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18. The Jacobian Formula
In the following, K denotes R or C.

Definition 125 We call K-normed space, an ordered pair (E,N), where E
is a K-vector space, and N : E — R™* is a norm on E.

See definition (89) for vector space, and definition (95) for norm.

EXERCISE 1. Let (-, ) be an inner-product on a K-vector space H.
1. Show that || - || = v/(-,-) is a norm on H.
2. Show that (H, || - ||) is a K-normed space.

EXERCISE 2. Let (E, || - ||) be a K-normed space:
1. Show that d(z,y) = ||z — y| defines a metric on E.
2. Show that for all z,y € E, we have | ||z — |ly||| < ||z — y]|-

Definition 126 Let (E,||-||) be a K-normed space, and d be the metric defined
by d(z,y) = ||z —y||. We call norm topology on E, denoted 7)., the topology
on E associated with d.

Note that this definition is consistent with definition (82) of the norm topology
associated with an inner-product.

EXERCISE 3. Let E, F be two K-normed spaces, and [ : £ — F be a linear
map. Show that the following are equivalent:

(i) [ is continuous (w.r. to the norm topologies)
(i) [ is continuous at x = 0.
(i4i) JK e Rt ,Vz e B, ||i(z)|| < K|z]
(v sup{|[i(x)]|: x € E, ||z]| =1} <+

Definition 127 Let E, F be K-normed spaces. The K-vector space of all
continuous linear maps [ : E — F' is denoted Lk (E, F).

EXERCISE 4. Show that Lk (F, F') is indeed a K-vector space.
EXERCISE 5. Let E, F be K-normed spaces. Given | € Lk (F, F), let:

A
Ul = sup{[li(@)[| : = € E, [lef| =1} < 400

1. Show that:
[l = sup{|[i(z)|| : z€ E, [z <1}

2. Show that:

|l||—sup{M: rekl, x;é()}

]
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w

. Show that ||I(x)| <||I||.||z], for all z € E.

W~

. Show that ||| is the smallest K € R*, such that:
Vee B, [|l(z)]] < Kl|«|

ot

. Show that [ — ||| is a norm on Lk (E, F).

[=p}

. Show that (Lx(E, F),| -||) is a K-normed space.

Definition 128 Let E, F be R-normed spaces and U be an open subset of E.
We say that a map ¢ : U — F is differentiable at some a € U, if and only if
there exists | € Lr(E, F) such that, for all € > 0, there exists § > 0, such that
forallh € E:

[l <6 = a+heU and||p(a+h) = ¢(a) —I(h)] < €||h]

EXERCISE 6. Let E, F be two R-normed spaces, and U be open in E. Let
¢:U — Fbeamapand a e U.

1. Suppose that ¢ : U — F is differentiable at a € U, and that 1,1y €
Lr(E, F) satisfy the requirement of definition (128). Show that for all
€ > 0, there exists > 0 such that:

Vhe B, [|h] <& = [[L(h) = L(h)]] < el|h]

2. Conclude that ||l — l2|| = 0 and finally that I; = lo.

Definition 129 Let E, F be R-normed spaces and U be an open subset of
E. Let ¢ : U — F be a map and a € U. If ¢ is differentiable at a, we
call differential of ¢ at a, the unique element of Lr(E,F), denoted d¢(a),
satisfying the requirement of definition (128). If ¢ is differentiable at all points
of U, the map d¢ : U — Lr(E, F) is also called the differential of ¢.

Definition 130 Let E, F' be R-normed spaces and U be an open subset of E.
A map ¢ : U — F is said to be of class C', if and only if dé(a) exists for all
a € U, and the differential d¢ : U — Lr(F, F) is a continuous map.

EXERCISE 7. Let E,F be two R-normed spaces and U be open in E. Let
¢:U — F be amap, and a € U.
1. Show that ¢ differentiable at a = ¢ continuous at a.

2. If ¢ is of class C!, explain with respect to which topologies the differential
d¢ : U — Lr(E, F) is said to be continuous.

3. Show that if ¢ is of class C!, then ¢ is continuous.
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4. Suppose that £ = R. Show that for all a € U, ¢ is differentiable at a € U,
if and only if the derivative:

pla+1t) - ¢(a)

t#£0,t—0 t
exists in F, in which case d¢(a) € Lr(R, F) is given by:
Vvt e R, dp(a)(t) = t.¢'(a)
In particular, ¢'(a) = dé(a)(1).
EXERCISE 8. Let E, F, G be three R-normed spaces. Let U be open in E and V/

be openin F. Let ¢ : U — F and ¢ : V — G be two maps such that ¢(U) C V.
We assume that ¢ is differentiable at a € U, and we put:

I1 2 d(a) € Lr(E, F)
We assume that v is differentiable at ¢(a) € V', and we put:
I2 £ di((a)) € Lr(F,C)
1. Explain why ¥ o ¢ : U — G is a well-defined map.
2. Given € > 0, show the existence of n > 0 such that:
n(n+ 0l + i) < e

3. Show the existence of d2 > 0 such that for all hy € F with ||hsa|| < 02, we
have ¢(a) 4+ hy € V and:

[9(p(a) + ha) — o d(a) —la(he)|| < nllhell
4. Show that if hg € F and ||he|| < 02, then for all h € E, we have:
[¥(¢(a) + ha) = o d(a) = Iz o Li(R)[| < nllha|l + [L2]].[[he = L (A

5. Show the existence of 6 > 0 such that for all h € E with ||| < 0, we
have a + h € U and ||¢(a + h) — ¢(a) — l1(h)]| < n||h||, together with
[é(a+h) = é(a)l| < 2.

6. Show that if h € E is such that ||h|| <, then a +h € U and:

[¢ 0 ¢(ath) =9 o ¢(a)—la o L (h) || <nllg(ath)—(a)[lHnlli2]l.[| 2|
<n(n+ [l -+ lelDIIA]
el

7. Show that Iy oly € Lr(E,G)

8. Conclude with the following:
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Theorem 110 Let E, F,G be three R-normed spaces, U be open in E and V'
be open in F'. Let ¢ : U — F and ¢ : V — G be two maps such that ¢(U) C V.
Let a € U. Then, if ¢ is differentiable at a € U, and 1 is differentiable at
¢(a) € V, then 1 o ¢ is differentiable at a € U, and furthermore:

(¢ o ¢)(a) = di(é(a)) o dp(a)

EXERCISE 9. Let (Q',77) and (2, 7) be two topological spaces, and A C P(Q)
be a set of subsets of Q generating the topology 7, i.e. such that 7 = 7 (A) as
defined in (55). Let f : Q' — Q be a map, and define:

UE{ACQ : A eT)
1. Show that U is a topology on €.
2. Show that f: (Q',7") — (Q,7) is continuous, if and only if:
VAc A, f7H(A) eT’

EXERCISE 10. Let (Q',7") be a topological space, and (Q;,7;)icr be a family
of topological spaces, indexed by a non-empty set I. Let 2 be the Cartesian
product Q = IL;e;Q; and 7 = ®;¢;7; be the product topology on Q. Let (f;)ier
be a family of maps f; : ' — Q; indexed by I, and let f : Q' — Q be the map
defined by f(w) = (fi(w))ier for all w € Q. Let p; : © — Q; be the canonical
projection mapping.

1. Show that p; : (,7) — (,7;
T

)
2. Show that f: (', 7") — (Q,7) is continuous, if and only if each coordi-
nate mapping f; : (', 7") — (94, 7;) is continuous.

is continuous for all 7 € I.

EXERCISE 11. Let E, I, G be three R-normed spaces. Let U be open in E and
V be open in F. Let ¢ : U — F and ¢ : V — G be two maps of class C' such
that ¢(U) C V.

1. For all (I1,12) € Lr(F,G) x Lr(E, F), we define:
Ni(l,lo) 2 (0] + [l
No(,lo) 2 VL + ]
Nao(li,lo) 2 max(|lia]], ||la]))

Show that Ny, Na, N are all norms on Lgr(F,G) x Lr(F, F).
2. Show they induce the product topology on Lgr(F,G) x Lr(E, F).
3. We define the map H : Lr(F,G) x Lr(E, F) — Lr(E,G) by:
V(i1 lo) € Lr(F,G) x Lr(B,F) , H(l1,l2) 2110l
Show that ||H (I1,12)|| < |[i]]-]|l2]|, for all Iy, 5.
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Show that H is continuous.
We define K : U — Lr(F,G) x Lr(E, F) by:
Vae U, K(a) = (d(9(a)), dé(a))
Show that K is continuous.
Show that v o ¢ is differentiable on U.
Show that d(v o ¢) = Ho K.

Conclude with the following:

Theorem 111 Let E, F,G be three R-normed spaces, U be open in E and V'
be open in F. Let ¢ : U — F and v : V — G be two maps of class C such that
&(U) C V. Then, Yo ¢:U — G is of class C*.

EXERCISE 12. Let F be an R-normed space. Let a,b € R, a < b. Let f :
[a,b] — E and g : [a,b] — R be two continuous maps which are differentiable
at every point of Ja,b[. We assume that:

1.

© »®» 3@

vt €la, b, [IF @) < g (1)

Given € > 0, we define ¢, : [a,b] — R by:
6e(t) = 1 £() = f(a)]| — g(t) + g(a) — e(t — a)
for all ¢ € [a,b]. Show that ¢, is continuous.
Define E, = {t € [a,b] : ¢.(t) < €}, and ¢ = sup E.. Show that:
¢ € la,b] and ¢(c) < e

Show the existence of h > 0, such that:

YVt € [a,a+ hN[a,b] , ¢e(t) <e
Show that ¢ €]a, b].

Suppose that ¢ €]a, b[. Show the existence of ¢y €]c, b] such that:

Hf(t()) —f(C) < Hf/(C)H +6/2 and g/(c) < g(to) —g(C) +€/2
to—C to—C

Show that || f(to) — f(0) < g(to) — glc) + e(to — c).
Show that || f(c) — f(a)|l < g(c) — g(a) + e(c — a) + €.
Show that || f(to) — f(a)|| < g(to) — g(a) + e(to — a) + e.

Show that ¢ €]a, b] leads to a contradiction.
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10. Show that ||f(b) — f(a)|| < g(b) — g(a) + (b —a) + €.

11. Conclude with the following:

Theorem 112 Let E be an R-normed space. Let a,b € R, a < b. Let
f:a,b) = E and g : [a,b] — R be two continuous maps which are differentiable
at every point of |a,b[, and such that:

vt €a, b, [IF/ 0 <d'(t)

Then:
[£(b) = f(a)]| < g(b) — g(a)

Definition 131 Letn > 1 and U be open in R™. Let ¢ : U — E be a map,
where E is an R-normed space. For all i = 1,...,n, we say that ¢ has an ith
partial derivative at a € U, if and only if the limit:

oo AL ¢(a+ he;) — ¢(a)
a)= lim
ox; h#0,h—0 h

exists in E, where (e1,...,e,) is the canonical basis of R™.

EXERCISE 13. Let n > 1 and U be open in R". Let ¢ : U — E be a map, where
F is an R-normed space.

1. Suppose ¢ is differentiable at a € U. Show that for all i € N,,:
1
Trllela + hei) — ¢(a) — dp(a)(he;)|| =0

i
h20uh—0 |[heq]|
2. Show that for all i € N,,, %(a) exists, and:

9¢
83%

(a) = do(a)(e:)

3. Conclude with the following;:

Theorem 113 Letn > 1 and U be open in R™. Let ¢ : U — E be a map,
where E is an R-normed space. Then, if ¢ is differentiable at a € U, for all

1=1,...,n, g—i(a) exists and we have:
"9
Vh 2 (b, he) €R™, dla)(h) = aj (a)hs
i=1 "

EXERCISE 14. Let n > 1 and U be open in R". Let ¢ : U — E be a map, where
F is an R-normed space.
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1. Show that if ¢ is differentiable at a,b € U, then for all i € N,,:
‘ 9¢ 9¢

b) —
oz, V)~ a5,
2. Conclude that if ¢ is of class C' on U, then g—i exists and is continuous
on U, for all i € N,,. /

\ < ldé(b) — dé(a)|

EXERCISE 15. Let n > 1 and U be open in R". Let ¢ : U — E be a map, where

F is an R-normed space. We assume that % exists on U, and is continuous at

a €U, for all i € N,,. We define [: R" — E:

i(i (a)hi

Vi 2 (hi,...,hy) € R, Z(h)éza
=1

1. Show that I € Lgr(R", E).

2. Given € > 0, show the existence of > 0 such that for all h € R"™ with
|Ih|| < n, we have a + h € U, and:

99
8JLL'

gj’()H <e

3. Let h = (h1,...,hy) € R™ be such that ||h|| < n. (e1,...,en) being the
canonical basis of R"™, we define ky = a and for i € N,;:

[
AN
ki =a+ E hjej
j=1

Show that ko, ..., k, € U, and that we have:

Vi=1,...,n,

(a+h)—

n

¢la+h)—¢(a) - l(h):Z <¢(ki—1 + hiei)—¢(ki—1)—hi§—z(a)>

i=1

4. Let i € N,,. Assume that h; > 0. We define f; : [0, h;] — E by:

0
Wt € [0,hi] | fi(t) S Plhio1 +tes) — Slkio1) - taj (a)
Show f; is well-defined, f/(t) exists for all ¢ € [0, h;], and:
oy = 920, y_ 99
Vt € [07 hi] ’ fi (t) - axz (kz—l + tez) 8xi (a)

5. Show f; is continuous on [0, h;], differentiable on ]0, h;[, with:
vt €]0,hil , I <€

6. Show that:

9¢
8JLL'

Hd)(k‘il + hiei) = ¢(ki—1) — him—(a)

< €|h|
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7. Show that the previous inequality still holds if h; < 0.
8. Conclude that for all h € R"™ with ||h|] < n, we have:
[6(a+h) — d(a) — U(R)]| < ev/n|lh]
9. Prove the following;:
Theorem 114 Letn > 1 and U be open in R™. Let d) U — E be a map,

where E is an R-normed space. 1If, for all i € N, T exists on U and is
continuous at a € U, then ¢ is differentiable at a € U.

EXERCISE 16. Let n > 1 and U be open in R". Let ¢ : U — E be a map,
where E' is an R-normed space. We assume that for all i € N,,, % exists and
is continuous on U.

1. Show that ¢ is differentiable on U.
2. Show that for all a,b € U and h € R"™:

1/2
|(de(b) — do(@)(n)]| < ( 220 - 2@ ) I
3. Show that for all a,b € U:
n 5 1/2
I46(0) — dota)]| < (Z )= 52 )

S

. Show that d¢ : U — Lg(R"™, E) is continuous.

ot

Prove the following:

Theorem 115 Letn > 1 and U be open in R™. Let ¢ : U — E be a map,
where E is an R-normed space. Then, ¢ is of class C! on U, if and only if for
alli=1,...,n, % ezists and is continuous on U.

EXERCISE 17. Let E, F be two R-normed spaces and [ € Lgr(F, F). Let U be
open in E and [|; be the restriction of [ to U. Show that [}y is of class C! on
U, and that we have:

VeeU, d(ljy)(z) =1

EXERCISE 18. Let Eq,..., E,, n > 1, be n K-normed spaces. Let F = E; X
. X E,. Let p € [1,+00], and for all z = (21,...,2,) € E:

n 1/p
A
lzll, = <Z |f€i|p>
i=1

,max IEA|
=1 n

[RERR}

[E41PS
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1. Using theorem (43), show that ||.||, and ||.||cc are norms on E.

2. Show ||.||, and ||.||ec induce the product topology on E.

3. Conclude that E is also an K-normed space, and that the norm topology
on F is exactly the product topology on FE.

EXERCISE 19. Let E and F' be two R-normed spaces. Let U be open in E and
¢, : U — F be two maps. We assume that both ¢ and 1 are differentiable at
a € U. Given a € R, show that ¢ + a is differentiable at a € U and:

(¢ + app)(a) = dp(a) + ady(a)

EXERCISE 20. Let E and F' be K-normed spaces. Let U be open in E and
¢ : U — F be amap. Let Ng and Np be two norms on E and F, inducing
the same topologies as the norm topologies of E and F respectively. For all
l € Lk (E, F), we define:

N(l) = sup{Nr(l(x)) : x € E,Ng(x) = 1}

1. Explain why the set Lk (F, F') is unambiguously defined.
2. Show that the identity idg : (E, || - ||) — (F, Ng) is continuous
3. Show the existence of mg, Mg > 0 such that:

Ve e E, mgllz|| < Ng(z) < Mg||z||
4. Show the existence of m, M > 0 such that:

Vie Lx(E,F), m|l]] < N() < M|l
5. Show that || - || and N induce the same topology on Lk (FE, F).

6. Show that if K = R and ¢ is differentiable at a € U, then ¢ is also differ-
entiable at a with respect to the norms Ng and Ng, and the differential
d¢(a) is unchanged

7. Show that if K = R and ¢ is of class C'! on U, then ¢ is also of class C"
on U with respect to the norms Ng and Np.

EXERCISE 21. Let E and Fy,...,F,, p > 1, be p+ 1 R-normed spaces. Let U
be openin F and F'= Iy x ... x F,. Let ¢ : U — F be a map. For all i € N,
we denote p; : ' — F; the canonical projection and we define ¢; = p; o ¢. We
also consider u; : F; — F, defined as:
A
Ve, € F; uz(xz) = (0,..., € ,...,0)
1. Given i € N, show that p, € Lr(F, F;).

2. Given i € N, show that u; € Lr(F;, F) and ¢ = >0 u; 0 ¢;.
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3. Show that if ¢ is differentiable at @ € U, then for all ¢ € N, ¢; : U — F;
is differentiable at a € U and d¢;(a) = p; o dp(a).

4. Show that if ¢; is differentiable at a € U for all ¢ € N, then ¢ is differen-
tiable at @ € U and:

P
do(a) = Zui odpi(a)
i=1
5. Suppose that ¢ is differentiable at a,b € U. Let F be given the norm || - ||2
of exercise (18). Show that for all i € N
|d¢i(b) — doi(a)|| < |ldé(b) — dé(a)]|
6. Show that:

P 1/2
ldé(®) — do(a)] < (Z e (b) - d¢i(a>|2>

7. Show that ¢ is of class C! & ¢; is of class C! for all i € N,,.

8. Conclude with theorem (116)

Theorem 116 Let E,Fy,...,F,, (p > 1), be p+1 R-normed spaces and U be
open in E. Let F be the R-normed space F' = F1x...XF, and ¢ = (¢1,...,¢p) :
U — F be a map. Then, ¢ is differentiable at a € U, if and only if dp;(a) exists
for alli € Ny, in which case:

Vhe E , do(a)(h) = (d¢1(a)(h),. .., ddp(a)(h))
Also, ¢ is of class C* on U < ¢; is of class C* on U, for all i € N,,.

Theorem 117 Let ¢ = (¢d1,...,0,) : U — R™ be a map, where n > 1 and
U is open in R™. We assume that ¢ is differentiable at a € U. Then, for all

i,j=1,...,n, gf’f (a) exists, and we have:
J
) 0
Pia) ... $2(a)
dg(a) = : :

Opn Opn

Po(a) ... F2(a)
Moreover, ¢ is of class C' on U, if and only if for alli,j =1,...,n, gf’f exists

J

and is continuous on U.

EXERCISE 22. Prove theorem (117)
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Definition 132 Let ¢ = (¢1,...,¢n) : U — R™ be a map, where n > 1 and U
is open in R™. We assume that ¢ is differentiable at a € U. We call Jacobian
of ¢ at a, denoted J(¢)(a), the determinant of the differential dp(a) at a, i.e.

2a) ... 22(a)
J(¢)(a) = det : :
%(a) %(a}

Definition 133 Let n > 1 and Q, ' be open in R™. A bijection ¢ : Q — Q'
is called a C'-diffeomorphism between Q and ', if and only if ¢ : Q — R"
and ¢~' : Q' — R™ are both of class C*.

