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18. The Jacobian Formula
In the following, K denotes R or C.

Definition 125 We call K-normed space, an ordered pair (E,N), where E
is a K-vector space, and N : E → R+ is a norm on E.

See definition (89) for vector space, and definition (95) for norm.

Exercise 1. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that ‖ · ‖ =
√
〈·, ·〉 is a norm on H.

2. Show that (H, ‖ · ‖) is a K-normed space.

Exercise 2. Let (E, ‖ · ‖) be a K-normed space:

1. Show that d(x, y) = ‖x− y‖ defines a metric on E.

2. Show that for all x, y ∈ E, we have | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.

Definition 126 Let (E, ‖·‖) be a K-normed space, and d be the metric defined
by d(x, y) = ‖x− y‖. We call norm topology on E, denoted T‖·‖, the topology
on E associated with d.

Note that this definition is consistent with definition (82) of the norm topology
associated with an inner-product.

Exercise 3. Let E,F be two K-normed spaces, and l : E → F be a linear
map. Show that the following are equivalent:

(i) l is continuous (w.r. to the norm topologies)
(ii) l is continuous at x = 0.

(iii) ∃K ∈ R+ , ∀x ∈ E , ‖l(x)‖ ≤ K‖x‖
(iv) sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1} < +∞

Definition 127 Let E, F be K-normed spaces. The K-vector space of all
continuous linear maps l : E → F is denoted LK(E,F ).

Exercise 4. Show that LK(E,F ) is indeed a K-vector space.

Exercise 5. Let E,F be K-normed spaces. Given l ∈ LK(E,F ), let:

‖l‖ 4= sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1} < +∞

1. Show that:
‖l‖ = sup{‖l(x)‖ : x ∈ E , ‖x‖ ≤ 1}

2. Show that:

‖l‖ = sup
{
‖l(x)‖
‖x‖ : x ∈ E , x 6= 0

}
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3. Show that ‖l(x)‖ ≤ ‖l‖.‖x‖, for all x ∈ E.

4. Show that ‖l‖ is the smallest K ∈ R+, such that:

∀x ∈ E , ‖l(x)‖ ≤ K‖x‖

5. Show that l → ‖l‖ is a norm on LK(E,F ).

6. Show that (LK(E,F ), ‖ · ‖) is a K-normed space.

Definition 128 Let E,F be R-normed spaces and U be an open subset of E.
We say that a map φ : U → F is differentiable at some a ∈ U , if and only if
there exists l ∈ LR(E,F ) such that, for all ε > 0, there exists δ > 0, such that
for all h ∈ E:

‖h‖ ≤ δ ⇒ a+ h ∈ U and ‖φ(a+ h)− φ(a) − l(h)‖ ≤ ε‖h‖

Exercise 6. Let E,F be two R-normed spaces, and U be open in E. Let
φ : U → F be a map and a ∈ U .

1. Suppose that φ : U → F is differentiable at a ∈ U , and that l1, l2 ∈
LR(E,F ) satisfy the requirement of definition (128). Show that for all
ε > 0, there exists δ > 0 such that:

∀h ∈ E , ‖h‖ ≤ δ ⇒ ‖l1(h)− l2(h)‖ ≤ ε‖h‖

2. Conclude that ‖l1 − l2‖ = 0 and finally that l1 = l2.

Definition 129 Let E,F be R-normed spaces and U be an open subset of
E. Let φ : U → F be a map and a ∈ U . If φ is differentiable at a, we
call differential of φ at a, the unique element of LR(E,F ), denoted dφ(a),
satisfying the requirement of definition (128). If φ is differentiable at all points
of U , the map dφ : U → LR(E,F ) is also called the differential of φ.

Definition 130 Let E,F be R-normed spaces and U be an open subset of E.
A map φ : U → F is said to be of class C1, if and only if dφ(a) exists for all
a ∈ U , and the differential dφ : U → LR(E,F ) is a continuous map.

Exercise 7. Let E,F be two R-normed spaces and U be open in E. Let
φ : U → F be a map, and a ∈ U .

1. Show that φ differentiable at a ⇒ φ continuous at a.

2. If φ is of class C1, explain with respect to which topologies the differential
dφ : U → LR(E,F ) is said to be continuous.

3. Show that if φ is of class C1, then φ is continuous.
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4. Suppose that E = R. Show that for all a ∈ U , φ is differentiable at a ∈ U ,
if and only if the derivative:

φ′(a)
4
= lim

t6=0,t→0

φ(a+ t)− φ(a)
t

exists in F , in which case dφ(a) ∈ LR(R, F ) is given by:

∀t ∈ R , dφ(a)(t) = t.φ′(a)

In particular, φ′(a) = dφ(a)(1).

Exercise 8. Let E,F,G be three R-normed spaces. Let U be open in E and V
be open in F . Let φ : U → F and ψ : V → G be two maps such that φ(U) ⊆ V .
We assume that φ is differentiable at a ∈ U , and we put:

l1
4
= dφ(a) ∈ LR(E,F )

We assume that ψ is differentiable at φ(a) ∈ V , and we put:

l2
4
= dψ(φ(a)) ∈ LR(F,G)

1. Explain why ψ ◦ φ : U → G is a well-defined map.

2. Given ε > 0, show the existence of η > 0 such that:

η(η + ‖l1‖+ ‖l2‖) ≤ ε

3. Show the existence of δ2 > 0 such that for all h2 ∈ F with ‖h2‖ ≤ δ2, we
have φ(a) + h2 ∈ V and:

‖ψ(φ(a) + h2)− ψ ◦ φ(a) − l2(h2)‖ ≤ η‖h2‖

4. Show that if h2 ∈ F and ‖h2‖ ≤ δ2, then for all h ∈ E, we have:

‖ψ(φ(a) + h2)− ψ ◦ φ(a)− l2 ◦ l1(h)‖ ≤ η‖h2‖+ ‖l2‖.‖h2 − l1(h)‖

5. Show the existence of δ > 0 such that for all h ∈ E with ‖h‖ ≤ δ, we
have a + h ∈ U and ‖φ(a + h) − φ(a) − l1(h)‖ ≤ η‖h‖, together with
‖φ(a+ h)− φ(a)‖ ≤ δ2.

6. Show that if h ∈ E is such that ‖h‖ ≤ δ, then a+ h ∈ U and:

‖ψ ◦ φ(a+h)−ψ ◦ φ(a)−l2 ◦ l1(h)‖≤η‖φ(a+h)−φ(a)‖+η‖l2‖.‖h‖
≤ η(η + ‖l1‖+ ‖l2‖)‖h‖
≤ ε‖h‖

7. Show that l2 ◦ l1 ∈ LR(E,G)

8. Conclude with the following:
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Theorem 110 Let E,F,G be three R-normed spaces, U be open in E and V
be open in F . Let φ : U → F and ψ : V → G be two maps such that φ(U) ⊆ V .
Let a ∈ U . Then, if φ is differentiable at a ∈ U , and ψ is differentiable at
φ(a) ∈ V , then ψ ◦ φ is differentiable at a ∈ U , and furthermore:

d(ψ ◦ φ)(a) = dψ(φ(a)) ◦ dφ(a)

Exercise 9. Let (Ω′, T ′) and (Ω, T ) be two topological spaces, and A ⊆ P(Ω)
be a set of subsets of Ω generating the topology T , i.e. such that T = T (A) as
defined in (55). Let f : Ω′ → Ω be a map, and define:

U 4= {A ⊆ Ω : f−1(A) ∈ T ′}

1. Show that U is a topology on Ω.

2. Show that f : (Ω′, T ′)→ (Ω, T ) is continuous, if and only if:

∀A ∈ A , f−1(A) ∈ T ′

Exercise 10. Let (Ω′, T ′) be a topological space, and (Ωi, Ti)i∈I be a family
of topological spaces, indexed by a non-empty set I. Let Ω be the Cartesian
product Ω = Πi∈IΩi and T = �i∈ITi be the product topology on Ω. Let (fi)i∈I
be a family of maps fi : Ω′ → Ωi indexed by I, and let f : Ω′ → Ω be the map
defined by f(ω) = (fi(ω))i∈I for all ω ∈ Ω′. Let pi : Ω → Ωi be the canonical
projection mapping.

