €, there exists n > 1 such that z € V,,. Since V,, is open and
V,, is compact, this shows that € is locally compact. This completes the
proof of theorem (75).

Exercise 18

Exercise 19.

1. Since AC Q' and A C A, we have A C Q' N A.
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2. The complement of Q' N A in € is:
A\N(QNA) =0 N(QUA) =0 nA°

Since A is closed in Q, A° is open in {2 and consequently by definition of
the induced topology, Q' N A¢ is open in . It follows that Q' N A is closed
in . Note more generally that if F' is closed in 2, then Q' N F is closed
in Q.

3. The closure A% of A in Q' being the smallest closed subset of f_l' containing
A, we conclude from A C Q'NA and ' NA closed in €', that A% C Q'NA.

4. Let x € ' N A. Suppose U’ € Tjgy and 2 € U’. There exists U € T such
that U’ = UNSY. From 2 € U’, we have x € U and since x € A, we obtain
that ANU # (. However by assumption, A is a subset of 2’. Hence:

ANU =ANUNQ)=(ANQY)NU=ANU £0
So we have proved that AN U’ # ().

5. It follows from 4. thilt O'NA C ng'. However from 3. we have A% C Q'NA.
We conclude that A2 = Q' N A.

Exercise 19

Exercise 20.

1. Let z € Q and € > 0. Let y € B(x,¢). For all U open in  such that
y € U, we have U N B(x,€) # 0. In particular, for all n > 0, we have
B(y,n) N B(x,€) # 0. Let z € Q be such that d(y,z) <n and d(z, 2) < e.
From the triangle inequality:

d(z,y) <d(z,z) +d(y,2) <e+n

This being true for all n > 0, it follows that d(z,y) < e. We have proved
that:

B(z,e) C{y e Q : d(z,y) <€}

2. Let = [0,1/2[U{1} together with its usual metric. Then, the open ball
B(0,1) is given by:
B0,1)={z€Q : |z|<1}=][0,1/2]
3. The complement of [0,1/2[in © is {1}, which can be written as ]1/2,2[N§2

and is therefore open in €, since ]1/2,2[ is open in R. It follows that
[0,1/2] is closed in €.

4. From 2. we have B(0,1) = [0,1/2[ and from 3. [0,1/2[ is a closed subset
of 2, and is therefore equal to its closure. Hence:

B(0,1) = [0,1/2[ = [0,1/2]
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5. Since Q= {y € Q : |y| <1} and [0, 1/2[# €2, we conclude that:

B0,1) #{ye€Q : |y <1}

The purpose of this exercise is to provide a counter-example to the belief
that the inclusion proved in 1.:

B(z,e) C{y €Q : d(z,y) <€}
can be shown to be an equality.
Exercise 20

Exercise 21.

1. © being locally compact, there exists U open with compact closure such
that z € U.

2. Since z € Q' and x € U, we have z € U N Q. Furthermore, both U and
Y being open in Q, UNQ' is open in . The topology on ) being metric,
there exists € > 0 such that B(z,e) CU N

3. From B(z,¢/2) C B(x,e) CUNQ C U we conclude that B(x,¢e/2) C U.

4. From 3. we have B(z,¢/2) = B(x,¢/2) NU and B(z,¢€/2) being closed in
), we conclude that it is also closed in U.

5. Since U is compact and B(z,€/2) is a closed subset of U, it follows from
exercise (2) of Tutorial 8 that B(z,¢/2) is a compact subset of U, and
consequently also a compact subset of (2.

6. Let y € B(x,¢/2). From 1. of exercise (20), d(z,y) < ¢/2 and in particular
d(z,y) < e. From 2. we have B(z,¢) C Q" and consequently y € . This
shows that B(z,e/2) C Q.

7. Let U' = B(z,¢/2) N Q' = B(z,¢/2). 1t is clear that € U’ and further-
more B(z,€/2) being open in Q, U’ is open in €', i.e. U" € Tjg. Using 6.
and exercise (19), we obtain:

U =0'nQ =B(x,e/2) N QY = Blz,€/2)
In particular U’ Qs compact, as can be seen from 5.

8. Given z € €', we have found U’ open in Q' such that z € U’ and U'?" is
compact. This shows that (Q', 7jq/) is locally compact.