EXERCISE 23. Let Q and €' be open in R®. Let ¢ : @ — Q be a C'-
diffeomorphism, ) = ¢!, and I,, be the identity mapping of R".
1. Explain why J(¢0) : Q" — R and J(¢) : © — R are continuous.
2. Show that dé(¢(z)) o dip(z) = I,,, for all z € .
Show that dy(¢(x)) o dp(x) = I, for all x € Q.
Show that J(¢)(z) # 0 for all z € Q.

Show that J(¢)(z) # 0 for all x € Q.
Show that J(¥) = 1/(J(8) 0 ¥) and J(6) = 1/(J(¥) 0 6).

A

Definition 134 Letn > 1 and Q2 € B(R™), be a Borel set in R™. We define
the Lebesgue measure on €2, denoted dx|q, as the restriction to B(S2) of the
Lebesgue measure on R™, i.e the measure on (Q,B(2)) defined by:

VB € B(Q) , dro(B) = dx(B)

EXERCISE 24. Show that dz| is a well-defined measure on (€2, B(£2)).

EXERCISE 25. Let n > 1 and Q, Q' be open in R". Let ¢ : Q@ — Q be a
C'-diffeomorphism and 1 = ¢~1. Let a € Q. We assume that di(a) = I,,,
(identity mapping on R™), and given € > 0, we denote:

Bla,e) 2 {z e R": |la—a| < ¢}
where ||.|| is the usual norm in R™.
1. Why are dx|q/, ¢(dz|q) well-defined measures on (€', B(€)).
2. Show that for € > 0 sufficiently small, B(a,¢€) € B(Y').
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3.

10.

11.
12.

13.

14.

Show that it makes sense to investigate whether the limit:

¢(dz0)(B(a; €))
ell0 dxo/(B(a,€))

does exists in R.

Given r > 0, show the existence of €; > 0 such that for all h € R™ with
|R]| < €1, we have a + h € Q', and:

[¥(a+ h) —¢(a) = bl < 7[R

Show for all h € R™ with ||A|| < €1, we have a + h € ', and:
[¥(a+h) = ¢(a)] < (1 +r)nll

Show that for all ¢ €]0, ¢1], we have B(a,¢) C €, and:
¥(B(a,€)) € B(¢(a), e(1+1))

Show that d(t(a)) = I,

Show the existence of e3 > 0 such that for all & € R" with ||k]| < ez, we
have 9 (a) + k € Q, and:

[6((a) + k) —a— k|| < ||k

Show for all £ € R™ with ||k|| < e2, we have ¢(a) + k € Q, and:
[o((a) + k) —al| < (1 +7)]lK]

Show for all € €]0, e2(1 + )|, we have B(¢(a), —=) C Q, and:

) THr
B(y(a) ) € {¢ € Bla,e)}

.
1+
Show that if B(a,e) C ', then (B(a,€)) = {¢ € B(a,€)}.
Show if 0 < € < €9 = €1 A €2(1 + 1), then B(a,e) C ', and:

B(W(a), 1) € {0 € Bla,e)} € B(y(a),e(1+7))

Show that for all € €]0, €|
() da(B(w(a), 777)) = (L) "dajg(Bla.e))
(i) da(B((a),e(1+r))) = (1+7)"drg (Ba,e)
(i#i)  de({¢ € B(a,0)}) = dldrj)(B(a,c))
Show that for all € €]0, €[, B(a,€) C €, and:

(14 < A0 (Bla,0)

S "o Ba) SOt
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15.

Conclude that:
L Hldro) (B(a,0)
im —

=1
ell0 dx)/(B(a,e€))

EXERCISE 26. Let n > 1 and Q, Q' be open in R". Let ¢ : Q@ — Q' be a
C!-diffeomorphism and 1) = ¢~ 1. Let a € . We put A = di)(a).

1.
2.

8.

9.

Show that A : R™ — R" is a linear bijection.

Define Q" = A71(Q). Show that this definition does not depend on
whether A=1() is viewed as inverse , or direct image.

Show that € is an open subset of R™.

We define ¢ : - ~’by o(x ) = ¢ o A(z). Show that ¢ is a Cl-
diffeomorphism with ) = ¢~ = A= o 4.

Show that dip(a) = I,

Show that:

$(drjo)(Bla,€))
ello dxjo(B(ase))

Let € > 0 with B(a,¢) C €. Justify each of the following steps:
$(dzio)(Bla,e)) = drjgr({$ € B(a,€)})

dz({3 € B(a,e)})

dr({x € Q" : ¢o A(z) € B(a,e)})

de({x € Q" : A(z) € ¢~ (B(a,¢))})

de({z € R": A(z) € 6 '(B(a,€))})

A(dz)({¢ € B(a,€)})

= |det A|"tdz({¢ € B(a,€)})

|det A| " dzj0({6 € B(a,)})

~ | det A|g(dzy0) (B(a. )

Show that: o(d B
lim M = | det A]
ell0 dxo/(B(a,¢))

Conclude with the following:

Theorem 118 Let n > 1 and Q, Q' be open in R". Let ¢ : Q — Q' be a
C'-diffeomorphism and ) = ¢~'. Then, for all a € ', we have:

¢(dz0)(B(a; €))

I g B,y W@

where J(¥)(a) is the Jacobian of v at a, B(a,€) is the open ball in R", and
dr|q, dx|o are the Lebesgue measures on € and Q' respectively.
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EXERCISE 27. Let n > 1 and Q, Q' be open in R". Let ¢ : 2 — Q be a
C'-diffeomorphism and ) = ¢~1.

1.

10.
11.
12.
13.
14.
15.

16.

17.

Let K C Q' be a non-empty compact subset of " such that dzo (K) = 0.
Given € > 0, show the existence of V open in ', such that K C V C €,
and dz|o/ (V) < e

Explain why V is also open in R".

Show that M 2 Sup,ci ||dy(z)]| € RY.

For all z € K, show there is ¢, > 0 such that B(z,¢e,) C V, and for all
h € R™ with ||h]| < 3e,, we have x + h € ', and:

[¥(z +h) = (@) < (M +1)[A]
Show that for all z € K, B(x,3¢,) C €', and:
Y(B(z,3€e,)) € B(y(x), 3(M + 1)ex)
Show that ¥(B(z,3¢;)) = {¢ € B(z,3¢,)}, for all z € K.
Show the existence of {x1,...,2,} C K, (p > 1), such that:

K C B(x1,60,)U...UB(xp,€z,)

Show the existence of S C {1,...,p} such that the B(z;, €,,)’s are pairwise
disjoint for ¢ € S, and:

K C | B(wi,3¢e,)
€S

Show that {¢ € K} C U;jesB(¢(24),3(M + 1)es, ).
<Y ieg 3M(M 4+ 1) dax(B(x4, €x,))-
< 37(M + 1)"dz (V).

Show that ¢(dxz)q)(K

Show that ¢(dz|q)(K
Show that ¢(dz|q)(K
Conclude that ¢(dzo)(K) =

)
)
) < 3"(M +1)"
)

Show that ¢(dz|q) is a locally finite measure on (€', B(?')).

Show that for all B € B(Q'):
¢(dz)o)(B) = sup{¢(dr)q)(K): K € B, K compact }

Show that for all B € B(Q'):

Conclude with the following:
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Theorem 119 Let n > 1, Q, Q' be open in R", and ¢ : Q@ — Q' be a C*-
diffeomorphism. Then, the image measure ¢(dx|q), by ¢ of the Lebesgue measure

on €, is absolutely continuous with respect to dx|q:, the Lebesgue measure on
O, de.:

¢(dl‘|g) << dl‘m/

EXERCISE 28. Let n > 1 and Q, Q' be open in R". Let ¢ : Q@ — Q' be a
C'-diffeomorphism and 1) = ¢~ .

1.

BB el B

10.

Explain why there exists a sequence (V,),>1 of open sets in ', such that
V, 1 € and for all p > 1, the closure of V,, in (', i.e. Vpﬂl, is compact.

Show that each V;, is also open in R”, and that V' =V,
Show that ¢(dx)n)(V,) < +oo, for all p > 1.

Show that dz|os and ¢(dz|q) are two o-finite measures on €.

Show there is h: (Q',B(€)')) — (R, B(R")) measurable, with:
VB € B(Y) , ¢(dxq)(B) :/ hdz gy
B

For all p > 1, we define h;, = hly,, and we put:

n 7 A hy(x) if zeQ
Vz e R ,hp(a:)z{op() i orgQ

Show that:

hydx :/ hypdz)o = ¢(dr)n)(Vy) < +00
R" o

and conclude that h, € Lk (R™, B(R"™), dz).

Show the existence of some N € B(R"™), such that dz(N) = 0 and for all
r € N¢and p > 1, we have:

- 1 .
pu— 1.
") = I & B, o) /BW) e

Put N’ = NN Q. Show that N’ € B(') and dx|o (N') = 0.

Let 2 € " and p > 1 be such that = € Vp. Show that if € > 0 is such that
B(x,€) CV,, then dx(B(z,¢€)) = drjo (B(z,€)), and:

/ ind{E:/ 1B(x,€)ﬁpdx:/ 1B(x7e)hpdx‘91
B(x,e€) R” Q

Show that:

/ ].B(x,e)hpdxm/ :/ ]-B(gc,e)hdeZ’ = gﬁ(d(Em)(B(:L‘,E))
Q Q'
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11. Show that for all x € Q' \ N’, we have:

. #(dzi0)(B(,€))
M) = lim dz oy (B(x, )

12. Show that h = [J(¢)| dz|o-a.5. and conclude with the following:
Theorem 120 Letn > 1 and Q, ' be open in R™. Let ¢ : Q2 — Q' be a C*-
diffeomorphism and ¥ = ¢~'. Then, the image measure by ¢ of the Lebesque

measure on (2, is equal to the measure on (', B(Y)) with density |J ()| with
respect to the Lebesque measure on €Y, i.e

odz) = [ 1760)/dae

EXERCISE 29. Prove the following:

Theorem 121 (Jacobian Formula 1) Letn > 1 and ¢ : Q — Q be a C'-
diffeomorphism where Q, Q' are open in R™. Let v = ¢~'. Then, for all
f:(Q,B(R)) — [0, +00] non-negative and measurable:

[ seodna= [ sl

[Fooli@ldng = [ fine

and:

EXERCISE 30. Prove the following:

Theorem 122 (Jacobian Formula 2) Letn > 1 and ¢ : Q — Q' be a C*-
diffeomorphism where Q, Q' are open in R™. Let v = ¢~ . Then, for all
measurable map f: (', B(Y)) — (C,B(C)), we have the equivalence:

fod e Le(Q,B(Q).drjo) & fIJ(W)| € Le(,B(Y), dujor)

i which case:
[ resdna= [ fluwdsa
Q %
and, furthermore:
(f © ¢)|J(¢)| € L%J(Qa B(Q)a dx\Q) <~ f € L%J(Q/vB(Q/)v d(Em/)
in which case:

[too@lne = [ fine

EXERCISE 31. Let f:R?—[0,4+o00], with f(z,y) = exp(—(2? + y?)/2).
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1. Show that:
+oo R 2
/ f(z,y)dxedy = </ e " /Qdu)
R? —o0
2. Define:
A 2 {(zy)eR2: >0, y>0}
Ay 2 {(zy)eRZ: 2<0, y>0}

and let Az and A4 be the other two open quarters of R?. Show:

L/m f(x7y)dxdy==t/a f (@, y)dedy
R? A

1U...UA,

3. Let Q : R? — R? be defined by Q(z,y) = (—z,y). Show that:

flz,y)dedy = [ foQ '(z,y)dady
A4 Ao

4. Show that:
/ flx,y)dedy =4 | f(x,y)dvdy
R? Al

5. Let Dy =0, +00[x]0,7/2|C R?, and define ¢ : D; — Ay by:
Y(r,0) € Dy, ¢(r,0) £ (rcosf,rsin®)
Show that ¢ is a bijection and that ¢ = ¢~ is given by:
V(z,y) € Ar, ¥(z,y) = (Va? +y?, arctan(y/z))

6. Show that ¢ is a C'-diffeomorphism, with:

cos —rsinf
sinf rcos6

Y(r,0) € Dy, dp(r,0) = (

and:

x y
V@we&vwmw—<“ﬁ% W4w>

7. Show that J(¢)(r,0) = r, for all (r,0) € D;.
8. Show that J(¢)(x,y) = 1/(\/22 + y?), for all (z,y) € A;.
9. Show that:

(@, y)dady = =
Al 2

10. Prove the following;:

Theorem 123 We have:
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Solutions to Exercises

Exercise 1.

1. Let (-, -) be an inner-product on a K-vector space H. From definition (81),
we have (z,z) > 0 for all z € H. So || - || = v/(x, x) is a well-defined map
| -] : H— R*. From (v) of definition (81), (z,z) = 0 is equivalent to
x = 0. It follows that ||z| = 0 is equivalent to z = 0. Let € H and
a € K. We have:

oz|| = V({aw, ax)

= Vo (z,z)

= lalv(z,z) = |of - ||z
Finally, given z,y € 'H, the fact that:

lz+yll < [z + [yl

has been proved in exercise (17) of Tutorial 10. From definition (95), we

conclude that || - || is a norm on H.
2. H is a K-vector space and | - || is a norm on H. From definition (125), we
conclude that (H, | -]|) is a K-normed space.
Exercise 1
Exercise 2.

1. Let (E, ||-||) be a K-normed space. Let d(z,y) = ||z—y||. Thend : EXE —
R" is a well-defined map. Furthermore, since ||z|| = 0 is equivalent to
x =0, d(z,y) = 0 is equivalent to x = y. Since ||azx| = |af - ||z| for all
z € E and a € K, taking a = —1 it is clear that d(z,y) = d(y, z) for all
z,y € E. Finally, given z,y, 2 € E we have:
d(z,y) = |z =yl
= lle—z+z-yl
< o=zl + 1z -yl
= d(x,2) +d(z,y)
We conclude from definition (28) that d is a metric on E.
2. Let z,y € E. We have:
Izl = llz =y +yll < [l =yl + vl
and consequently |lz|| — ||y|| < ||z — y||. Similarly:

Iyl =zl < Ny = =]l
= -yl
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and we conclude that:

izl = llyll = max({lz] = [lyll, lyll = ll=[])
< ==yl

Exercise 2

Exercise 3. Let E, F be two K-normed spaces and [ : F — F be a linear map.
We claim that the following are equivalent:

(i) [ is continuous (w.r. to the norm topologies)
(i4) [ is continuous at z = 0.
(i4i) JKeRT Vo e E, |li(z)|| < K||=|
(i) sup{[li(@)[|: z € E, [z =1} <400

Suppose [ is continuous. In particular, it is continuous at = 0. In case you
have any doubt, although we have not defined it in these tutorials, recall that a
map ! : E — F, where F and F are topological spaces, is said to be continuous
at « € F, if and only if for all V' open subsets of F with [(z) € V, there exists U
open subset of £ with z € U C[7}(V). Now if [ : E — F is continuous, for all
V open subsets of F, [=}(V) is an open subset of E. If furthermore I(z) € V,
then z € [71(V) and taking U = [=1(V), we have found U open subset of E
with z € U C 175(V). So [ is continuous at x. We have proved that (i) = (i4).
Suppose that [ is continuous at x = 0. Let € > 0 and B(0,€) denote the open
ball in F'. Since ! is linear, [(0) = 0 and B(0, €) is therefore an open subset of
F containing [(0). Having assumed that [ is continuous at x = 0, there exists
U open subset of E such that 0 € U C [71(B(0,¢)). The topology on E being
induced by the metric d(z,y) = |[z—yl|, there exists n > 0 such that B(0,n) C U,
where B(0,7) denotes the open ball in E. From B(0,7) CU C 1 1(B(0,¢)) we
see that for all x € E:
lall <n = ()] < e

Suppose  # 0. Then ||z|| # 0 and y = nz/(2]|z||) is a well-defined element of
E with |ly|| = n/2 < n. Hence, we have:

i)

= (55| = mon <

and consequently, setting K = 2¢/n € RT we obtain [|i(z)]] < K||z|. So in
particular, we have proved that ||l(x)] < K||z|| for all 2 # 0. This inequality
being obviously still valid if z = 0, we have found K € R* such that:

Vee B, [[i(z)] < K|z (1)

@l -
ST

This shows that (i7) = (i77). Suppose now that there exists K € R* such
that (1) holds, and define:

A
a=sup{||l(z)]|: z€ E, |z|]| =1}
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Given = € E such that ||z]| = 1, we have [|i(z)|| < K|jz|| = K. So K is an
upper-bound of all [|I(z)|’s as = runs through the set of all z € E with ||z| = 1.
Since « is the smallest of such upper-bounds, we obtain @ < K and in particular
a < +o00. This shows that (iii) = (iv). Finally, suppose that a@ < +o00. Let
z,y € E be such that © # y. Then ||z —y| #0 and z = (z —y)/[|[zr — y|| is a
well-defined element of E with ||z|| = 1. It follows that:

W=l (2=

1) <

and consequently ||I(z) —I(y)|| < aflz —y||. This is obviously still valid if z =y,
and it is therefore true for all z,y € E. Since a < +00, this shows that [ is
continuous, and we have proved that (iv) = (7). This completes our proof that
(1), (i1), (i13) and (iv) are equivalent.

Exercise 3

Exercise 4. To show that Lk (E, F) is a K-vector space, we only need to show
that it is a K-vector subspace of the set of all maps f : E — F. In other words,
given u,v € Lk (FE,F) and a € K, we need to show that u + av € Lk (FE, F).
This in turn amounts to showing that u + awv is a linear map, and that it
is continuous. Since u and v are continuous, from exercise (3) there exists
K, K> € RT such that ||u(z)| < Ki|z| and |Jv(z)]| < Ka||z| for all z € E.
Hence:

[[(u + av)(2)] [u(z) + av(z)]|
< u@)l + laf - (@)
< (KA JafKy) 2]

and consequently from exercise (3), u + av is continuous (provided it is linear,
which we are about to prove). Moreover, given z,y € E and € K, we have:

(u+av)(z+PBy) = ulz+Py)+av(z+ By)
= u(z) + Puly) + av(z) + afu(y)
= u(@) +av(z) + Blu(y) + av(y))
= (u+av)(z) + B(u+ av)(y)

This shows that u + av is linear, and we have proved that Lk (F, F') is indeed
a K-vector space.
Exercise 4

Exercise 5.

1. Let E, F be K-normed spaces. Given |l € Lk (E, F), let:

AN
12l = sup{[ll(z)]| : z € £, [lz]| = 1}

Note that from exercise (3), we have ||/|| < +o00. Define:

A
a=supf{[li(z)|[:z € E, |z| <1}
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We claim that o = ||l||. Let # € E be such that ||z|]] = 1. Then in
particular ||z|| < 1, and consequently [|l(z)]] < «. It follows that « is
an upper-bound of all ||I(x)]|’s as = runs through that set of all x € E
with ||z|| = 1. Since [|I]| is the smallest of such upper-bounds, we obtain
[l7]] < a. To show the reverse inequality, consider x € E with ||z| < 1,
and assume that x # 0. Then ||z|| # 0 and y = x/||z| is a well-defined
element of F with |ly|]| = 1. Hence, we have:

et = | ()| = o <

and consequently ||{(z)|| < ||I]] - ||z]|. Having assumed |z|| < 1, we obtain
[lE(x)]] < ||ZJ|- Since 1(0) = 0, such inequality still holds for z = 0, and
consequently we have proved that ||[{(x)| < ||/|| for all z € E with ||z| < 1.
This shows that ||I|| is an upper-bound of all ||i(z)|’s as = runs through
the set of all z € F with ||z|| < 1. Since « is the smallest of such upper-
bounds, we obtain o < ||I||. We have proved that o = ||I]], i.e.:

[l = sup{[ll(z)[| : z € £, [l=]| <1}

“p{”n( T EE’““)}

We claim that ||l|| = «. Let € E, x # 0. Then y = z/||z|| is such that
lyll =1, and consequently:

et = 1 () | = v <

This being true for all € E, x # 0, we obtain o < ||I||. To show the
reverse inequality, consider x € F with ||z|| = 1. In particular z # 0 and
consequently:

1)

1)) = 2

This being true for all x € E with ||z| = 1, we obtain ||I|| < a. We have
proved that oo = ||I||, or equivalently:

(12| —sup{”l”(;ﬁ” xe b x#O}

3. Let z € E. Suppose x # 0. From 2. we obtain:

@I _

]

2. Define:

<«

and consequently ||I(z)|| < ||I]| - ||z]|. Since I(0) = 0, we have proved that
()]l < ]| - [|z|| for all z € E.
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4. Since [ is continuous, from exercise (3) we have ||/|| < 4+o00. So ||| is indeed
an element of R*, which furthermore from 3. satisfies ||I(z)|| < ||[I|| - ||=|]
for all z € E. Suppose K is another element of RT, such that:

Ve e B, [[i(z)] < K|z

Then for all x € E, x # 0, we have ||l(z)]|/[|z|| < K. So K is an upper-
bound of all ||l(x)]|/||z||, as  runs through the set of all z € E, x # 0.
Having proved in 2. that ||I|| is the smallest of such upper-bounds, we
obtain ||I]] < K. So ||I|| is indeed the smallest K € R™ with [|i(x)|| < K|z
for all z € E.