1. Show that pi : (Ω, T )→ (Ωi, Ti) is continuous for all i ∈ I.

2. Show that f : (Ω′, T ′)→ (Ω, T ) is continuous, if and only if each coordi-
nate mapping fi : (Ω′, T ′)→ (Ωi, Ti) is continuous.

Exercise 11. Let E,F,G be three R-normed spaces. Let U be open in E and
V be open in F . Let φ : U → F and ψ : V → G be two maps of class C1 such
that φ(U) ⊆ V .

1. For all (l1, l2) ∈ LR(F,G) × LR(E,F ), we define:

N1(l1, l2)
4
= ‖l1‖+ ‖l2‖

N2(l1, l2)
4
=

√
‖l1‖2 + ‖l2‖2

N∞(l1, l2)
4
= max(‖l1‖, ‖l2‖)

Show that N1, N2, N∞ are all norms on LR(F,G) × LR(E,F ).

2. Show they induce the product topology on LR(F,G) × LR(E,F ).

3. We define the map H : LR(F,G) × LR(E,F )→ LR(E,G) by:

∀(l1, l2) ∈ LR(F,G) × LR(E,F ) , H(l1, l2)
4
= l1 ◦ l2

Show that ‖H(l1, l2)‖ ≤ ‖l1‖.‖l2‖, for all l1, l2.
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4. Show that H is continuous.

5. We define K : U → LR(F,G) × LR(E,F ) by:

∀a ∈ U , K(a)
4
= (dψ(φ(a)), dφ(a))

Show that K is continuous.

6. Show that ψ ◦ φ is differentiable on U .

7. Show that d(ψ ◦ φ) = H ◦K.

8. Conclude with the following:

Theorem 111 Let E,F,G be three R-normed spaces, U be open in E and V
be open in F . Let φ : U → F and ψ : V → G be two maps of class C1 such that
φ(U) ⊆ V . Then, ψ ◦ φ : U → G is of class C1.

Exercise 12. Let E be an R-normed space. Let a, b ∈ R, a < b. Let f :
[a, b] → E and g : [a, b] → R be two continuous maps which are differentiable
at every point of ]a, b[. We assume that:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)

1. Given ε > 0, we define φε : [a, b]→ R by:

φε(t)
4
= ‖f(t)− f(a)‖ − g(t) + g(a)− ε(t− a)

for all t ∈ [a, b]. Show that φε is continuous.

2. Define Eε = {t ∈ [a, b] : φε(t) ≤ ε}, and c = supEε. Show that:

c ∈ [a, b] and φε(c) ≤ ε

3. Show the existence of h > 0, such that:

∀t ∈ [a, a+ h[∩[a, b] , φε(t) ≤ ε

4. Show that c ∈]a, b].

5. Suppose that c ∈]a, b[. Show the existence of t0 ∈]c, b] such that:∥∥∥∥f(t0)− f(c)
t0 − c

∥∥∥∥ ≤ ‖f ′(c)‖+ ε/2 and g′(c) ≤ g(t0)− g(c)
t0 − c

+ ε/2

6. Show that ‖f(t0)− f(c)‖ ≤ g(t0)− g(c) + ε(t0 − c).

7. Show that ‖f(c)− f(a)‖ ≤ g(c)− g(a) + ε(c− a) + ε.

8. Show that ‖f(t0)− f(a)‖ ≤ g(t0)− g(a) + ε(t0 − a) + ε.

9. Show that c ∈]a, b[ leads to a contradiction.
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10. Show that ‖f(b)− f(a)‖ ≤ g(b)− g(a) + ε(b− a) + ε.

11. Conclude with the following:

Theorem 112 Let E be an R-normed space. Let a, b ∈ R, a < b. Let
f : [a, b]→ E and g : [a, b]→ R be two continuous maps which are differentiable
at every point of ]a, b[, and such that:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)
Then:

‖f(b)− f(a)‖ ≤ g(b)− g(a)

Definition 131 Let n ≥ 1 and U be open in Rn. Let φ : U → E be a map,
where E is an R-normed space. For all i = 1, . . . , n, we say that φ has an ith
partial derivative at a ∈ U , if and only if the limit:

∂φ

∂xi
(a)

4
= lim

h 6=0,h→0

φ(a+ hei)− φ(a)
h

exists in E, where (e1, . . . , en) is the canonical basis of Rn.

Exercise 13. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a map, where
E is an R-normed space.

1. Suppose φ is differentiable at a ∈ U . Show that for all i ∈ Nn:

lim
h 6=0,h→0

1
‖hei‖

‖φ(a+ hei)− φ(a) − dφ(a)(hei)‖ = 0

2. Show that for all i ∈ Nn, ∂φ
∂xi

(a) exists, and:

∂φ

∂xi
(a) = dφ(a)(ei)

3. Conclude with the following:

Theorem 113 Let n ≥ 1 and U be open in Rn. Let φ : U → E be a map,
where E is an R-normed space. Then, if φ is differentiable at a ∈ U , for all
i = 1, . . . , n, ∂φ

∂xi
(a) exists and we have:

∀h 4= (h1, . . . , hn) ∈ Rn , dφ(a)(h) =
n∑
i=1

∂φ

∂xi
(a)hi

Exercise 14. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a map, where
E is an R-normed space.
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1. Show that if φ is differentiable at a, b ∈ U , then for all i ∈ Nn:∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥ ≤ ‖dφ(b)− dφ(a)‖

2. Conclude that if φ is of class C1 on U , then ∂φ
∂xi

exists and is continuous
on U , for all i ∈ Nn.

Exercise 15. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a map, where
E is an R-normed space. We assume that ∂φ

∂xi
exists on U , and is continuous at

a ∈ U , for all i ∈ Nn. We define l : Rn → E:

∀h 4= (h1, . . . , hn) ∈ Rn , l(h)
4
=

n∑
i=1

∂φ

∂xi
(a)hi

1. Show that l ∈ LR(Rn, E).

2. Given ε > 0, show the existence of η > 0 such that for all h ∈ Rn with
‖h‖ < η, we have a+ h ∈ U , and:

∀i = 1, . . . , n ,
∥∥∥∥ ∂φ∂xi (a+ h)− ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε

3. Let h = (h1, . . . , hn) ∈ Rn be such that ‖h‖ < η. (e1, . . . , en) being the
canonical basis of Rn, we define k0 = a and for i ∈ Nn:

ki
4
= a+

i∑
j=1

hjej

Show that k0, . . . , kn ∈ U , and that we have:

φ(a + h)− φ(a) − l(h)=
n∑
i=1

(
φ(ki−1 + hiei)−φ(ki−1)−hi

∂φ

∂xi
(a)
)

4. Let i ∈ Nn. Assume that hi > 0. We define fi : [0, hi]→ E by:

∀t ∈ [0, hi] , fi(t)
4
= φ(ki−1 + tei)− φ(ki−1)− t ∂φ

∂xi
(a)

Show fi is well-defined, f ′i(t) exists for all t ∈ [0, hi], and:

∀t ∈ [0, hi] , f ′i(t) =
∂φ

∂xi
(ki−1 + tei)−

∂φ

∂xi
(a)

5. Show fi is continuous on [0, hi], differentiable on ]0, hi[, with:

∀t ∈]0, hi[ , ‖f ′i(t)‖ ≤ ε

6. Show that: ∥∥∥∥φ(ki−1 + hiei)− φ(ki−1)− hi
∂φ

∂xi
(a)
∥∥∥∥ ≤ ε|hi|
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7. Show that the previous inequality still holds if hi ≤ 0.

