6. Product Spaces

In the following, I is a non-empty set.

Definition 50 Let $(\Omega_i)_{i \in I}$ be a family of sets, indexed by a non-empty set I. We call **Cartesian product** of the family $(\Omega_i)_{i \in I}$ the set, denoted $\Pi_{i \in I} \Omega_i$, and defined by:

$$\prod_{i \in I} \Omega_i \triangleq \{ \omega : I \to \bigcup_{i \in I} \Omega_i, \ \omega(i) \in \Omega_i, \ \forall i \in I \}$$

In other words, $\Pi_{i \in I} \Omega_i$ is the set of all maps ω defined on I, with values in $\bigcup_{i \in I} \Omega_i$, such that $\omega(i) \in \Omega_i$ for all $i \in I$.

Theorem 25 (Axiom of choice) Let $(\Omega_i)_{i \in I}$ be a family of sets, indexed by a non-empty set I. Then, $\Pi_{i \in I} \Omega_i$ is non-empty, if and only if Ω_i is non-empty for all $i \in I$.

Exercise 1.

1. Let Ω be a set and suppose that $\Omega_i = \Omega, \forall i \in I$. We use the notation Ω^I instead of $\Pi_{i \in I} \Omega_i$. Show that Ω^I is the set of all maps $\omega : I \to \Omega$.

2. What are the sets $\mathbb{R}^{\mathbb{R}^+}$, $\mathbb{R}^{\mathbb{N}}$, $[0,1]^\mathbb{N}$, $\mathbb{R}^{\mathbb{R}^?}$?

3. Suppose $I = \mathbb{N}^*$, We sometimes use the notation $\Pi_{n=1}^{\infty} \Omega_n$ instead of $\Pi_{n \in \mathbb{N}} \Omega_n$. Let S be the set of all sequences $(x_n)_{n \geq 1}$ such that $x_n \in \Omega_n$ for all $n \geq 1$. Is S the same thing as the product $\Pi_{n=1}^{\infty} \Omega_n$?

4. Suppose $I = \{1, \ldots, n\}$, $n \geq 1$. We use the notation $\Omega_1 \times \ldots \times \Omega_n$ instead of $\Pi_{i \in \{1, \ldots, n\}} \Omega_i$. For $\omega \in \Omega_1 \times \ldots \times \Omega_n$, it is customary to write $(\omega_1, \ldots, \omega_n)$ instead of ω, where we have $\omega_i = \omega(i)$. What is your guess for the definition of sets such as \mathbb{R}^n, \mathbb{R}^n, \mathbb{Q}^n, \mathbb{C}^n.

5. Let E, F, G be three sets. Define $E \times F \times G$.

Definition 51 Let I be a non-empty set. We say that a family of sets $(I_\lambda)_{\lambda \in \Lambda}$, where $\Lambda \neq \emptyset$, is a **partition** of I, if and only if:

(i) $\forall \lambda \in \Lambda, \ I_\lambda \neq \emptyset$

(ii) $\forall \lambda, \lambda' \in \Lambda, \ \lambda \neq \lambda' \Rightarrow I_\lambda \cap I_{\lambda'} = \emptyset$

(iii) $I = \bigcup_{\lambda \in \Lambda} I_\lambda$

Exercise 2. Let $(\Omega_i)_{i \in I}$ be a family of sets indexed by I, and $(I_\lambda)_{\lambda \in \Lambda}$ be a partition of the set I.

1. For each $\lambda \in \Lambda$, recall the definition of $\Pi_{i \in I_\lambda} \Omega_i$.

1 When I is finite, this theorem is traditionally derived from other axioms.
2. Recall the definition of $\Pi_{\lambda \in \Lambda}(\Omega_i)$.

3. Define a natural bijection $\Phi: \Pi_{i \in I} \Omega_i \rightarrow \Pi_{\lambda \in \Lambda}(\Omega_i)$.

4. Define a natural bijection $\psi: R^p \times R^n \rightarrow R^{p+n}$, for all $n, p \geq 1$.

Definition 52 Let $(\Omega_i)_{i \in I}$ be a family of sets, indexed by a non-empty set I. For all $i \in I$, let \mathcal{E}_i be a set of subsets of Ω_i. We define a rectangle of the family $(\mathcal{E}_i)_{i \in I}$, as any subset A of $\pi_{i \in I} \Omega_i$, of the form $A = \pi_{i \in I} \Omega_i$ where $A_i \in \mathcal{E}_i \cup \{\Omega_i\}$ for all $i \in I$, and such that $A_i = \Omega_i$ except for a finite number of indices $i \in I$. Consequently, the set of all rectangles, denoted $\pi_{i \in I} \mathcal{E}_i$, is defined as:

$$\prod_{i \in I} \mathcal{E}_i \triangleq \left\{ \prod_{i \in I} A_i : A_i \in \mathcal{E}_i \cup \{\Omega_i\}, \ A_i \neq \Omega_i \text{ for finitely many } i \in I \right\}$$

Exercise 3. $(\Omega_i)_{i \in I}$ and $(\mathcal{E}_i)_{i \in I}$ being as above:

1. Show that if $I = N_n$ and $\Omega_i \in \mathcal{E}_i$ for all $i = 1, \ldots, n$, then $\mathcal{E}_1 \ldots \mathcal{E}_n = \{A_1 \times \ldots \times A_n : A_i \in \mathcal{E}_i, \ \forall i \in I\}$.

2. Let A be a rectangle. Show that there exists a finite subset J of I such that: $A = \{\omega \in \pi_{i \in I} \Omega_i : \omega(j) \in A_j, \ \forall j \in J\}$ for some A_j’s such that $A_j \in \mathcal{E}_j$, for all $j \in J$.

Definition 53 Let $(\Omega_i, \mathcal{F}_i)_{i \in I}$ be a family of measurable spaces, indexed by a non-empty set I. We call measurable rectangle, any rectangle of the family $(\mathcal{F}_i)_{i \in I}$. The set of all measurable rectangles is given by:

$$\prod_{i \in I} \mathcal{F}_i \triangleq \left\{ \prod_{i \in I} A_i : A_i \in \mathcal{F}_i, \ A_i \neq \Omega_i \text{ for finitely many } i \in I \right\}$$

Definition 54 Let $(\Omega_i, \mathcal{F}_i)_{i \in I}$ be a family of measurable spaces, indexed by a non-empty set I. We define the product σ-algebra of $(\mathcal{F}_i)_{i \in I}$, as the σ-algebra on $\pi_{i \in I} \Omega_i$, denoted $\otimes_{i \in I} \mathcal{F}_i$, and generated by all measurable rectangles, i.e.

$$\otimes_{i \in I} \mathcal{F}_i \triangleq \sigma \left(\prod_{i \in I} \mathcal{F}_i \right)$$

Exercise 4.

1. Suppose $I = N_n$. Show that $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$ is generated by all sets of the form $A_1 \times \ldots \times A_n$, where $A_i \in \mathcal{F}_i$ for all $i = 1, \ldots, n$.

2. Show that $\mathcal{B}(R) \otimes \mathcal{B}(R) \otimes \mathcal{B}(R)$ is generated by sets of the form $A \times B \times C$ where $A, B, C \in \mathcal{B}(R)$.

\[\text{www.probability.net} \]
3. Show that if \((\Omega, \mathcal{F})\) is a measurable space, \(\mathcal{B}(\mathbb{R}^+) \otimes \mathcal{F}\) is the \(\sigma\)-algebra on \(\mathbb{R}^+ \times \Omega\) generated by sets of the form \(B \times F\) where \(B \in \mathcal{B}(\mathbb{R}^+)\) and \(F \in \mathcal{F}\).

Exercise 5. Let \((\Omega_i)_{i \in I}\) be a family of non-empty sets and \(\mathcal{E}_i\) be a subset of the power set \(\mathcal{P}(\Omega_i)\) for all \(i \in I\).

1. Give a generator of the \(\sigma\)-algebra \(\bigotimes_{i \in I} \sigma(\mathcal{E}_i)\) on \(\Pi_{i \in I} \Omega_i\).

2. Show that:
 \[
 \sigma \left(\prod_{i \in I} \mathcal{E}_i \right) \subseteq \bigotimes_{i \in I} \sigma(\mathcal{E}_i)
 \]

3. Let \(A\) be a rectangle of the family \((\sigma(\mathcal{E}_i))_{i \in I}\). Show that if \(A\) is not empty, then the representation \(A = \Pi_{i \in I} A_i\) with \(A_i \in \sigma(\mathcal{E}_i)\) is unique. Define \(J_A = \{i \in I : A_i \neq \Omega_i\}\). Explain why \(J_A\) is a well-defined finite subset of \(I\).

4. If \(A \in \Pi_{i \in I} \sigma(\mathcal{E}_i)\), Show that if \(A = \emptyset\), or \(A \neq \emptyset\) and \(J_A = \emptyset\), then \(A \in \sigma(\Pi_{i \in I} \mathcal{E}_i)\).

Exercise 6. Everything being as before, Let \(n \geq 0\). We assume that the following induction hypothesis has been proved:

\[A \in \prod_{i \in I} \sigma(\mathcal{E}_i), A \neq \emptyset, \text{card}J_A = n \Rightarrow A \in \sigma \left(\prod_{i \in I} \mathcal{E}_i \right)\]

We assume that \(A\) is a non empty measurable rectangle of \((\sigma(\mathcal{E}_i))_{i \in I}\) with \(\text{card}J_A = n + 1\). Let \(J_A = \{i_1, \ldots, i_{n+1}\}\) be an extension of \(J_A\). For all \(B \subseteq \Omega_{i_1}\), we define:

\[A^B \triangleq \prod_{i \in I} \tilde{A}_i\]

where each \(\tilde{A}_i\) is equal to \(A_i\) except \(\tilde{A}_{i_1} = B\). We define the set:

\[\Gamma \triangleq \left\{ B \subseteq \Omega_{i_1} : A^B \in \sigma \left(\prod_{i \in I} \mathcal{E}_i \right) \right\}\]

1. Show that \(A^{\Omega_{i_1}} \neq \emptyset\), \(\text{card}J_A^{\Omega_{i_1}} = n\) and that \(A^{\Omega_{i_1}} \in \Pi_{i \in I} \sigma(\mathcal{E}_i)\).

2. Show that \(\Omega_{i_1} \in \Gamma\).

3. Show that for all \(B \subseteq \Omega_{i_1}\), we have \(A^{\Omega_{i_1} \setminus B} = A^{\Omega_{i_1}} \setminus A^B\).

4. Show that \(B \in \Gamma \Rightarrow \Omega_{i_1} \setminus B \in \Gamma\).

5. Let \(B_n \subseteq \Omega_{i_1}, n \geq 1\). Show that \(A^{\cup B_n} = \cup_{n \geq 1} A^{B_n}\).

6. Show that \(\Gamma\) is a \(\sigma\)-algebra on \(\Omega_{i_1}\).
7. Let \(B \in \mathcal{E}_i \), and for \(i \in I \) define \(B_i = \Omega_i \) for all \(i \)'s except \(B_{i_1} = B \). Show that \(A^B = A^{\Omega_i} \cap (\Pi_{i \in I} B_i) \).

8. Show that \(\sigma(\mathcal{E}_i) \subseteq \Gamma \).

9. Show that \(A = A^{\Omega_i} \) and \(A \in \sigma(\Pi_{i \in I} \mathcal{E}_i) \).

10. Show that \(\Pi_{i \in I} \sigma(\mathcal{E}_i) \subseteq \sigma(\Pi_{i \in I} \mathcal{E}_i) \).

11. Show that \(\sigma(\Pi_{i \in I} \mathcal{E}_i) = \otimes_{i \in I} \sigma(\mathcal{E}_i) \).

Theorem 26 Let \((\Omega_i)_{i \in I}\) be a family of non-empty sets indexed by a non-empty set \(I \). For all \(i \in I \), let \(\mathcal{E}_i \) be a set of subsets of \(\Omega_i \). Then, the product \(\sigma \)-algebra \(\otimes_{i \in I} \sigma(\mathcal{E}_i) \) on the Cartesian product \(\Pi_{i \in I} \Omega_i \) is generated by the rectangles of \((\mathcal{E}_i)_{i \in I} \), i.e.:

\[
\bigotimes_{i \in I} \sigma(\mathcal{E}_i) = \sigma \left(\prod_{i \in I} \mathcal{E}_i \right)
\]

Exercise 7. Let \(\mathcal{T}_R \) denote the usual topology in \(R \). Let \(n \geq 1 \).

1. Show that \(\mathcal{T}_R \cup \ldots \cup \mathcal{T}_R = \{ A_1 \times \ldots \times A_n : A_i \in \mathcal{T}_R \} \).

2. Show that \(B(\mathbb{R}) \otimes \ldots \otimes B(\mathbb{R}) = \sigma(\mathcal{T}_R \cup \ldots \cup \mathcal{T}_R) \).

3. Define \(C_2 = \{ [a_1, b_1] \times \ldots \times [a_n, b_n] : a_i, b_i \in \mathbb{R} \} \). Show that \(C_2 \subseteq \mathcal{S} \cup \ldots \cup \mathcal{S} \), where \(\mathcal{S} = \{ [a, b] : a, b \in \mathbb{R} \} \), but that the inclusion is strict.

4. Show that \(\mathcal{S} \cup \ldots \cup \mathcal{S} \subseteq \sigma(C_2) \).

5. Show that \(B(\mathbb{R}) \otimes \ldots \otimes B(\mathbb{R}) = \sigma(C_2) \).

Exercise 8. Let \(\Omega \) and \(\Omega' \) be two non-empty sets. Let \(A \) be a subset of \(\Omega \) such that \(\emptyset \neq A \neq \Omega \). Let \(\mathcal{E} = \{ A \} \subseteq \mathcal{P}(\Omega) \) and \(\mathcal{E}' = \emptyset \subseteq \mathcal{P}(\Omega') \).

1. Show that \(\sigma(\mathcal{E}) = \{ \emptyset, A, A^c, \Omega \} \).

2. Show that \(\sigma(\mathcal{E}') = \{ \emptyset, \Omega' \} \).

3. Define \(\mathcal{C} = \{ E \times F : E \in \mathcal{E}, F \in \mathcal{E}' \} \) and show that \(\mathcal{C} = \emptyset \).

4. Show that \(\mathcal{E} \cup \mathcal{E}' = \{ A \times \Omega', \Omega \times \Omega' \} \).

5. Show that \(\sigma(\mathcal{E}) \otimes \sigma(\mathcal{E}') = \{ \emptyset, A \times \Omega', A^c \times \Omega', \Omega \times \Omega' \} \).

6. Conclude that \(\sigma(\mathcal{E}) \otimes \sigma(\mathcal{E}') \neq \sigma(\mathcal{C}) = \{ \emptyset, \Omega \times \Omega' \} \).

Exercise 9. Let \(n \geq 1 \) and \(p \geq 1 \) be two positive integers.

1. Define \(\mathcal{F} = B(\mathbb{R}) \otimes \ldots \otimes B(\mathbb{R}) \) and \(\mathcal{G} = B(\mathbb{R}) \otimes \ldots \otimes B(\mathbb{R}) \). Explain why \(\mathcal{F} \otimes \mathcal{G} \) can be viewed as a \(\sigma \)-algebra on \(\mathbb{R}^{n+p} \).

www.probability.net
2. Show that \(\mathcal{F} \otimes \mathcal{G} \) is generated by sets of the form \(A_1 \times \ldots \times A_{n+p} \) where \(A_i \in \mathcal{B}(\mathbb{R}), i = 1, \ldots, n + p \).

3. Show that:
\[
\bigcap_{n+p} \mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R}) = \left(\bigcap_{n} \mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R}) \right) \otimes \left(\bigcap_{p} \mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R}) \right)
\]

Exercise 10. Let \((\Omega_i, \mathcal{F}_i)_{i \in I}\) be a family of measurable spaces. Let \((I_\lambda)_{\lambda \in \Lambda}\), where \(\Lambda \neq \emptyset \), be a partition of \(I \). Let \(\Omega = \Pi_{i \in I} \Omega_i \) and \(\Omega' = \Pi_{\lambda \in \Lambda} (\Pi_{i \in I_\lambda} \Omega_i) \).

1. Define a *natural* bijection between \(\mathcal{P}(\Omega) \) and \(\mathcal{P}(\Omega') \).
2. Show that through such bijection, \(A = \Pi_{i \in I} A_i \subseteq \Omega \), where \(A_i \subseteq \Omega_i \), is identified with \(A' = \Pi_{\lambda \in \Lambda} (\Pi_{i \in I_\lambda} A_i) \subseteq \Omega' \).
3. Show that \(\Pi_{i \in I} \mathcal{F}_i = \Pi_{\lambda \in \Lambda} (\Pi_{i \in I_\lambda} \mathcal{F}_i) \).
4. Show that \(\otimes_{i \in I} \mathcal{F}_i = \otimes_{\lambda \in \Lambda} (\otimes_{i \in I_\lambda} \mathcal{F}_i) \).