5. Since ||| < +oo for all | € Lk (E,F), the map | - || is indeed a map
||l : Lx(E, F) — R*. We claim that it is in fact a norm on Lk (FE, F).
Suppose ||| = 0. Then from 3. for all © € E:

1@ < 12l - [l]f = 0

and consequently [(z) = 0 for all x € E. This shows that { = 0 and we
have proved that ||I|| =0 =-1 = 0. Conversely, if [ = 0:

[l = sup{[li(z)||: z € E, =[] =1}
= sup{0} =0
which shows that ||I|| = 0 is in fact equivalent to | = 0. Let o € K. For
all x € E, using 3. we have:
)@ = fad(@)]
o - l1()]]
e - (121 - Nl

IN

and it follows from 4. that ||| < |a|-||I]|. Suppose o # 0. Then applying
this inequality to a~' and ol we obtain:

i = lla= (ad)|
< a7 flot] = |of 7 led]
and consequently || - ||I]] < ||al|. This shows that ||al|| = |af - [|I]] for

alll € Lx(E,F) and « # 0. This equality being still true for « = 0, we
have proved that ||ad]| = |af - ||I]| for all | € Lx(E,F) and o € K. Let
I,Il € Lx(E,F). Then for all x € E:

1@+ 1) (@)l 11(x) + ()]
1G]+ 17 ()l
2l el + N2 fle]

= (I + 1Dl

and it follows from 4. that ||l + || < ||I|| + ||I'||. From definition (95), we
conclude that ||.|| is indeed a norm on Lk (F, F).

IN N
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6. Since Lk (E, F) is a K-vector space and || - || is a norm on Lk (E, F), we
conclude that (Lx(E, F),| - ) is a K-normed space by virtue of defini-
tion (125).
Exercise 5
Exercise 6.

1. Let E, F be two R-normed spaces and U be open in E. Let ¢ : U — F
be a map, and a € U. We assume that l1,ly € Lr(E,F) satisfy the
requirements of definition (128). Let ¢ > 0 be given. Since l; satisfies the
requirement of definition (128), there exists d; > 0 such that for all h € E:

€
bl <61 = a+heU and||¢(a+h)—¢(a) - L] < S|A]
Similarly, there exists do > 0 such that for all h € E:
€
Ihll < 62 = a+heU and [|¢(a +h) = ¢(a) = la(A)]| < 5[l

Let 6 = min(d1,02). Then ¢ > 0, and for all h € E the condition ||h] < &
implies that a + h € U and furthermore:

[0 k) = o) < [l(a+ k) = b(a) — la(h)]
+ llé(a+h) = éa) ~ LA
< Sl +5lnl
= dinl

Hence, given € > 0, we have found § > 0 such that for all h € E:
IRl <6 = [[la(h) = l2(R)[| < e[| ]|

2. Let € > 0 and 0 > 0 be such that for all h € E:
1B <6 = (k) — )] < el
Let x € E with ||z|| = 1. Then h = 0z is an element of E with ||h|| = ¢.
In particular ||k]| < &, and consequently we have:
o =L)(@)| = d]h(z) = La(z)]]
[(82) — Lo (62)

112 (h) = Lo (R)]|
ellh|| = ed
Since 6 > 0, it follows that ||(I; — l2)(x)|| < € and we see that € is an
upper-bound of all ||(I; — I2)(z)|’s as « runs through the set of all z € E
with ||z|| = 1. Since ||l; — l2]| is the smallest of such upper-bounds, we

obtain |[l; — l2|| < e. This being true for all ¢ > 0, we conclude that
||ll - ZQH = 0, ie. ll = l2.

IA
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Exercise 6

Exercise 7.

1. Let E, F be two R-normed spaces and U be open in F. Let ¢ : U — F
be a map and a € U. Suppose that ¢ is differentiable at a. Take € = 1.
Since d¢(a) denotes the differential of ¢ at a, i.e. the unique element
of Lr(FE, F) satisfying the requirements of (128), there exists 6 > 0 such
that for all h € E:

[l <6 = a+heUand [|p(a+h) - ¢(a) —de(a)(h)]| < [|A]
In particular, for all h € E the condition ||h|| < ¢ implies that a + h € U

and furthermore:

[o(a+h) —¢(a)l = léla+h)—¢a)ll — lldp(a)(h)]]
ld(a)(R)]|
[l¢(a + h) = ¢(a)|| = [[do(a)(R)] |
[do(a) ()]
[6(a + h) — ¢(a) — dp(a)(h)]|
ld(a)()]|
121l + l[dg(a)]| - 7]
KAl
where we have put K = (14 ||d¢(a)||) € RT. Hence, we have found § > 0
such that for all h € E:

bl <0 = a+heUand [¢(a+h) - ¢(a)] < KA

IN + IN + IN +

This shows that ¢ is continuous at a. We have proved that if ¢ is differ-
entiable at a, then ¢ is continuous at a.

2. Suppose ¢ : U — F is of class C'. From definition (130), the differential
map d¢ : U — Lr(E, F) is well-defined, i.e. d¢(a) exists for all a € U.
Furthermore, d¢ is said to be a continuous map. For this to be meaningful,
U and Lr(E, F) need to be topological spaces. FE being an R-normed
space, it is naturally endowed with the norm topology, as defined in (126).
Since U is a subset of E, the obvious topology on U is the topology induced
by the topology on E, as defined in (23). Now from exercise (5), Lr(E, F)
is an R-normed space. It is therefore a topological space, when endowed
with the norm topology, as defined in (126).

3. Suppose ¢ : U — F is of class C'. Then in particular, for all @ € U the
differential d¢(a) exists. From 1. it follows that ¢ is continuous at a, for
all a € U. We conclude that ¢ is continuous.

4. We assume that £ = R. Note that R is a vector space over itself, and
that |- | is a norm on R. So (R,|-|) is an R-normed space. Let a € U.
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We assume that the limit:
¢'(a)

exists in . We claim that ¢ is differentiable at a, and furthermore that
the differential d¢(a) of ¢ at a is given by:

vte R, dé(a)(t) = t-¢/(a)

Let | € Lr(R, F) be defined by I(t) =t - ¢'(a). Note that I(t) is nothing
but the product of ¢'(a) € F with the scalar t € R. So [ is well-defined,
and it is clearly a linear map. Moreover, for all t € R, we have:

1@ =1t - &' (@)l = [t] - ' ()l
and in particular ||I(t)]] < ||¢'(a)||-|t|. Solis continuous, and it is indeed an
element of Lr (R, F). To show that ¢ is differentiable at a with d¢(a) =
we only need to show that [ satisfies the requirements of definition (128).
Let € > 0 be given. Having assumed that the limit ¢’(a) exists, there is
d > 0 such that for all t € R, ¢ # 0, the condition |t| < 0 implies a+t € U

and:
H dla+t) — d(a)
t

6 oy 9latt) o)

t£0,t—0 t

—¢(a)

Hence, we have:

[6(a+1) = ¢(a) — 1)

¢(a+1t) —¢(a) —t-¢'(a)]
t- ‘w _¢/(G)H

< et
This last inequality being still valid for ¢ = 0, we have:
[t] <d = a+teUand ||[p(a+t) — p(a) —I(t)| < elt]

So I satisfies the requirements of definition (128) and we have proved that
¢ is differentiable at a with d¢(a) = I. This shows that the existence of
¢'(a) implies that of d¢(a). Conversely, suppose that d¢(a) exists, i.e.
that ¢ is differentiable at a. We claim that ¢’(a) exists, and furthermore
that ¢'(a) = d¢p(a)(1). Let € > 0. There exists 6 > 0 such that for all
t e R:

t| <6 = a+teUand |¢(a+1)—¢la) —do(a)(t)] < et

In particular, if ¢ € R, ¢t # 0, the condition |¢| < ¢ implies that a +t € U,
and furthermore, denotmg I =dg¢(a):

qucH—ti H . |t|”¢(a+t) ¢(a) — (1))
- |t||\¢(a+t) dla) —1(t)]
1
< |t|6|t|_6
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This shows that the limit ¢'(a) exists and is equal to d¢(a)(1). We con-
clude that in the case when ' = R, ¢ : U — F is differentiable at a, if
and only if the derivative ¢'(a) exists, in which case d¢(a) € Lr(R, F)
is given by d¢p(a)(t) = t - ¢'(a) for all t € R. In particular, we have
dd(a)(1) = ¢'(a).

Exercise 7

Exercise 8.

1. Let F, F, G be three R-normed spaces. Let U be open in E and V' be open
in F. Let ¢ : U — F and ¢ : V — G be two maps such that ¢(U) C V.
We assume that ¢ is differentiable at a € U, and we put l; = d¢(a). We
assume that ¢ is differentiable at ¢(a) € V, and we put lo = dip(¢p(a)).
Since ¢(U) C V, for all z € U we have ¢(x) € V. So (¢(x)) is a well-
defined element of G. It follows that ¢ o ¢ : U — G is a well-defined
map.

2. Let € > 0. Since [ € Lr(E,F), ||l1]] is a well-defined element of R*.
Since Iy € Lr(F,G), ||l2]| is a well-defined element of R*. Take n =
min(1, e(1+ ||l ]| + [|i2]))~*). Then n > 0, and:

n(n =+ 0l + i) n(L+ [0l + ll21)

<
< €

3. Since 9 is differentiable at ¢(a) € V and ly = dip(¢(a)), lo satisfies the
requirements of definition (128). There is d2 > 0 such that for all hy € F'
with || he|| < b2, ¢(a) + he € V and:

l¥(p(a) + h2) — o @la) — la(h2)|| < nllhe]l
4. Let ho € F with ||he|| < d2. Let h € E. Using 3. we obtain:
[1(o(a) + h2) Yoda) —lzoli(h)]
[(d(a) + he) — o ¢(a) — l2(ha)
[l2(h2) — Iz o L (R)]|
nllhzl| + [[l2(h2 — 11(R)) |l
izl + [[l2]] - [|h2 — L (h)|]

ININ + A

5. Since ¢ is differentiable at a € U and 1y = d¢(a), [y satisfies the require-
ments of definition (128). There exists §; > 0 such that for all h € E with
2|l < 61, we have a + h € U and:

[¢(a+h) = d(a) = Li(R)]| <l (2)

Moreover, from 1. of exercise (7), ¢ is continuous at a. Since d3 > 0, there
exists 07 > 0 such that for all h € E with ||h|| < §7, we have a + h € U
and:

[6(a +h) = ¢(a)]] < 52 (3)
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Taking ¢ = min(dy, d]), we have found 6 > 0 such that for all h € E with
|[h|| <6, we have a+ h € U and furthermore both inequalities (2) and (3)
hold.

6. Let h € E with ||h|| < J, Then a + h € U and furthermore both inequali-
ties (2) and (3) hold. Let ha = ¢(a + h) — ¢(a). Then (3) can be written
as ||hz2]] < d2, and applying 4.:

[Wodlat+h) — vodla)—lzoli(h)

[¥(¢(a) + ha) — ¢ o d(a) — 120 li(R)]|

el + [l2]l - e = L(R)]|

kel + N2l - l[¢(a + k) = ¢(a) = L(h)]]

kel + lli2lnll Al

nllé(a+h) = d(a)ll +nlll2[l - [[A]

nlléla+h) = dla) — LA

()l + itz - {17

IRl nllt - R0+ wllia]] - (1A

n(n + il =+ D7

e[|

IN

IN

using (2) —

IN + IA

using (2) —

IN

using 2. —

7. Since Iy € Lr(E,F), [ : E — F is linear and continuous. Since ls €
Lr(F,G), ls: F — G is linear and continuous. So ly0ly : E — G is linear
and continuous, and ly o ly € Lr(F,G).

8. From 6. and 7. we conclude that Iy oly € Lr(E,G) is such that given
e > 0, we have found § > 0 such that for all h € F with ||h|] < §, we have
a+h €U and:

[ odlath)—1og(a) —lxoli(h)] <€Al

From definition (128), it follows that ¥ o ¢ : U — G is differentiable at
a € U, and furthermore from definition (129):

d(po)a) = laoh
dip(¢(a)) o dé(a)
This completes the proof of theorem (110).
Exercise 8

Exercise 9.

1. Let (Q',7") and (Q,7) be two topological spaces, and A C P(2) be a set
of subsets of 2 generating the topology 7, i.e. such that 7 = 7 (A). Let
f: € — Q be a map, and define:

US(ACQ : YA eT)
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We claim that U is a topology on Q. Since f~1()) =0 € 7/ and f~1(Q) =
Q' € 7', both ) and 2 are elements of U. Let (A;);cr be a family of
elements of . Then:

7 <U Ai) =UJrtner
il iel

So UjerA; € U, and we have proved that U is closed under arbitrary

unions. Let A, B € U. Then:

fFHANB) = A)nf B eT

So AN B € U, and we have proved that U is closed under finite intersec-
tions. From definition (13), we conclude that U is a topology on €.

2. Suppose f : (', T") — (Q,T) is continuous. Then from definition (27), for
all A € T we have f~1(A) € 7. In particular, since A C 7(A) = 7T, for
all A € A we have f~1(A) € T'. Conversely, suppose f~(A) € T’ for all
A€ A. Then A C U, where U is the topology on € defined in 1. However
from exercise (11) of Tutorial 6, the topology 7 (A) generated by A is the
smallest topology on € containing A, in the inclusion sense. Hence, it
follows from A C U and the fact that U is a topology, that 7 (A) C U.
However by assumption, we have 7(A) =7. So 7 C U, and we conclude
that f~1(A) € 7’ for all A € 7. This shows that f is continuous. We
have proved that f is continuous if and only if f~1(A) € 7’ for all A € A.

Exercise 9

Exercise 10.

1. Let p; : 2 — ; be the canonical projection mapping. Given i € I and
A; € T; we have:
A =4 x [] @
Jen{i}
It follows from definition (52), that p; '(A4;) is an open rectangle, i.e. a
rectangle of (7;);er, and in particular it is an element of the product
topology 7. This shows that p; is continuous.

2. Suppose each f; : (', T") — (£;,7;) is a continuous map. From defini-
tion (56), the product topology 7 on {2 is the topology generated by the
open rectangles, i.e. the rectangles of (7;);cr. In other words, 7 = 7 (A)
where A = II;c;7;. From exercise (9), to show that f is continuous, it is
sufficient to show that f~1(A) € 7' forall A € A. Solet A € Abe an open
rectangle. From definition (52), A can be written as A = Il,c; A;, where
each A; is an element of 7; U{Q;} = 7;, and the set J ={i € I : A; # Q;}
is finite. Hence, we have:

f7HA) = {we: f(w) e A}
{we Q' (filw))ier € WicrAs}
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{lweQ: fi(w) € Ai,Vie I}
= {we®: fi(w) e A,Vie J}
= (571

ieJ
Having assumed that f; is continuous for all i € I, it follows from A; €
T; that f;'(A;) € T', and consequently since J is finite, f~'(4) =
Nicsf; ' (A;) is an element of 7. Hence, we have proved that f~1(A) € 7'
for all A € A, and we conclude that f is continuous. Conversely, suppose
f:(Q,T") — (,7) is continuous. Since p; : (2,7) — (€4, 7;) is contin-
uous, each f; = p; o f is a continuous map.

Exercise 10

Exercise 11.

1. Let E, F,G be three R-normed spaces. Let U be open in F and V be
openin F. Let ¢ : U — F and ¢ : V — G be two maps of class C' such
that ¢(U) C V. Given (I1,l2) € Lr(F,G) x Lr(E, F), we define:

Ni(l,le) 2l + ]
No(l, ) 2 VI + al?
Nao(li,l2) 2 max(|lia]], ||ia))

Then each N; : Lr(F,G) x Lr(E,F) — R" is a well-defined map, i €
{1,2, 00}, and we claim that it is in fact a norm on Lgr (F,G) x Lr(E, F).
Note that we are implicitly saying that Lr(F,G) x Lr(FE,F) is an R~
vector space, a fact that has not been justified in these Tutorials. For
those not familiar with the product structure of vector spaces, recall that
given two elements (1, l2) and (I1,15) of Lr(F,G)x Lr(E,F), and o € R,
a vector addition @ is defined as:

(11,12) @ (13, 15) = (1 + 13, o + 1)
and a scalar multiplication ® is defined as:
a® (ll, 12) = (Oéll, Oélg)

It is cumbersome but not difficult to show that Lr(F,G) x Lr(E,F)
together with the operators @ and ®, satisfy the requirements of (89)
defining an R-vector space, where the zero element of Lr (F,G)xLr(E, F)
is understood to be (0,0). It is customary to denote @ and ® simply by
+ and -, and we shall do so from now on. Now, given (z,y) € R?, we
define [|(z, y)[lx = [z|+[yl, [z, y)ll2 = /|z[* + [y[* as well as [|(z, y)||loc =
max(|z|, |y]). Then it is clear that N;(l1,l2) = [[(|]l1]], ||l2]])]]; for all i €
{1,2,00}. In order to prove that N; is a norm, we shall first prove that
|- |l; is a norm on R?, a fact that many of us are already familiar with.
For those who require a proof, here is the following: note that || - |2 is
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nothing but the norm defined in (81), associated with the usual inner-
product of R%. From exercise (1), || - || is therefore a norm on R?. So we
may assume that ¢ € {1,00}. It is clear that ||(z,y)|l; = 0 is equivalent
to (z,y) = (0,0) and furthermore that ||a(x,y)|: = |a| - [|(x,y)|; for all

a € R. Hence, we only need to prove the triangle inequality for || - ||; and
| loo- Given (z,y) and (2/,y’) in R?, we have:
I@,y) + @0l = l@+2"y+y)h

|z + 2| + ly + o/
|| + |2 + |y + [¥/]
[z, 9)ll + (2", 9")

IN

Moreover, we have:

|| + |2

max(|z, [y]) + max(|z’], |y'])
1@, 9)lloe + 12", ¥l

and similarly |y + ¢'| < |[(z,9)]loo + [|(z,¥)]|co- Hence:

@, 9) + @ ¥ )lee = ll@+2" 5+ )l

= max(jz + 2|, [y + )
< @ y)llso + 1yl
So we have proved that || - ||; is a norm on R? for all i € {1,2,00}.
Note that all this will be generalized in a later tutorial, when we formally
study normed vector spaces, and in particular the norm | - ||, on R”
or C", where p € [1,+0cc]. Having proved that || - ||; is a norm on R2,
we shall now prove that N; is a norm on Lr(F,G) x Lr(E,F). Since
N;i(l1,12) = [T ]ls 122])ls5 the condition N;(ly,1l2) = 0 is equivalent to
(I ]s 121D l: = 0, which is equivalent to (||{1]], ||2]]) = (0,0), which is in
turn equivalent to (I1,l2) = (0,0). Moreover, if a € R, we have:

Ni [Oé(ll, 12)] = Ni[(all, Oélg)]
I Cladal, lladzl) [l
| el - {12l el - {122]) 1la

lz+2'] <
<

A

= ezl 21 1l
= laf-[[ (Il [122]) 11z
= |a|N;i(l1,l2)
FlnaHY7 if (ll7l2)a (lllall2) € ‘CR(F7 G) X ‘CR(E7F)
Nil(li, 1) + (13, 13)] = Ni[(l + 15,12 +15)]

= Nl 44l 2+ 51D 1
o R Y A DN F
AR N AN E

A
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A

< A W) s+ 1 CHEL I T3 s
Ni(l1,l2) + Ni(11,15)

We have proved that N; is a norm on Lg(F,G) x Lr(E, F).