8. Conclude that for all h ∈ Rn with ‖h‖ < η, we have:

‖φ(a+ h)− φ(a)− l(h)‖ ≤ ε
√
n‖h‖

9. Prove the following:

Theorem 114 Let n ≥ 1 and U be open in Rn. Let φ : U → E be a map,
where E is an R-normed space. If, for all i ∈ Nn

∂φ
∂xi

exists on U and is
continuous at a ∈ U , then φ is differentiable at a ∈ U .

Exercise 16. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a map,
where E is an R-normed space. We assume that for all i ∈ Nn, ∂φ

∂xi
exists and

is continuous on U .

1. Show that φ is differentiable on U .

2. Show that for all a, b ∈ U and h ∈ Rn:

‖(dφ(b)− dφ(a))(h)‖ ≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

‖h‖

3. Show that for all a, b ∈ U :

‖dφ(b)− dφ(a)‖ ≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

4. Show that dφ : U → LR(Rn, E) is continuous.

5. Prove the following:

Theorem 115 Let n ≥ 1 and U be open in Rn. Let φ : U → E be a map,
where E is an R-normed space. Then, φ is of class C1 on U , if and only if for
all i = 1, . . . , n, ∂φ

∂xi
exists and is continuous on U .

Exercise 17. Let E,F be two R-normed spaces and l ∈ LR(E,F ). Let U be
open in E and l|U be the restriction of l to U . Show that l|U is of class C1 on
U , and that we have:

∀x ∈ U , d(l|U )(x) = l

Exercise 18. Let E1, . . . , En, n ≥ 1, be n K-normed spaces. Let E = E1 ×
. . .× En. Let p ∈ [1,+∞[, and for all x = (x1, . . . , xn) ∈ E:

‖x‖p
4
=

(
n∑
i=1

‖xi‖p
)1/p

‖x‖∞
4
= max

i=1,...,n
‖xi‖
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1. Using theorem (43), show that ‖.‖p and ‖.‖∞ are norms on E.

2. Show ‖.‖p and ‖.‖∞ induce the product topology on E.

3. Conclude that E is also an K-normed space, and that the norm topology
on E is exactly the product topology on E.

Exercise 19. Let E and F be two R-normed spaces. Let U be open in E and
φ, ψ : U → F be two maps. We assume that both φ and ψ are differentiable at
a ∈ U . Given α ∈ R, show that φ+ αψ is differentiable at a ∈ U and:

d(φ + αψ)(a) = dφ(a) + αdψ(a)

Exercise 20. Let E and F be K-normed spaces. Let U be open in E and
φ : U → F be a map. Let NE and NF be two norms on E and F , inducing
the same topologies as the norm topologies of E and F respectively. For all
l ∈ LK(E,F ), we define:

N(l) = sup{NF (l(x)) : x ∈ E,NE(x) = 1}

1. Explain why the set LK(E,F ) is unambiguously defined.

2. Show that the identity idE : (E, ‖ · ‖)→ (E,NE) is continuous

3. Show the existence of mE ,ME > 0 such that:

∀x ∈ E , mE‖x‖ ≤ NE(x) ≤ME‖x‖

4. Show the existence of m,M > 0 such that:

∀l ∈ LK(E,F ) , m‖l‖ ≤ N(l) ≤M‖l‖

5. Show that ‖ · ‖ and N induce the same topology on LK(E,F ).

6. Show that if K = R and φ is differentiable at a ∈ U , then φ is also differ-
entiable at a with respect to the norms NE and NF , and the differential
dφ(a) is unchanged

7. Show that if K = R and φ is of class C1 on U , then φ is also of class C1

on U with respect to the norms NE and NF .

Exercise 21. Let E and F1, . . . , Fp, p ≥ 1, be p+ 1 R-normed spaces. Let U
be open in E and F = F1 × . . .× Fp. Let φ : U → F be a map. For all i ∈ Np,
we denote pi : F → Fi the canonical projection and we define φi = pi ◦ φ. We
also consider ui : Fi → F , defined as:

∀xi ∈ Fi , ui(xi)
4
= (0, . . . ,

i︷︸︸︷
xi , . . . , 0)

1. Given i ∈ Np, show that pi ∈ LR(F, Fi).

2. Given i ∈ Np, show that ui ∈ LR(Fi, F ) and φ =
∑p
i=1 ui ◦ φi.
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3. Show that if φ is differentiable at a ∈ U , then for all i ∈ Np, φi : U → Fi
is differentiable at a ∈ U and dφi(a) = pi ◦ dφ(a).

4. Show that if φi is differentiable at a ∈ U for all i ∈ Np, then φ is differen-
tiable at a ∈ U and:

dφ(a) =
p∑
i=1

ui ◦ dφi(a)

5. Suppose that φ is differentiable at a, b ∈ U . Let F be given the norm ‖ ·‖2
of exercise (18). Show that for all i ∈ Np:

‖dφi(b)− dφi(a)‖ ≤ ‖dφ(b)− dφ(a)‖

6. Show that:

‖dφ(b)− dφ(a)‖ ≤
(

p∑
i=1

‖dφi(b)− dφi(a)‖2
)1/2

7. Show that φ is of class C1 ⇔ φi is of class C1 for all i ∈ Np.

8. Conclude with theorem (116)

Theorem 116 Let E,F1, . . . , Fp, (p ≥ 1), be p+ 1 R-normed spaces and U be
open in E. Let F be the R-normed space F = F1×. . .×Fp and φ = (φ1, . . . , φp) :
U → F be a map. Then, φ is differentiable at a ∈ U , if and only if dφi(a) exists
for all i ∈ Np, in which case:

∀h ∈ E , dφ(a)(h) = (dφ1(a)(h), . . . , dφp(a)(h))

Also, φ is of class C1 on U ⇔ φi is of class C1 on U , for all i ∈ Np.

Theorem 117 Let φ = (φ1, . . . , φn) : U → Rn be a map, where n ≥ 1 and
U is open in Rn. We assume that φ is differentiable at a ∈ U . Then, for all
i, j = 1, . . . , n, ∂φi

∂xj
(a) exists, and we have:

dφ(a) =


∂φ1
∂x1

(a) . . . ∂φ1
∂xn

(a)
...

...
∂φn
∂x1

(a) . . . ∂φn
∂xn

(a)


Moreover, φ is of class C1 on U , if and only if for all i, j = 1, . . . , n, ∂φi

∂xj
exists

and is continuous on U .

Exercise 22. Prove theorem (117)
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Definition 132 Let φ = (φ1, . . . , φn) : U → Rn be a map, where n ≥ 1 and U
is open in Rn. We assume that φ is differentiable at a ∈ U . We call Jacobian
of φ at a, denoted J(φ)(a), the determinant of the differential dφ(a) at a, i.e.

J(φ)(a) = det


∂φ1
∂x1

(a) . . . ∂φ1
∂xn

(a)
...