Definition 55 Let \(\Omega \) be set and \(\mathcal{A} \) be a set of subsets of \(\Omega \). We call **topology generated** by \(\mathcal{A} \), the topology on \(\Omega \), denoted \(T(\mathcal{A}) \), equal to the intersection of all topologies on \(\Omega \), which contain \(\mathcal{A} \).

Exercise 11. Let \(\Omega \) be a set and \(\mathcal{A} \subseteq \mathcal{P}(\Omega) \).

1. Explain why \(T(\mathcal{A}) \) is indeed a topology on \(\Omega \).
2. Show that \(T(\mathcal{A}) \) is the smallest topology \(T \) such that \(\mathcal{A} \subseteq T \).
3. Show that the metric topology on a metric space \((E,d)\) is generated by the open balls \(\mathcal{A} = \{ B(x, \epsilon) : x \in E, \epsilon > 0 \} \).

Definition 56 Let \((\Omega_i, T_i)_{i \in I}\) be a family of topological spaces, indexed by a non-empty set \(I \). We define the **product topology** of \((T_i)_{i \in I}\), as the topology on \(\Pi_{i \in I} \Omega_i \), denoted \(\otimes_{i \in I} T_i \), and generated by all rectangles of \((T_i)_{i \in I}\), i.e.
\[
\bigotimes_{i \in I} T_i \triangleq T \left(\prod_{i \in I} T_i \right)
\]

Exercise 12. Let \((\Omega_i, T_i)_{i \in I}\) be a family of topological spaces.

1. Show that \(U \in \bigotimes_{i \in I} T_i \), if and only if:
\[
\forall x \in U, \ \exists V \in \Pi_{i \in I} T_i, \ x \in V \subseteq U
\]
2. Show that \(\Pi_{i \in I} T_i \subseteq \bigotimes_{i \in I} T_i \).
3. Show that \(\otimes_{i \in I} \mathcal{B}(\Omega_i) = \sigma(\Pi_{i \in I} T_i) \).
4. Show that \(\otimes_{i \in I} \mathcal{B}(\Omega_i) \subseteq \mathcal{B}(\Pi_{i \in I} \Omega_i) \).

Exercise 13. Let \(n \geq 1 \) be a positive integer. For all \(x, y \in \mathbb{R}^n \), let:

\[
(x, y) \triangleq \sum_{i=1}^{n} x_i y_i
\]

and we put \(\|x\| = \sqrt{(x, x)} \).

1. Show that for all \(t \in \mathbb{R} \), \(\|x + ty\|^2 = \|x\|^2 + t^2\|y\|^2 + 2t(x, y) \).
2. From \(\|x + ty\|^2 \geq 0 \) for all \(t \), deduce that \(|(x, y)| \leq \|x\|\|y\| \).
3. Conclude that \(\|x + y\| \leq \|x\| + \|y\| \).

Exercise 14. Let \((\Omega_1, \tau_1), \ldots, (\Omega_n, \tau_n), n \geq 1, \) be metrizable topological spaces. Let \(d_1, \ldots, d_n \) be metrics on \(\Omega_1, \ldots, \Omega_n \), inducing the topologies \(\tau_1, \ldots, \tau_n \) respectively. Let \(\Omega = \Omega_1 \times \ldots \times \Omega_n \) and \(\tau \) be the product topology on \(\Omega \). For all \(x, y \in \Omega \), we define:

\[
d(x, y) \triangleq \sqrt{\sum_{i=1}^{n} (d_i(x_i, y_i))^2}
\]

1. Show that \(d : \Omega \times \Omega \to \mathbb{R}^+ \) is a metric on \(\Omega \).
2. Show that \(U \subseteq \Omega \) is open in \(\Omega \), if and only if, for all \(x \in U \) there are open sets \(U_1, \ldots, U_n \) in \(\Omega_1, \ldots, \Omega_n \) respectively, such that:\n
\[
x \in U_1 \times \ldots \times U_n \subseteq U
\]
3. Let \(U \in \tau \) and \(x \in U \). Show the existence of \(\epsilon > 0 \) such that:

\[(\forall i = 1, \ldots, n) \ d_i(x_i, y_i) < \epsilon \implies y \in U \]
4. Show that \(\tau \subseteq \tau_{\Omega}^d \).
5. Let \(U \in \tau_{\Omega}^d \) and \(x \in U \). Show the existence of \(\epsilon > 0 \) such that:

\[x \in B(x_1, \epsilon) \times \ldots \times B(x_n, \epsilon) \subseteq U\]
6. Show that \(\tau_{\Omega}^d \subseteq \tau \).
7. Show that the product topological space \((\Omega, \tau) \) is metrizable.
8. For all \(x, y \in \Omega \), define:

\[
d'(x, y) \triangleq \sum_{i=1}^{n} d_i(x_i, y_i)
\]

\[
d''(x, y) \triangleq \max_{i=1,...,n} d_i(x_i, y_i)
\]

Show that \(d', d'' \) are metrics on \(\Omega \).
9. Show the existence of $\alpha', \beta', \alpha''$ and $\beta'' > 0$, such that we have $\alpha' d' \leq d \leq \beta' d'$ and $\alpha'' d'' \leq d \leq \beta'' d''$.

10. Show that d' and d'' also induce the product topology on Ω.

Exercise 15. Let $(\Omega_n, T_n)_{n \geq 1}$ be a sequence of metrizable topological spaces. For all $n \geq 1$, let d_n be a metric on Ω_n inducing the topology T_n. Let $\Omega = \prod_{n=1}^{+\infty} \Omega_n$ be the Cartesian product and T be the product topology on Ω. For all $x, y \in \Omega$, we define:

$$d(x, y) \triangleq \sum_{n=1}^{+\infty} \frac{1}{2^n} (1 \wedge d_n(x_n, y_n))$$

1. Show that for all $a, b \in \mathbb{R}^+$, we have $1 \wedge (a + b) \leq 1 \wedge a + 1 \wedge b$.

2. Show that d is a metric on Ω.

3. Show that $U \subseteq \Omega$ is open in Ω, if and only if, for all $x \in U$, there is an integer $N \geq 1$ and open sets U_1, \ldots, U_N in $\Omega_1, \ldots, \Omega_N$ respectively, such that:

$$x \in U_1 \times \ldots \times U_N \times \prod_{n=N+1}^{+\infty} \Omega_n \subseteq U$$

4. Show that $d(x, y) < 1/2^n \Rightarrow d_n(x_n, y_n) \leq 2^n d(x, y)$.

5. Show that for all $U \in T$ and $x \in U$, there exists $\epsilon > 0$ such that $d(x, y) < \epsilon \Rightarrow y \in U$.

6. Show that $T \subseteq T_{\Omega}^d$.

7. Let $U \in T_{\Omega}^d$ and $x \in U$. Show the existence of $\epsilon > 0$ and $N \geq 1$, such that:

$$\sum_{n=1}^{N} \frac{1}{2^n} (1 \wedge d_n(x_n, y_n)) < \epsilon \Rightarrow y \in U$$

8. Show that for all $U \in T_{\Omega}^d$ and $x \in U$, there is $\epsilon > 0$ and $N \geq 1$ such that:

$$x \in B(x_1, \epsilon) \times \ldots \times B(x_N, \epsilon) \times \prod_{n=N+1}^{+\infty} \Omega_n \subseteq U$$

9. Show that $T_{\Omega}^d \subseteq T$.

10. Show that the product topological space (Ω, T) is metrizable.

Definition 57 Let (Ω, T) be a topological space. A subset \mathcal{H} of T is called a **countable base** of (Ω, T), if and only if \mathcal{H} is at most countable, and has the property:

$$\forall U \in T, \exists \mathcal{H} \subseteq \mathcal{H}, U = \bigcup_{V \in \mathcal{H}} V$$

www.probability.net
EXERCISE 16.

1. Show that $\mathcal{H} = \{ r, q : r, q \in \mathbb{Q} \}$ is a countable base of $\langle \mathbb{R}, T_{\mathbb{R}} \rangle$.

2. Show that if (Ω, T) is a topological space with countable base, and $\Omega' \subseteq \Omega$, then the induced topological space $(\Omega', T|_{\Omega'})$ also has a countable base.

3. Show that $[-1, 1]$ has a countable base.

4. Show that if (Ω, T) and (S, T_S) are homeomorphic, then (Ω, T) has a countable base if and only if (S, T_S) has a countable base.

5. Show that $\langle \mathbb{R}, T_{\mathbb{R}} \rangle$ has a countable base.

EXERCISE 17. Let $(\Omega_n, T_n)_{n \geq 1}$ be a sequence of topological spaces with countable base. For $n \geq 1$, let $\{ V_{n,k} : k \in I_n \}$ be a countable base of (Ω_n, T_n) where I_n is a finite or countable set. Let $\Omega = \prod_{n=1}^{\infty} \Omega_n$ be the Cartesian product and T be the product topology on Ω. For all $p \geq 1$, we define:

$$H^p \triangleq \left\{ V_{1,k_1} \times \ldots \times V_{p,k_p} \times \prod_{n=p+1}^{\infty} \Omega_n : (k_1, \ldots, k_p) \in I_1 \times \ldots \times I_p \right\}$$

and we put $\mathcal{H} = \cup_{p \geq 1} H^p$.

1. Show that for all $p \geq 1$, $H^p \subseteq T$.

2. Show that $\mathcal{H} \subseteq T$.

3. For all $p \geq 1$, show the existence of an injection $j_p : H^p \rightarrow N^p$.

4. Show the existence of a bijection $\phi_2 : N^2 \rightarrow N$.

5. For $p \geq 1$, show the existence of an bijection $\phi_p : N^p \rightarrow N$.

6. Show that H^p is at most countable for all $p \geq 1$.

7. Show the existence of an injection $j : \mathcal{H} \rightarrow N^2$.

8. Show that \mathcal{H} is a finite or countable set of open sets in Ω.

9. Let $U \in T$ and $x \in U$. Show that there is $p \geq 1$ and U_1, \ldots, U_p open sets in $\Omega_1, \ldots, \Omega_p$ such that:

$$x \in U_1 \times \ldots \times U_p \times \prod_{n=p+1}^{\infty} \Omega_n \subseteq U$$

10. Show the existence of some $V_x \in \mathcal{H}$ such that $x \in V_x \subseteq U$.

11. Show that \mathcal{H} is a countable base of the topological space (Ω, T).

12. Show that $\otimes_{n=1}^{\infty} B(\Omega_n) \subseteq B(\Omega)$.
13. Show that $\mathcal{H} \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n)$.

14. Show that $\mathcal{B}(\Omega) = \otimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n)$

Theorem 27 Let $(\Omega_n, T_n)_{n \geq 1}$ be a sequence of topological spaces with countable base. Then, the product space $(\Pi_{n=1}^{+\infty} \Omega_n, \otimes_{n=1}^{+\infty} T_n)$ has a countable base and:

$$\mathcal{B} \left(\prod_{n=1}^{+\infty} \Omega_n \right) = \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n)$$

Exercise 18.

1. Show that if (Ω, T) has a countable base and $n \geq 1$:

$$\mathcal{B}(\Omega^n) = \mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)$$

2. Show that $\mathcal{B}(\mathbb{R}^n) = \mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R})$.

3. Show that $\mathcal{B}(C) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.

Definition 58 We say that a metric space (E, d) is separable, if and only if there exists a finite or countable dense subset of E, i.e. a finite or countable subset A of E such that $E = \bar{A}$, where \bar{A} is the closure of A in E.

Exercise 19. Let (E, d) be a metric space.

1. Suppose that (E, d) is separable. Let $\mathcal{H} = \{B(x_n, \frac{1}{p}) : n, p \geq 1\}$, where $\{x_n : n \geq 1\}$ is a countable dense subset in E. Show that \mathcal{H} is a countable base of the metric topological space (E, T_E^d).

2. Suppose conversely that (E, T_E^d) has a countable base \mathcal{H}. For all $V \in \mathcal{H}$ such that $V \neq \emptyset$, take $x_V \in V$. Show that the set $\{x_V : V \in \mathcal{H}, V \neq \emptyset\}$ is at most countable and dense in E.

3. For all $x, y, x', y' \in E$, show that:

$$|d(x, y) - d(x', y')| \leq d(x, x') + d(y, y')$$

4. Let $T_{E \times E}$ be the product topology on $E \times E$. Show that the map $d : (E \times E, T_{E \times E}) \to (\mathbb{R}^+, T_{\mathbb{R}^+})$ is continuous.

5. Show that $d : (E \times E, \mathcal{B}(E \times E)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable.

6. Show that $d : (E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable, whenever (E, d) is a separable metric space.
7. Let (Ω, \mathcal{F}) be a measurable space and $f, g : (\Omega, \mathcal{F}) \to (E, \mathcal{B}(E))$ be measurable maps. Show that $\Phi : (\Omega, \mathcal{F}) \to E \times E$ defined by $\Phi(\omega) = (f(\omega), g(\omega))$ is measurable with respect to the product σ-algebra $\mathcal{B}(E) \otimes \mathcal{B}(E)$.

8. Show that if (E, d) is separable, then $\Psi : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined by $\Psi(\omega) = d(f(\omega), g(\omega))$ is measurable.

9. Show that if (E, d) is separable then $\{ f = g \} \in \mathcal{F}$.

10. Let $(E_n, d_n)_{n \geq 1}$ be a sequence of separable metric spaces. Show that the product space $\prod_{n=1}^{\infty} E_n$ is metrizable and separable.

EXERCISE 20. Prove the following theorem.

Theorem 28 Let $(\Omega_i, \mathcal{F}_i)_{i \in I}$ be a family of measurable spaces and (Ω, \mathcal{F}) be a measurable space. For all $i \in I$, let $f_i : \Omega \to \Omega_i$ be a map, and define $f : \Omega \to \prod_{i \in I} \Omega_i$ by $f(\omega) = (f_i(\omega))_{i \in I}$. Then, the map:

$$f : (\Omega, \mathcal{F}) \to \left(\prod_{i \in I} \Omega_i, \bigotimes_{i \in I} \mathcal{F}_i \right)$$

is measurable, if and only if each $f_i : (\Omega, \mathcal{F}) \to (\Omega_i, \mathcal{F}_i)$ is measurable.

EXERCISE 21.

1. Let $\phi, \psi : \mathbb{R}^2 \to \mathbb{R}$ with $\phi(x, y) = x + y$ and $\psi(x, y) = x \cdot y$. Show that both ϕ and ψ are continuous.

2. Show that $\phi, \psi : (\mathbb{R}^2, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are measurable.

3. Let (Ω, \mathcal{F}) be a measurable space, and $f, g : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be measurable maps. Using the previous results, show that $f + g$ and $f \cdot g$ are measurable with respect to \mathcal{F} and $\mathcal{B}(\mathbb{R})$.
Solutions to Exercises

Exercise 1.

1. If $\Omega_i = \Omega$ for all $i \in I$, then $\cup_{i \in I} \Omega_i = \Omega$. For any map $f : I \to \Omega$, the condition $f(i) \in \Omega_i$ for all $i \in I$, is automatically satisfied. Hence, Ω^I is the set of all maps $f : I \to \Omega$.

2. $\mathbb{R}^{\mathbb{R}^+}$ is the set of all maps $f : \mathbb{R}^+ \to \mathbb{R}$. The set $\mathbb{R}^\mathbb{N}$ is that of all maps $f : \mathbb{N} \to \mathbb{R}$, or in other words, the set of all sequences $(u_n)_{n \geq 0}$ with values in \mathbb{R}. As for $[0,1]^\mathbb{N}$, it is the set of all sequences $(u_n)_{n \geq 0}$ with values in $[0,1]$. Finally, $\mathbb{R}^\mathbb{R}$ etc.

3. Yes. Maps defined on \mathbb{N}^* or sequences are the same thing.

4. For any set E, E^n is the set of all maps $f : \mathbb{N}_n \to E$.

5. $E \times F \times G$ is the set of all maps $\omega : \mathbb{N}_3 \to E \cup F \cup G$ such that $\omega_1 \in E$, $\omega_2 \in F$ and $\omega_3 \in G$.

Exercise 2.

1. $\Pi_{i \in I_\lambda} \Omega_i$ is the set of all maps f defined on I_λ, with $f(i) \in \Omega_i$ for all $i \in I_\lambda$.