2. Let X = Lr(F,G) X Lr(E,F) and 71, T2, 75 be the topologies on X
induced by the norms N;, Ny and N respectively. Let 7 denote the
product topology on X. We shall prove the equality 73 = 7o = 7o = 7.
For all (I1,12) € X, we have:

[N2(l1, 12)]? 221 + 112212
12201 + (12211 + 21T ] - 122]
(12l + N2l
= [Ni(lh, 12)]?
[2 max(||l1]], [[22]))]?
A[Noo(l1,12)]?
= dmax(||l: 1% [|I2]%)
(|01 + NlE21?)
= 4[Ny(ly,12))?
from which we obtain Ny < N; < 2N, < 2N,. Consider the identity
mapping j : X — X, defined by j(l1,l2) = (I1,l2) for all (I1,l3) € X.
Then j is a linear mapping and the inequality No < N can be written as:

V(ly,l2) € X, Nalj(ly,12)] < Ni(l1,l2)

IN

IN

IN

From exercise (3), it follows that j : (X, N;) — (X, N2) is a continuous
map. Hence, for all U open in (X, Ny), i.e. for all U € 75, we have
j~YU) open in (X, N), i.e. U € T;. This shows that 75 C 7;. Similarly,
the inequality N; < 2N, implies that 73 C 7, and N, < N> that
T C 75. Hence, we have proved that 7o C 77 C 7, C 75, or equivalently
71 = T = T It remains to show that 7 = 7.,. From definition (56), the
product topology on X is the topology generated by the open rectangles
of X, i.e. the sets of the form A x B where A is open in Lg(F,G) and
B is open in Lr(FE, F). To show that 7 C T, it is sufficient to prove
that any such A x B is an element of 7. Indeed, 7 being the smallest
topology on X containing all open rectangles, if 7., is shown to contain
all open rectangles, then 7 C 7,,. We therefore consider A x B open
rectangle in X, and we shall prove that A x B € 7. If A x B = (), then
A x B € Ty, is clear. Otherwise, there exists (I1,1l2) € A x B. Since A is
open in Lr(F,G) and [; € A, there exists 1 > 0 such that B(ly,€1) C A,
where B(l1,€1) denotes the open ball in Lg(F,G). Similarly, since B is
open in Lr(F, F) and ls € B, there exists €2 > 0 such that B(l2,e2) C B,
where B(l2, €2) denotes the open ball in Lg (E, F'). Note that we are using
identical notations B(-, ) to refer to open balls in Lg (F, G) and Lr(E, F),
but this is unlikely to confuse anyone. Let € = min(ey,ez). Then € > 0,
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and furthermore for all (I1,15) € X we have:

Noo[(l/l,llz) — (ll,lg)] <€ = Nw[(lll — ll,lé — lg)] < €
& max(|ly — Ll I, - L)) <e

15—l <er, lla — 2] <e
lll S B(ll,el) s 1/2 S B(l2,€2)
lieA,lyeB

s (3,15 e Ax B
Hence, given (I1,l3) € Ax B, we have found € > 0 such that B[(l1,2),€] C
Ax B, where By [(l1,12), €] denotes the open ball in X with respect to the
norm N.,. This shows that A x B is open with respect to the topology
induced by N, i.e. that A x B € 7. We have proved that 7 C 7.
To show the reverse inclusion, consider U € 75,. Given (l1,l2) € U, there
exists € > 0 such that Boo[(l1,12),¢] CU. For all (I},15) € X:

(I7,15) € B(l1,€) x B(la,e) & |li =l <€, |[ly =12 <e
max(||l} — L], Iy — lof|) <€
Noo[(l5 = 11,1, —12)] < e
NOO[( ,17l/2) - (llaZQ)] <€
(l/lv llQ) € BOO[(llv l2)a 6]
and consequently B(l1,€) x B(l2,€) = Bso[(l1,12),€]. However, B(l,¢€)
being an open ball in Lg (F, G), it is an open subset of Lg (F, G). Similarly,
B(lz,€) is an open subset of Lr(E, F'). It follows that B(l1,€) x B(lz,€)
is an open rectangle in X, and in particular is an element of the product
topology 7. We have proved that Bs[(l1,12),€] = B(l1,€) x B(l2,€) is an

element of 7. Hence, given (l1,l2) € U, we have found some Uy, 1,y =
Boo[(l1,12), €] € T such that (I1,l2) € Uy, 4,y € U. Hence:

U = U U(ll,lz) cT
(ll,lz)EU

A

to e

and we have proved that 7., C 7. This completes our proof of 7o, = 7,
and finally 77 =70 =T, = 7.

3. Let X = Ly (F,G)xLr(E, F)and H : X — Lr(F,G) be the map defined
by H(li,la) = 1y oly, for all (1,l2) € X. Note that if [y € Lr(F,G)
and Iy € Lr(E,F), then [y 0ly : E — G is a well-defined map, which
furthermore is linear and continuous. So H is a well-defined map which
has indeed values in Lg(F,G). Given (I1,l2) € X, for all © € E we have:

1 (1, l2) () [(l o l2)(2)]
[ (l2(2)]

[l - 2 ()]]
[l - 122]] - fl]|

INIA
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Hence, using 4. of exercise (5), ||H (I1,l2)|| < li1]] - [|l2]]-

4. For those familiar with the notion, H is a bilinear map such that || H (I1,l2)| <
[[11]] - ||l2]| for all (I1,12) € X, where X = Lg(F,G) x Lr(E, F). It follows
that H is continuous. As we have not had a tutorial on multilinear maps,
here is a direct proof: Let (I1,12) and (I},1;) be elements of X. Then:

IH(11,15) = H(y, L)l = lioly —lioly|

< |[lholy —holyll+llioly =l ol
l s linear — = [|(Iy — 1) o lo|| + [lix o (I — 2|

= [H@ =0, )|+ 1 H(, 1 = L)

< 0= Gl il + - s = L

< (Il + 1) max(fliy = Ll 125 — L)

= (IBI+ Ul Nl = 11,15 — I2)
= (IBI+ 1Ll Noo[(1,15) — (11, 12)]
So we have proved that:
[ (15, 1) = H(l, )l < (1] + 1) No (1, 1) = (s 12)] (4)
Suppose now that No[(11,15) — (I1,12)] < 1. Then:

izl < lliy = dofl + 2]
< max([[If = Ll (115 = Lall) + [|22]]
= Noo[(l1,15) = (I, I2)] + [Il2]|
< 14k

and consequently, using (4) we obtain:
IH (11, 15) = H(lx, )| < (1 + [l + 112D Neo (11, 15) — (I, 12)]

Hence, assuming (l1,l2) € X given and ¢ > 0, defining n > 0 as n =
min[1, (1 + ||l1]] + [[l2]]) " te], it is clear that:

Neo[(l3,15) = (i, )] < = [|H(13,1y) — H(ly, 12)|| < €

Having proved in 2. that the product topology on X is induced by the
norm N, it follows that H is continuous at (I1,l2). This being true for
all (I1,12) € X, H is continuous.

5. Let K : U — Lr(F,G) x Lr(E,F) be the map defined by K(a) =
(dip(¢p(a)),dp(a)) for all a € U. Note that given a € U, having assumed
that ¢ is of class C! on U, in particular the differential d¢(a) is a well-
defined element of Lg(FE, F). Furthermore, having assumed that v is of
class Ct on V and ¢(U) C V, in particular ¢(a) € V and the differential
dip(¢(a)) is a well-defined element of Lg(F,G). It follows that K(a) is
a well-defined element of X = Lr(F,G) x Lr(E,F). So K is a well-
defined map, which has indeed values in X. From exercise (10), in order
to show that K is continuous, it is sufficient to show that each coordinate
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mapping a — di(¢(a)) and a — dé(a) is continuous. However, since ¢
is of class C!, the differential d¢ : U — Lgr(FE, F) is a continuous map.
Similarly, since 1 is of class C*, the differential dyp : V — Lr(F,G) is
a continuous map. Since ¢ : U — F is differentiable on U, it follows
from exercise (7) that it is continuous. Since ¢(U) C V, we conclude that
dypo¢:U — Lr(F,G) is a continuous map. Having proved that the two
coordinate mappings d¢ and di o ¢ are continuous, we have proved that
K is a continuous map.

6. Let a € U. Then ¢ is differentiable at a and ¢ is differentiable at ¢(a) € V.
From theorem (110), it follows that 1 o ¢ is differentiable at a. This being
true for all a € U, ¢ o ¢ is differentiable on U.

7. From theorem (110), for all a € U we have:

d(pod)(a) = dip(¢(a)) o dg(a)
= H(dy(¢(a)),d¢(a))
= H(K(a))
= HoK(a)
This being true for all a € U, d(vp o ¢) = Ho K.

8. Given three R-normed spaces F, F and G, given U open in E and V open
in F, given ¢ : U — F and ¢ : V — G of class C* with ¢(U) C V, we
have shown in 6. that v o ¢ is differentiable on U. Furthermore, we have
shown in 7. that d(¢ o ¢) can be expressed as d(¢ o ¢) = H o K, where
K :U — Lr(F,G) x Lr(E, F) has been shown in 5. to be continuous,
and H : Lr(F,G) x Lr(E,F) — Lr(F,G) has been shown in 4. to be
continuous. It follows that d(i) o ¢) : U — Lr(F,G) is a continuous map.
From definition (130), we conclude that o : U — G is of class C'!. This
completes the proof of theorem (111).

Exercise 11
Exercise 12.

1. Let E be an R-normed space. Let a,b € R, a < b. We assume that
f:]a,b] — E and ¢ : [a,b] — R are two continuous maps which are
differentiable at every point of ]a, b[, with:

vt €la, b, |f' ()l < g'(t)
Let € > 0. We define ¢, : [a,b] — R by:

6clt) S 1£(t) = F(0)]l = g(t) + g(a) — e(t — a)

for all ¢t € [a,b]. For all z,y € FE, we have:

Hizll =Nyl | < llz =yl
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It follows that the map || - || : E — R™ is a continuous map. Having
assumed that f : [a,b] — E is continuous, from:

I1£(t) = f(a) = F()) + fla)ll = [[£(t) = @]
it is clear that ¢ — f(t) — f(a) is also continuous. Hence, we see that

t — || f(t)— f(a)|| is continuous and finally, since g is itself continuous, we
conclude that ¢, is a continuous map.

2. Let E. = {t € [a,b] : ¢pe(t) < €} and ¢ = sup E.. Since ¢.(a) = 0, in
particular ¢.(a) < e and consequently a € FE.. This shows that a < c.
Furthermore, for all ¢ € E,., we have t < b. So b is an upper-bound of
E.. Since c is the smallest of such upper-bounds, we obtain ¢ < b. We
have proved that ¢ € [a,b]. In particular ¢.(c) is well-defined. Suppose
de(c) > €. Then ¢ € ¢-(Je, +oo[). Having proved that ¢, is continuous,
the fact that Je, +-oc[ is an open subset of R implies that ¢_*(Je, +o0) is
an open subset of [a,b]. From ¢ € ¢ 1(]e, +00]), we deduce the existence
of n > 0, such that:

Je =n,c+nlNa,b] C o7 (e, +o0) (5)

Now let t € E.. Then t € [a,b], t < ¢ and furthermore ¢c(t) < e. It
follows from (5) that ¢ cannot be an element of J¢ — 1, ¢, and consequently
t < ¢ —n. This shows that ¢ — 7 is an upper-bound of E, contradicting
the fact that ¢ is the smallest of such upper-bounds. Indeed, note that
¢ € [a,b] implies that ¢ < 400 and consequently ¢ — 1 < ¢. Our initial
assumption is therefore absurd, and we have proved that ¢.(c) < e. When
dealing with this question, it may have been tempting to some to use the
following argument: since E. = {t € [a,b] : ¢ < €} and ¢, is continuous,
E. is a closed subset of [a, b], which furthermore is non-empty since a € E..
It follows that ¢ = sup E. € E.. This argument is valid, but one has to
be careful about the following point: if E. is a closed subset of R, it may
not be true that sup E. € E. (take E. = R). The fact that E. is a closed
subset of [a,b] (which is itself closed in R) is of crucial importance here.
A rigorous argument goes as follows: The topology of [a,b] is induced
by that of R, but also more importantly by that of R. The fact that
E. is closed in [a,b] implies the existence of some F closed in R, such
that E. = F N [a,b]. However, the interval [a,b] is also closed in R (it
is compact and R is metrizable). So E. is in fact also a closed subset of
R. Being non-empty, we conclude from exercise (9) (part 5.) of Tutorial 8
that ¢ =sup F, € E..

3. Since ¢, is continuous and ¢.(a) = 0, there exists h > 0 with:
Vt € [a,a+ h[N[a,b] , de(t) < |e(t)] <€

4. Since a < b, we have Ja,a + h[N[a,b] # (. Let ¢ be an arbitrary element of
la,a + h[N[a,b]. Then ¢ € [a,b] and from 3. we have ¢.(t) <e. Sot € E,
and consequently ¢ < c. Since t €]a, a + h[, we conclude in particular that
a < c. So ¢ €la,b.
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5. Suppose ¢ €]a, b[. By assumption, both derivatives f’(c) € E and ¢'(c) €

R are well-defined. From the existence of f/(c¢) we deduce that of §; > 0
such that for all ¢ # c:

t€le—di,c+a[Na,b] = Hw—f«)“g% (6)

From the existence of ¢’(c) we deduce that of 3 > 0 such that for all ¢ # ¢:
t) —

t €]c — 92, ¢+ 02[N[a,b] = %—g'(c) < % (7)

Let 6 = min(d1, d2) > 0. Having assumed that ¢ < b, the set |¢, bjN]c, ¢+ 4]
is not empty. Let to be an arbitrary element of |c, b]N]e, ¢ + d[. From (6)
we obtain:

f(to) — f(c)

| Z=TO) g+ [ L8121 g
< fEl+5
From (7) we obtain:
i) = g(tg):g(c) +g,(c)_g(t<;):g(0)
0—C 0o—¢C
< 9(152:3(6) +}g(tgz:i(6) g0
g(to) —g(c) | €
S (t)o —C + 5

6. Since || f'(c)]] < ¢'(¢), it follows from 5. that:

[1f(to) = f (<)l

|t0—c|-HM

to—C

< Jto—cl-(If' ()l +€/2)
< Jto—cl-(g'(c) +¢/2)
= (to—c)-<w+€)

= g(to) —g(c) +eto —¢)

7. Having proved in 2. that ¢.(c¢) < ¢, we have:

1f(c) = F(@)] < g(c) —gla) +e(c —a) +¢

8. From 6. and 7. we obtain:

I1f(t0) = f(a)l 1f(to) = F(O) + [1f(c) = F@)]

g(to) — g(c) + €(to — ¢)

[VANVAN
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+ glc)—gla)+e(c—a)+e
= g(to) —gla) +e(to —a) +e
9. Tt follows from 8. that ¢.(t9) < e. This shows that ¢ty € F. and conse-

quently tg < ¢. This contradicts that fact that to €]c, b]. Hence, our initial
assumption that ¢ €]a, b[ is absurd.

10. We have proved in 4. that ¢ €]a, b]. However, ¢ €]a,b[ leads to a contra-
diction. It follows that ¢ = b. Since ¢(c) < €, we conclude that ¢.(b) < e.
Hence:

1£(b) = fa)ll < g(b) —g(a) +e(b—a)+e

11. Given an R-normed space E, given a,b € R, a < b, given two continuous
maps f : [a,b] — E and g : [a,b] — R which are differentiable at every
point of ]a, b[, and such that:

vt €la, b, (1@ < g'(2)

we have proved in 10. that given € > 0:

1£(b) = fa)ll < g(b) —g(a) +e(b—a)+e

This being true for all € > 0, we conclude that:

1£(6) = f(a)ll < g(b) — g(a)
This completes the proof of theorem (112)

Exercise 12

Exercise 13.

1. Let U be open in R™ and ¢ : U — E be a map where E is an R-normed
space. We assume that ¢ is differentiable at @ € U. The differential
dg(a) € Lr(R™, E) satisfies the requirements of definition (128). Given
€ > 0, there exists § > 0 such that for all € R"™, the condition [|z|| <
implies that a +z € U and:

[6(a +2) — ¢(a) — do(a) (@) < el
If (e1,...,e,) denotes the canonical basis of R™, then for all h € R with
|h] < 6, given an arbitrary ¢ € N, the vector & = he; is such that
|z]| = |h] < §. So a+ he; € U and:

[¢(a + hei) — ¢(a) — dp(a)(he;)|| < el[he]|
This being true for all h € R with |h| < §, we have proved that:
1
T lléla+ hei) — ¢(a) — dp(a)(hes)|| = 0

.
h20uh—0 |[heq]|
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2. Let ¢ € N,,. Putting [ = d¢(a), we have:

dlathe) —gla) o L
‘ . Ued)| = pypllota+ he) = (a) - hi(er) |
1
:m|\¢(a+hei)—¢(a)—l(hei)||

and it follows from 1. that:

¢(a+ hei) — ¢(a)

= — dg(a)(en)| =0

im
h#0,h—0

We conclude from definition (131) that the partial derivative g—i(a) exists
and is equal to d¢é(a)(e;). '

3. Given an open subset U of R", given a map ¢ : U — E where FE is an
R-normed space, we have proved that if ¢ is differentiable at a € U, then

g—i(a) exists for all ¢ € N,,, and furthermore:
9¢
22 (a) = db(a)(cr)

Let h = (hi,...,h,) € R™. We have:

de(a) <Z hiei>
i=1

S hidé(a) )

i=1

"0 "0
Y hige@) = Y G (ah
7 i—1 7

i=1

dg(a)(h)

This completes the proof of theorem (113).

Exercise 13

Exercise 14.

1. Let U be open in R™ and ¢ : U — FE be a map, where F is an R-
normed space. Suppose ¢ is differentiable at a,b € U. Let i € N,,. From
exercise (3), we have:

1dé(b) — d(a)|| = sup [|(d(b) — do(a))(x)]|

where the supremum is taken over all x € R™ with ||z|| = 1. Taking
x = e;, where (e1,...,e,) is the canonical basis of R™, since |le;|| = 1 we
obtain in particular:

9¢ 9¢
8$i (b - 8$i (a)H

[do(b)(ei) — do(a)(e:)|

1(de(b) — do(a))(ed) |
|d(b) — do(a)|

IN
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2. We now assume that ¢ is of class C* on U. In particular, d¢(a) exists
for all @ € U. From theorem (113), it follows that the partial derivative
g—i(a) exists for all @ € U and i € N,,. Furthermore, the differential
d¢ : U — Lr(R", E) is continuous. It follows from 1. that dd) U — FE

is also a continuous map. We have proved that if ¢ is of class C' on U,
then gf exists and is continuous on U, for all 1 € N,,.

Exercise 14

Exercise 15.

1. Let U be open in R™. Let ¢ : U — E be a map, where E is an R-normed
space. We assume that 8—¢ exists on U, and is continuous at a € U, for

all i € N,,. We define [ : R" — E by:

12522 @),

X
1,182

for all h = (hy,...,h,) € R"™. Having assumed that 37(15 exists on U
for all i € N,,, in particular each g—i(a) is a well-defined element of E.
Given h € R", each product %( ) - h; of the scalar h; € R and vector

gf (a) is therefore itself well-defined. It follows that I(h) is a well-defined
element of £. So [ : R" — E is a well-defined map, which furthermore is
clearly linear. Given h € R™, using the Cauchy-Schwarz inequality (50),
we obtain:

lnIl =

=3

-l

= M-

where we have put M = (31, ||g—i(a)|\2)1/2. Having found M € R*
such that ||i(h)|| < M]|h| for all h € R™, we conclude from exercise (3)
that [ is continuous. So we have proved that I € Lg(R™, E). Of course the
fact that [ is continuous is a consequence of a far more general result: any
linear linear map [ : F' — E defined on a finite dimensional normed space
F, is in fact continuous. We shall prove this result in a later tutorial.