9. Let (£2,7) be a metrizable and strongly o-compact topological space. Let
Q) be an open subset of Q. From theorem (75), (€,7) is metrizable,
o-compact and locally compact. Since ' is open, it follows from the-
orem (71) that the induced topological space (Q', 7o) is itself metriz-
able and o-compact. Furthermore, we have proved in this exercise that
(Ql,,]TQ/) is also locally compact. So (Q/,,T‘Q/) is metrizable, o-compact
and locally compact. Using theorem (75) once more, we conclude that
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(Y, 7o) is metrizable and strongly o-compact. This completes the proof
of theorem (76).

Exercise 21

Exercise 22.

1. The constant map ¢ : ¢ — 0 is continuous. Indeed for any U open in
K, ¢~ 1(U) is either equal to () or to € itself. In any case ¢~ 1(U) is an
open subset of Q. Furthermore, supp(¢) = () and is therefore compact (see
exercise (2) of Tutorial 8). This shows that ¢ € Cg ().

2. Ck () being a non-empty subset of the set of all maps ¢ : @ — K, to
show that Cg () is a K-vector space, it is sufficient to show that given
p, ) € Ci () and A € K, the map ¢ + A\ is also an element of Cg(2).
To show that ¢ + A is continuous, one may proceed as follows: define
®: K? - Kby ®(z,y) = z+Ay, and ¥ : Q — K2 by ¥(w) = (¢(w), h(w)).
Then ¢ + A\p = ® o ¥ and P being continuous, it is sufficient to show that
U is itself a continuous map. However, the continuity of ¥ follows from
the fact that each coordinate mapping ¢ and ¢ is continuous. Indeed if
U x V is an open rectangle in K2, then U=1(U x V) = ¢~ 1({U) Ny~ 1(V)
and is therefore open in Q. Any open set W in K? being a union of
open rectangles, it is clear that W=*(W) is open in Q. So much for the
continuity of ¢ + AY. From the inclusion:

{¢+ M # 0} S{o#0tU{y #0}

and the fact that given A, B subsets of 1, AUB = AU B (see the proof
of 3. in exercise (18)), we obtain:

supp(¢ + A\¢) C supp(¢) U supp(¢)

Since ¢ and ¥ lie in Cg(Q2), both supp(¢) and supp(¢) are compact and
consequently A = supp(¢) U supp(z)) is itself compact (see the proof of
4. in exercise (18)). Furthermore, supp(¢ 4+ A) being closed in Q while
being a subset of A, it is also closed in A. From exercise (2) of Tutorial 8,
supp(¢+ A1) is therefore compact. We have proved that ¢+ i) € Cg(Q2).

3. Let ¢ € C%(Q). If ¢ = 0 then ¢ € C% (). We assume that ¢ # 0. Let
A = supp(¢). Then [¢[4 is a continuous map defined on the non-empty
compact topological space (A,7)4). From theorem (37), |¢||4 attains its
maximum, i.e. there exists x); € A such that:

[¢(xar)| = sup |¢(z)]
z€A

Since ¢(z) =0 for all x € A°, we have:
|¢(xar)| = sup [¢(x)]

e

which shows in particular that sup,cq, [¢(z)| < +00. So ¢ € Ck () and
we have proved that Cg () C Ch ().
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Exercise 22

Exercise 23.

1. Since € is locally compact, for all x € ) there exists an open set W,
such that z € W, and W, is compact. From K C U,cxW, and the
fact that K is a compact subset of 2, we deduce the existence of n > 1
and z1,...,2, € K such that K C U}_,W,,. Setting Vi, = W,, for all
k=1,...,n, we have found open sets V,...,V, such that:

KCViu...UV, (11)
and each Vj, is compact.

2. An arbitrary union of open sets is open. A finite intersection of open sets
is open. Since V1, ..., V,, and G are open, the set V = (V1 U...UV,,)NG is
an open set in 2. By assumption, K C G and it therefore follows from (11)
that K C V. The fact that V C G is clear. We have proved that V is
open and K CV C G.

3. Given A, B subsets of O, AU B = AU B (see proof of 3. in exercise (18)).
From V C Vi U...UV, we obtain:

VCcViu... UV, =ViuU...uV,

4. If A, B are compact subsets of 2, AU B is a compact subset of Q (see
proof of 4. in exercise (18)). It follows that K’ = V; U...UV,, is a compact
subset of Q. Furthermore from 3. V is a subset of K’. Being closed in €,
V is also closed in K’ (it can be written as V = F N K’ where F is closed
in Q, take I/ = V). Using exercise (2) of Tutorial 8, it follows that V is
compact.