2. $\Pi_{\lambda \in \Lambda}(\Pi_{i \in I_\lambda} \Omega_i)$ is the set of all maps x defined on Λ, such that $x(\lambda) \in \Pi_{i \in I_\lambda} \Omega_i$, for all $\lambda \in \Lambda$.

3. Given $\omega \in \Pi_{i \in I} \Omega_i$ and $\lambda \in \Lambda$, let $\omega|_{I_\lambda}$ be the restriction of ω to $I_\lambda \subseteq I$.

Exercise 1

So $\omega = \omega'$, and Φ is an injective map. We have found a natural bijection from $\Pi_{i \in I} \Omega_i$ to $\Pi_{\lambda \in \Lambda}(\Pi_{i \in I_\lambda} \Omega_i)$.

Given a map $\omega \in \Pi_{i \in I} \Omega_i$, it is customary to regard ω as the family $(\omega_i)_{i \in I}$ where $\omega_i = \omega(i)$ for all $i \in I$. (A map defined on I is nothing but a family indexed by I). Hence, the restriction $\omega|_{I_\lambda}$ is nothing but the family $(\omega_i)_{i \in I_\lambda}$, and the map $\Phi(\omega)$ can be written as:

$$\Phi((\omega_i)_{i \in I}) = ((\omega_i)_{i \in I_\lambda})_{\lambda \in \Lambda}$$

The mapping Φ looks like a pretty natural mapping, given the partition $(I_\lambda)_{\lambda \in \Lambda}$ of the set I.
Exercise 3.

1. Let $A = A_1 \times \ldots \times A_n$ be such that $A_i \in \mathcal{E}_i$ for all $i = 1, \ldots, n$. Then A is of the form $A = \Pi_{i \in \mathbb{N}_n} A_i$ with $A_i \in \mathcal{E}_i \cup \{\Omega_i\}$, and the condition $A_i \neq \Omega_i$ for finitely many $i \in \mathbb{N}_n$, is obviously satisfied. So A is a rectangle of the family $(\mathcal{E}_i)_{i \in \mathbb{N}_n}$, that is $A \in \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_n$. Conversely, Let $A = \Pi_{i \in \mathbb{N}_n} A_i$ be a rectangle of the family $(\mathcal{E}_i)_{i \in \mathbb{N}_n}$. Then, each A_i is an element of $\mathcal{E}_i \cup \{\Omega_i\}$. Since $\Omega_i \in \mathcal{E}_i$ for all $i \in \mathbb{N}_n$, each A_i is in fact an element of \mathcal{E}_i. So A is of the form $A = A_1 \times \ldots \times A_n$, with $A_i \in \mathcal{E}_i$. We have proved that the set of rectangles of $(\mathcal{E}_i)_{i \in \mathbb{N}_n}$ is given by:

$$\mathcal{E}_1 \cap \ldots \cap \mathcal{E}_n = \{A_1 \times \ldots \times A_n : A_i \in \mathcal{E}_i, \forall i \in \mathbb{N}_n\}$$

2. Let A be a rectangle of the family $(\mathcal{E}_i)_{i \in I}$. Then $A = \Pi_{i \in I} A_i$, where $A_i \in \mathcal{E}_i \cup \{\Omega_i\}$, and $A_i \neq \Omega_i$ for finitely many $i \in I$. Let J be the set $J = \{i \in I : A_i \neq \Omega_i\}$. Then J is a finite subset of I. Moreover, for all $j \in J$, $A_j \neq \Omega_j$, yet $A_j \in \mathcal{E}_j \cup \{\Omega_j\}$. So $A_j \in \mathcal{E}_j$. Let $\omega \in A = \Pi_{i \in I} A_i$. Then ω is a map defined on I such that $\omega(i) \in A_i \subseteq \Omega_i$ for all $i \in I$. In particular, $\omega \in \Pi_{i \in I} \Omega_i$, and $\omega(j) \in A_j$ for all $j \in J$. Conversely, suppose $\omega \in \Pi_{i \in I} \Omega_i$ is such that $\omega(j) \in A_j$ for all $j \in J$. Then ω is a map defined on J such that $\omega(i) \in A_i$ for all $i \in I$, and furthermore, $\omega(j) \in A_j$ for all $j \in J$. However, for all $i \in I \setminus J$, we have $A_i = \Omega_i$. It follows that ω is a map defined on I such that $\omega(i) \in A_i$ for all $i \in I$. So $\omega \in \Pi_{i \in I} A_i = A$. We have proved that there exists a finite subset J of I, and a family $(A_j)_{j \in J}$ with $A_j \in \mathcal{E}_j$, such that $A = \{\omega \in \Pi_{i \in I} \Omega_i : \omega(j) \in A_j, \forall j \in J\}$.

Exercise 4.

1. By definition, $\mathcal{F}_1 \cap \ldots \cap \mathcal{F}_n$ is generated by the set of measurable rectangles $\mathcal{F}_1 \cap \ldots \cap \mathcal{F}_n$. Since $\Omega_i \in \mathcal{F}_i$ for all $i \in \mathbb{N}_n$, and since \mathbb{N}_n is finite, these rectangles are of the form $A_1 \times \ldots \times A_n$ where $A_i \in \mathcal{F}_i$, for all $i \in \mathbb{N}_n$.

2. $\mathcal{B}(\mathbb{R}) \cap \mathcal{B}(\mathbb{R}) \cap \mathcal{B}(\mathbb{R})$ is generated by the set of measurable rectangles $\mathcal{B}(\mathbb{R}) \cap \mathcal{B}(\mathbb{R}) \cap \mathcal{B}(\mathbb{R})$. These rectangles are of the form $A \times B \times C$, where $A, B, C \in \mathcal{B}(\mathbb{R})$.

4We view ordered pairs as maps defined on \mathbb{N}_2...
3. Since \(\mathbb{R}^+ \in \mathcal{B}(\mathbb{R}^+) \) and \(\Omega \in \mathcal{F} \), the set of measurable rectangles \(\mathcal{B}(\mathbb{R}^+) \Pi \mathcal{F} \) is the set of all \(B \times F \), where \(B \in \mathcal{B}(\mathbb{R}^+) \) and \(F \in \mathcal{F} \). Such sets generate the \(\sigma \)-algebra \(\mathcal{B}(\mathbb{R}^+) \otimes \mathcal{F} \) on \(\mathbb{R}^+ \otimes \Omega \).

Exercise 5.

1. By definition, a generator of \(\otimes_{i \in I} \sigma(\mathcal{E}_i) \) is the set of measurable rectangles of the family \(\{ \sigma(\mathcal{E}_i) \}_{i \in I} \), i.e. \(\Pi_{i \in I} \sigma(\mathcal{E}_i) \).

2. Let \(A = \Pi_{i \in I} A_i \) be a rectangle in \(\Pi_{i \in I} \mathcal{E}_i \). Then, each \(A_i \) is an element of \(\mathcal{E}_i \cup \{ \Omega_i \} \), and \(A_i \neq \Omega_i \) for finitely many \(i \in I \). In particular, \(A \) is also a rectangle in \(\Pi_{i \in I} \sigma(\mathcal{E}_i) \). Hence, we have:

\[
\prod_{i \in I} \mathcal{E}_i \subseteq \prod_{i \in I} \sigma(\mathcal{E}_i) \subseteq \sigma \left(\prod_{i \in I} \sigma(\mathcal{E}_i) \right) \triangleq \otimes_{i \in I} \sigma(\mathcal{E}_i)
\]

and consequently, \(\sigma(\Pi_{i \in I} \mathcal{E}_i) \subseteq \otimes_{i \in I} \sigma(\mathcal{E}_i) \).

3. Let \(A \neq \emptyset \) be a rectangle of the family \(\{ \sigma(\mathcal{E}_i) \}_{i \in I} \). Suppose that \(A = \Pi_{i \in I} A_i = \Pi_{i \in I} B_i \) are two representations of \(A \). Since \(A \) is non-empty, there exists \(f \in A \). The mapping \(f \) defined on \(I \) is such that \(f(i) \in A_i \cap B_i \) for all \(i \in I \). Let \(j \in I \) be given. Suppose \(x \in A_j \). Define \(g \) on \(I \), by \(g(i) = f(i) \) if \(i \neq j \), and \(g(j) = x \). Then, \(g(i) \in A_i \) for all \(i \in I \). So \(g \in \Pi_{i \in I} A_i = A = \Pi_{i \in I} B_i \), and in particular, \(x \in g(j) \in B_j \). Hence, we see that \(A_j \subseteq B_j \), and similarly \(B_j \subseteq A_j \), \(j \in I \) being arbitrary, we have proved that \(A_i = B_i \) for all \(i \in I \). The set \(J_A = \{ i \in I : A_i \neq \Omega_i \} \) is therefore well-defined, as the \(A_i \)'s are uniquely determined. Furthermore, \(A \) being a rectangle, the set \(J_A \) is finite.

4. Let \(A = \Pi_{i \in I} \sigma(\mathcal{E}_i) \). If \(A = \emptyset \), then \(A \) is an element of the \(\sigma \)-algebra \(\sigma(\Pi_{i \in I} \mathcal{E}_i) \). If \(A \neq \emptyset \) but \(J_A = \emptyset \), then \(A_i = \Omega_i \) for all \(i \in I \), and \(A = \Pi_{i \in I} A_i = \Pi_{i \in I} \Omega_i \) is also an element of the \(\sigma \)-algebra \(\sigma(\Pi_{i \in I} \mathcal{E}_i) \).

Exercise 6.

1. By assumption, \(A \neq \emptyset \). There exists a map \(f \) defined on \(I \), such that \(f(i) \in A_i \) for all \(i \in I \). Since \(A_i \subseteq \Omega_1 \), \(f \) is also an element of \(A^{\Omega_1} \). So \(A^{\Omega_1} \neq \emptyset \). By definition, \(J_A^{\Omega_1} = \{ i \in I : A_i \neq \Omega_i \} \), where each \(A_i \) is equal to \(A_i \), except \(A_i = \Omega_i \). It follows that \(J_A^{\Omega_i} = \{ i \in I \setminus \{ i_1 \} : A_i \neq \Omega_i \} \). Since by assumption, \(i_1 \in J_A \), and \(\text{card} J_A = n+1 \), \(\text{card} J_A^{\Omega_1} = n \). Finally, \(A \) being a rectangle of the family \(\{ \sigma(\mathcal{E}_i) \}_{i \in I} \), each \(A_i \) is an element of \(\sigma(\mathcal{E}_i) \cup \{ \Omega_i \} = \sigma(\mathcal{E}_i) \). It follows that \(A_i \in \sigma(\mathcal{E}_i) \) for all \(i \in I \). Since \(A_i \neq \Omega_i \) for finitely many \(i \in I \), we conclude that \(A^{\Omega_1} = \Pi_{i \in I} A_i \in \Pi_{i \in I} \sigma(\mathcal{E}_i) \).
2. Our induction hypothesis is that if A is a non-empty rectangle of the family $(\sigma(\mathcal{E}_i))_{i \in I}$ with $\text{card} I_A = n$, then $A \in \sigma(\cap_{i \in I} \mathcal{E}_i)$. Since from 1., $A^{\Omega_{\alpha_i}}$ satisfies such properties, $A^{\Omega_{\alpha_i}} \in \sigma(\cap_{i \in I} \mathcal{E}_i)$. It follows that $\Omega_{\alpha_i} \in \Gamma$.

3. Let $B \subseteq \Omega_{\alpha_i}$. Let $f \in A^{\Omega_{\alpha_i} \setminus B}$. Then, f is a map defined on I, such that $f(i) \in A_i$ for all $i \in I \setminus \{i_1\}$, and $f(i_1) \in \Omega_{\alpha_i} \setminus B$. In particular, $f \in A^{\Omega_{\alpha_i}}$ and $f \notin A^B$. So $f \in A^{\Omega_{\alpha_i}} \setminus A^B$, and $A^{\Omega_{\alpha_i} \setminus B} \subseteq A^{\Omega_{\alpha_i}} \setminus A^B$. Conversely, suppose $f \in A^{\Omega_{\alpha_i}} \setminus A^B$. Then, f is an element of $A^{\Omega_{\alpha_i}}$, $f(i) \in A_i$ for all $i \in I \setminus \{i_1\}$. Since $f \notin A^B$, $f(i_1)$ cannot be an element of B. It follows that $f(i_1) \in \Omega_{\alpha_i} \setminus B$, and $f \in A^{\Omega_{\alpha_i} \setminus B}$. We have proved that $A^{\Omega_{\alpha_i} \setminus B} = A^{\Omega_{\alpha_i}} \setminus A^B$.

4. Let $B \in \Gamma$. Then, $A^B \in \sigma(\cap_{i \in I} \mathcal{E}_i)$. All σ-algebras being closed under complementation, we have $(A^B)^c \in \sigma(\cap_{i \in I} \mathcal{E}_i)$. Moreover, from 2., $A^{\Omega_{\alpha_i}} \in \sigma(\cap_{i \in I} \mathcal{E}_i)$. It follows that:

\[A^{\Omega_{\alpha_i} \setminus B} = A^{\Omega_{\alpha_i}} \setminus A^B = A^{\Omega_{\alpha_i}} \cap (A^B)^c \in \sigma(\cap_{i \in I} \mathcal{E}_i) \]

We conclude that $\Omega_{\alpha_i} \setminus B \in \Gamma$.

5. Let $(B_n)_{n \geq 1}$ be a sequence of subsets of Ω_{α_i}. If $f \in A^{\cup_{1}^{B_n}}$, then f is a map defined on I, such that $f(i) \in A_i$ for all $i \neq i_1$, and $f(i_1) \in \cap_{n \geq 1} B_n$. There exists $n \geq 1$ such that $f(i_1) \in B_n$, which implies that $f \in A^{B_n}$. So $f \in \cap_{n \geq 1} A^{B_n}$, and we see that $A^{\cup_{1}^{B_n}} \subseteq \cap_{n \geq 1} A^{B_n}$. Conversely, suppose that $f \in \cap_{n \geq 1} A^{B_n}$. There exists $n \geq 1$, such that $f \in A^{B_n}$. In particular, $f(i) \in A_i$ for all $i \in I \setminus \{i_1\}$, and $f(i_1) \in B_n \subseteq \cap_{n \geq 1} B_n$. So $f \in A^{B_n}$. We have proved that $A^{\cup_{1}^{B_n}} = \cap_{n \geq 1} A^{B_n}$.

6. From 2., $\Omega_{\alpha_i} \in \Gamma$. From 4., Γ is closed under complementation. To show that Γ is a σ-algebra on Ω_{α_i}, it remains to show that Γ is closed under countable union. Let $(B_n)_{n \geq 1}$ be a sequence of elements of Γ. Then, for all $n \geq 1$, $A^{B_n} \in \sigma(\cap_{i \in I} \mathcal{E}_i)$. It follows that:

\[A^{\cup_{1}^{B_n}} = \cup_{n \geq 1} A^{B_n} \in \sigma(\cap_{i \in I} \mathcal{E}_i) \]

So $\cup_{n \geq 1} B_n \in \Gamma$, and Γ is indeed closed under countable union. We have proved that Γ is a σ-algebra on Ω_{α_i}.

7. Let $B \in \mathcal{E}_i$, $\bar{B}_i = \Omega_{\alpha_i}$ for all $i \neq i_1$, and $\bar{B}_1 = B$. Let $f \in A^B$. Then, f is a map defined on I, such that $f(i) \in A_i$ for all $i \in I \setminus \{i_1\}$, and $f(i_1) \in B$. In particular, $f \in A^{\Omega_{\alpha_i}}$ and $f(i) \in \bar{B}_i$ for all $i \in I$, i.e. $f \in \cap_{i \in I} \bar{B}_i$. Hence, $A^B \subseteq A^{\Omega_{\alpha_i}} \cap (\cap_{i \in I} \bar{B}_i)$. Conversely, suppose that $f \in A^{\Omega_{\alpha_i}} \cap (\cap_{i \in I} \bar{B}_i)$. Then, $f(i) \in A_i$ for all $i \in I \setminus \{i_1\}$ and $f(i) \in \bar{B}_i$ for all $i \in I$. In particular, $f(i_1) \in \bar{B}_1 = B$. It follows that $f \in A^B$. We have proved that $A^B = A^{\Omega_{\alpha_i}} \cap (\cap_{i \in I} \bar{B}_i)$.