IN

2. Let € > 0. Having assumed that each partial derivative g—d) is continuous
at a € U, for all i € N, there exists 7; > 0 such that for all h € R”, the
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condition ||h|| < n; implies that a + h € U and furthermore:
9¢ 9¢
(%ci 8xi

Taking n = min(n,...,n,) > 0, the condition ||h|| < n implies that
a + h € U and furthermore:

(a+h)—

(G)H <e

0¢ d¢
s (a+h)— oz (a)

<e

Vi e N, , H

3. Let h = (h1,...,hy) € R™ with ||h]] < n. Let (e1,...,e,) denote the
canonical basis of R". Let kg = a and for all i € N,,;:

[
ki =a+ Z hjej
J=1

From 2. the condition ||A|| < n implies that a + b’ € U, for all o’ € R".
However, it is clear that kg € U and for all i € N,;:

i
ki —all =D hje;
=1
, 1/2
= |20
j=1
. 1/2
< | DYon = Al <mn
=1

So k; = a+ (k; — a) is an element of U. Moreover:

pla+h) — ¢a) = U(h) = d(kn) — ¢(ko) — I(h)

n

= S (@) — 6(ki-1)) — U(h)

i=1
n

= ¥ <¢(ki_1 + hiei) — plkiq) — hig—i(a))

i=1
4. Let i € N,,. Suppose h; > 0 and define f; : [0, h;] — E by:

9¢
0z, (a)

for all t € [0,h;]. Given t € [0,h;], the product t - g—;ﬁ(a) is a well-
defined element of E, and ¢(k;_1) is also well-defined since k;_; € U.

fi(t) = d(ki—1 +tei) — p(ki1) —t
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Furthermore, following a similar proof to that of 3.:

i1 1/2
kit +tes—al = | Y _h2++¢
j=1
. 1/2
K3
< Wl <
j=1

and consequently k;_1 + te; € U. It follows that ¢(k;—1 + te;) is also
a well-defined element of E. We conclude that f;(¢) is a well-defined
element of F of all ¢ € [0, h;], and we have proved that f; : [0,h;] — E
is well-defined. Let ¢ € [0, h;] and u # 0 such that ¢t + u € [0, h;]. Define
k* = k;_1 +te; € U. We have:

it +u)— fi(t 1
w = E[¢(ki—1 +(t+uei) — olki-1)
o¢
— (¢
(t+ )52 (@)
1 0
— oo + te0) = 6(0ki-1) — b2 (@)
1 * * 8¢
= 2l +ue) = 0(k")] = 52 (a)
Having assumed that the partial derivative d—f exists at every point of U,
in particular it exists at k* € U, and consequently from definition (131),
we obtain:
. filt +u)— fi(t) 0o .. 09
u;él()l,rl?ao u N dx; (k ) 8JLL' (a)

So the derivative f/(t) exists for all ¢ € [0, h;] and furthermore:

_ 99 9¢

(kiz1 +te;) —

5. The fact that f; is continuous on [0, h;] can be seen in various ways. One
the one hand, having proved that f/(t) exists for all ¢ € [0, k], f; is neces-
sarily continuous on [0, h;]. On the other hand, the map ¢t — k;_1 + te; is
clearly continuous with values in U, while ¢ : U — F being differentiable,
is also continuous by virtue of exercise (7). It follows that ¢t — ¢(k;—1+te;)
is a continuous map, and it is clear from there that f; is continuous on
[0, h;]. Having proved that f/(t) exists for all ¢ € [0, h;], in particular f/(t)
exists for all ¢ €]0, h;[. So f; is differentiable on |0, h;[. Note that our use
of the word differentiable means nothing more here than the existence of
the derivative f/(t). Fortunately, from 4. of exercise (7), this is equivalent
to the word differentiable in the sense of definition (128). Since we have
proved that for all ¢ €]0, h;[, we have ||k;—1 + te; — al| < 7, using 2. we
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obtain:

9¢
0

i

<e

L@ = || 5~ (ki1 + te:) —

02

6. Since f; : [0, h;] — E is continuous on [0, h;] and differentiable on ]0, h;[
with || f/(¢)|| < e for all ¢ €]0, h;[, applying theorem (112) we obtain:

Dl = 1hm

dx;
[[fi(hi) = £i(O)]
§ E(hi — 0) = 6|hi|

H¢(ki—1 + hiei) — ¢(ki—1) — hi

7. Suppose now that h; < 0. The inequality obtained in 6. is clearly true
if h; = 0. So we may assume that h; < 0. Similarly to 4. we define
fi . [hz,O] — F by:

1(0) = 9lhs1 +te) = dlki1) — 15 (@)

Then f; is well-defined, continuous on [h;, 0] and differentiable on |h;, 0],
with the property that:

0 0
f(t) = a—‘% ter) a_i(”)

for all ¢ €]h;,0[. In particular, we still have || f/(t)|| < e for all t €]h;, 0],
and applying theorem (112) once more, we obtain:

9¢
Bz, (a)

[ fi(ha)ll

= [[£i(0) = fi(hi)|l
< E(O — hl) = 6|hi|

H¢(ki—1 + hiei) — ¢(ki—1) — h;

Hence, the inequality obtained in 6. is still valid for h; < 0.

8. Using 3. and 6. we obtain:
[pla+h) = la) —Uh)]

; (¢(ki1 + hiei) — o(ki—1) — hy g;i( )) H

< Z ki—1 + hiei) — ¢(ki—1) — hi gj (a)
< Zelh |
<

() ()

= eVl
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This has been proved for any h € R™ with ||h] < 7.

9. Given U open in R", given a map ¢ : U — E where F is an R-normed
space, having assumed that —d’ exists at every point of U and is continuous
at a € U for all 1 € N, g1ven € > 0, we have found 1 > 0 such that for
all h € R™, the condition ||h| < n implies that a + h € U together with:

[é(a+h) = d(a) — U(R)|| < ev/n|h]
Applying this result to €/+/n instead of €, taking § = n/2 > 0, the condi-
tion ||h|| < ¢ implies that a + h € U together with:
[¢(a+ h) = ¢(a) — LR < €l[A]]

It follows that I € Lr(R", E) satisfies the requirements of definition (128),
and we have proved that ¢ is differentiable at a € U. This completes the
proof of theorem (114).

Exercise 15

Exercise 16.

1. Let U be open in R™. Let ¢ : U — E be a map where F is an R-normed
. 9 . . .
space. We assume that for all i € IN,,, 8_ exists and is continuous on U.

Then in particular, given a € U, for all ¢ € Nn, d_ exists at every point
of U and is continuous at @ € U. From theorem (114) it follows that ¢ is
differentiable at a. This being true for all a € U, we have proved that ¢
is differentiable on U.

2. Let a,b € U and h € R™. Since ¢ is differentiable at a and b, using
theorem (113) and the Cauchy-Schwarz inequality (50):

[(dp(b) —do(a))(R)| = [lde(b )( ) — dé(a )( )i
Zaxl

¢
8331 83:1

1=
n

<(1
s

(a >H il

2% n %
><Z|h1|2>
i=1
1/2
) |

3. Let a,b € U. It follows from 2. together with 4. of exercise (5):

n 1/2
1d¢(b) — dg(a)l| < <Z ) (8)
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4. Let a € U and € > 0 be given. Having assumed that % is continuous

on U for all i € N,,, in particular % is continuous at a for all i € N,,.

Hence, given ¢ € N,,, there exists n; > 0 such that for all b € U , we have:

0¢ oo} €
20 g <a>H <=

Taking 7 = min(n,...,n,) > 0, for all b € U, using (8):
la =0l <n = [[dp(b) —do(a)l| < e

This shows that d¢ : U — Lr(R™, E) is continuous at a. This being true
for all @ € U, we have proved that d¢ is continuous.

la =0l <mi =

5. Given U open in R", given a map ¢ : U — E where F is an R-normed
space, having assumed that 88_:?7: exists and is continuous on U for all
i € N,,, we have proved that ¢ is differentiable on U and furthermore
that d¢ : U — Lr(R"™, E) is a continuous map. From definition (130), it
follows that ¢ is of class C' on U. Conversely, if we assume that ¢ is of
class C! on U, then from 2. of exercise (14), % exists and is continuous

on U for all i € N,,. This completes the proof of theorem (115).

Exercise 16

Exercise 17. Let E, F be two R-normed spaces and | € Lgr(E,F). Let U
be an open subset of E. Let /|y denote the restriction of [ to U, i.e. the map
liy : U — F defined by (l;)(x) = l(z) for all x € U. Let a € U. Since U is
open in E, there exists ¢ > 0 such that the condition ||h|| < ¢ implies a+h € U
for all h € E. So there exists ¢ > 0 such that the condition ||| < ¢ implies
a+h e U, and:

Iw)(a+h) = u)la) = L(R)|| = [[l{a+h) = l(a) = (R)]| = 0

It follows that [ satisfies the requirements of definition (128) in relation to Iy
We conclude that Iy is differentiable at a, and furthermore that d(l|)(a) =1 €
Lr(E, F). This being true for all @ € U, [|y is differentiable on U, and since
d(liy) : U — Lr(E, F') is the constant map d(ljy)(w) = [, d(ly) is continuous.
So Iy is of class Cr.

Exercise 17

Exercise 18.

1. Let Eq,...,E,, n > 1, be n K-normed spaces. Let £ = E; X ... X E,.
Let p € [1,4+o0], and for all z = (x1,...,2,) € E:

n 1/p
(z uw)
7=1

max |z|
i=1,...,n

(1>

1l

[l oo
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We claim that || - ||, and || - ||c are norms on E. It is clear that ||z|, =0
and ||zl = 0 are both equivalent to x; = 0 for all ¢ € N,,, which is itself
equivalent to x = 0. Note that although the same notation is used, the 0’s
of |z|l, =0, z; =0 and x = 0, do not refer to the same things. The first
one is the element of R, the second is the identity element of E; and the
last one refers to (0,...,0), the identity element of F, where the entries
of (0,...,0) are themselves different zeroes, each particular one being the
identity element of the corresponding F...We have not yet defined an
Abelian group in these tutorials, but we shall still venture the following
comment: in the context where an Abelian group is clearly understood (R
is an Abelian group, a vector space is an Abelian group), it is customary
to denote its identity element by 0. Now for all x € E and o € K we have
|ex||oo = | - |Z]|co, and furthermore:

ozl = la-(z,....2a) llp

= [lewy, ..., azn) |

n l/p
<Z||0415¢||p>
=1
n 1/p
( <|a|-||mi||>p>
=1
n 1/p
<|a|p2||xi||p>
=1
n 1/p
= |of (Z |xi||p> = o] - [lll,
=1

It remains to prove the triangle inequalities for || |lo and [|-||,. Let z € E
and y € E. For all i € N,,, we have:

lzi +yill - < il + [yl

< ma ]|+ max

#]loo + llylloo
This being true for all i € N,,, we obtain:

1z +ylloo = max |z +yill < [zl + [yl

In order to prove the triangle inequality for || - ||, one may think of two
possible strategies: On the one hand, it is likely that mimicking the proof
of theorem (43) will lead to a valid and simplified proof of the triangle
inequality, the crucial point being the convexity of x — zP, = > 0, for
p € [1,400[. On the other hand, it is possible to re-interpret the triangle
inequality in a way which makes it a particular case of theorem (43).
This is the approach we shall follow: Let « = (21,...,2,) € F and y =

www.probability.net


http://www.probability.net

Solutions to Exercises 46

(Y1,...,Yyn) € E. Define Q = N,, and let F = P(€2) be the power set of
Q. Then F is obviously a o-algebra on Q. We define p : F — [0, +00] by:

vAeF  u(A) 23 1a0)

Then u(@) =0, and if A = Wy>1 Ay, is a union of pairwise disjoint elements
of F, we have 14 = ), 14, and consequently:

NE

n(A) = 1a(7)

s
Il
_

I
M§

(5.
()
)

So 1 is a measure on (Q, F). We define f,g: (Q,F) — [0, +o0] by setting
f@) = |lzi| and g(i) = ||y:| for all ¢ € Q. Then f and g are non-
negative, and clearly measurable since F is the whole of the power set
P(Q). Applying theorem (43), we obtain:

lz+ylly = @, zn)+ W1, 9m) lp
|| (xl +y177xn+yn) ||p

s
I
-

I
M3

s
I
-

All terms >0 — =

M§ EM§

w(Ar)

Il
/Eﬁ\
El
+

<
s
N~
=
3

< (Z:ﬂlm + [lwill)? )1/1’
plih =1 = = (2:; /{1}(f +g)”du> v
= < / (f+ g)pdu) v
it < {[re) " (f0)”
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n 1/p n 1/p
(z uxiup) N (z uyiup)
=1 =1

= lzlly + lylly
This completes our proof of the triangle inequality for || - ||,, and we have
proved that || - || and || - ||, are norms on E.

2. Let 7, and 75 denote the topologies induced on E by | - ||, and || - ||
respectively. Let 7 denote the product topology on E. For all € F, we

have:
n 1/p
=l = <Z ||$i|p>
Z; 1/p
<Z(le|oo)p>

<
=1
= "7 lzl|e
nt/r . (m?x Hxin)l/”
n 1/p
< (Dxinp) =n'/? - |z|,
=1

Having proved that || - [, < 2P| - oo < 0P| - ||, it follows from ex-
ercise (3) that the identity mapping j : (E,|| - |l,) — (E,| - [l) is a
homeomorphism, i.e. that j and j~' are continuous. This shows that
T, = Too. In order to prove that 7 C 7, it is sufficient to prove that 7
contains every open rectangle in £. Hence, we consider A = Ay X...x A,,
where each A; is an open subset of E;. Suppose = (z1,...,2,) is an ele-
ment of A. Then for all i € N,,, x; is an element of A; which is open in F;.
There exists €; > 0 such that B(z;,¢;) C A;, where B(x;,€;) denotes the
open ball in F;. Let € = min(ey,...,€e,) > 0 and let Boo(x,€) denote the
open ball in E,| relative to the norm || - ||. For all y = (y1,...,yn) € E,

we have:
Y € Bo(z,6) & |y — 2|l <e
& max||y; — x| <e
1
= lyi — il <e,VieN,
& y; € B, €),Vi e N,
= y; €A, VieN,
& ye A

This shows that B (2, €) C A, and we have proved that for all z € A, there
exists € > 0 such that By (z,€) C A. It follows that A € 7, and we have
proved that 7 C 7.,. Note that there is no need to consider separately
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the case A = () in the previous argument. To show that 7, C 7, consider
A € T,. Given z € A, there exists € > 0 such that B (x,€) C A. For all
y € E, we have:

Yy € Boo(x,€) ly — z||co < €

ma s — ] < ¢

yi € B(x;,¢€),Vi € N,

=

=

<y — x| <e,VieN,

=

< y € B(xy,€) X ... X B(xy,€)

It follows that Boo(x,€) = B(21,€) X ... X B(xy,€) and By (z, €) is there-
fore an open rectangle in F, and in particular an element of the product
topology 7. Hence, for all x € A, there exists some A, € 7 such that
x € A, C A From A = UgcaA, we conclude that A € 7, and we have
proved that 7o, € 7. This completes our proof of 7, = 7o = 7.

3. Although we have not explicitly justified this point, F is a K-vector space
as defined in (89), where the scalar multiplication and vector addition are
given by the formulas:

A
a-(z1,...,xn) = (ax1,...,0x,)

1>

(@14 s ma) + W1 tn) S @Y1+ Yn)

For all z = (z1,...,2,) and y = (y1,...,yn) elements of E, and o € K.
Since || - ||, and || - ||oc are norms on E, it follows from definition (125)
that (E, | - |lp) and (E, || - ||s) are K-normed spaces. Having proved that
T, = Tooc = T, we conclude that the norm topologies on E relative to both
[l |l and || - || are equal to the product topology on E.

Exercise 18

Exercise 19. Let F and F be two R-normed spaces. Let U be open in E and
¢, : U — F be two maps. We assume that both ¢ and v are differentiable
at a € U. Let a € R. Let k = d¢(a) and | = dip(a). Since both k and I are
elements of Lr(E, F), from exercise (4) the map m = k + al is an element of
Lr(E,F). To show that ¢ + a is differentiable at a with d(¢ + ap)(a) = m,
we have to show that m satisfies the requirements of definition (128), in relation
to ¢+ atp. There is nothing to do if a = 0, so we may assume that o # 0. Since
both k and [ satisfy the requirements of definition (128), in relation to ¢ and v
respectively, given € > 0 there exist 47 > 0 and d2 > 0 such that for all h € F,
[Ih]l < 61 implies that a + h € U, with:

[é(a+h) = 6(a) = k(W) < SIn]

and ||| < d2 implies that a + h € U, with:
€

[¥(a+h) —¢(a) = I(R)] < ml\hl\
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Note that to obtain ; and d2, we obviously applied definition (128) to different
values of ¢’. Defining x = ¢+ aap, if 6 = min(d1,d2) > 0, the condition ||| < &
implies that a + h € U, with:

Ix(a+h) = x(a) —m(h)] [¢(a+h) = d(a) = k(R)]|

<

+ ol [l¥(a+h) = ¢(a) = LA
€ €

< gl\thlalmllhll

= eln]

This shows that m satisfies the requirements of definition (128), and we have
proved that x = ¢ + a is differentiable with dx(a) = m, i.e.:

d(¢ + ay)(a) = dg(a) + ady(a)
Exercise 19

Exercise 20.

1. Let E and F be two K-normed spaces. Let N and Ng be two norms
on E and F, inducing the same topologies as the norm topologies on FE
and F respectively. From definition (127), the set Lk (F, F') is that of all
linear maps [ : £ — F which are continuous. In the presence of alter-
native norms Ng and Nr on E and F respectively, the word continuous
is potentially vague, as it may not be clear which topologies are being
referred to. Fortunately, by assumption the norms || - || and Ng induce
the same topology on E, whereas || - || and N induce the same topology
on F. As far as continuity is concerned, it is therefore unnecessary to be
more specific about which particular norm on E (|| - || or Ng), and which
particular norm on F (|| - || or Np) is being considered. Consequently, the
set Lk (E, F) is unambiguously defined, without the need to introduce
more precise but cumbersome notations such as Lx[(E, || - [|), (F, | - ||)] or
’CK[(Ev NE)v (Fv NF)] etc.

2. Let idg : (E,|| - ||) — (E,Ng) be the identity mapping. Since || - || and
Npg induce the same topology on F, if A is open with respect to the
topology induced by Ng, then A = id,}l(A) is also open with respect to
the topology induced by || - ||. It follows that idg is a continuous map.