...
∂φn
∂x1

(a) . . . ∂φn
∂xn

(a)



Definition 133 Let n ≥ 1 and Ω, Ω′ be open in Rn. A bijection φ : Ω → Ω′

is called a C1-diffeomorphism between Ω and Ω′, if and only if φ : Ω → Rn

and φ−1 : Ω′ → Rn are both of class C1.

Exercise 23. Let Ω and Ω′ be open in Rn. Let φ : Ω → Ω′ be a C1-
diffeomorphism, ψ = φ−1, and In be the identity mapping of Rn.

1. Explain why J(ψ) : Ω′ → R and J(φ) : Ω→ R are continuous.

2. Show that dφ(ψ(x)) ◦ dψ(x) = In, for all x ∈ Ω′.

3. Show that dψ(φ(x)) ◦ dφ(x) = In, for all x ∈ Ω.

4. Show that J(ψ)(x) 6= 0 for all x ∈ Ω′.

5. Show that J(φ)(x) 6= 0 for all x ∈ Ω.

6. Show that J(ψ) = 1/(J(φ) ◦ ψ) and J(φ) = 1/(J(ψ) ◦ φ).

Definition 134 Let n ≥ 1 and Ω ∈ B(Rn), be a Borel set in Rn. We define
the Lebesgue measure on Ω, denoted dx|Ω, as the restriction to B(Ω) of the
Lebesgue measure on Rn, i.e the measure on (Ω,B(Ω)) defined by:

∀B ∈ B(Ω) , dx|Ω(B)
4
= dx(B)

Exercise 24. Show that dx|Ω is a well-defined measure on (Ω,B(Ω)).

Exercise 25. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′ be a
C1-diffeomorphism and ψ = φ−1. Let a ∈ Ω′. We assume that dψ(a) = In,
(identity mapping on Rn), and given ε > 0, we denote:

B(a, ε)
4
= {x ∈ Rn : ‖a− x‖ < ε}

where ‖.‖ is the usual norm in Rn.

1. Why are dx|Ω′ , φ(dx|Ω) well-defined measures on (Ω′,B(Ω′)).

2. Show that for ε > 0 sufficiently small, B(a, ε) ∈ B(Ω′).
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3. Show that it makes sense to investigate whether the limit:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

does exists in R.

4. Given r > 0, show the existence of ε1 > 0 such that for all h ∈ Rn with
‖h‖ ≤ ε1, we have a+ h ∈ Ω′, and:

‖ψ(a+ h)− ψ(a)− h‖ ≤ r‖h‖

5. Show for all h ∈ Rn with ‖h‖ ≤ ε1, we have a+ h ∈ Ω′, and:

‖ψ(a+ h)− ψ(a)‖ ≤ (1 + r)‖h‖

6. Show that for all ε ∈]0, ε1[, we have B(a, ε) ⊆ Ω′, and:

ψ(B(a, ε)) ⊆ B(ψ(a), ε(1 + r))

7. Show that dφ(ψ(a)) = In.

8. Show the existence of ε2 > 0 such that for all k ∈ Rn with ‖k‖ ≤ ε2, we
have ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k)− a− k‖ ≤ r‖k‖

9. Show for all k ∈ Rn with ‖k‖ ≤ ε2, we have ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k)− a‖ ≤ (1 + r)‖k‖

10. Show for all ε ∈]0, ε2(1 + r)[, we have B(ψ(a), ε
1+r ) ⊆ Ω, and:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)}

11. Show that if B(a, ε) ⊆ Ω′, then ψ(B(a, ε)) = {φ ∈ B(a, ε)}.

12. Show if 0 < ε < ε0 = ε1 ∧ ε2(1 + r), then B(a, ε) ⊆ Ω′, and:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)} ⊆ B(ψ(a), ε(1 + r))

13. Show that for all ε ∈]0, ε0[:

(i) dx(B(ψ(a),
ε

1 + r
)) = (1 + r)−ndx|Ω′ (B(a, ε))

(ii) dx(B(ψ(a), ε(1 + r))) = (1 + r)ndx|Ω′(B(a, ε))
(iii) dx({φ ∈ B(a, ε)}) = φ(dx|Ω)(B(a, ε))

14. Show that for all ε ∈]0, ε0[, B(a, ε) ⊆ Ω′, and:

(1 + r)−n ≤
φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

≤ (1 + r)n
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15. Conclude that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

Exercise 26. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′ be a
C1-diffeomorphism and ψ = φ−1. Let a ∈ Ω′. We put A = dψ(a).

1. Show that A : Rn → Rn is a linear bijection.

2. Define Ω′′ = A−1(Ω). Show that this definition does not depend on
whether A−1(Ω) is viewed as inverse , or direct image.

3. Show that Ω′′ is an open subset of Rn.

4. We define φ̃ : Ω′′ → Ω′ by φ̃(x) = φ ◦ A(x). Show that φ̃ is a C1-
diffeomorphism with ψ̃ = φ̃−1 = A−1 ◦ ψ.

5. Show that dψ̃(a) = In.

6. Show that:

lim
ε↓↓0

φ̃(dx|Ω′′ )(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

7. Let ε > 0 with B(a, ε) ⊆ Ω′. Justify each of the following steps:

φ̃(dx|Ω′′ )(B(a, ε)) = dx|Ω′′ ({φ̃ ∈ B(a, ε)})
= dx({φ̃ ∈ B(a, ε)})
= dx({x ∈ Ω′′ : φ ◦A(x) ∈ B(a, ε)})
= dx({x ∈ Ω′′ : A(x) ∈ φ−1(B(a, ε))})
= dx({x ∈ Rn : A(x) ∈ φ−1(B(a, ε))})
= A(dx)({φ ∈ B(a, ε)})
= | detA|−1dx({φ ∈ B(a, ε)})
= | detA|−1dx|Ω({φ ∈ B(a, ε)})
= | detA|−1φ(dx|Ω)(B(a, ε))

8. Show that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= | detA|

9. Conclude with the following:

Theorem 118 Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′ be a
C1-diffeomorphism and ψ = φ−1. Then, for all a ∈ Ω′, we have:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= |J(ψ)(a)|

where J(ψ)(a) is the Jacobian of ψ at a, B(a, ε) is the open ball in Rn, and
dx|Ω, dx|Ω′ are the Lebesgue measures on Ω and Ω′ respectively.
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Exercise 27. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′ be a
C1-diffeomorphism and ψ = φ−1.

1. Let K ⊆ Ω′ be a non-empty compact subset of Ω′ such that dx|Ω′ (K) = 0.
Given ε > 0, show the existence of V open in Ω′, such that K ⊆ V ⊆ Ω′,
and dx|Ω′(V ) ≤ ε.

2. Explain why V is also open in Rn.

3. Show that M
4
= supx∈K ‖dψ(x)‖ ∈ R+.

4. For all x ∈ K, show there is εx > 0 such that B(x, εx) ⊆ V , and for all
h ∈ Rn with ‖h‖ ≤ 3εx, we have x+ h ∈ Ω′, and:

‖ψ(x+ h)− ψ(x)‖ ≤ (M + 1)‖h‖

5. Show that for all x ∈ K, B(x, 3εx) ⊆ Ω′, and:

ψ(B(x, 3εx)) ⊆ B(ψ(x), 3(M + 1)εx)

6. Show that ψ(B(x, 3εx)) = {φ ∈ B(x, 3εx)}, for all x ∈ K.

7. Show the existence of {x1, . . . , xp} ⊆ K, (p ≥ 1), such that:

K ⊆ B(x1, εx1) ∪ . . . ∪B(xp, εxp)

8. Show the existence of S ⊆ {1, . . . , p} such that the B(xi, εxi)’s are pairwise
disjoint for i ∈ S, and:

K ⊆
⋃
i∈S

B(xi, 3εxi)

9. Show that {φ ∈ K} ⊆ ∪i∈SB(ψ(xi), 3(M + 1)εxi).

10. Show that φ(dx|Ω)(K) ≤
∑

i∈S 3n(M + 1)ndx(B(xi, εxi)).