8. Let $B \in \mathcal{E}_i$, and $\bar{B}_i = \Omega_{\alpha_i}$ for all $i \in I \setminus \{i_1\}$, and $\bar{B}_1 = B$. Then, $\cap_{i \in I} \bar{B}_i \in \cap_{i \in I} \mathcal{E}_i$, and in particular, $\cap_{i \in I} \bar{B}_i \in \sigma(\cap_{i \in I} \mathcal{E}_i)$. From 2., $\Omega_{\alpha_i} \in \Gamma$, i.e. $A^{\Omega_{\alpha_i}}$ is also an element of $\sigma(\cap_{i \in I} \mathcal{E}_i)$. It follows from 7. that:

\[A^B = A^{\Omega_{\alpha_i}} \cap (\cap_{i \in I} \bar{B}_i) \in \sigma(\cap_{i \in I} \mathcal{E}_i) \]
We conclude that \(B \in \Gamma \). This being true for all \(B \in \mathcal{E}_i \), we have \(\mathcal{E}_i \subseteq \Gamma \). However, since \(\Gamma \) is a \(\sigma \)-algebra on \(\Omega_i \), we finally see that \(\sigma(\mathcal{E}_i) \subseteq \Gamma \).

9. Let \(f \in A = \Pi_{i \in I} A_i \). Then, \(f(i) \in A_i \) for all \(i \in I \setminus \{i_1\} \), and \(f(i_1) \in A_{i_1} \). So \(f \in A^{A_{i_1}} \). Conversely, if \(f \in A^{A_{i_1}} \), then \(f \in A \). So \(A = A^{A_{i_1}} \). Since \(A \) is a rectangle of the family \((\sigma(\mathcal{E}_i))_{i \in I} \), \(A_{i_1} \in \sigma(\mathcal{E}_i) \). From 8., \(\sigma(\mathcal{E}_i) \subseteq \Gamma \). It follows that \(A_{i_1} \in \Gamma \), and consequently \(A = A^{A_{i_1}} \in \sigma(\Pi_{i \in I} \mathcal{E}_i) \). This proves our induction hypothesis for \(\text{card} J_A = n + 1 \).

10. Let \(A \in \Pi_{i \in I} \sigma(\mathcal{E}_i) \). If \(A = \emptyset \), then \(A \) is an element of \(\sigma(\Pi_{i \in I} \mathcal{E}_i) \). Let \(A \neq \emptyset \). If \(\text{card} J_A = 0 \), then \(A = \Pi_{i \in I} I_i \in \sigma(\Pi_{i \in I} \mathcal{E}_i) \). Using an induction argument on \(\text{card} J_A \), we have proved that for all \(n \geq 0 \):

\[
\text{card} J_A = n \Rightarrow A \in \sigma(\Pi_{i \in I} \mathcal{E}_i)
\]

Since \(A \) is a rectangle of the family \((\sigma(\mathcal{E}_i))_{i \in I} \), \(J_A \) is a finite set. It follows that \(A \in \sigma(\Pi_{i \in I} \mathcal{E}_i) \). Finally, we conclude that \(\Pi_{i \in I} \sigma(\mathcal{E}_i) \subseteq \sigma(\Pi_{i \in I} \mathcal{E}_i) \).

11. From 10., we have \(\otimes_{i \in I} \sigma(\mathcal{E}_i) = \sigma(\Pi_{i \in I} \sigma(\mathcal{E}_i)) \subseteq \sigma(\Pi_{i \in I} \mathcal{E}_i) \). However, from exercise (5), \(\sigma(\Pi_{i \in I} \mathcal{E}_i) \subseteq \otimes_{i \in I} \sigma(\mathcal{E}_i) \). It follows that \(\otimes_{i \in I} \sigma(\mathcal{E}_i) = \sigma(\Pi_{i \in I} \mathcal{E}_i) \). The purpose of this difficult exercise is to prove theorem (26). Congratulations!

Exercise 7.

1. Since \(R \in T_R \) and \(N_n \) is finite, from definition (52), the set of rectangles \(T_R \Pi \ldots T_R \) reduces to all sets of the form \(\Pi_{i \in N_n} A_i \), where \(A_i \in T_R \) for all \(i \in N_n \). In other words:

\[
T_R \Pi \ldots T_R = \{ A_1 \times \ldots \times A_n : A_i \in T_R, \forall i \in N_n \}
\]

2. By definition of the Borel \(\sigma \)-algebra, \(B(R) \) is generated by the topology \(T_R \), i.e. \(B(R) = \sigma(T_R) \). From theorem (26), we have:

\[
B(R) \otimes \ldots \otimes B(R) = \sigma(T_R \Pi \ldots T_R)
\]

3. Let \(C_2 = \{[a_1, b_1] \times \ldots \times [a_n, b_n] : a_i, b_i \in R \} \), and let \(S \) be the semi-ring on \(R \), \(S = \{[a, b] : a, b \in R \} \). Since \(N_n \) is finite, from definition (52), the set of rectangles \(S \Pi \ldots S \Pi S \) is made of all sets of the form \(\Pi_{i \in N_n} A_i \), where \(A_i \in S \cup \{R \} \). Hence, each element of \(C_2 \) is an element of \(S \Pi \ldots S \Pi S \), i.e. \(C_2 \subseteq S \Pi \ldots S \Pi S \). However, \(R^{\infty} \) is an element of \(S \Pi \ldots S \), but do not belong to \(C_2 \). So the inclusion \(C_2 \subseteq S \Pi \ldots S \Pi S \) is strict.

4. Let \(A \in S \Pi \ldots S \). Then \(A \) is of the form \(A = A_1 \times \ldots \times A_n \), where each \(A_i \) is an element of \(S \), or \(A_i = R \). If all \(A_i \)'s lie in \(S \), then \(A \in C_2 \subseteq \sigma(C_2) \). Let \(J'_A = \{ k \in N_n : A_k = R \} \). We have just seen that if \(J'_A = \emptyset \), or equivalently if \(\text{card} J'_A = 0 \), then \(A \in \sigma(C_2) \). Suppose we have proved the induction hypothesis, for \(k = 0, \ldots, n - 1 \):

\[
A \in S \Pi \ldots \Pi S, \; \text{card} J'_A = k \Rightarrow A \in \sigma(C_2)
\]

www.probability.net
and let \(A \in \mathcal{S} \Pi \ldots \Pi \mathcal{S} \) be such that \(\text{card} J^*_A = k + 1 \). Let \(i_1 \) be an arbitrary element of \(J^*_A \). Then, \(A_{i_1} = R = \bigcup_{p=1}^{+\infty} \] \(-p, p]\). Hence, \(A \) can be written as:

\[
A = A_1 \times \ldots \times A_n = \bigcup_{p=1}^{+\infty} A_1 \times \ldots \times \] \(-p, p]\ \times \ldots \times A_n \tag{1}
\]

where \(A_1 \times \ldots \times \] \(-p, p]\ \times \ldots \times A_n = B_p \) is a notation for \(\Pi_{i \in \mathbb{N}_n} A_i \) where \(A_i = A_i \) for all \(i \neq i_1 \), and \(A_{i_1} \] \(-p, p]\). Since for all \(p \geq 1 \), \(\] \(-p, p]\ \in \mathcal{S} \), \(B_p \) is an element of \(\mathcal{S} \Pi \ldots \Pi \mathcal{S} \), and more importantly \(\text{card} J^*_B = k \). From our induction hypothesis, it follows that \(B_p \in \sigma(\mathcal{C}_2) \). Hence, we see from equation (1) that \(A \in \sigma(\mathcal{C}_2) \), and we have proved our induction hypothesis for \(\text{card} J^*_A = k + 1 \). We conclude that for all \(A \in \mathcal{S} \Pi \ldots \Pi \mathcal{S} \), we have \(A \in \sigma(\mathcal{C}_2) \), i.e. \(\mathcal{S} \Pi \ldots \Pi \mathcal{S} \subseteq \sigma(\mathcal{C}_2) \).

5. From theorem (6)\(^4\), we know that the semi-ring \(\mathcal{S} \) generates the Borel \(\sigma \)-algebra \(\mathcal{B}(\mathbb{R}) \) on \(\mathbb{R} \), i.e. \(\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{S}) \). Applying theorem (26), we have:

\[
\mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R}) = \sigma(\mathcal{S} \Pi \ldots \Pi \mathcal{S}) \tag{2}
\]

However, from 3., \(\mathcal{C}_2 \subseteq \mathcal{S} \Pi \ldots \Pi \mathcal{S} \), hence \(\sigma(\mathcal{C}_2) \subseteq \sigma(\mathcal{S} \Pi \ldots \Pi \mathcal{S}) \). Moreover, from 4., \(\mathcal{S} \Pi \ldots \Pi \mathcal{S} \subseteq \sigma(\mathcal{C}_2) \), and consequently, we have \(\sigma(\mathcal{S} \Pi \ldots \Pi \mathcal{S}) \subseteq \sigma(\mathcal{C}_2) \). It follows that \(\sigma(\mathcal{S} \Pi \ldots \Pi \mathcal{S}) = \sigma(\mathcal{C}_2) \). Finally, from equation (2), \(\mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C}_2) \).

Exercise 7

Exercise 8

1. Let \(\Sigma = \sigma(\mathcal{E}) \) be the \(\sigma \)-algebra generated by \(\mathcal{E} = \{ A \} \). Let \(\mathcal{F} \) be the set of subsets of \(\Omega \) defined by \(\mathcal{F} = \{ \emptyset, A, A^c, \Omega \} \). Note that \(\Omega \in \mathcal{F} \), \(\mathcal{F} \) is closed under complementation and countable union, so \(\mathcal{F} \) is a \(\sigma \)-algebra on \(\Omega \). Since \(\mathcal{E} \subseteq \mathcal{F} \), we have \(\Sigma = \sigma(\mathcal{E}) \subseteq \mathcal{F} \). However, since \(\mathcal{E} \subseteq \sigma(\mathcal{E}) \), \(A \in \Sigma \). So \(A^c \in \Sigma \). Furthermore, \(\Omega \in \Sigma \) and \(\emptyset \in \Sigma \). Finally, \(\mathcal{F} \subseteq \Sigma \). We have proved that \(\mathcal{F} = \Sigma \).

2. Since \(\{ \emptyset, \Omega \} \) is a \(\sigma \)-algebra on \(\Omega' \) with \(\mathcal{E}' \subseteq \{ \emptyset, \Omega' \} \), we have \(\sigma(\mathcal{E}') \subseteq \{ \emptyset, \Omega' \} \). However, \(\sigma(\mathcal{E}') \) being a \(\sigma \)-algebra on \(\Omega' \), we have \(\Omega' \in \sigma(\mathcal{E}') \) and \(\emptyset \in \sigma(\mathcal{E}') \). Finally, \(\sigma(\mathcal{E}') = \{ \emptyset, \Omega' \} \).

3. Since \(\mathcal{E}' = \emptyset \), \(\mathcal{C} = \{ E \times F : E \in \mathcal{E}, F \in \mathcal{E}' \} = \emptyset \).

4. The rectangles in \(\mathcal{E} \Pi \mathcal{E}' \) are the sets of the form \(A_1 \times A_2 \), where \(A_1 \in \mathcal{E} \cup \{ \Omega \} \) and \(A_2 \in \mathcal{E}' \cup \{ \Omega' \} \). Since \(\mathcal{E}' = \emptyset \), the only possible value for \(A_2 \) is \(\Omega' \). Since \(\mathcal{E} = \{ A \} \), \(A_1 \) can be equal to \(A \) or \(\Omega \). It follows that \(\mathcal{E} \Pi \mathcal{E}' = \{ A \times \Omega', \Omega \times \Omega' \} \).

5. From theorem (26), \(\sigma(\mathcal{E}) \otimes \sigma(\mathcal{E}') = \sigma(\mathcal{E} \Pi \mathcal{E}') \). Let \(\mathcal{F} \) be defined by \(\mathcal{F} = \{ \emptyset, A \times \Omega', A^c \times \Omega', \Omega \times \Omega' \} \). Note that the complement of \(A \times \Omega' \) in

\(^4\)Beware of external links!
Exercise 10.

$\Omega \times \Omega'$ is $(A \times \Omega')^c = A^c \times \Omega'$. So F is closed under complementation, and in fact, F is a σ-algebra on $\Omega \times \Omega'$. However, from 4., $\mathcal{E} \cap \mathcal{E}' = A \times \Omega', \Omega \times \Omega'$. So $\mathcal{E} \cap \mathcal{E}' \subseteq F$, and consequently $\sigma(\mathcal{E} \cap \mathcal{E}') \subseteq F$. Since all elements of F have to be in $\sigma(\mathcal{E} \cap \mathcal{E}')$, we also have $F \subseteq \sigma(\mathcal{E} \cap \mathcal{E}')$. We have proved that $F = \sigma(\mathcal{E} \cap \mathcal{E}')$. We conclude that $\sigma(\mathcal{E}) \cap \sigma(\mathcal{E}') = F$.

6. Since $\mathcal{C} = \emptyset$, we have $\sigma(\mathcal{C}) = \{\emptyset, \Omega \times \Omega'\}$. It follows from 5. that $\sigma(\mathcal{C}) \neq \sigma(\mathcal{E}) \cap \sigma(\mathcal{E}')$. The purpose of this exercise is to emphasize an easy mistake to make, when applying theorem (26). This theorem states that $\sigma(\mathcal{E}) \cap \sigma(\mathcal{E}') = \sigma(\mathcal{E} \cap \mathcal{E}')$. It is very tempting to conclude that:

$$\sigma(\mathcal{E}) \cap \sigma(\mathcal{E}') = \sigma\{(E \times F : E \in \mathcal{E}, F \in \mathcal{E}')\}$$

But this is wrong! The reason being that the set of rectangles $\mathcal{E} \cap \mathcal{E}'$ is larger than the set of all $E \times F$, where $E \in \mathcal{E}$ and $F \in \mathcal{E}'$. The elements of $\mathcal{E} \cap \mathcal{E}'$ are indeed of the form $E \times F$, but with $E \in \mathcal{E} \cup \{\Omega\}$ and $F \in \mathcal{E}' \cup \{\Omega'\}$. (Do not forget the ´∪´). So $\sigma(\mathcal{E}) \cap \sigma(\mathcal{E}') = \sigma\{(E \times F : E \in \mathcal{E} \cup \{\Omega\}, F \in \mathcal{E}' \cup \{\Omega'\})\}$. You have been warned...

Exercise 9.

1. Strictly speaking, $F \otimes G$ is a σ-algebra on $\mathbb{R}^n \times \mathbb{R}^p$. However, $\mathbb{R}^n \times \mathbb{R}^p$ and \mathbb{R}^{n+p} can be identified, through the bijection $\psi : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^{n+p}$, defined by $\psi(x, y) = (x_1, \ldots, x_n, y_1, \ldots, y_p)$. Hence, $F \otimes G$ can be viewed as a σ-algebra on \mathbb{R}^{n+p}.

2. By definition, $F = \sigma(\mathcal{C}_1)$, where \mathcal{C}_1 is the set of measurable rectangles $\mathcal{C}_1 = \{A_1 \times \ldots \times A_n : A_i \in \mathcal{B}(\mathbb{R}), \forall i \in \mathbb{N}_n\}$. Similarly, if $\mathcal{C}_2 = \{A_{n+1} \times \ldots \times A_{n+p} : A_{n+i} \in \mathcal{B}(\mathbb{R}), \forall i \in \mathbb{N}_p\}$, then $G = \sigma(\mathcal{C}_2)$. From theorem (26), we have $F \otimes G = \sigma(\mathcal{C}_1 \cap \mathcal{C}_2)$. Furthermore, since $\mathbb{R}^n \in \mathcal{C}_1$ and $\mathbb{R}^p \in \mathcal{C}_2$, the set of rectangles $\mathcal{C}_1 \cap \mathcal{C}_2$ is given by $\mathcal{C}_1 \cap \mathcal{C}_2 = \{A \times A' : A \in \mathcal{C}_1, A' \in \mathcal{C}_2\}$. If we identify sets of the form $(A_1 \times \ldots \times A_n) \times (A_{n+1} \times \ldots \times A_{n+p})$ with $A_1 \times \ldots \times A_{n+p}$, then $\mathcal{C}_1 \cap \mathcal{C}_2$ can be written as:

$$\mathcal{C}_1 \cap \mathcal{C}_2 = \{A_1 \times \ldots \times A_{n+p} : A_i \in \mathcal{B}(\mathbb{R}), \forall i \in \mathbb{N}_{n+p}\}$$

We conclude that $F \otimes G$ is generated by the sets of the form $A_1 \times \ldots \times A_{n+p}$, where $A_i \in \mathcal{B}(\mathbb{R})$ for all $i \in \mathbb{N}_{n+p}$.