5. Given A subset of Q, d(z, A) is well defined for all = € 2 as:
d(z,A) =inf{d(z,y) : ye A}

where it is understood that inf ) = +oco. Since K # ) and V # Q, d(x, K)
and d(z, V) are well-defined real numbers for all « € Q. Furthermore, for
all A closed in Q, d(z, A) = 0 is equivalent to x € A (see exercise (22) of
Tutorial 4). V being open in €, V¢ is a closed subset of Q. So d(z,V¢) =0
is equivalent to x € V¢. K being a compact subset of {2 and € being a
Hausdorff topological space (it is metric), K is a closed subset of € (see
theorem (35)). So d(x, K) = 0 is equivalent to z € K. It follows that
d(z,V°) + d(x,K) = 0 is equivalent to x € K N V¢, which can never
happen since K C V. We have proved that for all € Q, ¢(x) is a well-
defined real number. So ¢ : 2 — R is well-defined. For all A subsets of €2,
the map « — d(z, A) is continuous (see exercise (22) of Tutorial 4). We
conclude that ¢ is also continuous.

6. ¢(x) # 0 is equivalent to d(z, V¢) # 0 which is itself equivalent to © ¢ V¢
(since V¢ is closed), i.e. € V. We have proved that {¢ # 0} = V.
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7.

10.

11.

From 7. {¢ # 0} = V and consequently supp(¢) = V. Having proved in 4.
that V' is compact, it follows that ¢ has compact support. So ¢ : @ — R
is continuous with compact support, i.e. ¢ € C{ ().

To show that 1x < ¢ it is sufficient to show that x € K implies 1 < ¢(z).
However, K being closed in Q, = € K is equivalent to d(z,K) = 0. In
particular, x € K implies that ¢(z) = 1. Tt is clear that ¢(z) < 1 for all
x € Q. To show that ¢ < 1¢, it is sufficient to show that = ¢ G implies
¢(x) =0. But V C G and consequently x ¢ G implies x ¢ V, i.e. x € VC.
And V¢ being closed, = € V¢ is equivalent to d(x,V°) = 0. In particular,
we see that ¢ G implies ¢(x) =0. So 1x < ¢ < 1¢.

Suppose K = (. With ¢ =0, ¢ € C{(Q2) and 1x < ¢ < 1¢.

Suppose V = . Then V = Q = Q. V being compact (see 4.), it follows
that £ is compact.

Suppose V.= Q. Since V C G, we have G = Q, i.e. 1¢ = 1. Take
¢ = 1. Then ¢ is continuous and supp(¢) = €2 is compact (see 10.). So
¢ € CL(Q) and 1x < ¢ < 1. This proves theorem (77).

Exercise 23

Exercise 24.

1.

Let ¢ € C%(2). Then ¢ is continuous and from exercise (13) of Tutorial 4,
the map ¢ : (2,B(Q)) — (K, B(K)) is therefore measurable. Furthermore
from exercise (22), C%(2) C C% (). So ¢ is also bounded. There exists
m € R* such that |¢| < m. Let A = supp(¢). Then A is a compact
subset of €, and from exercise (10), & being locally finite, u(A) < +oc.
Since {¢ # 0} C A, we have A° C {¢ = 0} and consequently ¢ = ¢l4.
Hence:

[167dn = [ 1alolrdu < mtita) < oo
S0 ¢ € Ti (9, B(), 1) and finally Cg(9) C L (0, BQ), o).

Let € > 0. Since (2,7) is metrizable and strongly o-compact, in par-
ticular from theorem (75), it is metrizable and o-compact. Since p is a
locally finite measure on (€2, B(€2)), from theorem (73) p is regular. Hav-
ing assumed that p(B) < 400, we have u(B) < u(B) + ¢/2. From the
outer-regularity of i, u(B) is the greatest lower-bound of all 4(G)’s where
G is open with B C G. So u(B) +¢€/2 cannot be such lower-bound. There
exists G open with B C G such that:

w(G) < p(B) + 3 (12)

Likewise, u(B) —¢/2 < p(B) and from the inner-regularity of p, pu(B) is
the lowest upper-bound of all u(K)’s where K is compact with K C B.
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So u(B) —¢€/2 cannot be such upper-bound, and consequently, there exists
K compact with K C B such that:
€
u(B) ~ & < u(K) (13)

Hence, we have found K compact and G open with K C B C @, and
furthermore from (12) and (13) we have:

w(G) < p(B) + 5 < p(K) +e
and consequently:
u(K) + p(G\ K) = p(G) < p(K) + €

K being compact and p locally finite, from exercise (10) we have pu(K) <
+00, and we conclude that u(G \ K) < e. In particular u(G \ K) < e.