11. Show that φ(dx|Ω)(K) ≤ 3n(M + 1)ndx(V ).

12. Show that φ(dx|Ω)(K) ≤ 3n(M + 1)nε.

13. Conclude that φ(dx|Ω)(K) = 0.

14. Show that φ(dx|Ω) is a locally finite measure on (Ω′,B(Ω′)).

15. Show that for all B ∈ B(Ω′):

φ(dx|Ω)(B) = sup{φ(dx|Ω)(K) : K ⊆ B , K compact }

16. Show that for all B ∈ B(Ω′):

dx|Ω′ (B) = 0 ⇒ φ(dx|Ω)(B) = 0

17. Conclude with the following:
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Theorem 119 Let n ≥ 1, Ω, Ω′ be open in Rn, and φ : Ω → Ω′ be a C1-
diffeomorphism. Then, the image measure φ(dx|Ω), by φ of the Lebesgue measure
on Ω, is absolutely continuous with respect to dx|Ω′ , the Lebesgue measure on
Ω′, i.e.:

φ(dx|Ω) << dx|Ω′

Exercise 28. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′ be a
C1-diffeomorphism and ψ = φ−1.

1. Explain why there exists a sequence (Vp)p≥1 of open sets in Ω′, such that
Vp ↑ Ω′ and for all p ≥ 1, the closure of Vp in Ω′, i.e. V̄ Ω′

p , is compact.

2. Show that each Vp is also open in Rn, and that V̄ Ω′

p = V̄p.

3. Show that φ(dx|Ω)(Vp) < +∞, for all p ≥ 1.

4. Show that dx|Ω′ and φ(dx|Ω) are two σ-finite measures on Ω′.

5. Show there is h : (Ω′,B(Ω′))→ (R+,B(R+)) measurable, with:

∀B ∈ B(Ω′) , φ(dx|Ω)(B) =
∫
B

hdx|Ω′

6. For all p ≥ 1, we define hp = h1Vp , and we put:

∀x ∈ Rn , h̃p(x)
4
=
{
hp(x) if x ∈ Ω′

0 if x 6∈ Ω′

Show that: ∫
Rn

h̃pdx =
∫

Ω′
hpdx|Ω′ = φ(dx|Ω)(Vp) < +∞

and conclude that h̃p ∈ L1
R(Rn,B(Rn), dx).

7. Show the existence of some N ∈ B(Rn), such that dx(N) = 0 and for all
x ∈ N c and p ≥ 1, we have:

h̃p(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

h̃pdx

8. Put N ′ = N ∩ Ω′. Show that N ′ ∈ B(Ω′) and dx|Ω′ (N ′) = 0.

9. Let x ∈ Ω′ and p ≥ 1 be such that x ∈ Vp. Show that if ε > 0 is such that
B(x, ε) ⊆ Vp, then dx(B(x, ε)) = dx|Ω′(B(x, ε)), and:∫

B(x,ε)

h̃pdx =
∫

Rn

1B(x,ε)h̃pdx =
∫

Ω′
1B(x,ε)hpdx|Ω′

10. Show that:∫
Ω′

1B(x,ε)hpdx|Ω′ =
∫

Ω′
1B(x,ε)hdx|Ω′ = φ(dx|Ω)(B(x, ε))
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11. Show that for all x ∈ Ω′ \N ′, we have:

h(x) = lim
ε↓↓0

φ(dx|Ω)(B(x, ε))
dx|Ω′(B(x, ε))

12. Show that h = |J(ψ)| dx|Ω′ -a.s. and conclude with the following:

Theorem 120 Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω→ Ω′ be a C1-
diffeomorphism and ψ = φ−1. Then, the image measure by φ of the Lebesgue
measure on Ω, is equal to the measure on (Ω′,B(Ω′)) with density |J(ψ)| with
respect to the Lebesgue measure on Ω′, i.e.:

φ(dx|Ω) =
∫
|J(ψ)|dx|Ω′

Exercise 29. Prove the following:

Theorem 121 (Jacobian Formula 1) Let n ≥ 1 and φ : Ω → Ω′ be a C1-
diffeomorphism where Ω, Ω′ are open in Rn. Let ψ = φ−1. Then, for all
f : (Ω′,B(Ω′))→ [0,+∞] non-negative and measurable:∫

Ω

f ◦ φdx|Ω =
∫

Ω′
f |J(ψ)|dx|Ω′

and: ∫
Ω

(f ◦ φ)|J(φ)|dx|Ω =
∫

Ω′
fdx|Ω′

Exercise 30. Prove the following:

Theorem 122 (Jacobian Formula 2) Let n ≥ 1 and φ : Ω → Ω′ be a C1-
diffeomorphism where Ω, Ω′ are open in Rn. Let ψ = φ−1. Then, for all
measurable map f : (Ω′,B(Ω′))→ (C,B(C)), we have the equivalence:

f ◦ φ ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f |J(ψ)| ∈ L1

C(Ω′,B(Ω′), dx|Ω′ )

in which case: ∫
Ω

f ◦ φdx|Ω =
∫

Ω′
f |J(ψ)|dx|Ω′

and, furthermore:

(f ◦ φ)|J(φ)| ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f ∈ L1

C(Ω′,B(Ω′), dx|Ω′)

in which case: ∫
Ω

(f ◦ φ)|J(φ)|dx|Ω =
∫

Ω′
fdx|Ω′

Exercise 31. Let f :R2→[0,+∞], with f(x, y) = exp(−(x2 + y2)/2).
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1. Show that: ∫
R2
f(x, y)dxdy =

(∫ +∞

−∞
e−u

2/2du

)2

2. Define:

∆1
4
= {(x, y) ∈ R2 : x > 0 , y > 0}

∆2
4
= {(x, y) ∈ R2 : x < 0 , y > 0}

and let ∆3 and ∆4 be the other two open quarters of R2. Show:∫
R2
f(x, y)dxdy =

∫
∆1∪...∪∆4

f(x, y)dxdy

3. Let Q : R2 → R2 be defined by Q(x, y) = (−x, y). Show that:∫
∆1

f(x, y)dxdy =
∫

∆2

f ◦Q−1(x, y)dxdy

4. Show that: ∫
R2
f(x, y)dxdy = 4

∫
∆1

f(x, y)dxdy

5. Let D1 =]0,+∞[×]0, π/2[⊆R2, and define φ : D1 → ∆1 by:

∀(r, θ) ∈ D1 , φ(r, θ)
4
= (r cos θ, r sin θ)

Show that φ is a bijection and that ψ = φ−1 is given by:

∀(x, y) ∈ ∆1 , ψ(x, y) = (
√
x2 + y2, arctan(y/x))

6. Show that φ is a C1-diffeomorphism, with:

∀(r, θ) ∈ D1 , dφ(r, θ) =
(

cos θ −r sin θ
sin θ r cos θ

)
and:

∀(x, y) ∈ ∆1 , dψ(x, y) =

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)
7. Show that J(φ)(r, θ) = r, for all (r, θ) ∈ D1.

8. Show that J(ψ)(x, y) = 1/(
√
x2 + y2), for all (x, y) ∈ ∆1.

9. Show that: ∫
∆1

f(x, y)dxdy =
π

2

10. Prove the following:

Theorem 123 We have:
1√
2π

∫ +∞

−∞
e−u

2/2du = 1
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Solutions to Exercises
Exercise 1.