3. Let $C = \{A_1 \times \ldots \times A_{n+p} : A_i \in \mathcal{B}(\mathbb{R}), \forall i \in \mathbb{N}_{n+p}\}$. From 2., $F \otimes G = \sigma(C)$. However, C is the set of measurable rectangles in \mathbb{R}^{n+p}. Consequently, $\sigma(C) = \mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R})$ ($n+p$ terms). We conclude that $\mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R}) = F \otimes G$, i.e.

$$\mathcal{B}(\mathbb{R})^{n+p} \otimes \ldots \otimes \mathcal{B}(\mathbb{R}) = (\mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R})) \otimes (\mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R}))$$

Exercise 9

Exercise 10.

www.probability.net
1. In exercise (2), we defined a natural bijection $\Phi : \Omega \rightarrow \Omega'$, by:

$$
\Phi((\omega_i)_{i \in I}) \triangleq ((\omega_i)_{i \in I})_{\lambda \in \Lambda}
$$

This allows us to define $\tilde{\Phi} : \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega')$, by:

$$
\tilde{\Phi}(A) \triangleq \Phi(A) \triangleq \{ \Phi(\omega) : \omega \in A \}
$$

for all $A \subseteq \Omega$. In other words, $\tilde{\Phi}$ maps every subset A of Ω, with its direct image $\Phi(A)$ by the bijection $\Phi : \Omega \rightarrow \Omega'$. Let $A' \subseteq \Omega'$. Since Φ is a bijection, we have $A' = \Phi(\Phi^{-1}(A'))$, i.e. the direct image of A' by Φ is equal to A'. So $A' = \Phi(\Phi^{-1}(A'))$, and Φ is a surjective map. If $A, B \subseteq \Omega$ are such that $\tilde{\Phi}(A) = \tilde{\Phi}(B)$, taking the inverse images of both sides, we have $A = B$. So Φ is an injective map. We have proved that $\tilde{\Phi}$ is a bijection from $\mathcal{P}(\Omega)$ to $\mathcal{P}(\Omega')$. Informally, Φ is a bijection allowing us to identify an element of $\Pi_{i \in I} \Omega_i$ with an element of $\Pi_{\lambda \in \Lambda}(\Pi_{i \in I} \Omega_i)$. The bijection $\tilde{\Phi}$ allows us to identify a subset of $\Pi_{i \in I} \Omega_i$ with a subset of $\Pi_{\lambda \in \Lambda}(\Pi_{i \in I} \Omega_i)$.

2. Let A be a subset of Ω of the form $A = \Pi_{i \in I} A_i$. Let A' be the corresponding set $A' = \Pi_{\lambda \in \Lambda}(\Pi_{i \in I} A_i)$. Saying that A and A' are identified through the bijection Φ, is just another way of saying that $A' = \Phi(A)$. Suppose $y \in \Phi(A)$. There exists $x \in A$ such that $y = \Phi(x)$. For all $\lambda \in \Lambda$, we have $y(\lambda) = \Phi(x)(\lambda) = x|_{I_\lambda}$. Since $x \in A$, each $x|_{I_\lambda}$ is an element of $\Pi_{i \in I_\lambda} A_i$. So $y(\lambda) \in \Pi_{i \in I_\lambda} A_i$ for all $\lambda \in \Lambda$. It follows that $y \in \Pi_{\lambda \in \Lambda}(\Pi_{i \in I_\lambda} A_i) = A'$. So $\Phi(A) \subseteq A'$. Conversely, suppose $y \in A'$. y is a map defined on Λ, such that $y(\lambda) \in \Pi_{i \in I_\lambda} A_i$ for all $\lambda \in \Lambda$. Each $y(\lambda)$ is a map defined on I_λ, such that $y(\lambda)(i) \in A_i$ for all $i \in I_\lambda$. Let x be the map defined on I by $x(i) = y(\lambda)(i)$, where given $i \in I$, λ is the unique element of Λ such that $i \in I_\lambda$. Then, x is such that $x(i) \in A_i$ for all $i \in I$, so $x \in \Pi_{i \in I} A_i = A$. Moreover, by construction, for all $\lambda \in \Lambda$, $x|_{I_\lambda} = y(\lambda)$. So $y(\lambda) = \Phi(x)(\lambda)$ for all $\lambda \in \Lambda$, i.e. $y = \Phi(x)$. We have found $x \in A$, such that $y = \Phi(x)$. So $y \in \Phi(A) = \tilde{\Phi}(A)$. We have proved that $A' \subseteq \tilde{\Phi}(A)$. Finally, $A' = \Phi(A)$. We have proved that the sets $\Pi_{i \in I} A_i$ and $\Pi_{\lambda \in \Lambda}(\Pi_{i \in I} A_i)$ are indeed identified through the bijection Φ.

3. Let $\Pi_{i \in I} A_i \in \Pi_{i \in I} \mathcal{F}_i$. Then, for all $i \in I$, $A_i \in \mathcal{F}_i$, and $A_i \neq \Omega_i$ for finitely many $i \in I$. For each $\lambda \in \Lambda$, $\Pi_{i \in I_\lambda} A_i$ is therefore such that $A_i \in \mathcal{F}_i$ for all $i \in I_\lambda$, and $A_i \neq \Omega_i$ for finitely many $i \in I_\lambda$. So $\Pi_{i \in I_\lambda} A_i \in \Pi_{i \in I_\lambda} \mathcal{F}_i$. It follows that $\Pi_{i \in I} A_i$ can be written as (through identification):

$$
\Pi_{i \in I} A_i = \Pi_{\lambda \in \Lambda}(\Pi_{i \in I_\lambda} A_i) = \Pi_{\lambda \in \Lambda} B_\lambda
$$

where $B_\lambda \in \Pi_{i \in I_\lambda} \mathcal{F}_i$ for all $\lambda \in \Lambda$. Moreover, the set of all $\lambda \in \Lambda$ for which $B_\lambda \neq \Pi_{i \in I_\lambda} \Omega_i$, is necessarily finite. It follows that $\Pi_{i \in I} A_i \in \Pi_{\lambda \in \Lambda}(\Pi_{i \in I_\lambda} \mathcal{F}_i)$. So $\Pi_{i \in I} \mathcal{F}_i \subseteq \Pi_{\lambda \in \Lambda}(\Pi_{i \in I_\lambda} \mathcal{F}_i)$. Conversely, let $\Pi_{\lambda \in \Lambda} B_\lambda \in \Pi_{\lambda \in \Lambda}(\Pi_{i \in I_\lambda} \mathcal{F}_i)$. For all $\lambda \in \Lambda$, we have $B_\lambda \in \Pi_{i \in I_\lambda} \mathcal{F}_i$, and $B_\lambda \neq \Pi_{i \in I_\lambda} \Omega_i$ for finitely many $\lambda \in \Lambda$. Hence, each B_λ is of the form $\Pi_{i \in I_\lambda} A_i$, where
Exercise 11.

1. Let \(T(\mathcal{A}) \) be the set of all topologies \(T \) on \(\Omega \), which contain \(\mathcal{A} \), i.e. such that \(\mathcal{A} \subseteq T \). Note that \(T(\mathcal{A}) \) is not the empty set, as the power set \(\mathcal{P}(\Omega) \) is clearly a topology on \(\Omega \) (called the discrete topology) which satisfies \(\mathcal{A} \subseteq \mathcal{P}(\Omega) \). By definition (55), the topology \(T(\mathcal{A}) \) generated by \(\mathcal{A} \), is equal to \(\cap_{T \in T(\mathcal{A})} T \). In order to show that \(T(\mathcal{A}) \) is a topology on \(\Omega \), it is sufficient to prove that an arbitrary intersection of topologies on \(\Omega \), is also a topology on \(\Omega \). Let \(\{T_i\}_{i \in I} \) be an arbitrary family of topologies on \(\Omega \), and let \(T = \cap_{i \in I} T_i \). Since \(\emptyset \) and \(\Omega \) belong to \(T_i \) for all \(i \in I \), \(\emptyset \) and \(\Omega \) are elements of \(T \). If \(A, B \in T \), then \(A, B \in T_i \) for all \(i \in I \), and therefore \(A \cap B \in T \), \(A \cap B \in T_i \) for all \(i \in I \). It follows that \(A \cap B \in T \), and \(T \) is closed under finite intersection. If \(\{A_j\}_{j \in J} \) is an arbitrary family of elements of \(T \), then for all \(i \in I \), \(\{A_j\}_{j \in J} \) is an arbitrary family of elements of \(T_i \), and consequently \(\cup_{j \in J} A_j \in T_i \). This being true for all \(i \in I \), \(\cup_{j \in J} A_j \in T \), and \(T \) is closed under arbitrary union. We have proved that \(T \) is a topology on \(\Omega \). An arbitrary intersection of topologies on \(\Omega \), is a topology on \(\Omega \). In particular, the topology \(T(\mathcal{A}) \) is a topology on \(\Omega \).

2. Given \(T(\mathcal{A}) = \{T : T \text{ topology on } \Omega, \mathcal{A} \subseteq T \} \), the topology \(T(\mathcal{A}) \) generated by \(\mathcal{A} \) is given by \(T(\mathcal{A}) = \cap_{T \in T(\mathcal{A})} T \). Hence, we have \(\mathcal{A} \subseteq T(\mathcal{A}) \). Suppose \(T \) is another topology on \(\Omega \), such that \(\mathcal{A} \subseteq T \). Then, \(T \in T(\mathcal{A}) \). It follows that \(T(\mathcal{A}) \subseteq T \). We have proved that \(T(\mathcal{A}) \) is the smallest topology on \(\Omega \), such that \(\mathcal{A} \subseteq T(\mathcal{A}) \).

3. Let \((E, d)\) be a metric space, and \(\mathcal{A} \) be the set of all open balls:
\[
\mathcal{A} = \{B(x, \epsilon) : x \in E, \epsilon > 0\}
\]
Let \(\mathcal{T}_d \) be the metric topology on \(E \). Since any open ball in \(E \) is open with respect to the metric topology, i.e. belongs to \(\mathcal{T}_d \), we have \(\mathcal{A} \subseteq \mathcal{T}_d \) and therefore \(T(\mathcal{A}) \subseteq \mathcal{T}_d \). Conversely, let \(U \in \mathcal{T}_d \). Define \(\Gamma = \{B(x, \epsilon) : x \in E, \epsilon > 0\} \), i.e. let \(\Gamma \) be the set of all open balls in \(E \) which are contained in \(U \). Since \(U \) is open for the metric topology, from definition (30), for all \(x \in U \), there exists \(\epsilon > 0 \) such that \(B(x, \epsilon) \subseteq U \).
In particular, there exists $B \in \Gamma$ such that $x \in B$. Hence, $U \subseteq \bigcup_{B \in \Gamma} B$. Conversely, for all $x \in \bigcup_{B \in \Gamma} B$, there exists $B \in \Gamma$ such that $x \in B$. But $B \subseteq U$. So $x \in U$. Hence, we see that $U = \bigcup_{B \in \Gamma} B$. However, Γ is a subset of $A \subseteq T(A)$. It follows that $\bigcup_{B \in \Gamma} B$ is an element of $T(A)$. We have proved that $U \in T(A)$. Hence $T_E^d \subseteq T(A)$. Finally, $T_E^d = T(A)$, i.e. the metric topology on E is generated by the set of all open balls in E.

Exercise 12.

1. Let U be a subset of $\Pi_{i \in I} \Omega_i$ with the property:

$$\forall x \in U, \exists V \in \Pi_{i \in I} T_i : x \in V \subseteq U$$

(3)

Define $\Gamma = \{ V \in \Pi_{i \in I} T_i : V \subseteq U \}$. Given $x \in U$, since property (3) holds, there exists $V \in \Gamma$ such that $x \in V$. So $U \subseteq \bigcup V \in \Gamma$. Conversely, if $x \in \bigcup V \in \Gamma$, there exists $V \in \Gamma$ such that $x \in V$. But $V \subseteq U$. So $x \in U$. Hence, we see that $U = \bigcup V \in \Gamma$. Since $\Gamma \subseteq \Pi_{i \in I} T_i \subseteq \bigcirc_{i \in I} T_i$, each $V \in \Gamma$ is an element of the product topology $\bigcirc_{i \in I} T_i$. So $\bigcup V \in \Gamma$ is also an element of $\bigcirc_{i \in I} T_i$. We have proved that $U \in \bigcirc_{i \in I} T_i$, and therefore, any subset of $\Pi_{i \in I} \Omega_i$ with property (3), belongs to the product topology $\bigcirc_{i \in I} T_i$. Let T be the set of all U subset of $\Pi_{i \in I} \Omega_i$ which satisfy property (3). We claim that in fact, T is a topology on $\Pi_{i \in I} \Omega_i$. Indeed, \emptyset satisfies property (3) vacuously. So $\emptyset \in T$. The set of all rectangles $\Pi_{i \in I} T_i$ is a subset of T. In particular, $\Pi_{i \in I} \Omega_i \in T$. Suppose $A, B \in T$. Let $x \in A \cap B$. Since A satisfies property (3), there exists $V \in \Pi_{i \in I} T_i$ such that $x \in V \subseteq A$. Similarly, there exists $W \in \Pi_{i \in I} T_i$ such that $x \in W \subseteq B$. It follows that $x \in V \cap W \subseteq A \cap B$. However, V and W being rectangles of $(T_i)_{i \in I}$, they can be written as $V = \Pi_{i \in I} A_i$ and $W = \Pi_{i \in I} B_i$, where $A_i, B_i \in T_i \cup \{ \Omega_i \} = T_i$ and $A_i \neq \Omega_i$ or $B_i \neq \Omega_i$ for finitely many $i \in I$. It follows that $V \cap W = \Pi_{i \in I} (A_i \cap B_i)$, where each $A_i \cap B_i$ lie in T_i (it is a topology), and $A_i \cap B_i \neq \Omega_i$ for finitely many $i \in I$. So $V \cap W$ is a rectangle of $(T_i)_{i \in I}$, i.e. $V \cap W \in \Pi_{i \in I} T_i$, and $x \in V \cap W \subseteq A \cap B$. We have proved that $A \cap B$ satisfies property (3), i.e. $A \cap B \in T$. So T is closed under finite intersection. Finally, let $(A_j)_{j \in J}$ be a family of elements of T. Let $x \in \bigcup_{j \in J} A_j$. There exists $j \in J$ such that $x \in A_j$. Since $A_j \in T$, there exists $V \in \Pi_{i \in I} T_i$ such that $x \in V \subseteq A_j$. In particular, $x \in V \subseteq \bigcup_{j \in J} A_j$. Hence, we see that $\bigcup_{j \in J} A_j$ satisfies property (3), i.e. $\bigcup_{j \in J} A_j \in T$. So T is closed under arbitrary union. We have proved that T is a topology on $\Pi_{i \in I} \Omega_i$. Since $\Pi_{i \in I} T_i \subseteq T$, we conclude that $\bigcirc_{i \in I} T_i = \bigcirc_{i \in I} (\Pi_{i \in I} T_i) \subseteq T$. It follows that any element of the product topology satisfies property (3). We have proved that a subset U of $\Pi_{i \in I} \Omega_i$ is an element of $\bigcirc_{i \in I} T_i$, if and only if it satisfies property (3).

2. $\Pi_{i \in I} T_i \subseteq T(\Pi_{i \in I} T_i) = \bigcirc_{i \in I} T_i$.

3. From theorem (26), $\bigcirc_{i \in I} B(\Omega_i) = \bigcirc_{i \in I} \sigma(T_i) = \sigma(\Pi_{i \in I} T_i)$.
4. From 2., we have $\sigma(\Pi_{i \in I} T_i) \subseteq \sigma(\otimes_{i \in I} T_i) = \mathcal{B}(\Pi_{i \in I} \Omega_i)$. Using 3., we obtain $\otimes_{i \in I} \mathcal{B}(\Omega_i) \subseteq \mathcal{B}(\Pi_{i \in I} \Omega_i)$.

Exercise 13.

1. The scalar product (x, y) being semi-linear and commutative:

$\|x + ty\|^2 = (x + ty, x + ty)
= (x, x) + t(y, x) + t(x, y) + t^2(y, y)
= \|x\|^2 + t^2\|y\|^2 + 2t(x, y)$

2. When $y \neq 0$, the polynomial $t \rightarrow p(t) = t^2\|y\|^2 + 2t(x, y) + \|x\|^2$ has a minimum attained at $t = -(x, y)/\|y\|^2$. The value of this minimum is $-(x, y)^2/\|y\|^2 + \|x\|^2$. Since $p(t) = \|x + ty\|^2 \geq 0$ for all $t \in \mathbb{R}$, in particular, we have $-(x, y)^2/\|y\|^2 + \|x\|^2 \geq 0$, i.e. $(x, y) \leq \|x\|\|y\|$. This inequality still holds if $y = 0$.

3. We have:

$\|x + y\|^2 = \|x\|^2 + 2(x, y) + \|y\|^2
\leq \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2$

Exercise 14.