3. The fact that p(B) < 400 was used when writing the inequalities u(B) <
w(B) 4+ €/2 and pu(B) —€/2 < p(B). Without this assumption, these
inequalities would not be strict, and the argument developed in 2. would
fail.

4. Since (€2, 7) is metrizable and strongly o-compact, in particular from the-
orem (75), it is metrizable and locally compact. K being compact and G
open with K C G, from theorem (77), there exists ¢ € Cg () such that
Ik < ¢ <lg.

5. Since 1x < ¢ < 1g, in particular 0 < ¢ < 1 and consequently we have
| —1p|? < 1. Suppose x ¢ G. Then 1lg(z) = 0 and therefore ¢(z) = 0.
Since B C G, we also have 15(z) = 0 and consequently |¢(z) — 15 (x)|P =
0. Suppose z € K. Then 1x(z) = 1 and therefore ¢(z) = 1. Since K C B
we also have 1p(z) = 1 and consequently |¢p(x) — 1g(x)[P = 0. We have
proved that ¢ G \ K implies that |¢(z) — 1p(z)|? = 0. It follows that
|¢ — 1|P < 1g\x and finally:

J1o=1aPau< [10wdu=n(G\ k)

6. Let € > 0. Applying 2. to €P instead of € itself, we can find K and G such
that (G \ K) < €P. From 4. and 5. there exists ¢ € Cg (€2) such that:

[16=10lrdn < e\ K) < @
from which we conclude that ¢ — 15|, <e.

7. Let s € Sc(,B(Q) N LL(Q,B(2), ) and ¢ > 0. From 3. of exer-
cise (1) there exists an integer n > 1, together with ai,...,a, € C and
Ay, ..., A, € B(Q) such that:

n
s = E ol g,
i=1
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and u(A;) < +oo for all i € N,,. Without loss of generality, we may
assume that «; # 0 for all ¢’s (if s = 0 then s € C&(Q) and finding
¢ € C&(Q) such that ||¢ — s||, < e is trivial). Applying 6. to B = A;
(recall that A; € B(Q) and pu(A4;) < +00) and €/n|a;| instead of e, there
exists ¢ € Cg () such that ||¢; — 14, ||, < ¢/n|a;|. Since C&(Q) is a vector
space, the map ¢ = > | a;¢; is an element of C&(2) and we have:

n n
Zai¢i - Z aila,
i=1 i=1

n
Z |a'i| : ||¢’L - 1A7:
i=1

- €
— nja;|

1=
- €

16— sllp

p

IN

p

We have found ¢ € C&(Q) such that ||¢ — s|, < e. Note that if s €
Sr(Q,B(Q)) then oy € R for all i € N,,, and ¢ = Y - | a¢; is in fact an
element of C§(9).

8. To show that Cg () is dense in Ly (€, B(2), i), it is sufficient to show
that given f € LY (Q, B(Q), 1) and € > 0, there exists ¢ € Cg (€2) such that
IIf —llp, < e. However, from theorem (67) there exists s € Sk (2, B(2)) N
L (2, B(Q2), p) such that || f —s||, < €/2. Applying 7. to s and €/2 instead
of €, there exists ¢ € C () such that ||¢ — s||, < €/2. It follows that we
have found ¢ € Cg (Q) such that || f —¢ll, < ||f —sllp+ |l¢—s|lp < e. This
completes the proof of theorem (78).

Exercise 24

Exercise 25. Let € be an open subset of R™ where n > 1. Let u be a locally
finite measure on (2, B(2)) and p € [1,+o0[. For k > 1, Vi, =] —k, k[™ is an open
subset of R™ with compact closure, and Vi, T R". From definition (104), R™ is
strongly o-compact. Furthermore, it is metrizable. It follows from theorem (76)
that 2 being an open subset of R"”, is also metrizable and strongly o-compact.
Applying theorem (78), we conclude that Cg (2) is dense in LY (Q, B(Q), u).
This completes the proof of theorem (79).

Exercise 25
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