1. Let 〈·, ·〉 be an inner-product on a K-vector space H. From definition (81),
we have 〈x, x〉 ≥ 0 for all x ∈ H. So ‖ · ‖ =

√
〈x, x〉 is a well-defined map

‖ · ‖ : H → R+. From (v) of definition (81), 〈x, x〉 = 0 is equivalent to
x = 0. It follows that ‖x‖ = 0 is equivalent to x = 0. Let x ∈ H and
α ∈ K. We have:

‖αx‖ =
√
〈αx, αx〉

=
√
α〈x, αx〉

=
√
αᾱ〈x, x〉

=
√
|α|2〈x, x〉

= |α|
√
〈x, x〉 = |α| · ‖x‖

Finally, given x, y ∈ H, the fact that:

‖x+ y‖ ≤ ‖x‖+ ‖y‖
has been proved in exercise (17) of Tutorial 10. From definition (95), we
conclude that ‖ · ‖ is a norm on H.

2. H is a K-vector space and ‖ · ‖ is a norm on H. From definition (125), we
conclude that (H, ‖ · ‖) is a K-normed space.

Exercise 1

Exercise 2.

1. Let (E, ‖·‖) be a K-normed space. Let d(x, y) = ‖x−y‖. Then d : E×E →
R+ is a well-defined map. Furthermore, since ‖x‖ = 0 is equivalent to
x = 0, d(x, y) = 0 is equivalent to x = y. Since ‖αx‖ = |α| · ‖x‖ for all
x ∈ E and α ∈ K, taking α = −1 it is clear that d(x, y) = d(y, x) for all
x, y ∈ E. Finally, given x, y, z ∈ E we have:

d(x, y) = ‖x− y‖
= ‖x− z + z − y‖
≤ ‖x− z‖+ ‖z − y‖
= d(x, z) + d(z, y)

We conclude from definition (28) that d is a metric on E.

2. Let x, y ∈ E. We have:

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖
and consequently ‖x‖ − ‖y‖ ≤ ‖x− y‖. Similarly:

‖y‖ − ‖x‖ ≤ ‖y − x‖
= ‖x− y‖
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and we conclude that:

| ‖x‖ − ‖y‖ | = max(‖x‖ − ‖y‖, ‖y‖ − ‖x‖)
≤ ‖x− y‖

Exercise 2

Exercise 3. Let E,F be two K-normed spaces and l : E → F be a linear map.
We claim that the following are equivalent:

(i) l is continuous (w.r. to the norm topologies)
(ii) l is continuous at x = 0.

(iii) ∃K ∈ R+ , ∀x ∈ E , ‖l(x)‖ ≤ K‖x‖
(iv) sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1} < +∞

Suppose l is continuous. In particular, it is continuous at x = 0. In case you
have any doubt, although we have not defined it in these tutorials, recall that a
map l : E → F , where E and F are topological spaces, is said to be continuous
at x ∈ E, if and only if for all V open subsets of F with l(x) ∈ V , there exists U
open subset of E with x ∈ U ⊆ l−1(V ). Now if l : E → F is continuous, for all
V open subsets of F , l−1(V ) is an open subset of E. If furthermore l(x) ∈ V ,
then x ∈ l−1(V ) and taking U = l−1(V ), we have found U open subset of E
with x ∈ U ⊆ l−1(V ). So l is continuous at x. We have proved that (i)⇒ (ii).
Suppose that l is continuous at x = 0. Let ε > 0 and B(0, ε) denote the open
ball in F . Since l is linear, l(0) = 0 and B(0, ε) is therefore an open subset of
F containing l(0). Having assumed that l is continuous at x = 0, there exists
U open subset of E such that 0 ∈ U ⊆ l−1(B(0, ε)). The topology on E being
induced by the metric d(x, y) = ‖x−y‖, there exists η > 0 such thatB(0, η) ⊆ U ,
where B(0, η) denotes the open ball in E. From B(0, η) ⊆ U ⊆ l−1(B(0, ε)) we
see that for all x ∈ E:

‖x‖ < η ⇒ ‖l(x)‖ < ε

Suppose x 6= 0. Then ‖x‖ 6= 0 and y = ηx/(2‖x‖) is a well-defined element of
E with ‖y‖ = η/2 < η. Hence, we have:

η

2‖x‖‖l(x)‖ =
∥∥∥∥ η

2‖x‖ l(x)
∥∥∥∥

=
∥∥∥∥l( ηx

2‖x‖

)∥∥∥∥ = ‖l(y)‖ < ε

and consequently, setting K = 2ε/η ∈ R+ we obtain ‖l(x)‖ < K‖x‖. So in
particular, we have proved that ‖l(x)‖ ≤ K‖x‖ for all x 6= 0. This inequality
being obviously still valid if x = 0, we have found K ∈ R+ such that:

∀x ∈ E , ‖l(x)‖ ≤ K‖x‖ (1)

This shows that (ii) ⇒ (iii). Suppose now that there exists K ∈ R+ such
that (1) holds, and define:

α
4
= sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1}
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Given x ∈ E such that ‖x‖ = 1, we have ‖l(x)‖ ≤ K‖x‖ = K. So K is an
upper-bound of all ‖l(x)‖’s as x runs through the set of all x ∈ E with ‖x‖ = 1.
Since α is the smallest of such upper-bounds, we obtain α ≤ K and in particular
α < +∞. This shows that (iii) ⇒ (iv). Finally, suppose that α < +∞. Let
x, y ∈ E be such that x 6= y. Then ‖x − y‖ 6= 0 and z = (x − y)/‖x− y‖ is a
well-defined element of E with ‖z‖ = 1. It follows that:

‖l(x)− l(y)‖
‖x− y‖ =

∥∥∥∥l( x− y
‖x− y‖

)∥∥∥∥
= ‖l(z)‖ ≤ α

and consequently ‖l(x)− l(y)‖ ≤ α‖x− y‖. This is obviously still valid if x = y,
and it is therefore true for all x, y ∈ E. Since α < +∞, this shows that l is
continuous, and we have proved that (iv)⇒ (i). This completes our proof that
(i), (ii), (iii) and (iv) are equivalent.

Exercise 3

Exercise 4. To show that LK(E,F ) is a K-vector space, we only need to show
that it is a K-vector subspace of the set of all maps f : E → F . In other words,
given u, v ∈ LK(E,F ) and α ∈ K, we need to show that u + αv ∈ LK(E,F ).
This in turn amounts to showing that u + αv is a linear map, and that it
is continuous. Since u and v are continuous, from exercise (3) there exists
K1,K2 ∈ R+ such that ‖u(x)‖ ≤ K1‖x‖ and ‖v(x)‖ ≤ K2‖x‖ for all x ∈ E.
Hence:

‖(u+ αv)(x)‖ = ‖u(x) + αv(x)‖
≤ ‖u(x)‖+ |α| · ‖v(x)‖
≤ (K1 + |α|K2)‖x‖

and consequently from exercise (3), u + αv is continuous (provided it is linear,
which we are about to prove). Moreover, given x, y ∈ E and β ∈ K, we have:

(u+ αv)(x + βy) = u(x+ βy) + αv(x + βy)
= u(x) + βu(y) + αv(x) + αβv(y)
= u(x) + αv(x) + β(u(y) + αv(y))
= (u+ αv)(x) + β(u+ αv)(y)

This shows that u + αv is linear, and we have proved that LK(E,F ) is indeed
a K-vector space.

Exercise 4

Exercise 5.