1. Each metric d_i has values in \mathbb{R}^+. So $d(x, y) < +\infty$ for all x, y, i.e. d also has values in \mathbb{R}^+. It is clear that $d(x, y) = d(y, x)$ for all $x, y \in \Omega$. Suppose that $d(x, y) = 0$. Then, for all $i \in \mathbb{N}_n$, we have $d_i(x_i, y_i) = 0$ and consequently $x_i = y_i$. So $x = y$. Conversely, it is clear that $d(x, x) = 0$. Let $x, y, z \in \Omega$. For all $i \in \mathbb{N}_n$, we have:

$d_i(x_i, y_i) \leq d_i(x_i, z_i) + d_i(z_i, y_i)$

and therefore:

$d(x, y) \leq \sqrt{\sum_{i=1}^{n} (d_i(x_i, z_i) + d_i(z_i, y_i))^2}$

Using exercise (13), we conclude that:

$d(x, y) \leq \sqrt{\sum_{i=1}^{n} (d_i(x_i, z_i))^2 + \sum_{i=1}^{n} (d_i(z_i, y_i))^2}$

i.e. $d(x, y) \leq d(x, z) + d(z, y)$. It follows from definition (28) that d is indeed a metric on Ω.

*Beware of external links!
2. The set of rectangles $\Pi_{i \in N_n} T_i$ is given by:

$$\Pi_{i \in N_n} T_i = \{ U_1 \times \ldots \times U_n : U_i \in T_i, \forall i \in N_n \}$$

It follows from exercise (12) that $U \subseteq \Omega$ is open in Ω, i.e. belongs to the product topology T, if and only if for all $x \in U$, there exist U_1, \ldots, U_n open in $\Omega_1, \ldots, \Omega_n$ respectively, such that:

$$x \in U_1 \times \ldots \times U_n \subseteq U$$

3. Let $U \in T$. From 2., for all $x \in U$, there exist U_1, \ldots, U_n open in $\Omega_1, \ldots, \Omega_n$ respectively, such that $x \in U_1 \times \ldots \times U_n \subseteq U$. By assumption, each topology T_i is induced by the metric d_i, i.e. $T_i = T_{\Omega^i}$. For all $i \in N_n$, $x_i \in U_i$. Hence, there exists $\epsilon_i > 0$, such that $B(x_i, \epsilon_i) \subseteq U_i$, where $B(x_i, \epsilon_i)$ denotes the open ball in Ω_i. Let $\epsilon = \min(\epsilon_1, \ldots, \epsilon_n)$. Suppose $y \in \Omega$ is such that $d_i(x_i, y_i) < \epsilon$, for all $i \in N_n$. Then, $y_i \in B(x_i, \epsilon_i) \subseteq U_i$ for all $i \in N_n$, and consequently $y \in U_1 \times \ldots \times U_n \subseteq U$. We have found $\epsilon > 0$ such that:

$$(\forall i \in N_n, d_i(x_i, y_i) < \epsilon) \Rightarrow y \in U$$

4. Let $U \in T$, and $x \in U$. Let $\epsilon > 0$ be as in 3. Let $y \in B(x, \epsilon)$, where $B(x, \epsilon)$ denotes the open ball in $\Omega = \Omega_1 \times \ldots \times \Omega_n$, with respect to the metric d. Then, $d(x, y) < \epsilon$. Since for all $i \in N_n$, $d_i(x_i, y_i) \leq d(x, y)$, we have $d_i(x_i, y_i) < \epsilon$ for all $i \in N_n$. From 3., we see that $y \in U$. So $B(x, \epsilon) \subseteq U$. For all $x \in U$, we have found $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$. It follows that U belongs to the metric topology T_{Ω^d}. We have proved that $T \subseteq T_{\Omega^d}$.

5. Let $U \in T_{\Omega^d}$ and $x \in U$. From definition (30) of the metric topology, there exists $\epsilon' > 0$ such that $B(x, \epsilon') \subseteq U$. Define $\epsilon = \epsilon'/\sqrt{n}$, and let $y \in B(x_1, \epsilon) \times \ldots \times B(x_n, \epsilon)$. Then, for all $i \in N_n$, $d_i(x_i, y_i) < \epsilon$. Hence, $d(x, y) < \sqrt{n}\epsilon^2 = \sqrt{n}\epsilon = \epsilon'$. So $y \in U$. We have found $\epsilon > 0$ such that:

$$x \in B(x_1, \epsilon) \times \ldots \times B(x_n, \epsilon) \subseteq U$$

6. Let $U \in T_{\Omega^d}$ and $x \in U$. Let $\epsilon > 0$ be as in 5. Then, we have $x \in B(x_1, \epsilon) \times \ldots \times B(x_n, \epsilon) \subseteq U$. Each $B(x_i, \epsilon)$ being open in Ω_i, we have found U_1, \ldots, U_n open in $\Omega_1, \ldots, \Omega_n$ respectively, such that $x \in U_1 \times \ldots \times U_n \subseteq U$. From 2., we conclude that $U \in T$. So $T_{\Omega^d} \subseteq T$.

7. From 4. and 6., we have $T = T_{\Omega^d}$. In other words, the product topology $T = T_1 \circ \ldots \circ T_n$ is equal to the metric topology T_{Ω^d} on Ω, induced by the metric d. In particular, the topological space (Ω, T) is metrizable.

8. Both d' and d'' have values in \mathbb{R}^+. For all $x, y \in \Omega$, we have $d'(x, y) = d'(y, x)$ and $d''(x, y) = d''(y, x)$. Moreover, it is clear that $d'(x, y) = 0$ is equivalent to each $d_i(x_i, y_i)$ being equal to 0, hence equivalent to $x_i = y_i$.

6 Beware of external links!
for all i’s, i.e. equivalent to \(x = y \). Similarly, \(d''(x, y) = 0 \) is equivalent to \(x = y \). Given \(x, y, z \in \Omega \), for all \(i \in \mathbb{N}_n \), we have:

\[d_i(x_i, y_i) \leq d_i(x_i, z_i) + d_i(z_i, y_i) \]

It follows immediately that \(d'(x, y) \leq d'(x, z) + d'(z, y) \), and furthermore, for all \(i = 1, \ldots, n \):

\[d_i(x_i, y_i) \leq d''(x, z) + d''(z, y) \]

From which we conclude that \(d''(x, y) \leq d''(x, z) + d''(z, y) \). We have proved that \(d' \) and \(d'' \) are metrics on \(\Omega \).

9. Let \(x, y \in \Omega \). For all \(i \in \mathbb{N}_n \), define \(a_i = d_i(x_i, y_i) \). Let \(a, b \in \mathbb{R}^n \) be given \(a = (a_1, \ldots, a_n) \) and \(b = (1, \ldots, 1) \). From exercise (13), we have \(|(a, b)| \leq ||a|| ||b|| \), and consequently:

\[d'(x, y) \leq \sqrt{n}d(x, y) \]

From \((\sum_{i=1}^n a_i)^2 \geq \sum_{i=1}^n a_i^2 \), we obtain:

\[d(x, y) \leq d'(x, y) \]

Hence, \(\alpha' d' \leq d \leq \beta' d' \), where \(\alpha' = 1/\sqrt{n} \) and \(\beta' = 1 \). From \(\sum_{i=1}^n a_i^2 \leq n(\max_i a_i)^2 \), we obtain:

\[d(x, y) \leq \sqrt{n}d''(x, y) \]

From \((\max_i a_i)^2 \leq \sum_{i=1}^n a_i^2 \) we obtain:

\[d''(x, y) \leq d(x, y) \]

Hence, \(\alpha'' d'' \leq d \leq \beta'' d'' \), where \(\alpha'' = 1 \) and \(\beta'' = \sqrt{n} \).

10. From 9., there exist \(\beta' > 0 \) such that \(d \leq \beta' d' \). Let \(U \in T_\Omega^d \), and \(x \in U \). There exists \(\epsilon > 0 \) such that \(B_d(x, \epsilon) \subseteq U \), where \(B_d(x, \epsilon) \) denotes the open ball in \(\Omega \), relative to the metric \(d \). Suppose \(y \in \Omega \) is such that \(d'(x, y) < \epsilon/\beta' \). Then, we have \(d(x, y) \leq \beta' d'(x, y) < \epsilon \), and it follows that \(y \in U \). So \(B_d(x, \epsilon/\beta') \subseteq U \). For all \(x \in U \), we have found \(\epsilon' = \epsilon/\beta' > 0 \) such that \(B_{d'}(x, \epsilon') \subseteq U \). It follows that \(U \in T_{d'} \). We have proved that \(T_\Omega^d \subseteq T_{d'}^d \). Using 9., from \(d' \leq (1/\alpha')d \), we conclude similarly that \(T_{d'}^d \subseteq T_{d'}^d \). Hence, \(T_{d'}^d = T_{d'}^d \). Similarly, from \(\alpha'' d'' \leq d \leq \beta'' d'' \), we have \(T_{d''}^d = T_{d''}^d \). We have proved that \(T_{d''}^d = T_{d''}^d = T_{d''}^d \). Since \(T_{d''}^d = T \) is the product topology on \(\Omega \), we conclude that \(d' \) and \(d'' \) also induce the product topology \(T = T_1 \circ \ldots \circ T_n \) on \(\Omega \).

Exercise 14

Exercise 15.

1. For all \(a \in \mathbb{R}^+ \), \(1 \land a = \min(1, a) \). Let \(a, b \in \mathbb{R}^+ \). Suppose \(a + b \leq 1 \). Then, both \(a \leq 1 \) and \(b \leq 1 \), and we have:

\[1 \land (a + b) = a + b = 1 \land a + 1 \land b \]
Suppose $a + b \geq 1$. If both $a \leq 1$ and $b \leq 1$, we have:

$$1 \land (a + b) = 1 \leq a + b = 1 \land a + 1 \land b$$

if $a \geq 1$, we have:

$$1 \land (a + b) = 1 = 1 \land a \leq 1 \land a + 1 \land b$$

In any case, we see that:

$$1 \land (a + b) \leq 1 \land a + 1 \land b$$

2. For all $x, y \in \Omega$, we have:

$$d(x, y) = \sum_{n=1}^{+\infty} \frac{1}{2^n} (1 \land d_n(x_n, y_n)) \leq \sum_{n=1}^{+\infty} \frac{1}{2^n} < +\infty$$

So d has values in \mathbb{R}^+. It is clear that $d(x, y) = d(y, x)$. Moreover, $d(x, y) = 0$ is equivalent to $d_n(x_n, y_n) = 0$ for all $n \geq 1$, which in turn equivalent to $x = y$. For all $x, y, z \in \Omega$, and $n \geq 1$, we have:

$$d_n(x_n, y_n) = d_n(x_n, z_n) + d_n(z_n, y_n)$$

and consequently, using 1:

$$1 \land d_n(x_n, y_n) \leq 1 \land d_n(x_n, z_n) + 1 \land d_n(z_n, y_n)$$

It follows that $d(x, y) \leq d(x, z) + d(z, y)$. We have proved that d is a metric on Ω.

3. Let $V = \Pi_{n=1}^{+\infty} U_n$ be a rectangle of the family $(T_n)_{n \geq 1}$. The set $\{ n \geq 1 : U_n \neq \Omega_n \}$ being finite, it is either empty or has a maximal element $N \geq 1$. it follows that V can be written as:

$$V = U_1 \times \ldots \times U_N \times \prod_{n=N+1}^{+\infty} \Omega_n$$

where U_1, \ldots, U_N are open in $\Omega_1, \ldots, \Omega_N$ respectively. If the set $\{ n \geq 1 : U_n \neq \Omega_n \}$ is empty, then V is also of the form (4), for any $N \geq 1$. Conversely, any set V of the form (4) is a rectangle in $\Pi_{n=1}^{+\infty} T_n$. From exercise (12), $U \in T = \bigcap_{n=1}^{+\infty} T_n$, if and only if, for all $x \in U$, there exists $V \in \Pi_{n=1}^{+\infty} T_n$ such that $x \in V \subseteq U$. It follows that $U \subseteq \Omega$ is open in Ω, i.e. belongs to the product topology T, if and only if for all $x \in U$, there exists $N \geq 1$ and open sets U_1, \ldots, U_N in $\Omega_1, \ldots, \Omega_N$ respectively, such that:

$$x \in U_1 \times \ldots \times U_N \times \prod_{n=N+1}^{+\infty} \Omega_n \subseteq U$$

4. Suppose that $d(x, y) < 1/2^n$, for some $n \geq 1$. Then, $d_n(x_n, y_n)$ has to be less than 1. Specifically:

$$d(x, y) \geq \frac{1}{2^n} (1 \land d_n(x_n, y_n)) = \frac{1}{2^n} d_n(x_n, y_n)$$

www.probability.net
So $d(x, y) < 1/2^n \Rightarrow d_n(x_n, y_n) \leq 2^n d(x, y)$

5. Let $U \in T$ and $x \in U$. From 3., there exist $N \geq 1$ and U_1, \ldots, U_N open in $\Omega_1, \ldots, \Omega_N$ respectively, such that:

$$x \in U_1 \times \ldots \times U_N \times \prod_{n=N+1}^{+\infty} \Omega_n \subseteq U$$

Let $i \in \{1, \ldots, N\}$. Then $x_i \in U_i \in T_i$. The topology T_i being the metric topology T_{Ω_i}, there exists $\epsilon_i > 0$ such that we have $B(x_i, \epsilon_i) \subseteq U_i$. Let $\epsilon = \min(1/2^N, \epsilon_1/2, \ldots, \epsilon_N/2^N)$ and $y \in \Omega$ be such that $d(x, y) < \epsilon$. In particular, we have $d(x, y) < 1/2^i$, for all $i = 1, \ldots, N$. Hence, from 4., we see that $d_i(x_i, y_i) \leq 2^i d(x, y) \leq 2^i \epsilon \leq \epsilon_i$. It follows that $y_i \in U_i$ for all $i = 1, \ldots, N$ and consequently $y \in U_1 \times \ldots \times U_N \times \prod_{n=N+1}^{+\infty} \Omega_n \subseteq U$. We have found $\epsilon > 0$ such that $d(x, y) < \epsilon \Rightarrow y \in U$.

6. From 5. for all $U \in T$ and $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$. It follows that $U \in T^d_T$. So $T \subseteq T^d_T$.

7. Let $U \in T^d_T$ and $x \in U$. By definition (30) of the metric topology, there exists $\epsilon' > 0$ such that $B(x, \epsilon') \subseteq U$. In other words, there exists $\epsilon' > 0$ such that for all $y \in \Omega$:

$$d(x, y) < \epsilon' \Rightarrow y \in U$$

Let $\epsilon = \epsilon' / 2$ and $N \geq 1$ be such that:

$$\sum_{n=N+1}^{+\infty} \frac{1}{2^n} \leq \epsilon$$

Suppose $y \in \Omega$ is such that:

$$\sum_{n=1}^{N} \frac{1}{2^n} (1 \wedge d_n(x_n, y_n)) < \epsilon$$

Then, we have:

$$d(x, y) < \epsilon + \sum_{n=N+1}^{+\infty} \frac{1}{2^n} (1 \wedge d_n(x_n, y_n)) \leq 2 \epsilon = \epsilon'$$

It follows that $y \in U$. We have found $\epsilon > 0$ and $N \geq 1$ such that:

$$\sum_{n=1}^{N} \frac{1}{2^n} (1 \wedge d_n(x_n, y_n)) < \epsilon \Rightarrow y \in U$$

8. Let $U \in T^d_{\Omega}$ and $x \in U$. Let $\epsilon > 0$ an $N \geq 1$ be as in 7. Let $y \in \Omega$ be such that:

$$y \in B(x_1, \epsilon) \times \ldots \times B(x_N, \epsilon) \times \prod_{n=N+1}^{+\infty} \Omega_n$$
For all \(n \in \{1, \ldots, N\} \), \(d_n(x_n, y_n) < \epsilon \). Hence:
\[
\sum_{n=1}^{N} \frac{1}{2^n} (1 \wedge d_n(x_n, y_n)) \leq \epsilon \sum_{n=1}^{N} \frac{1}{2^n} < \epsilon
\]
From 7., we conclude that \(y \in U \). We have found \(\epsilon > 0 \) and \(N \geq 1 \) such that:
\[
x \in B(x, \epsilon) \times \ldots \times B(x_N, \epsilon) \times \Pi_{n=N+1}^{+\infty} \Omega_n \subseteq U
\]

9. Let \(U \in T_{\Omega}^d \) and \(x \in U \). Let \(N \geq 1 \) and \(\epsilon > 0 \) be as in 8. Each open ball \(B(x_n, \epsilon) \) for \(n = 1, \ldots, N \) being open in \(\Omega_n \), we have found \(U_1, \ldots, U_N \) open in \(\Omega_1, \ldots, \Omega_N \) respectively, such that:
\[
x \in U_1 \times \ldots \times U_N \times \prod_{n=N+1}^{+\infty} \Omega_n \subseteq U
\]
From 3., it follows that \(U \in T = \cap_{n=1}^{+\infty} T_n \). We have proved that \(T_{\Omega}^d \subseteq T \).