3. Having proved that idg : (E,|| - ||) — (E, Ng) is a continuous map, being
also linear, it follows from exercise (3) that there exists Mg € RT such
that:

Vo € E, Nglidp(z)] < Mg||z|
If Mg = 0 (which is possible when E is reduced to the trivial case E =
{0}), it is always possible to replace Mg by an arbitrary positive constant.
Hence, there exists Mg > 0 such that Ng < Mg|| - ||. However, since || - ||
and Ng induce the same topology on E, the map idgl : (E,Ng) —
(E,| ) is also continuous. Hence, we can find M}, > 0 such that:

Vo e E, |idg(z)] < MyNg(z)
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Defining mg = 1/M}, > 0, we obtain mg|| - || < Ng. We have proved the
existence of mg, Mg > 0 such that:

Ve € E, mgllz|| < Np(r) < Mgz

4. Since ||-]| and Ng induce the same topology on F', applying 3. to the space
F and the norms || - || and Ng, we obtain the existence of mp, Mp > 0
such that:

Vy e F, mrlly| < Nr(y) < Mr|yll

Let | € Lx(F,F) and « € E with Ng(z) = 1. We have:
INF@)] < Me[i()]

IN

Mg||]] - |||
NE(J?) MF
< Mpl|lf] - o :m—EHlH

Defining M = Mp/mg > 0, we have proved that M||l|| is an upper-
bound of all || Np(l(x))||’s as x ranges through the set of all € E with
Ng(z) = 1. Since N(I) is by definition the smallest of such upper-bounds,
we obtain N(I) < M||l||. This being true for all | € Lk (E, F), we have

found M > 0 such that N < M| -|. In order to show the existence
of m > 0 such that m| - || < N, one may reach a quick conclusion by
interchanging the roles of || - || and Ng on the one hand, and || - || and Np

on the other hand, to obtain M* > 0 such that ||-|| < M*N, and conclude
with m = 1/M*. As this may seem confusing or unconvincing to some,
we shall proceed without emphasis to this symmetry. Let € E be such
that ||z|| = 1. Using 3. of exercise (5) applied to the norms N on E, Np
on F', and associated N on Lk (FE, F):

@)l < ——Npl()
mpg

3. of ex. (5) — < miFN(z) Np(x)

1 M
< —NO)Mgllz|| = —£N(1)
mpg mpg

Defining m = mp/Mp > 0, we have proved that m~!1N(l) is an upper-
bound of all ||I(x)]|’s as « ranges through the set of all z € E with ||z| = 1.
Since ||!]| is the smallest of such upper-bounds, we obtain ||I|| < m~*N(l),
or equivalently m/||l|| < N(I). This being true for all | € Lk (E, F), we
have found m > 0 such that m|| - || < N. Hence, there is m, M > 0 such
that:

vl € Lx(E, F) , mll] < N() < M|

5. Having found m,M > 0 such that m| - || < N < M| - ||, it is clear
from exercise (3) that j : (Lx(E, F),| - ||) = (Lx(E, F'), N), the identity
mapping, is a homeomorphism, i.e. that both j and j~! are continuous.
It follows that || -|| and N induce the same topology on Lk (E, F'). Indeed,
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let 7). and 7y be the topologies on Lk (E,F') induced by || - || and N
respectively. Let A € Ty. Since j is continuous, A = j71(A) is an
element of 7). . This shows that 7y C 7)., and similarly 7. C 7x.

6. Suppose that K = R and ¢ : U — F is differentiable at a € U. Let
I = do(a) € Lr(E,F). Our assumption of ¢ being differentiable at a,
means specifically that [ satisfies the requirements of definition (128), in
relation to the normed spaces (E, || - ||) and (F,| - ||). Saying that ¢ is
also differentiable at a with respect to the norms Ng and Npg, is just
an informal way of saying that [ should also satisfy the requirements of
definition (128), in relation to the normed spaces (E, Ng) and (F, Np).
This is exactly what we need to prove. For this purpose, we consider
mpg, Mg > 0 such that mg|| - | < Ng < Mg| - ||, and mp, Mp > 0 such
that mp||-|| < Np < Mp||-||. Let € > 0 be given. Applying definition (128)
to € = empg/Mp in relation to (E, || - ||) and (F, || - ||), there exists 6’ > 0
such that for all h € E, the condition ||h|| < ¢’ implies that a + h € U,
and furthermore:

[é(a+h) = ¢la) — LR < 6%th\

Defining § = mpgd’ > 0, for all h € E the condition Ng(h) < § implies
that mg||h| < mgd and consequently ||h|| < ¢§'. Hence, the condition
Ng(h) < ¢ implies that a + h € U and furthermore:

Np(¢(a+h) —¢la) —1(h)) < Mp|é(a+h)—(a) —I(R)]

mg

< Mpe—||h

< Mregi|]
< Mpe— """
- FGMF mg

This shows that [ satisfies the requirements of definition (128) in relation
to the normed spaces (E, Ng) and (F, Np). We have proved that changing
the norms on F and F' with equivalent norms Ng and Np, i.e. norms in-
ducing the same topologies on E and F', does not affect the differentiability
of : U — F at a € U, or the value of the differential dé(a) € Lr(E, F).

7. Suppose that K = R and ¢ : U — F is of class C' on U. In particular,
¢ is differentiable on U. It follows from 6. that ¢ is also differentiable on
U with respect to the norms Ng and Np. Let d¢ : U — Lr(E,F) be
the differential of ¢. From 6., d¢ is also the differential of ¢ with respect
to the norms N and Np. Having assumed that ¢ is of class C' on U,
the differential d¢ : U — Ly (E, F) is continuous. More precisely, d¢ is a
continuous map, with respect to the norm topology on Lr(E, F) and the
topology on U induced by the norm topology on E. If we replace the norms
on E and F' by Ng and N respectively, by assumption the norm topology
on F is unchanged, and so is the topology on U. From 5. the topology on
Lr(E, F) is also unchanged. It follows that d¢ : U — Lr(FE, F) is also
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continuous with respect to the topologies on U and Lg(FE, F') induced by
the norms Ng and Nr. This shows that ¢ is of class C' on U, with respect
to the norms Ng and Np.

Exercise 20
Exercise 21.

1. Let F = Fy x ... x F,, be the product of p, p > 1, R-normed spaces.
Given 7 € N, let p; : FF — F; be the canonical projection defined by
pi(z1,...,xp) =x; for all x = (z1,...,2p) € F. Given z = (z1,...,xp) €
Fandy= (y1,...,yp) € F, given a € R, we have:

pz(x""ay) = pi[(xlw"vxp)"_a'(ylv"'vyp)]

= pil(z,...,2p) + (a1, ..., ayp)]

= pillz1 +ayi, ... 7p +ayy)]

= Titay

= pi(z) + api(y)
Hence, p; : F' — F; is a linear map. From exercise (10), p; is continu-
ous with respect to the product topology on F. From exercise (18), the
product topology on F coincides with the norm topology on F viewed as
an R-normed space. So p; is also continuous with respect to the norm
topology on F. This shows that p; € Lr(F,F;). Note that there is no
need to be very specific about which norm on F' is being referred to, by
virtue of exercise (18) and (20). It is understood that any norm chosen
on F, if not specifically of a type described in exercise (18), will at least
induce the same topology, i.e. the product topology on F'. To show that

p;i is continuous, assuming for example that F' is endowed with the norm
I - |lq of exercise (18) with ¢ € [1, +o00[, one can argue directly that for all

x € F:
D 1/(1
[pi(@)]| = llzi]l < <Z ||a?i|q> = |l=llq
=1

It follows from exercise (3) that p; is continuous.

2. Given i € Ny, let u; : F; — F be defined as:

Va; € F; ui(xi)é(o,..., Zi ..., 0)
For all z;,y; € F; and o € R, we have:
wi(zi +ay;)) = (0,...,2, +ay;,...,0)
= 0,...,zi,...,00+a-(0,...,y;,...,0)
= ui(z) + o ui(y:)

Hence, u; : F; — F is linear. Using the norm || - |l on F' as defined in
exercise (18), we obtain:

[li (@)oo = max(0, ..., ||z, ...,0) = ||z
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and it follows from exercise (3) that u; : F; — F' is continuous. We have
proved that u; € Lr(F;, F). Now for all z € F:

(Z U © Pi) (z)

(u; o pi)(x)

|
'M“

i=1
= > wilpi)

i=1
= Z(o,. T, ..., 0)
= (21,....0p) =2

This being true for all z € F', we obtain:

p
E u; o p; = idp
i—1

where idp : F — F denotes the identity mapping. It follows that if E is
an R-normed space, U is open in F and ¢ : U — F' is a map, then:

¢ = idpod¢

P
<Z Ui © pz‘> °¢
i=1

p
= Ui © P;

where ¢; : U — F; is defined as ¢ = p; o ¢.

3. Suppose ¢ : U — F' is differentiable at a € U. Let i € N,. Having
proved in 1. that p, € Lr(F, F;), it follows from exercise (17) that p; :
F — F; is differentiable on F', with dp;(x) = p; for all z € F. Applying
theorem (110), we conclude that p; o ¢ = ¢; is differentiable at a € U,
with:

doi(a) = d(piod)(a)
= dpi(¢(a)) o dg(a) = p; o dg(a)

4. Suppose that for all ¢ € N,, ¢; : U — F; is differentiable at a € U.
Having proved in 2. that u; € Lr(F;, F), it follows from exercise (17)
that u; : F; — F is differentiable on F;, with du;(z;) = u; for all ; € F;.
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Applying theorem (110), the map u,;0¢; : U — F'is therefore differentiable
at a € U, with:

d(u; o ¢;)(a) = dui(pi(a)) o dpi(a) = u; o dpi(a)

Having proved in 2. that ¢ = Y_%_, u; o ¢;, we conclude from exercise (19)
that ¢ is differentiable at a € U, with:

d <Z u; o ¢i> (a)

= Z d(u; o ¢;)(a)
i=1

de(a)

P
= Z u; o doi(a)
i=1

5. Let a,b € U. We assume that ¢ is differentiable at @ and b. Then d¢(a) and
dg(b) are well-defined elements of Lgr(E, F'). From 3. d¢;(a) and d¢;(b)
are well-defined elements of Lg(FE, F;) for all i € N,,. Given i € N, we
claim that:

1dei(b) — di(a)]| < [ldp(b) — do(a)|
Note that ||d¢;(b) — dpi(a)|| is well-defined from exercise (5):

desi (b) — depi(a) | = sup || (dpi (b) — di(a)) ()|

where the sup is taken over all x € E with ||z|| = 1. Also:
A
1d(b) — d(a)l| = sup ||(de(b) — do(a))(x)]|
where the sup is taken over all © € F with ||z|| = 1. Note however that

this expression is dependent upon a specific choice of norm on F', in order
for [|(dé(b) — dg(a))(z)| to be meaningful. As a possible choice, we shall

work with the norm || - ||2 of exercise (18), so that specifically:
A
[dé(b) — de(a)]| = sup [|(dp(b) — dé(a))(x)]2
where the supremum is taken over all z € E with ||z]] = 1. Now for all

y=(Y1,-..,Yp) € F and i € N, we have:

1/2

P
i)l = llyall < | DMyl | = llwlle
j=1

Having proved in 3. that d¢;(a) = p; o dé(a), we have similarly d¢;(b) =
p; o dp(b) and consequently for all x € E with ||z| = 1:
1(des(b) — d¢i(a))(@)|| = [Ipil(de(b) — dg(a))(2)] |
< (do(b) — do(a))(z)]l2
< |[do(b) — dg(a)|
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from which we conclude that:
|d¢i(b) — doi(a)|| < |ldo(b) — de(a)]
6. For all x € E with ||z|| = 1, since d¢;(a) = p; o dg(a):

A

[(dp(b) — dg(a))(@)]| = |[(de(b) — do(a))(x)ll2
» 1/2
= (Z | ps[(dp(b) — do(a))(w)] |2>

D 1/2
(Z [ (depy (b) — dasi(a))(x)H?)
Z; 1/2
< (Z [ depy (b) d¢i<a)|2>

i=1

from which we conclude that:

» 1/2
| de(b) — (Z ([ depi(b) d¢i<a)|2>

7. Suppose ¢ : U — F is of class C!' on U. Let i € N,. Since ¢ is
differentiable on U, from 3. ¢; : U — F; is also differentiable on U
Since d¢ : U — Lgr(E,F) is a continuous map, it follows from 5.
that d¢; : U — Lr(FE,F;) is also a continuous map. This shows that
¢; : U — Fj is of class C' on U. We have proved that if ¢ is of class C,
then ¢; = p; 0 ¢ is of class C* for all i € N,,. Conversely, suppose all ¢;’s
are of class C! on U. Then in particular, all ¢;’s are differentiable on U.
It follows from 4. that ¢ is also differentiable on U. Furthermore, each
do; : U — Lr(FE,F;) is a continuous map. In particular, given a € U,
each d¢; is continuous at a. Given € > 0, for all 1 € N, there exists n; > 0
such that for all b € U:

1b—all <mi = [ldgi(b) — dgi(a)]| <

Sl

Defining 7 = min(ny,...,n,) > 0, for all b € U, using 6.:
[b—all<n = |dp(b) — dp(a)| < e

This shows that d¢ : U — Lr(FE, F) is continuous at a. This being true
for all a € U, we have proved that d¢ is a continuous map. So ¢ is of class
C! on U. We conclude that ¢ is of class C! on U, if and only if ¢; is of
class C! on U for all i € N,,. Note that this conclusion would still hold,
if F were given any other norm N inducing the product topology on F,
instead of || - [|2. Indeed from exercise (18) the norm || - ||z does induce
the product topology on F. So any other norm N inducing the product
topology, induces the same topology as || - ||2. It follows from exercise (20)
that ¢ being of class C* on U relative to the norm || - ||2, is equivalent to
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¢ being of class C! on U relative to the norm N. Given i € N, the map
¢; : U — F; is unaffected by a change of norm on F. It follows that the
conclusion we have reached having assumed that F is endowed with the
norm || - ||z, is still valid when F' is endowed with the norm N.

8. Given p 4+ 1 R-normed spaces E and Fi, ..., F),, given U open in E and
F=F x...xF, givenamap ¢ = (¢1,...,¢p) : U — F,foralla € U
we have proved in 3. and 4. that ¢ is differentiable at «, if and only if ¢;
is differentiable at a for all i € N,,. We have proved in 7. that ¢ is of class
C*' on U, if and only if ¢; is of class C* on U for all i € N,,. Now suppose
a € U and ¢ is differentiable at a. For all h € E, using 4. we obtain:

dg(a)(h) = (Z u; o d@‘(a)) (h)

= ) (uiodgi(a))(h)

i=1

= Zuz'[d@(a)(h)]
= Z(O,...,dqﬁi(a)(h),...,o)
= (doi(a)(h),...,dop(a)(h))

This completes the proof of theorem (116).

Exercise 21

Exercise 22. Let ¢ = (¢1,...,¢n) : U — R™ be a map, where U is an open
subset of R™. We assume that ¢ is differentiable at a € U. Let (e1,...,ep)
be the canonical basis of R™. Note that if we consider (R, |- |) as a normed
vector space over itself, then the usual inner-product of R™ induces the norm
Il |l2 of exercise (18), and in particular, it induces the product topology on R™.
It follows that R™ is a particular case of finite product of R-normed spaces,
as per theorem (116). Having assumed that ¢ is differentiable at a € U, from
theorem (116) each ¢; : U — R is differentiable at a« € U. Given i € N,
applying theorem (113) to ¢;, it follows that for all j € N,,, the partial derivative
%(a) exists and furthermore for all h = (hq,...,hy,) € R™, we have:

%,
dei(a Z 52,

In particular, d¢;(a)(e;) = 8w:(a) for all j € N,. Hence, we obtain from
theorem (116): ‘

dp(a)(ej) = (dpi(a)(e;), ..., don(a)(e;))
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= > di(a)(e))e;
i=1

= Z 0 (a)e; = Me;

=1 8xj
where M € M,,(R) is the n x n matrix:
[é) 9
2ia) ... 2(a)
M=| z
[olox Odn
) ... 522(a)

Having proved that d¢(a)(e;) = Me; for all j € N,,, we conclude that d¢(a) =
M. Now from theorem (116), ¢ being of class C* on U is equivalent to ¢; being
of class C' on U for all i € N,,. From theorem (115), this in turn is equivalent

to gf existing and being continuous on U, for all j € N,, and ¢« € N,,. Hence,
J

we have proved that ¢ is of class C' on U, if and only if for all 4,j € N,,, the
partial derivative gf exists and is continuous on U. This completes the proof
J

of theorem (117).

Exercise 22

Exercise 23.

1. The set M, (R) of n x n matrices with entries in R, is the set of all maps
M :N,xN, — R,ie. M,(R)=RN-*Nu_There is an obvious topology
on M, (R), namely the one induced by the inner-product:

n
A
(M,N)= )" M;;N;
ij=1
with associated norm:
1/2
n
1M]l2 = Z M
Q=1

which induces the product topology on RN»*N= by virtue of exercise (18).
In these tutorials, we have consistently identified elements of M,,(R) with
the set of linear maps [ : R™ — R™. This set coincides with Lg(R", R"),

as every such linear map is continuous. Indeed, if (eq,...,e,) denotes the
canonical basis of R™ and [ : R™ — R is linear, for all z = (z1,...,x,) €
R™:

[1(2)]

i=1

D lzil - lliedl

i=1

IN
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n 1/2 n 1/2
< (ZIl(ei)V) -(leiF) = K|z

where K = (31", ||ll(e;)]|?)*/? € R*. Now, the identification of M, (R)
with Lr(R"™, R™) gives us another obvious topology on M, (R), namely
the one induced by the norm on Lg(R"™,R™), specifically the norm || - ||

defined by:

A
[ M| = sup{[[Mz| : x € R", ||z| =1}
Because we haven’t yet proved that all norms on a finite dimensional space

induce the same topology, we shall now prove that || - ||z and || - || induce
the same topology on M, (R), namely the product topology on RN»*Nn,

Let M € M, (R). We have:

M2 =

lejll =1 — <

Furthermore, if © = (z1,...

1/2
n

2
> M
2,7=1
1/2

2
M;;

n
= 1

n

114

[

1/2

3

1Me; )2
j=1

1/2
|2 = vn||M|

J=1

,xp) € R™ with ||z]| = 1:

n
IMz|| = || x;Me,
j=1
n
< || - [[Mejl
j=1
1/2 1/2
n n
< 1M >zl
j=1 j=1
1/2
n n
= |\ XXM el
j=1i=1
= [[M]l2
from which we obtain ||M|| < ||M||2. Hence, we have proved that || - || <

[I]l2 < +/n||*]|, which shows that the identity mapping j : (M, (R), |-||) —
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(Mp(R), ] - |l2) is a homeomorphism. So || - || and || - ||2 induce the same
topology on M,,(R), namely the product topology on RN»*N=_ Having
clarified which topology is to be assumed on M, (R), it is now meaningful
to state that the determinant det : M,,(R) — R is a continuous map. As
we haven’t had a tutorial on the determinant, we shall have to accept this
fact. However, for those familiar with the formula:

det M = ZE(O’)MLU(U LN 'Mn,a(n)

where the sum is taken over all permutations ¢ : N, — N,, (and €(o) €
{—1,1} denotes the sign of a permutation o), the fact that det : M, (R) —
R is a continuous map is a lot easier to believe. Indeed, det can be
expressed as a linear combination (with coefficients in {—1,1}) of products
of the form p;, j, ...pi, j., where p; j : RN»*No — R is the (continuous)
canonical projection. Having (hopefully) accepted the continuity of det :
M, (R) — R, we are now in a position to prove that J(¢) : @ — R is
itself continuous. From definition (132):

J(¢)(a) = det[dg(a)] = (det odg)(a)

This being true for all a € €, we obtain J(¢) = det od¢. However, since
¢ is assumed to be of class C! on €, the map d¢ : Q@ — Lr(R",R")
(or equivalently d¢ : Q@ — M, (R)) is a continuous map. It follows that
J(¢) = detodg : Q — R is itself continuous. Likewise, since 1 : ' — R"
is of class C! on Q' J() : Q' — R is continuous.

2. Let I, : R® — R™ be the identity mapping. From ¢ = ¢! we obtain ¢ o
Y = (I,) |, where (I,)o s the restriction of I,, to €. From exercise (17),
(1)) is differentiable and d(I,,)|q/(x) = I, for all z € Q. Hence, from
theorem (110) and for all z € Q':

dp(y(x)) o dip(x) = d(¢ o ¥)(x) = d(In)jo (x) = In
3. Similarly to 2., from ¢ 0 ¢ = (I,)|o We obtain for all 2 € Q:
dp(p(x)) o dp(x) = d( 0 ¢)(x) = d(In)ja(x) = In

4. Let z € . From 2. and definition (132) we obtain:

1 = detl,
= det[dp(y(x)) o dip(z)]
Granted — = det[do(¢(z))] det[dy(x)]
Definition (132) — = J(¢)(¥(z))J()(x) 9)

It follows in particular that J()(z) # 0 for all x € Q.