1. Let E, F be K-normed spaces. Given l ∈ LK(E,F ), let:

‖l‖ 4= sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1}
Note that from exercise (3), we have ‖l‖ < +∞. Define:

α
4
= sup{‖l(x)‖ : x ∈ E , ‖x‖ ≤ 1}
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We claim that α = ‖l‖. Let x ∈ E be such that ‖x‖ = 1. Then in
particular ‖x‖ ≤ 1, and consequently ‖l(x)‖ ≤ α. It follows that α is
an upper-bound of all ‖l(x)‖’s as x runs through that set of all x ∈ E
with ‖x‖ = 1. Since ‖l‖ is the smallest of such upper-bounds, we obtain
‖l‖ ≤ α. To show the reverse inequality, consider x ∈ E with ‖x‖ ≤ 1,
and assume that x 6= 0. Then ‖x‖ 6= 0 and y = x/‖x‖ is a well-defined
element of E with ‖y‖ = 1. Hence, we have:

‖l(x)‖
‖x‖ =

∥∥∥∥l( x

‖x‖

)∥∥∥∥ = ‖l(y)‖ ≤ ‖l‖

and consequently ‖l(x)‖ ≤ ‖l‖ · ‖x‖. Having assumed ‖x‖ ≤ 1, we obtain
‖l(x)‖ ≤ ‖l‖. Since l(0) = 0, such inequality still holds for x = 0, and
consequently we have proved that ‖l(x)‖ ≤ ‖l‖ for all x ∈ E with ‖x‖ ≤ 1.
This shows that ‖l‖ is an upper-bound of all ‖l(x)‖’s as x runs through
the set of all x ∈ E with ‖x‖ ≤ 1. Since α is the smallest of such upper-
bounds, we obtain α ≤ ‖l‖. We have proved that α = ‖l‖, i.e.:

‖l‖ = sup{‖l(x)‖ : x ∈ E , ‖x‖ ≤ 1}

2. Define:

α
4
= sup

{
‖l(x)‖
‖x‖ : x ∈ E , x 6= 0

}
We claim that ‖l‖ = α. Let x ∈ E, x 6= 0. Then y = x/‖x‖ is such that
‖y‖ = 1, and consequently:

‖l(x)‖
‖x‖ =

∥∥∥∥l( x

‖x‖

)∥∥∥∥ = ‖l(y)‖ ≤ ‖l‖

This being true for all x ∈ E, x 6= 0, we obtain α ≤ ‖l‖. To show the
reverse inequality, consider x ∈ E with ‖x‖ = 1. In particular x 6= 0 and
consequently:

‖l(x)‖ =
‖l(x)‖
‖x‖ ≤ α

This being true for all x ∈ E with ‖x‖ = 1, we obtain ‖l‖ ≤ α. We have
proved that α = ‖l‖, or equivalently:

‖l‖ = sup
{
‖l(x)‖
‖x‖ : x ∈ E , x 6= 0

}
3. Let x ∈ E. Suppose x 6= 0. From 2. we obtain:

‖l(x)‖
‖x‖ ≤ ‖l‖

and consequently ‖l(x)‖ ≤ ‖l‖ · ‖x‖. Since l(0) = 0, we have proved that
‖l(x)‖ ≤ ‖l‖ · ‖x‖ for all x ∈ E.
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4. Since l is continuous, from exercise (3) we have ‖l‖ < +∞. So ‖l‖ is indeed
an element of R+, which furthermore from 3. satisfies ‖l(x)‖ ≤ ‖l‖ · ‖x‖
for all x ∈ E. Suppose K is another element of R+, such that:

∀x ∈ E , ‖l(x)‖ ≤ K‖x‖
Then for all x ∈ E, x 6= 0, we have ‖l(x)‖/‖x‖ ≤ K. So K is an upper-
bound of all ‖l(x)‖/‖x‖, as x runs through the set of all x ∈ E, x 6= 0.
Having proved in 2. that ‖l‖ is the smallest of such upper-bounds, we
obtain ‖l‖ ≤ K. So ‖l‖ is indeed the smallestK ∈ R+ with ‖l(x)‖ ≤ K‖x‖
for all x ∈ E.

5. Since ‖l‖ < +∞ for all l ∈ LK(E,F ), the map ‖ · ‖ is indeed a map
‖ · ‖ : LK(E,F ) → R+. We claim that it is in fact a norm on LK(E,F ).
Suppose ‖l‖ = 0. Then from 3. for all x ∈ E:

‖l(x)‖ ≤ ‖l‖ · ‖x‖ = 0

and consequently l(x) = 0 for all x ∈ E. This shows that l = 0 and we
have proved that ‖l‖ = 0⇒ l = 0. Conversely, if l = 0:

‖l‖ = sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1}
= sup{0} = 0

which shows that ‖l‖ = 0 is in fact equivalent to l = 0. Let α ∈ K. For
all x ∈ E, using 3. we have:

‖(αl)(x)‖ = ‖αl(x)‖
= |α| · ‖l(x)‖
≤ |α| · ‖l‖ · ‖x‖

and it follows from 4. that ‖αl‖ ≤ |α| · ‖l‖. Suppose α 6= 0. Then applying
this inequality to α−1 and αl we obtain:

‖l‖ = ‖α−1(αl)‖
≤ |α−1| · ‖αl‖ = |α|−1‖αl‖

and consequently |α| · ‖l‖ ≤ ‖αl‖. This shows that ‖αl‖ = |α| · ‖l‖ for
all l ∈ LK(E,F ) and α 6= 0. This equality being still true for α = 0, we
have proved that ‖αl‖ = |α| · ‖l‖ for all l ∈ LK(E,F ) and α ∈ K. Let
l, l′ ∈ LK(E,F ). Then for all x ∈ E:

‖(l + l′)(x)‖ = ‖l(x) + l′(x)‖
≤ ‖l(x)‖+ ‖l′(x)‖
≤ ‖l‖ · ‖x‖+ ‖l′‖ · ‖x‖
= (‖l‖+ ‖l′‖)‖x‖

and it follows from 4. that ‖l + l′‖ ≤ ‖l‖+ ‖l′‖. From definition (95), we
conclude that ‖.‖ is indeed a norm on LK(E,F ).
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6. Since LK(E,F ) is a K-vector space and ‖ · ‖ is a norm on LK(E,F ), we
conclude that (LK(E,F ), ‖ · ‖) is a K-normed space by virtue of defini-
tion (125).

Exercise 5

Exercise 6.