10. From 6. and 9., \(T_{\Omega}^d = T \). In other words, the product topology \(T = \cap_{n=1}^{+\infty} T_n \) is induced by the metric \(d \) on \(\Omega \). In particular, the topological space \((\Omega, T)\) is metrizable. The purpose of this exercise, is to show that a countable product of metrizable topological spaces, is itself a metrizable topological space.

Exercise 16.

1. \(\mathcal{H} = \{[r, q] : r, q \in \mathbb{Q}\} \) is a countable subset of \(T_{\mathbb{R}} \). Let \(U \in T_{\mathbb{R}} \). Define \(\mathcal{H}' = \{V \in \mathcal{H} : V \subseteq U\} \). For all \(x \in U \), there exists \(\epsilon > 0 \) such that \(|x - \epsilon, x + \epsilon| \subseteq U \). In fact, the set of rational numbers \(\mathbb{Q} \) being dense in \(\mathbb{R} \), there exist \(r, q \in \mathbb{Q} \) such that \(x \in [r, q] \subseteq U \). In other words, there exists \(V \in \mathcal{H}' \) such that \(x \in V \). Hence, we see that \(U \subseteq \cup_{V \in \mathcal{H}'} V \). The reverse inclusion being clearly satisfied, we have \(U = \cup_{V \in \mathcal{H}'} V \), i.e. \(U \) can be expressed as a union of elements of \(\mathcal{H} \). This being true for all open sets \(U \in T_{\mathbb{R}} \), we have proved that \(\mathcal{H} \) is a countable base of \((\mathbb{R}, T_{\mathbb{R}})\).

2. Let \(\mathcal{H} \) be a countable base of \((\Omega, T)\). Let \(\mathcal{H}_{\Omega'} \) be the trace of \(\mathcal{H} \) on \(\Omega' \), i.e. \(\mathcal{H}_{\Omega'} = \{\Omega' \cap V : V \in \mathcal{H}\} \). Since \(\mathcal{H} \) is a countable or finite subset of the topology \(T \), \(\mathcal{H}_{\Omega'} \) is a countable or finite subset of the induced topology \(T_{\Omega'} \). Let \(U' \in T_{\Omega'} \) be an open subset in \(\Omega' \). Then \(U' \) is of the form \(U' = \Omega' \cap U \) where \(U \in T \). \(\mathcal{H} \) being a countable base of \((\Omega, T)\), there exists a family \((V_i)_{i \in I} \) of elements of \(\mathcal{H} \) such that \(U = \cup_{i \in I} V_i \). It follows that \((\Omega' \cap V_i)_{i \in I} \) is a family of elements of \(\mathcal{H}_{\Omega'} \) such that \(U' = \cup_{i \in I} (\Omega' \cap V_i) \). We conclude that \(\mathcal{H}_{\Omega'} \) is a countable base of the induced topological space \((\Omega', T_{\Omega'})\).

3. From 1., \(\mathbb{R} \) has a countable base. It follows from 2. that the induced topological space \([-1, 1]\) also has a countable base.
Exercise 17.

4. Let \(h : (Ω, T) \to (S, T_S) \) be a homeomorphism, i.e. a continuous bijection such that \(h^{-1} \) is also continuous. Suppose \((Ω, T)\) has a countable base \(H \). Define \(h(H) = \{ h(V) : V \in H \} \). Since \(H \) is a countable or finite subset of \(T \), \(h^{-1} \) being continuous, \(h(H) \) is a countable or finite subset of \(T_S \). (Note that each direct image \(h(V) \) of \(V \) by \(h \) can be viewed the inverse image \((h^{-1})^{-1}(V)\) of \(V \) by \(h^{-1} \).) Let \(U' \in T_S \) have being continuous, \(h^{-1}(U') \in T \). \(H \) being a countable base of \((Ω, T)\), there exists a family \((V_i)_{i \in I} \) of elements of \(H \), such that \(h^{-1}(U') = \bigcup_{i \in I} V_i \). However, \(h(h^{-1}(U')) = U' \), and moreover:

\[
h(\bigcup_{i \in I} V_i) = (h^{-1})^{-1}(\bigcup_{i \in I} V_i) = \bigcup_{i \in I} (h^{-1})^{-1}(V_i)
\]

So \(U' = \bigcup_{i \in I} h(V_i) \). We conclude that \(U' \) can be expressed as a union of elements of \(h(H) \). So \(h(H) \) is a countable base of \((S, T_S)\). We have proved that if \((Ω, T)\) has a countable base, then \((S, T_S)\) also has a countable base. Using the same argument, switching the roles of \(h \) and \(h^{-1} \), we see that conversely, if \((S, T_S)\) has a countable base, then so does \((Ω, T)\). We have proved that given two homeomorphic topological spaces, one has a countable base, if and only if the other also has a countable base.

5. The topological spaces \((\mathbb{R}, T_{\mathbb{R}})\) and \([-1, 1], T_{[-1,1]}\) being homeomorphic, we conclude from 3. and 4. that \((\mathbb{R}, T_{\mathbb{R}})\) has a countable base.

Exercise 16

1. Let \(p \geq 1 \) and \(A \in H^p \) of the form:

\[
A = V_1^{k_1} \times \ldots \times V_p^{k_p} \times \prod_{n=p+1}^{+\infty} \Omega_n
\]

For all \(n \geq 1 \), the set \(\{ V_n^k : k \in I_n \} \) being a countable base of \(T_n \), it is a subset of \(T_n \). Hence, for all \(i \in \{1, \ldots, p\} \), we have \(V_i^{k_i} \in T_i \). It follows that \(A \) is a rectangle of the family \((T_n)_{n \geq 1} \), i.e. \(A \in \prod_{n=1}^{+\infty} T_n \). From definition (56), the product topology \(T \) on \(\prod_{n=1}^{+\infty} \Omega_n \) being generated by \(\prod_{n=1}^{+\infty} T_n \), we have \(\prod_{n=1}^{+\infty} T_n \subseteq T \). In particular, \(A \in T \). We have proved that \(H^p \subseteq T \).

2. Using 1., \(H = \bigcup_{n \geq 1} H^p \subseteq T \).

3. By assumption, for all \(n \geq 1 \), the index set \(I_n \) is finite or countable. There exists an injective map \(i_n : I_n \to \mathbb{N} \). Given \(p \geq 1 \), consider the map \(j_p : H^p \to \mathbb{N}^p \), defined in the following way: for \(A = V_1^{k_1} \times \ldots \times V_p^{k_p} \times \prod_{n=p+1}^{+\infty} \Omega_n \in H^p \), we put:

\[
j_p(A) = (i_1(k_1), \ldots, i_p(k_p))
\]

Suppose \(B = V_1^{k'_1} \times \ldots \times V_p^{k'_p} \times \prod_{n=p+1}^{+\infty} \Omega_n \) is another element of \(H^p \) such that \(j_p(A) = j_p(B) \). Then:

\[
(i_1(k_1), \ldots, i_p(k_p)) = (i_1(k'_1), \ldots, i_p(k'_p))
\]
Hence, for all $m \in \mathbb{N}_p$, $i_m(k_m) = i_m(k'_m)$, and i_m being injective, we have $k_m = k'_m$. So $A = B$. We have proved the existence of an injective map $j_p : \mathcal{H}_p \to \mathbb{N}_p$.

4. The existence of a bijection $\phi_2 : \mathbb{N}^2 \to \mathbb{N}$ is a standard result, which we may have used in these tutorials before. Now is a good opportunity to give a formal proof of it. Informally, ϕ_2 is defined as $\phi_2(0, 0) = 0$, $\phi_2(1, 0) = 1$, $\phi_2(0, 1) = 2$, $\phi_2(2, 0) = 3$, $\phi_2(1, 1) = 4$, $\phi_2(0, 2) = 5$, etc. As you can see, going through each diagonal one after the other, we are able to count the elements of \mathbb{N}^2, thus defining the bijection ϕ_2. Formally, we define the map $\phi_2 : \mathbb{N}^2 \to \mathbb{N}$ as follows:

$$\forall (n, p) \in \mathbb{N}^2, \phi_2(n, p) = p + [0 + 1 + \ldots + (n + p)]$$

or equivalently, $\phi_2(n, p) = p + h(n + p)$ where:

$$h(m) = 0 + 1 + \ldots + m$$

Let $N \in \mathbb{N}$. Since $h(m) \uparrow +\infty$, the set $\{m \in \mathbb{N} : h(m) \leq N\}$ is finite and it is also non-empty. Hence, it has a maximal element m, and we have $h(m) \leq N < h(m + 1)$. Let $p = N - h(m)$. Then $p \in \mathbb{N}$, and we have $0 \leq p < h(m + 1) - h(m) = m + 1$. So $p \leq m$. If we define $n = m - p$, then n is also an element of \mathbb{N}. So (n, p) is an element of \mathbb{N}^2, such that $m = n + p$, and $N = p + h(m)$. It follows that:

$$\phi_2(n, p) = p + h(n + p) = p + h(m) = N$$

We have proved that ϕ_2 is a surjective map. Suppose (n, p) and (n', p') are elements of \mathbb{N}^2, with $\phi_2(n, p) = \phi_2(n', p')$. Since $\phi_2(n, p) = p + h(n + p)$, in particular $h(n + p) \leq \phi_2(n, p)$. However, $h(n + p + 1) = p + h(n + p) + n + 1 < \phi_2(n, p)$. It follows that for all $(n, p) \in \mathbb{N}^2$, we have:

$$h(n + p) \leq \phi_2(n, p) < h(n + p + 1) \quad (5)$$

Since given $N \in \mathbb{N}$, any $m \in \mathbb{N}$ such that $h(m) \leq N < h(m + 1)$ is unique, it follows from $\phi_2(n, p) = \phi_2(n', p')$ and equation (5) that $n + p = n' + p'$. Hence:

$$p = \phi_2(n, p) - h(n + p) = \phi_2(n', p') - h(n' + p') = p'$$

and finally $n = (n + p) - p = (n' + p') - p' = n'$. We have proved that ϕ_2 is an injective map. We conclude that $\phi_2 : \mathbb{N}^2 \to \mathbb{N}$ is a bijection.

5. Let $p \geq 1$. The existence of a bijection $\phi_p : \mathbb{N}^p \to \mathbb{N}$ is true for $p = 1$ and $p = 2$. Suppose the existence of ϕ_p has been proved, and let $\phi_2 : \mathbb{N}^2 \to \mathbb{N}$ be as in 4. Let $\phi_{p+1} : \mathbb{N}^{p+1} \to \mathbb{N}$ be defined by:

$$\phi_{p+1}(n_1, \ldots, n_{p+1}) = \phi_2[\phi_p(n_1, \ldots, n_p), n_{p+1}]$$

for all $(n_1, \ldots, n_{p+1}) \in \mathbb{N}^{p+1}$. Let $N \in \mathbb{N}$. ϕ_2 being a surjection, there exists $(n, n_{p+1}) \in \mathbb{N}^2$ with $\phi_2(n, n_{p+1}) = N$. From our induction hypothesis, $\phi_p : \mathbb{N}^p \to \mathbb{N}$ is also a surjective map. There exists $(n_1, \ldots, n_p) \in \mathbb{N}^p$, www.probability.net
such that \(\phi_p(n_1, \ldots, n_p) = n \). It follows that \((n_1, \ldots, n_{p+1})\) is an element of \(\mathbb{N}^{p+1} \) such that \(\phi_{p+1}(n_1, \ldots, n_{p+1}) = N \). So \(\phi_{p+1} \) is itself a surjective map. Suppose \((n_1, \ldots, n_{p+1})\) and \((n'_1, \ldots, n'_{p+1})\) are elements of \(\mathbb{N}^{p+1} \) such that:
\[
\phi_{p+1}(n_1, \ldots, n_{p+1}) = \phi_{p+1}(n'_1, \ldots, n'_{p+1})
\]
Then, \(\phi_2 \) being injective, \(n_{p+1} = n'_{p+1} \), and:
\[
\phi_p(n_1, \ldots, n_p) = \phi_p(n'_1, \ldots, n'_p)
\]
\(\phi_p \) being itself injective, \((n_1, \ldots, n_p) = (n'_1, \ldots, n'_p)\), and we conclude that \((n_1, \ldots, n_{p+1}) = (n'_1, \ldots, n'_{p+1})\). So \(\phi_{p+1} \) is an injective map, and finally a bijection. This induction argument proves the existence of a bijection \(\phi_p : \mathbb{N}^p \to \mathbb{N} \), for all \(p \geq 1 \).

6. Let \(p \geq 1 \). From 3., there exists an injective map \(j_p : \mathcal{H}^p \to \mathbb{N}^p \). From 5., there exists a bijection \(\phi_p : \mathbb{N}^p \to \mathbb{N} \). It follows that \(\phi_p \circ j_p : \mathcal{H}^p \to \mathbb{N} \) is an injective map. This proves that \(\mathcal{H}^p \) is finite or countable, i.e. \(\mathcal{H}^p \) is at most countable.

7. From 6., for all \(p \geq 1 \), there exists an injection \(\psi_p : \mathcal{H}^p \to \mathbb{N} \). Let \(j : \mathcal{H} \to \mathbb{N}^2 \) be defined by \(j(A) = (p, \psi_p(A)) \), where \(p \geq 1 \) is chosen such that \(A \in \mathcal{H}^p \), (there is at least one such \(p \) for any \(A \in \mathcal{H} \)). Suppose \(j(A) = j(B) \) for some \(A, B \in \mathcal{H} \). Then, there exists \(p \geq 1 \) such that \(A, B \in \mathcal{H}^p \) and \(\psi_p(A) = \psi_p(B) \), and consequently \(A = B \). So \(j \) is an injection. We have proved the existence of an injective map \(j : \mathcal{H} \to \mathbb{N}^2 \).

8. Let \(\phi_2 : \mathbb{N}^2 \to \mathbb{N} \) be a bijection. From 7., there exists an injection \(j : \mathcal{H} \to \mathbb{N}^2 \). It follows that \(\phi_2 \circ j : \mathcal{H} \to \mathbb{N} \) is an injection. This proves that \(\mathcal{H} \) is finite or countable, i.e. it is at most countable. From 2., \(\mathcal{H} \subseteq \mathcal{T} \). Hence, all elements of \(\mathcal{H} \) are open sets in \(\Omega \), (with respect to the product topology). We conclude that \(\mathcal{H} \) is a finite or countable set of open sets in \(\Omega \).

9. From exercise (12), \(U \in \mathcal{T} = \mathcal{C}_{n=1}^{+\infty} \mathcal{T}_n \), if and only if for all \(x \in U \), there exists \(V \in \Pi_{n=1}^{+\infty} \mathcal{T}_n \) such that \(x \in V \subseteq U \). Since all elements of \(\Pi_{n=1}^{+\infty} \mathcal{T}_n \) can be written as \(U_1 \times \ldots \times U_p \times \Pi_{n=p+1}^{+\infty} \Omega_n \) for some \(p \geq 1 \) and \(U_1, \ldots, U_p \) open in \(\mathcal{T}_1, \ldots, \mathcal{T}_p \) respectively, it follows in particular that if \(U \in \mathcal{T} \) and \(x \in U \), there exist \(p \geq 1 \) and \(U_1, \ldots, U_p \) open in \(\Omega_1, \ldots, \Omega_p \) such that:
\[
x \in U_1 \times \ldots \times U_p \times \Pi_{n=p+1}^{+\infty} \Omega_n \subseteq U
\]

10. Let \(U \in \mathcal{T} \) and \(x \in U \). Let \(p \geq 1 \) and \(U_1, \ldots, U_p \) open \(\Omega_1, \ldots, \Omega_p \) respectively, such that \(x \in U_1 \times \ldots \times U_p \times \Pi_{n=p+1}^{+\infty} \Omega_n \subseteq U \). By assumption, for all \(n \geq 1 \), the set \(\{V_n^k : k \in I_n\} \) is a countable base of the topology \(\mathcal{T}_n \). Hence, for all \(n \in \mathbb{N}_p \), there exists a subset \(I'_n \) of \(I_n \), such that
Solutions to Exercises 30

\[U_n = \bigcup_{k \in I_n^k} V_n^k. \]
In particular, since \(x_n \in U_n \), there exists \(k_n \in I_n^k \subseteq I_n \) such that \(x_n \in V_n^{k_n} \subseteq U_n \). We have found \(k_1, \ldots, k_p \) such that:

\[
x \in V_1^{k_1} \times \ldots \times V_p^{k_p} \times \prod_{n=p+1}^{\infty} \Omega_n \trianglelefteq V_x \subseteq U
\]

There exists \(V_x \in \mathcal{H}^p \subseteq \mathcal{H} \) such that \(x \in V_x \subseteq U \).