5. Let z € Q. From 3. we have similarly to 4.:
1 = detl],
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= det[dy(d(x)) o do(z)]
= det[di(¢(x))] det[de(z)]
= J(W)(6())T(9)(x) (10)

and it follows that J(¢)

) #

(x
acceptable to deduce J(¢)(x) #

roles of ¢ and .

0 for all x € . Note that it is perfectly
# 0 directly from 3. by interchanging the

6. Let z € Q. Going back to (9), we have:

1

J()(x) =

This being true for all z € ',

J(@)(W(x)

L) =1/(J(¢)o
o (10) we obtain J(¢) = 1/( (¥) o

(J(@) o) ()
). Similarly, going back

?).

Exercise 23

Exercise 24. Let 2 € B(R") be a Borel subset of R™ and B € B(2) be a
Borel subset of Q2. Then dx|q(B) is defined by dx|o(B) = dx(B). For this to be
meaningful, we need to ensure that dz(B) is well-defined, i.e. that B € B(R").
This amounts to proving the inclusion B(€2) C B(R™), which can be seen from

theorem (10):

B(Q) 2 o(7q)
S o((Ta)e)
Theorem (10) — = o(7r~)j0
2 BR")q
2 (BNQ:BeBR")}
QeBR") — C BR")

So dx|q is well-defined, and it is clearly a measure on (€2, B(9)).

Exercise 25.

Exercise 24

1. Let ©,9Q be open in R™ and ¢ : Q — Q' be a C'-diffeomorphism. Being

open in R™, in particular  and Q' are Borel subsets of R™.

From ex-

ercise (24), it follows that dx|o is a well-defined measure on (', B(Y)),
while dz|q, is a well-defined measure on (2, B(€2)). Furthermore, being dif-
ferentiable, the map ¢ : Q — €' is continuous and therefore measurable.
It follows from definition (123) that the image measure ¢(dz|q) is a well-
defined measure on (Q',B(€')). We have proved that dz|o and ¢(dz|q)
are well-defined measures on (9, B()')).

. Let a € . Since €' is open in R™, there exists n > 0 such that B(a,n) C
V', where B(a,n) denotes the open ball in R™. Let 0 < € < 1. Then
Bl(a,¢) C B(a,n) C €', and consequently B(a,¢) = B(a,e) N . Since
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B(a,¢) is open in R", the equality B(a,e€) = B(a,¢) N Q' shows that it is
also open in . In particular, B(a,€) is a Borel subset of Q'. We have
found n > 0 such that B(a,€) € B(Y') for all ¢ > 0 with € < 5. This shows
that B(a,e) € B(Y') for € > 0 sufficiently small.

3. From 2. B(a, ¢) is an element of B()') for € > 0 sufficiently small. From 1.
dz|o and ¢(dz|q) are well-defined measures on (', B(€')). It follows that
the quantities dz |/ (B(a, €)) and ¢(dx|q)(B(a, €)) are meaningful elements
of [0,4o¢] for € > 0 sufficiently small. In fact, from definition (134), we
have:

Aoy (B(a,)) = do(B(a ) €]0, 4o
It follows that the ratio ¢(dx|q)(B(a,€))/dr|o/ (B(a,¢)) is well-defined in
[0,4+00] for € > 0 sufficiently small. Hence, it does make sense to investi-
gate whether the limit:

- Oldra)(B(a,0)

el |0 dxm/ (B(a, 6))

exists in [0, +00], and whether this limit is an element of R.

4. We assume that dy(a) = I,. Let r > 0 be given. Since I,, satisfies the
requirements of definition (128) in relation to 1 at a € €', there exists
€1 > 0 such that for all h € R™, the condition ||k|| < €; implies that
a+heQ, and:

[¥(a+h) = (a) = Al < r|A]|

5. Let h € R™ with ||h]| < e1. Then a + h € Q', and:

[¥(a+h) =@ < lvla+h)—=v(a)=hl+[h]
rllalf+ 7
el

IN

6. Let € €]0,¢;1] and « € B(a,e). Then h = x — a satisfies the condition
|h|| < €, and in particular ||h|| < €;. It follows that a + h € Q' and
consequently z € Q'. So B(a,e) C Q. Furthermore, if + € B(a,e¢) and
h = x — a, we obtain from 5.:

[¢(z) —=v(a)ll = llvla+h)—p(a)

(L +r)nl

e(l+7r)

This shows that ¢ (z) € B(¢(a),e(1 + r)). This being true for all z €

B(a,€), we have proved that:

¥(B(a,€)) € B(¢(a), e(1+1))

7. From 2. of exercise (23), we have dp(v(a))odip(a) = I,,. Since dip(a) = I,,,
we obtain d¢(y(a)) = I.

<
<
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8.

10.

11.

12.

It follows from 7. that I, satisfies the requirements of definition (128) in
relation to ¢ at ¥(a) € Q. Having fixed r > 0 in 4., there exists e2 > 0
such that for all k € R™, the condition || k|| < ez implies that ¢ (a)+k € Q,
and:

lo(¥(a) + k) —a—kll = [o((a) +k) = d(¥(a)) — In(K)]|

< k|
Let k € R™ with ||k|| < ez. Then ¢(a) + k € €2, and:

lo((a) + k) —all < ll¢(¥(a) + k) —a— Kl + ||k

< (47|
Let € €]0,e2(1 + 7). Let y € B(v(a),e(1 +7r)~'). Define k = y — 1(a).
Then k satisfies the condition ||k|| < e(1+7)~! and in particular ||k < eo.
It follows from 9. that i(a) + k € Q. So y € 2, and we have proved that
B((a),e(1 +7)~1) C Q. Furthermore, if y € B(y(a),e(1 + r)~1) and
k=y—1(a):

l6s) —al = llo((a)+E) —al
From 9. — < (1+7)|&|

< (+r)el+r)yt=¢
So ¢(y) € B(a,¢),i.e. ye {¢p € B
€

B(y(a),

(a,€)}. We have proved that:

1—+7") C{¢ € Bla,e)}

Suppose € > 0 is such that B(a,e) C Q'. We claim that:

¥(B(a,€)) = {¢ € Bla,€)}

Let y € ¥(B(a,¢€)). There is © € B(a,€) such that y = ¢(z). It follows
that ¢(y) = ¢(¢(z)) =z € B(a,€). Soy € {¢ € B(a,€)}. This shows the
inclusion C. To show the reverse inclusion, suppose y € 2 is such that

#(y) € Bl(a,e). Define x = ¢(y). Then = € B(a,€) and ¥(z) = (p(y)) =
y. So y € Y(B(a,€)). This shows the inclusion D.

Let €9 = €1 Aea(147). Let € €]0, 9] In particular, € €]0, €1[ and it follows
from 6. that B(a,e) C Q. Also, from 6. and 11.:

{¢ € Bla,€)} = ¥(B(a,€)) € B(y(a),e(1 + 7))

Moreover, since € €]0, e2(1 4 r)[, from 10. we obtain:
€
B —) C B
(@), 7)€ {6 € Bla,0)}
We have proved that B(a,e) C Q', and:

B((a), 1) € {0 € Bla,e)} € B(y(a),e(1+7))
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13.

14.

15.

Let € €]0, eg[. From 12. we have B(a,€) C " and consequently:
B(a,€) = B(a,e) N Q" € B(R") oy = B(QY)

where the last equality has been fully justified in exercise (24). So B(a,€) €
B(€'). Using exercise (12) of Tutorial 16:

€ €

(B, T55)) = Trde(BO.D)
= (1 +r)"dz(B(a,c))
= (L+47)"dro(B(a,e€))

Moreover:
dx(B(¢(a),e(1+7))) = €"(1+r)"dz(B(0,1))

= (1+7)"da(B(a,€))
= (1+r)"dzx)o (B(a,e))

Finally, since B(a, €) € B(Q') and ¢ is measurable, we have {¢ € B(a,€)} €
B(2) and consequently from definition (123):

dx({¢ € B(a,€)}) = dwjo({¢ € Bla,€)}) = ¢(dx|o)(B(a,¢€))
Let € €]0, €0[. From 12. we have B(a,¢) C @', and:
dr(B(b(a). 75)) < da({ € Bla,)}) < dr(B((a). (1 +1)))
Since dxjy (B(a, €)) = dx(B(a,€)) > 0, using 13. we obtain:
L Oldri0)(B(a, )
~ dxyg(B(ase))

Given r > 0, we have found ¢, > 0 such that (11) is true for all € €]0, €.
Let np > 0. It is clear that lim,_o(147r)" = 1. It follows that (1+r)" < 147
for r > 0 sufficiently small. Likewise, since lim, (1 + 7)™ = 1, we have
1—n < (1+7r)"" for r > 0 sufficiently small. Hence, given > 0, it is
possible to find r > 0 sufficiently small such that:

l—np<(1+r) " <{14+nr"<1+n
It follows that given n > 0, there exists ¢y > 0 such that:
¢(dxin)(B(a, €))

(1+7) <@+t (11)

l-n<———"%—-<1+
= "dzi0 (Bla, 0)) K
for all € €]0, €g[. This shows that:
¢(dz0)(Bla,€)) _
m-—————m—"=1

ell0 dxo/(B(a,€))

Exercise 25

Exercise 26.
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1. Let ©,Q be open in R™ and ¢ : Q — Q' be a C'-diffeomorphism. Let
p=¢ tanda € Q. Let A=dy(a). Then A is a linear map A : R" —
R"™. Furthermore, from 2. of exercise (23):

dp(y(a)) o dip(a) = I = de(p(a)) o A
It follows that A : R™ — R" is a linear bijection.

2. Let Q" = A71(Q). From exercise (11) (part 2.) of Tutorial 17, the inverse
image A71(Q2) of Q by A coincides with the direct image A~1(Q) of Q
by A~L. Tt follows that the definition of Q" does not depend on whether
A7H(Q) is viewed as an inverse or a direct image.

3. Since A : R™ — R" is linear and defined on a finite dimensional space,
it is continuous. This general statement has not been proved yet, but
the particular case at hand can be found in exercise (11) (part 1.) of
Tutorial 17. Since € is open in R™, the inverse image Q' = A~1(Q) is
open in R".

4. Let ¢ : Q" — ' be defined by ¢(z) = ¢ o A(z) for all z € Q”. Then
¢ = ¢o Ajgr where Ajgr : Q7 — R™ is the restriction of A to Q.
Note that for all 2 € Q" = A~(Q2), we have A(x) € Q and consequently
Ajgr () C Q. This shows that ¢ = ¢ o A is well-defined on ", (and
it has indeed values in ). From exercise (17), Ao~ is of class C' on
Q. Since ¢ : Q — Q' is a C'-diffeomorphism, in particular ¢ : Q2 — R"
is of class C' on Q. Since Ao (") C Q, it follows from theorem (111)
that qB = ¢ o Ajgr is of class C' on Q. Let 1; : Q' — Q" be defined by
¥ = A Loyp. Note that for all z € ', we have Y(x) € Q and consequently:

d(x) = AN (Y(2)) € ATH(Q) = Q"
So 1) has indeed values in € (and it is well-defined on ). For all z € €,
we have:
(pod)() = doAaroA™ oy()
— $oAoA " oy(a)
= ¢oy(x)=1
and for all z € Q"
Wog)(x) = Al oogpodg(r)
— AlopogoAl)
= Al'oA(x) =2
Hence, we have ¢~> o 1[) = idg and 1[) o q~5~: idgr, and we have proved that
¢ Q" — Q is a bijection with ¢~ = 1. Having assumed ¢ : Q — ' to
be a C'-diffeomorphism, in particular ¢ : Q' — R"™ is of class C' on .

From exercise (17), A™* : R" — R™ is of class C' on R™. It follows from
theorem (111) that ¢ = A~ 04 is of class C' on Q. We have proved that
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6 : Q" — Q' is a bijection, such that ¢ : Q" — R" and ¢ (Y — R™ are
both of class C'. From definition (133), we conclude that ¢ : Q" — Q' is
a C'-diffeomorphism.

5. Using theorem (110) and exercise (17), we obtain:

di(a) d(A™" o 1p)(a)
= d(AH)(¥(a)) o dy(a)
— A7 odi(a)
A o A=1,

6. Since ¢ : Q" — Q' is a C'-diffeomorphism with Y =0¢"' anda € Q' is
such that di(a) = I,,, applying 15. of exercise (25):

() (Bla,e) _
el |0 diC|Q/ (B(G,E))

7. Let € > 0 with B(a,¢) C Q. Then B(a,¢) € B(€') and:

¢(dajor)(Bla,e)) = dajor ({6 € Bla,)})
Deifmition (134) — dz({¢ € Bla,€)})

p=¢poAg — =de({zxeQ": ¢poA(z) € Bla,e)})
(¥) = de({z € Q" : A(z) € ¢ *(B(a,€))})
(x%) = de({x € R": A(x) € ¢ *(B(a,e€))})
Definition (123) — = A(dz)({¢ € B(a,€)})
Theorem (108) — = |det A|"*dz({¢ € B(a,€)})
Definition (134) — = |det A|_1dxm({¢ € B(a,€)})

Definition (123) — = |det A|"'¢(dzjq)(B(a,¢€))

where the first equality stems from definition (123), and equality () stems
from the equivalence, given y € Q:

#(y) € Bla,e) < ye€ ¢ *(Blae))
As for equality (xx), it follows from the fact that for all z € R™:
A(z) € ¢ 1 (B(a,e)) = A2)€Q = z€Q”
8. For e > 0 sufficiently small, we have B(a,¢) C €', and from 7.:
$(dzrj0)(Bla, ) = | det A|g(dz|or)(B(a, )
Hence, from 6. we conclude that:

o 9ldao) (B(a, o)

=|det A
ell0 dxo/(B(a,¢)) | det A]
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9. From definition (132) we have det A = det[dy(a)] = J(¥)(a). Hence,
given a C!-diffeomorphism ¢ : Q — ', given a € @ and ¥ = ¢~ 1, we
have proved that:

¢(dx)o)(B(a¢€))

e Ba gy = @)

This completes the proof of theorem (118).

Exercise 26

Exercise 27.

1. Let ©,Q be open in R™ and ¢ : Q — Q' be a C'-diffeomorphism. Let
= ¢ '. Let K C Q be a non-empty compact subset of ' such that
dxjo (K) =0. Let x € Y. Since the Lebesgue measure dz on R™ is locally
finite, there exists U open in R™ such that 2 € U and dz(U) < 4oc0. It
follows that U N is open in @', z € U N Q' and furthermore:

dr)o (UNQ) =de(UNQ) < de(U) < 400

Hence, the Lebesgue measure dzjo on ) is also locally finite. From
theorem (74), dx|q is therefore a regular measure on (', B5(€')). From
definition (103), we obtain:

dr|o (K) = inf{dx|o/(V) : K €V, V open in Q'}

Let € > 0. Having assumed that dzjo (K) = 0, in particular we have
dz)o/ (K) < €. Since dr)o/ (K) is the greatest lower-bound of all dz|o/(V)’s
as V ranges through the set of all open subsets of ' with K C V,
cannot be such an lower-bound. Hence, there exists V open in ' such
that K C V(C ') and dz o/ (V) < e. In particular we have dz|o/ (V) < e.

2. Since V is open in ', from definition (23) of the induced topology, there
exists U open in R™ such that V = U N Q. Since Q' is open in R”, we
conclude that V' is also open in R".

3. Let M = sup,cg ||[d¢(z)|. Having assumed that ¢ : Q@ — Q" is a C!-
diffeomorphism, in particular 1 : Q" — R is of class C' on . Hence,
the differential dy) : Q" — Lr(R™, R") is continuous. Since for all [,I’ €
Lr(R™,R™) we have:

L= < e =2

the norm || - || : Lr(R™, R™) — RT is also continuous. It follows that
[dy(-)] :  — R* is a continuous map, and its restriction ||di(-)||x is
therefore a continuous map defined on the non-empty compact topological
space K. From theorem (37), [|[di(-)|||x attains its maximum. In other
words, there exists xp; € K such that:

M = sup |[d(z)|| = [|dp(z)|
zeK

We conclude that M € RT.
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4. Let x € K. Since K C V, in particular z € V. Since V is open in R",
there exists €; > 0 such that B(z,e;) € V. Furthermore, since K C €,
x € Q' and 1 is therefore differentiable at x. Applying definition (128) to
1 and € = 1, there exists 6 > 0 such that for all h € R", the condition
|h|| < & implies that  + h € ', and:
(x4 ) —¥(x) — dip(z)(h)]| < [R]]
Defining €, = min(e, 6/3), we have B(x,€,) C V and for all h € R™ with
|R|| < 3e., we obtain z + h € Q' and:
[¥(x+h) =@ < [ld(x)(R)] +[[R]
ld ()| - IRl + (|7l

(sup |dw<u>|) Al + 1A
ueK
(M + 1)

IN N

5. Let € K. Let y € B(x,3¢;). Define h = y — x. Then h € R™ satisfies
the condition ||h|| < 3e,. It follows from 4. that y = . + h € Q', and we
have proved that B(z,3e,) C Q. Moreover, applying 4. once more, we
obtain:

[9(y) —v@) =l +h) =)

(M + 1)[|A]

3(M + 1)e,

and consequently 1(y) € B(¢¥(y),3(M + 1)e;). This being true for all
y € B(x,3¢,), we have proved that:

<
<

6. Let z € K. We claim that ¢(B(x,3¢;)) = {¢ € B(x,3¢;)}. Suppose
z € Y(B(x,3€¢z)). There exists y € B(x,3¢;) such that z = ¥(y). So
#(z) = ¢(¢(y)) = y and consequently we have ¢(z) € B(z,3e,), ie.
z € {¢ € B(x,3¢;)}. This shows the inclusion C. To show the reverse
inclusion, suppose ¢(z) € B(x,3¢e;). Then z = ¥(p(2)) € (B(x,3e;)).
This shows the inclusion D.

7. We claim the existence of a finite subset {z1,...,z,} of K with:
K C B(z1,€6:,)U...UDB(xp,€,) (12)

Since K is compact and K C U,ex B(x,€,) where each B(x,¢€,) is open,
from exercise (2) (part 5.) of Tutorial 8, there exists {x1,...,2,} € K
such that the inclusion (12) holds. Note that since K # ), we must have
p=>1

8. Since B(z1,¢€z,),...,B(xp,€;,) is a finite sequence of open balls in R",
from exercise (14) of Tutorial 16, there exists S finite subset of N, such
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that (B(zi, €z,))ies is a family of pairwise disjoint open balls, and further-

more:

CJ
i=1
It follows from 7. that:

B(xi,ez,) C U B(xi, 3€s,)

€S

K C U B(z;,3¢y,)

i€S

9. Using 5., 6. and 8. we obtain:
{peK} = ¢ Y(K)

From 8. —

10. From 9. and exercise (12

¢(dz))(K)

g —1 <U B(J,‘“?)Gx,))
€8
= U ¢_1(B($1,3€x,>)
€8
= | J{¢ € B(wi,3¢.,)}
€S
= U d) ;[;,“361
€S
C U B M+ 1)51’ )
€S

drio({¢ € K})

dx)q <U B(tp(2:),3(M + 1)eg, ))
€S

€S

> dr(B(x:), 3(M + 1)ez,))

€S

>73M(M +1)"er du(B(0,1))

€S

Z 3"(M + 1)"dx(B(zi, €s,))

i€S

11. Since (B(z;, €4,;))ies is a family of pairwise disjoint (Borel) sets:

€S

m(ti—J B(x;, €q, ) de (X4, €x;)

€S
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12.

13.

14.

15.

16.

17.