11. From 8., \(\mathcal{H} \) is a finite or countable subset of the topology \(\mathcal{T} \). From 10., for all \(U \in \mathcal{T} \), \(U \) can be written as \(U = \bigcup_{x \in U} V_x \), where \(V_x \in \mathcal{H} \) for all \(x \in U \). In other words, any open set \(U \) of \(\mathcal{T} \) can be written as a union of elements of \(\mathcal{H} \). It follows from definition (57) that \(\mathcal{H} \) is a countable base of \((\Omega, \mathcal{T}) \).

12. From theorem (26), since \(\mathcal{B}(\Omega_n) = \sigma(\mathcal{T}_n) \) for all \(n \geq 1 \):

\[
\bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n) = \sigma(\bigcup_{n=1}^{+\infty} \mathcal{T}_n) \subseteq \sigma(\mathcal{T}) = \mathcal{B}(\Omega)
\]

13. Let \(p \geq 1 \) and \(A \in \mathcal{H}^p \). Then \(A \) is a rectangle of the family \((\mathcal{T}_n)_{n \geq 1} \). Hence \(A \in \bigcup_{n=1}^{+\infty} \mathcal{T}_n \subseteq \bigcup_{n=1}^{+\infty} \mathcal{B}(\Omega_n) \subseteq \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n) \). So \(\mathcal{H}^p \subseteq \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n) \). We conclude that:

\[
\mathcal{H} = \bigcup_{p \geq 1} \mathcal{H}^p \subseteq \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n)
\]

14. Since \(\mathcal{H} \) is a countable base of \((\Omega, \mathcal{T}) \), any open set \(U \) of \(\mathcal{T} \) can be expressed as a union of elements of \(\mathcal{H} \). Furthermore, \(\mathcal{H} \) being at most countable, such union is at most countable. It follows that any open set \(U \) in \(\mathcal{T} \) is an element of \(\sigma(\mathcal{H}) \), i.e. \(T \subseteq \sigma(\mathcal{H}) \). From 13., we have \(\mathcal{H} \subseteq \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n) \) and consequently, we have \(\sigma(\mathcal{H}) \subseteq \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n) \). Hence, we see that \(T \subseteq \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n) \), and finally \(\mathcal{B}(\Omega) = \sigma(\mathcal{T}) \subseteq \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n) \). Using 12., we conclude that:

\[
\mathcal{B}(\Omega) = \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n)
\]

The purpose of this exercise is to prove theorem (27).

Exercise 17

Exercise 18.

1. Since \((\Omega, \mathcal{T}) \) has a countable base, a finite version of theorem (27) would allow us to conclude immediately that:

\[
\mathcal{B}(\Omega^n) = \mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)
\]

Since \(\mathcal{B}(\Omega) = \sigma(\mathcal{T}) \), from theorem (26), we have:

\[
\mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega) = \sigma(\mathcal{T} \prod_1^n \mathcal{T}) \subseteq \sigma(\mathcal{T}_{\Omega^n}) = \mathcal{B}(\Omega^n)
\]

Let \(U \) be open in \(\Omega^n \), and \(x \in U \). From exercise (12), there exist \(V_1, \ldots, V_n \) open in \(\Omega \), such that:

\[
x \in V_1 \times \ldots \times V_n \subseteq U
\]

www.probability.net
Exercise 19.

Solutions to Exercises 31

2. Let $A = \{A_x : x \in U\}$. Since \mathcal{H} is a subset of \mathcal{T}, each A_x is an element of $\mathcal{T} \cap \mathcal{T}$. Although the set U may not be countable, the set I defined by $I = \{A_x : x \in U\}$ is at most countable, \mathcal{H} being at most countable. So $U = \bigcup_{x \in U} A_x$ is in fact a countable (or finite) union of elements of $\mathcal{T} \cap \mathcal{T}$. So $U \in \sigma(\mathcal{T} \cap \mathcal{T})$. We have proved that:

$$T_{\Omega^n} \subseteq \sigma(\mathcal{T} \cap \mathcal{T}) \subseteq \mathcal{B}(\Omega) \otimes \mathcal{B}(\Omega)$$

We conclude that:

$$\mathcal{B}(\Omega^n) = \sigma(T_{\Omega^n}) \subseteq \mathcal{B}(\Omega) \otimes \mathcal{B}(\Omega)$$

We have proved that $\mathcal{B}(\Omega^n) = \mathcal{B}(\Omega) \otimes \mathcal{B}(\Omega)$.

2. This is an immediate consequence of 1. and exercise (16).

3. From 1., $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$. \mathbb{C} and \mathbb{R}^2 being identified, the usual topology on \mathbb{C} is induced by the metric:

$$d(z, z') = \sqrt{(x-x')^2 + (y-y')^2}$$

with obvious notations. From exercise (14), such metric induces the product topology on \mathbb{R}^2. It follows that the usual topology on \mathbb{C} and the product topology on \mathbb{R}^2 coincide. So $\mathcal{T}_\mathbb{C} = \mathcal{T}_\mathbb{R}^2$, and finally $\mathcal{B}(\mathbb{C}) = \mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.

Exercise 18

Exercise 19.

1. $\mathcal{H} = \{B(x_n, 1/p) : n, p \geq 1\}$ is a finite or countable subset of \mathcal{T}'. Let $U \in \mathcal{T}'$ and $x \in U$. There exists $\epsilon > 0$, such that $B(x, \epsilon) \subseteq U$. By assumption, the set $\{x_n : n \geq 1\}$ is dense in E. $p \geq 1$ being such that $1/p \leq \epsilon/2$, there exists $n \geq 1$ such that $x_n \in B(x, 1/p)$. In particular, $x \in B(x_n, 1/p)$. Moreover, for all $y \in B(x_n, 1/p)$, we have:

$$d(x, y) \leq d(x, x_n) + d(x_n, y) < \frac{2}{p} \leq \epsilon$$

So $y \in B(x, \epsilon) \subseteq U$. Hence, we see that $x \in B(x_n, 1/p) \subseteq U$. For all $x \in U$, we have found $V_x \in \mathcal{H}$ such that $x \in V_x \subseteq U$. It follows that $U = \bigcup_{x \in U} V_x$. So U is a union of elements of \mathcal{H}. We have proved that \mathcal{H} is a countable base of (E, \mathcal{T}').

2. Let $A = \{x_V : V \in \mathcal{H}, V \neq \emptyset\}$. \mathcal{H} being a countable base of (E, \mathcal{T}'), it is at most countable. There exists an injective map $j : \mathcal{H} \to \mathbb{N}$. Let $i : A \to \mathcal{H}$ be defined by $i(x_V) = V$. Then i is clearly an injection, and $j \circ i : A \to \mathbb{N}$

www.probability.net
is therefore an injective map. So A is a finite or countable subset of E. Let $x \in E$. Let $U \in T_E^d$ such that $x \in U$. Since U can be written as a union of elements of \mathcal{H}, there exists $V \in \mathcal{H}$, such that $x \in V \subseteq U$. In particular, $V \neq \emptyset$ and x_V is well-defined, with $x_V \in V \subseteq U$. So $x_V \in A \cap U \neq \emptyset$. We have proved that for all $U \in T_E^d$ such that $x \in U$, $U \cap A \neq \emptyset$. From definition (37), x is an element of A, the closure of A. We have proved that $E \subseteq \bar{A}$. So $E = \bar{A}$, and A is dense in E. Finally, A is at most countable and dense in E. So (E,d) is a separable metric space. The purpose of 1. and 2. is to show that for metric spaces, being separable, or having a countable base, are equivalent.

3. Let $x, y, x', y' \in E$. We have:

$$d(x, y) \leq d(x, x') + d(x', y') + d(y', y)$$
and therefore:

$$d(x, y) - d(x', y') \leq d(x, x') + d(y, y')$$

Similarly:

$$d(x', y') - d(x, y) \leq d(x, x') + d(y, y')$$

It follows that:

$$|d(x, y) - d(x', y')| \leq d(x, x') + d(y, y')$$

4. Let $\delta : (E \times E)^2 \to \mathbb{R}^+$ be the metric on $E \times E$ defined by:

$$\delta((x, y), (x', y')) = d(x, x') + d(y, y')$$

From 3., we have:

$$|d(x, y) - d(x', y')| \leq \delta((x, y), (x', y'))$$

(6)

From exercise (14), the product topology $T_{E \times E}$ on $E \times E$ is induced by the metric δ. Using exercise (4) of Tutorial 4, we conclude from equation (6) that $d : (E \times E, T_{E \times E}) \to (\mathbb{R}^+, T_{\mathbb{R}^+})$ is a continuous map.

5. From exercise (13) of Tutorial 4, and the continuity of the map $d : E \times E \to \mathbb{R}^+$ proved in 4., we conclude that:

$$d : (E \times E, B(E \times E)) \to (\mathbb{R}^+, B(\mathbb{R}^+))$$

is a measurable map. It follows that:

$$d : (E \times E, B(E \times E)) \to (\bar{\mathbb{R}}, B(\bar{\mathbb{R}}))$$

is a also a measurable map.

6. If (E, d) is a separable metric space, from 1., it has a countable base. From exercise (18), $B(E \times E) = B(E) \otimes B(E)$. We conclude from 5. that $d : (E \times E, B(E) \otimes B(E)) \to (\bar{\mathbb{R}}, B(\bar{\mathbb{R}}))$ is a measurable map.

*Beware of external links!
7. By definition (54), the product σ-algebra $\mathcal{B}(E) \otimes \mathcal{B}(E)$ is generated by the set of measurable rectangles $\mathcal{B}(E) \Pi \mathcal{B}(E)$. From theorem (14), in order to prove the measurability of:

$$\Phi : (\Omega, \mathcal{F}) \rightarrow (E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E))$$

It is sufficient to prove that $\Phi^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}(E) \Pi \mathcal{B}(E)$. However, any measurable rectangle B of $\mathcal{B}(E) \Pi \mathcal{B}(E)$ is of the form $B = A_1 \times A_2$, where $A_1, A_2 \in \mathcal{B}(E)$. It follows that:

$$\Phi^{-1}(B) = f^{-1}(A_1) \cap g^{-1}(A_2) \in \mathcal{F}$$

since by assumption, both $f, g : (\Omega, \mathcal{F}) \rightarrow (E, \mathcal{B}(E))$ are measurable maps. We have proved that $\Phi : \Omega \rightarrow E \times E$ is measurable with respect to \mathcal{F} and $\mathcal{B}(E) \otimes \mathcal{B}(E)$.

8. Suppose (E, d) is a separable metric space. From 6., the map:

$$d : (E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E)) \rightarrow (\mathcal{R}, \mathcal{B}(\mathcal{R}))$$

is measurable. However, from 7., the map:

$$\Phi : (\Omega, \mathcal{F}) \rightarrow (E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E))$$

is also measurable. It follows that $\Psi = d(f, g) = d \circ \Phi$ is measurable with respect to \mathcal{F} and $\mathcal{B}(\mathcal{R})$.

9. From 8., when (E, d) is separable, the map $\Psi = d(f, g)$ is measurable. Hence:

$$\{f = g\} = \Psi^{-1}(\{0\}) \in \mathcal{F}$$

10. Let $(E_n, d_n)_{n \geq 1}$ be a sequence of separable metric spaces. From exercise (15), the product topological space $\Pi_{n=1}^{+\infty} E_n$ is metrizable. From 1., each E_n has a countable base. From theorem (27), $\Pi_{n=1}^{+\infty} E_n$ also has a countable base. Being metrizable, it follows from 2., that it is in fact separable. We have proved that $\Pi_{n=1}^{+\infty} E_n$ is metrizable and separable.

Exercise 19

Exercise 20. Suppose each $f_i : (\Omega, \mathcal{F}) \rightarrow (\Omega_i, \mathcal{F}_i)$ is measurable. From theorem (14), in order to prove the measurability of:

$$f : (\Omega, \mathcal{F}) \rightarrow (\Pi_{i \in I} \Omega_i, \otimes_{i \in I} \mathcal{F}_i)$$

It is sufficient to show that $f^{-1}(B) \in \mathcal{F}$, for all $B \in \Pi_{i \in I} \mathcal{F}_i$. Let $B = \Pi_{i \in I} A_i$ be a measurable rectangle of the family $(\mathcal{F}_i)_{i \in I}$. For all $i \in I$, $A_i \in \mathcal{F}_i$, and $J = \{i \in I : A_i \neq \Omega_i\}$ is a finite set. Hence:

$$f^{-1}(B) = \bigcap_{i \in I} \{f_i \in A_i\} = \bigcap_{i \in J} \{f_i \in A_i\} \in \mathcal{F}$$

since each f_i is measurable. So f is indeed measurable. Conversely, suppose $f = (f_i)_{i \in I}$ is measurable. Let $j \in I$ and $A_j \in \mathcal{F}_j$. We have:

$$f_j^{-1}(A_j) = f^{-1}(A_j \times \Pi_{i \neq j} \Omega_i) \in \mathcal{F}$$
since \(B = A_j \times \Pi_{i \neq j} \Omega_i \) is a measurable rectangle, and lies in \(\otimes_{i \in J} \mathcal{F}_i \). So \(f_j : (\Omega, \mathcal{F}) \rightarrow (\Omega_j, \mathcal{F}_j) \) is a measurable map.

Exercise 21.

1. Let \((x, y)\) and \((x', y')\) be elements of \(\mathbb{R}^2\). We have:

\[
|\phi(x, y) - \phi(x', y')| \leq |x - x'| + |y - y'| \tag{7}
\]

By definition (17), the usual topology on \(\mathbb{R}\) is the metric topology induced by \(d(x, y) = |x - y|\). From exercise (14), the product topology on \(\mathbb{R}^2\) is induced by:

\[
\delta[(x, y), (x', y')] = |x - x'| + |y - y'|
\]

It follows from equation (7), and exercise (4) of Tutorial 4 that:

\[
\phi : (\mathbb{R}^2, T_{\mathbb{R}^2}) \rightarrow (\mathbb{R}, T_{\mathbb{R}})
\]

is a continuous map.

Let \((x_0, y_0) \in \mathbb{R}^2\) and \(\epsilon > 0\). For all \((x, y) \in \mathbb{R}^2\), we have:

\[
|\psi(x, y) - \psi(x_0, y_0)| \leq |y|(|x - x_0| + |x_0|) + |y - y_0|
\]

Suppose \(\eta > 0\) is such that:

\[
|x - x_0| + |y - y_0| < \eta \leq 1
\]

Then in particular, \(|y| \leq 1 + |y_0|\), and consequently:

\[
|\psi(x, y) - \psi(x_0, y_0)| \leq M(|x - x_0| + |y - y_0|)
\]

where \(M = \max(|x_0|, 1 + |y_0|)\). Hence, we see that:

\[
\delta[(x, y), (x_0, y_0)] < \eta \Rightarrow |\psi(x, y) - \psi(x_0, y_0)| < \epsilon
\]

where \(\eta\) has been chosen as \(\eta = \min(\epsilon/M, 1)\). We conclude from exercise (4) of Tutorial 4 that \(\psi : (\mathbb{R}^2, T_{\mathbb{R}^2}) \rightarrow (\mathbb{R}, T_{\mathbb{R}})\) is a continuous map.

2. \(\phi\) and \(\psi\) being continuous, from exercise (13) of Tutorial 4:

\[
\phi, \psi : (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2)) \rightarrow (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))
\]

are measurable maps. Since \((\mathbb{R}, T_{\mathbb{R}})\) has a countable base, from exercise (18), we have \(\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})\). We conclude that:

\[
\phi, \psi : (\mathbb{R}^2, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})) \rightarrow (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))
\]

are measurable maps.

3. Given \(f, g : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))\) measurable, the fact that \(f + g\) and \(f \cdot g\) are measurable was already proved in Tutorial 4. The purpose of this exercise is to emphasize a more direct proof. From theorem (28), the map:

\[
h = (f, g) : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R} \times \mathbb{R}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}))
\]

www.probability.net
is measurable, since both f and g are measurable. From 2:

$$\phi, \psi : (\mathbb{R} \times \mathbb{R}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$

are also measurable. It follows that $f + g = \phi \circ h$ and $f \cdot g = \psi \circ h$ are measurable with respect to \mathcal{F} and $\mathcal{B}(\mathbb{R})$. Being real-valued, they are also measurable with respect to \mathcal{F} and $\mathcal{B}(\mathbb{R})$.

Exercise 21