Hence, having proved in 4. that B(xz,¢,) C V for all € K, we obtain
from 10.:

¢(djo)(K) < ) 3"(M +1)"de(B(wi,e,))

€S
= 3"(M+1)"dx (ti—J B(xi,exi)>
€S
< 3"M(M +1)"dx(V)
Since dx(V) = dxo/ (V') <€, it follows from 11.:
B(do0)(K) < 3" + 1) (13)

We have found M € R* for which inequality (13) holds for all € > 0. It
follows that ¢(dz|o)(K) =0

Let € . Then ¢(z) € Q. Since dz|q is a locally finite measure on
€, there exists W open in €, such that ¢(r) € W and dxjo(W) < +oo.
Define U = ¢~ 1(W). Then U is open in ' and = € U. Moreover:

Hdrjo)(U) = duja(¢~" (U))
= drg(o (v 7I(W)))
= drja((od)” (W)
= dxjo(W) < +o0
Hence, given # € Q' we have found U open in Q" such that 2 € U and

#(dxo)(U) < +oo. From definition (102), we conclude that ¢(dz|q) is a
locally finite measure on (', B(QY')).

Having proved in 14. that ¢(dz|q) is a locally finite measure, from theo-
rem (74) it follows that ¢(dx|q) is a regular measure. Given B € B(Y),
from definition (103) we obtain:

¢(dz)o)(B) = sup{¢(dr)q)(K): K € B, K compact }

Let B € B(Q') with dzjo/(B) = 0. Let K be a compact subset of B. Then
in particular, K is a compact subset of Q' with drjo/(K) = 0. If K # 0,
it follows from 13. that ¢(dwz)q)(K) = 0. This is obviously still true if
K = (. Hence we see that ¢(dr|q)(B) is the supremum of the set {0},
and consequently ¢(dz|q)(B) = 0. We have proved that for all B € B()'):

dxio/(B) =0 = ¢(dr)q)(B) =0 (14)
Given Q,Q open in R™ and ¢ : Q@ — Q' C'-diffeomorphism, we have
proved that for all B € B(QY') the implication (14) holds. From defini-

tion (96), it follows that the image measure ¢(dx|) is absolutely contin-
uous with respect to dz|q, i.e.:

¢(d$|g) << dl‘m/
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This completes the proof of theorem (119).
Exercise 27

Exercise 28.

1. Let ©,9 be open in R™ and ¢ : Q — Q' be a C'-diffeomorphism. Let
1 = ¢! Since R™ is metrizable and strongly o-compact, since 0 is
open in R", from theorem (76), € is itself strongly o-compact. From
definition (104), there exists a sequence (V,),>1 of open subsets of Q',

such that V,, T Q" and for all p > 1 the closure of V,, in ' (denoted Vpﬂl)
is compact.

2. Being open in €', each V,, can be written as V,, = U,NQ where U, is open
in R™. Since )’ is itself open in R", it follows that V), is also open in R™.
Let V,, denote the closure of V,, in R™. We claim that Vpﬂl = V,. Since Q'
is open in R, from exercise (19) of Tutorial 13 we have Vpﬂl =V,nQ.
However, having assumed that Vpﬂl is a compact subset of ', it is also a
compact subset of R”, and R is Hausdorff. It follows from theorem (35)
that Vpﬂl is a closed subset of R", which furthermore contains V,, in the
inclusion sense. From exercise (21) of Tutorial 4, V,, is the smallest closed
subset of R™ containing V,, in the inclusion sense. Hence, we see that
V, € V& and in particular V, € ©'. We conclude from V¥ =V, N ¢/
that V¥ = V.

3. Let p > 1. Using 14. of exercise (27), the image measure ¢(dz)q) is a

locally finite measure on (€', 8(Q)). From exercise (10) of Tutorial 13,
since V;)Q is a compact subset of Q' we have qﬁ(dxm)(vpﬂ ) < +o0. Since

‘_/pQ/ =V, we conclude that:

¢(dr)0)(Vp) < ¢(dzin) (V) < 400

4. It follows from 3. that (V}),>1 is a sequence of Borel subsets of Q" such
that V, 1 Q" and ¢(dz)q)(V,) < +oo for all p > 1. From definition (61),
we conclude that ¢(dz|q) is a o-finite measure on (', B(Q)). Similarly,
since dr|o is a locally finite measure, from exercise (10) of Tutorial 13,

o o .
V,* being compact:

dz|o (V) < dajor (V) = dajor (V) < +00
It follows that dzo/ is also a o-finite measure on (Q', B(')).

5. From theorem (119), we have ¢(dz|q) << dr|p. Furthermore from 4.

¢(dx)o) and dajo are two o-finite measures on (Q',B(Q')). From the
Radon-Nikodym theorem (61), there is h : (Q',B(Q")) — (R*,B(R"))
measurable such that:

VB e B(Y), ¢(dwiq)(B) = /Bhdxm,
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6. Given p > 1, we define hy, = hly,, and we put:

Ve e R", izp(a:)é{

xz e
xg

hp(z) if
0 if

Using exercise (19) of Tutorial 16, h,, is measurable, and:

hpdr =

R”

From 5. —

From 3. —

hpdxm:
Q/

= / h].vpdxmz
\%

= d(den)(V)
< +oo

We conclude that h, € Lk (R", B(R"), dz).

7. Applying theorem (101) to ﬁp, dx-almost every x € R is a Lebesgue
point of h,. In other words, there exists N, € B(R"™) with dz(N,) = 0
such that for all z € N, x is a Lebesgue point of hy,, and in particular

from exercise (17) of Tutorial 16:

ilp (z)

1 ~
eirlr(l) dl‘(B(x; 6)) /B(z,e)

hyda (15)

Defining N = Up>1N,, we have N € B(R") and dz(N) = 0, and further-
more (15) holds for all x € N¢ and p > 1.

8. Let N'= NN Then N’ € B(R")r = B('), and:
dz)o/(N') = de(N') < dz(N) =0

9. Let € Q. Suppose p > 1 is such that x € V,,. Let ¢ > 0 be such that
B(z,€) C V,. Then in particular B(z,€) C Q' and:

B(z,€) = B(z,e) N Q' € BR") oy = B(Y)

It follows that dx|q (B(x,€)) is meaningful, and:
dx(B(z,€)) = dr)g (B(,€))

Furthermore, it is clear that:

Yu € R" y (]-B(;c,e)ibp)(u)

(1B(9c,e)hp)(u) if ued
0 i ug

where we have used that same notation 1p(, ) to denote successively the
characteristic function of B(z, ¢) on R™ and on €. Applying exercise (19)
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of Tutorial 16, we obtain:

/ dex = / 1B(x’e)]~1pdl‘
B(x,e) m

Ex. (19) of T.16 — = / ].B(x,e)hpdxm/
Q/

10. Since hy, = hly, and B(x,€) €V}, using 5. we have:

/1B(I’6)hpdl‘|gl = /1B(x’e)hlvpdl‘|gl
Q/ ’
= /1B(x,e)hd$m'
Q/

= / hdxm/
B(z,e)

From 5. — = ¢(dzq)(B(z,¢))

11. Let z € Q' \ N’. Since N’ = N N Q’, we have:
A\N = OnNNY)e
= ON(NU@Q))=Q NN°

So in particular € N€. It follows from 7. that for all p > 1:

- ) 1 -
o) = 18 B S -

However, by assumption V,, T Q. Since z € ', there exists p > 1 such
that x € V,. In particular we obtain:

hy(z) = hy(x) = h(z)1v, (x) = h(z) (17)

Furthermore, since € V,, and V), is open in R", there exists n > 0 such
that B(x,n) C V,. For all ¢ > 0 with ¢ < n we have B(z,¢) C V, and
consequently from 9. and 10. we obtain:

[ s = o) (B, (18)
B(xz,€)
and furthermore:

dx(B(z,¢€)) = dr)oy (B(x,€)) (19)

Having proved the equalities (18) and (19) for € > 0 sufficiently small, we
conclude from (16) and (17) that:

h(z) = lim d(dxjo)(B(z,€))

1 "dz e (Blw, o)) (20)

Hence, we have proved (20) for all z € '\ N'.
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12.

13.

Applying theorem (118), for all z € ' we have:

L ldwa)(B(, <))
)@= A0 e (B, o)

It follows from (20) that h and |J(¢))| coincide on ©"\ N’. Having proved
in 8. that dz|q/ (N') = 0, we conclude that h = [.J(¢)|, dx|q/-almost surely.

From 5. and 12. we see that for all B € B()'):
o(dae)B) = [ hdoo
B
[ 1@dze
B

This being true for all B € B(Q'), we conclude that the image measure
#(dx|) has density |.J ()| with respect to the Lebesgue measure dz|o/ on
0 ie.:

This completes the proof of theorem (120).

Exercise 28

Exercise 29. Let ©,Q be open in R and ¢ : Q — Q' be a C'-diffeomorphism.
Let ¢ = ¢! and f: (', B(')) — [0, +00] be a non-negative and measurable
map. Applying the integral projection theorem (104), we have:

[ osdna = [ fotdua) (21)

and furthermore, from theorem (120):

odz) = [ 1760 dae

So from the stack integral theorem (21), we obtain:

[ sotne) = [ 7w)dse (22)

From equations (21) and (22) we conclude that:

/ f o ddzyg = / F17()\dzjgy (23)

Having proved in exercise (23) that J(¢) is continuous, and furthermore that
J()(z) # 0 for all x € Q', the map f/|J ()| is well-defined, non-negative and
measurable. Applying equation (23) to f/|J(¥)]:

[ sane = [ (i) e

Equation (23) — = /Q%dxg
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Exercise (23) —» = /(f 0 ¢)|J(¢)|dr|q
Q
This completes the proof of theorem (121).
Exercise 29

Exercise 30. Let Q. be open in R™ and ¢ : Q — Q' be a C'-diffeomorphism.
Let¢ = ¢ Land f: (Q,B(Q)) — (C, B(C)) be a measurable map. Since ¢ and
|J(¢)] are continuous, in particular they are Borel measurable and consequently
fo¢ and f|J(v)| are Borel measurable. Furthermore, applying the Jacobian
formula (121) to the non-negative and measurable map |f|, we obtain:

[ieslana = [ iflo6deq
Theorem (121) — = /Q/ Lf] - 1J () |dz)or

— [ 1w
Hence, we have proved the equivalence:
foo € Le(B(Q),dro) < flJ(W)] € Le(Q,B(), dzo)
Similarly, since ¢ and |J(¢)| are continuous, both (f o ¢)|.J(¢)| and f are Borel

measurable, and from theorem (121):

| 1ldee = [ (A0 o)l@ o
= [ 170

Hence, we have proved the equivalence:
(f © ¢)|J(¢)| € L%J(Qa B(Q)a dx\Q) <~ f € L%J(Q/vB(QI)v d(Em/)

Now suppose that fo¢ € LE(Q, B(Q), dz|q). Let u = Re(f) and v = Im(f), so
that f =ut —u~ +i(vT —v7). Since u™,u™ < |u| <|f| and v, v~ < |v| < |f],
each u® o ¢ and v* o ¢ is an element of LE(Q, B(€2), dz|q). It follows that each
u*|J ()| and vE|J(¥)] is an element of Lg (€Y, B(R'), dx)o/), and we have:

/Qfoqbdxm _ /Q(u+o¢)dm|g —/Q(m o p)dzyq

+ i</ﬂ(v+o¢)dx|g —/Q(v* o¢)dx|ﬂ)
Theorem (121) — = //u+|.](1p)|da:|g/ —/Q/ w1 (W) g
([ vl - [ olrwlane )

/ F17 ()] deeyer
N
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Suppose now that f € L&(Q, B(Q'),dxo). Then u™, u~, v* and v~ are all
elements of L&(QY, B(RY'), dz o), and furthermore:

/ fdr)gy / wh —u” it —v7)|deo
o ,

= /U+dl‘|gl—/ u”dr)gy
’ Q/
+ Z(/ v+dxm/—/ vda:m/)
’ Q/

Theorem (121) — = /Q(u+ o P)|J(¢)|dx|q

- / (u™ 0 6)[.7(6)ldziq
+ o / (v 0 6)|(6)ldaiq

i / (v~ 0 )|T(&)drpg
- / (f 0 6)/(6)ldaiq
Q

This completes the proof of theorem (122).
Exercise 30

Exercise 31.
1. Let f:R? — [0, +oc] be defined by:
V(z,y) e R?*, f(z,y) = exp(—(2® +y°)/2)

Using Fubini’s theorem (31) we obtain:

f(a,y)dedy = / exp(—(a? + y?)/2)dudy
R? RxR

Theorem (31) — = /R</Rexp(—x2/2)exp(—y2/2)dx> dy
[ exvr2r2) [ exoi-a? 21z ) ay
([ exotea?r2ic) [ exo-s2 /21
)

2. We define the following subsets of R?:

Ay
A,

{(z,y) eER*: 2>0, y >0}
{(z,y) eR*: 2<0, y>0}

> >
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As
Ay

{(z,y) eR*: 2>0, y <0}
{(z,y) eER*: 2 <0, y <0}

> e

and:
As ={(z,y) e R*: 2 =0}U{(z,y) € R?: y =0}
Then A1, Ao, A3, Ay and Ay are pairwise disjoint, and:
R2=A1@A2®A3®A4&JA5

Moreover, since {x = 0} and {y = 0} are one-dimensional subspaces of
R?2, from theorem (109) we have:

dzdy(As) < dedy({z = 0}) + dedy({y =0}) =0

Hence, we have:

/ [(z,y)dzdy
R2

/ f(z,y)dzdy
A

1. WAS

/A fay)dedy + | fa,y)dedy

18 WA, Asp

/ f(z,y)dzdy
A

1. WA,

3. Let Q : R? — R? be defined by Q(z,y) = (—z,y). Then Q is a linear
bijection and furthermore:

-1 0
dethet( 0 1>—1
From theorem (108), we have:

Q(dxdy) = | det Q| *dxdy

and consequently:

f(a,y)dedy = / 15, fddy

JANY

[080Q7 Q)72 Q "0 Q)dndy
Theorem (104) — = /(1A1 0 Q™ )(foQ ")Q(dxdy)

| det Q|—1/(1A1 0 Q) 0 Q" )dudy
- / 1aa(f 0 QY)dady

foQ Nz, y)dudy
A
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4. Since f(x,y) = exp(—(z% +y?)/2), fo Q! = f. So, from 3.:

f(z,y)dxdy = f(z,y)dxdy
Al A2
Similarl}I7 USing Q/(xvy) = (x’ _y) and Q/,(xa y) = (—il,', _y)
f(z,y)dzdy = f(z,y)dxdy
Al AS
= f(z,y)dxdy
Ay

We conclude from 2.:

/ e, y)dedy = / f (@, y)dedy
R? A

1W. WA,

4
EQ/A f(@,y)dady

4 [ flo,y)dzdy
Ay

5. Let Dy =]0, +00[x]0,7/2[ and ¢ : D1 — A; be defined by:

Y(r,0) € Dy, ¢(r,0) £ (rcosf,rsin®)
Let ¥ : Ay — D; be defined by:
V(z,y) € Ar, ¥(x,y) = (Va? +y?, arctan(y/z))
Then for all (r,8) € Dy, we have:
Yop(r,0) = (rcosf,rsind)
= [V/(rcos®)? + (rsin )2, arctan(sin 6/ cos )]

(|r|V/ cos? § + sin? §, arctan(tan 6))

= (r0)
So ¢ o ¢ = idp,. Furthermore, for all § €]0,7/2[ we have:

sin? 0 1 —cos?6

cos? 6 cos? 6

tan? 0 =

and consequently, since cosf > 0, we obtain:

1
cosl) = —— 24
V1 +tan?6 (24)
Similarly, from:
sin® 6 B sin?
cos2f 1 —sin?6

tan? 0 =
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and the fact sinf > 0 and tan @ > 0, we obtain:
tan 6
sinf) = ———— 25
V14 tan? 6 (25)

From (24) and (25) we see that for all (z,y) € Ay:

cos(arctan(y/x)) = ! = -
Ity /e ety

and:
y/x Yy

))\/1+y2/x2 - \/x2+y2
It follows that for all (z,y) € Ay:
pop(z,y) = o(Va?+y? arctan(y/z))
= /22 4 y?[cos(arctan(y/x)), sin(arctan(y/z))]

\/xQ—l—yQ’ \/m2+y2

sin(arctan(y/x

= (z,y)

and we have proved that ¢ o1 = ida,. Having proved that ¢ o ¢ = idp,
and ¢o1p = ida,, we conclude that ¢ : D; — A is bijective and 1) = ¢~L.

6. In order to show that ¢ : D; — A; is a Cl-diffeomorphism, we need to
show that both ¢ : D; — R? and ¥ : A; — R? are of class C'. Given
(r,0) € D1, define ¢,(r,8) = rcosd and ¢, (r,0) = rsind. Then, we have:

Do _ O .

o (r,0) = cosf | 50 (r,0) = —rsind

9y - 9y . gy —

5 (r,0) =sinf 20 (r,0) =rcosd
So it is clear that 22z 2%z 9%y 0y

5 a0 o and gt exist and are continuous on D;.
From theorem (117), it follows that ¢ : D; — R? is of class C' and for all
(r,0) € Dy, we have:

a0(r.0) = (

Given (z,y) € Ay, define ¢,.(x,y) = /a2 + y? together with ¢g(x,y) =
arctan(y/x). As some of us may have forgotten, recall that the map

tan:] — /2, 7/2[— R is differentiable, and:
(tan @)’ = (ﬂ)l  (sin) cos — (cosf)'sind

cosf —rsinf
sinf  rcosf

cos o cos2 6

cos? 0 + sin? 0
cos? 0

= 1+tan’6
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Moreover, the map arctan : R —] — w/2,7/2[ is also differentiable, and
one way to remember its derivative is to differentiate both sides of the
identity @ = tan(arctanz), to obtain:
1 = tan'(arctanz)- (arctanz)’
(1 + tan?(arctanz)) - (arctan z)’
= (1+2?) - (arctanz)’

and consequently for all z € R:

1
(arctanz) = i
It follows that given (x,y) € Ay, we have:
O, T Oy Y

z, e ) €, =T
5 &Y) e 8y( y) e

and furthermore:

Trw = () e/
T2 Tyt
= _L
x? +y?
as well as:
({;_120( y) = é-arctan'(y/x)
R
B x
Y
O, O, O

Hence, we see that o and 28 exist and are continuous on
’ oz ' Oy’ Ox oy

A1. From theorem (117), it follows that ¢ : A; — R? is of class C'* and
for all (z,y) € A1, we have:

T Y
dw(x,y)=< Vet Vet )

T

We have proved that ¢ : Dy — A is a C''-diffeomorphism.
7. From 6. and definition (132), for all (r,0) € Dy:
cos —rsind
J(@)(r,6) = det ( sinf  rcosf >
= cosf- (rcosf) —sinf(—rsinb)
= r(cos? @ + sin’ 0)

r
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8. From 6. and definition (132), for all (z,y) € Ay:

T)wy) = det< Vi ww)

X
B 22 N y2
- (m2+y2)3/2 (m2+y2)3/2

1

9. Applying the Jacobian formula (121) to fia, : &1 — [0, 4-o0]:

f(@,y)dedy = / 1a, fddy
R2

Aq
Definition (45) — = /f‘Al(da:dy)‘Al
Ay
Theorem (121) — = /D (fiar © DI (@)](drdo) p,

fia, o p(r) = e T2 /D exp(—7"2/2)r(drdé?)|D1

Definition (45) — = / 1p, exp(—r?/2)rdrdf
R2

Fubini (31) - = /R(/Rlplexp(—TQ/Z)rcM) dr
_ /R 1o o0 (g) exp(—r2/2)rdr

T
= 5/ 1[07+Oo[exp(—r2/2)rdr
R
MON (19) - = lim E/ Lio,n) exp(—r?/2)rdr
n—-—4oo 2 R ’
Theorem (99) — = lim E[l —exp(—n?/2)] = z
n—-+oo 2 2
10. Using 1., we obtain:
1 [t 1 1/2
— 0y = — / dxd )
e U z,y)dx
Tw/foo Tw( sz( y)dzdy
1 1/2
From4. - = — (4 flz,y dxdy)
V2m < A (®3)
1 N\ 1/2
. = — (4.2 =1
From 9. — Ner: ( 2)
This complete the proof of theorem (123).

Exercise 31
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