1. Let E,F be two R-normed spaces and U be open in E. Let φ : U → F
be a map, and a ∈ U . We assume that l1, l2 ∈ LR(E,F ) satisfy the
requirements of definition (128). Let ε > 0 be given. Since l1 satisfies the
requirement of definition (128), there exists δ1 > 0 such that for all h ∈ E:

‖h‖ ≤ δ1 ⇒ a+ h ∈ U and ‖φ(a+ h)− φ(a) − l1(h)‖ ≤ ε

2
‖h‖

Similarly, there exists δ2 > 0 such that for all h ∈ E:

‖h‖ ≤ δ2 ⇒ a+ h ∈ U and ‖φ(a+ h)− φ(a) − l2(h)‖ ≤ ε

2
‖h‖

Let δ = min(δ1, δ2). Then δ > 0, and for all h ∈ E the condition ‖h‖ ≤ δ
implies that a+ h ∈ U and furthermore:

‖l1(h)− l2(h)‖ ≤ ‖φ(a+ h)− φ(a)− l2(h)‖
+ ‖φ(a+ h)− φ(a)− l1(h)‖
≤ ε

2
‖h‖+

ε

2
‖h‖

= ε‖h‖
Hence, given ε > 0, we have found δ > 0 such that for all h ∈ E:

‖h‖ ≤ δ ⇒ ‖l1(h)− l2(h)‖ ≤ ε‖h‖

2. Let ε > 0 and δ > 0 be such that for all h ∈ E:

‖h‖ ≤ δ ⇒ ‖l1(h)− l2(h)‖ ≤ ε‖h‖
Let x ∈ E with ‖x‖ = 1. Then h = δx is an element of E with ‖h‖ = δ.
In particular ‖h‖ ≤ δ, and consequently we have:

δ‖(l1 − l2)(x)‖ = δ‖l1(x)− l2(x)‖
= ‖l1(δx)− l2(δx)‖
= ‖l1(h)− l2(h)‖
≤ ε‖h‖ = εδ

Since δ > 0, it follows that ‖(l1 − l2)(x)‖ ≤ ε and we see that ε is an
upper-bound of all ‖(l1 − l2)(x)‖’s as x runs through the set of all x ∈ E
with ‖x‖ = 1. Since ‖l1 − l2‖ is the smallest of such upper-bounds, we
obtain ‖l1 − l2‖ ≤ ε. This being true for all ε > 0, we conclude that
‖l1 − l2‖ = 0, i.e. l1 = l2.
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Exercise 6

Exercise 7.

1. Let E,F be two R-normed spaces and U be open in E. Let φ : U → F
be a map and a ∈ U . Suppose that φ is differentiable at a. Take ε = 1.
Since dφ(a) denotes the differential of φ at a, i.e. the unique element
of LR(E,F ) satisfying the requirements of (128), there exists δ > 0 such
that for all h ∈ E:

‖h‖ ≤ δ ⇒ a+ h ∈ U and ‖φ(a+ h)− φ(a)− dφ(a)(h)‖ ≤ ‖h‖

In particular, for all h ∈ E the condition ‖h‖ ≤ δ implies that a+ h ∈ U
and furthermore:

‖φ(a+ h)− φ(a)‖ = ‖φ(a+ h)− φ(a)‖ − ‖dφ(a)(h)‖
+ ‖dφ(a)(h)‖
≤ | ‖φ(a+ h)− φ(a)‖ − ‖dφ(a)(h)‖ |
+ ‖dφ(a)(h)‖
≤ ‖φ(a+ h)− φ(a) − dφ(a)(h)‖
+ ‖dφ(a)(h)‖
≤ ‖h‖+ ‖dφ(a)‖ · ‖h‖
= K‖h‖

where we have put K = (1 + ‖dφ(a)‖) ∈ R+. Hence, we have found δ > 0
such that for all h ∈ E:

‖h‖ ≤ δ ⇒ a+ h ∈ U and ‖φ(a+ h)− φ(a)‖ ≤ K‖h‖

This shows that φ is continuous at a. We have proved that if φ is differ-
entiable at a, then φ is continuous at a.

2. Suppose φ : U → F is of class C1. From definition (130), the differential
map dφ : U → LR(E,F ) is well-defined, i.e. dφ(a) exists for all a ∈ U .
Furthermore, dφ is said to be a continuous map. For this to be meaningful,
U and LR(E,F ) need to be topological spaces. E being an R-normed
space, it is naturally endowed with the norm topology, as defined in (126).
Since U is a subset of E, the obvious topology on U is the topology induced
by the topology on E, as defined in (23). Now from exercise (5), LR(E,F )
is an R-normed space. It is therefore a topological space, when endowed
with the norm topology, as defined in (126).

3. Suppose φ : U → F is of class C1. Then in particular, for all a ∈ U the
differential dφ(a) exists. From 1. it follows that φ is continuous at a, for
all a ∈ U . We conclude that φ is continuous.

4. We assume that E = R. Note that R is a vector space over itself, and
that | · | is a norm on R. So (R, | · |) is an R-normed space. Let a ∈ U .
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We assume that the limit:

φ′(a)
4
= lim

t6=0,t→0

φ(a+ t)− φ(a)
t

exists in F . We claim that φ is differentiable at a, and furthermore that
the differential dφ(a) of φ at a is given by:

∀t ∈ R , dφ(a)(t) = t · φ′(a)

Let l ∈ LR(R, F ) be defined by l(t) = t · φ′(a). Note that l(t) is nothing
but the product of φ′(a) ∈ F with the scalar t ∈ R. So l is well-defined,
and it is clearly a linear map. Moreover, for all t ∈ R, we have:

‖l(t)‖ = ‖t · φ′(a)‖ = |t| · ‖φ′(a)‖
and in particular ‖l(t)‖ ≤ ‖φ′(a)‖·|t|. So l is continuous, and it is indeed an
element of LR(R, F ). To show that φ is differentiable at a with dφ(a) = l,
we only need to show that l satisfies the requirements of definition (128).
Let ε > 0 be given. Having assumed that the limit φ′(a) exists, there is
δ > 0 such that for all t ∈ R, t 6= 0, the condition |t| ≤ δ implies a+ t ∈ U
and: ∥∥∥∥φ(a+ t)− φ(a)

t
− φ′(a)

∥∥∥∥ ≤ ε
Hence, we have:

‖φ(a+ t)− φ(a)− l(t)‖ = ‖φ(a+ t)− φ(a)− t · φ′(a)‖

= |t| ·
∥∥∥∥φ(a + t)− φ(a)

t
− φ′(a)

∥∥∥∥
≤ ε|t|

This last inequality being still valid for t = 0, we have:

|t| ≤ δ ⇒ a+ t ∈ U and ‖φ(a+ t)− φ(a) − l(t)‖ ≤ ε|t|
So l satisfies the requirements of definition (128) and we have proved that
φ is differentiable at a with dφ(a) = l. This shows that the existence of
φ′(a) implies that of dφ(a). Conversely, suppose that dφ(a) exists, i.e.
that φ is differentiable at a. We claim that φ′(a) exists, and furthermore
that φ′(a) = dφ(a)(1). Let ε > 0. There exists δ > 0 such that for all
t ∈ R:

|t| ≤ δ ⇒ a+ t ∈ U and ‖φ(a+ t)− φ(a)− dφ(a)(t)‖ ≤ ε|t|
In particular, if t ∈ R, t 6= 0, the condition |t| ≤ δ implies that a+ t ∈ U ,
and furthermore, denoting l = dφ(a):∥∥∥∥φ(a+ t)− φ(a)

t
− l(1)

∥∥∥∥ =
1
|t| ‖φ(a+ t)− φ(a)− tl(1)‖

=
1
|t| ‖φ(a+ t)− φ(a)− l(t)‖

≤ 1
|t| ε|t| = ε
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This shows that the limit φ′(a) exists and is equal to dφ(a)(1). We con-
clude that in the case when E = R, φ : U → F is differentiable at a, if
and only if the derivative φ′(a) exists, in which case dφ(a) ∈ LR(R, F )
is given by dφ(a)(t) = t · φ′(a) for all t ∈ R. In particular, we have
dφ(a)(1) = φ′(a).

Exercise 7

Exercise 8.

1. Let E,F,G be three R-normed spaces. Let U be open in E and V be open
in F . Let φ : U → F and ψ : V → G be two maps such that φ(U) ⊆ V .
We assume that φ is differentiable at a ∈ U , and we put l1 = dφ(a). We
assume that ψ is differentiable at φ(a) ∈ V , and we put l2 = dψ(φ(a)).
Since φ(U) ⊆ V , for all x ∈ U we have φ(x) ∈ V . So ψ(φ(x)) is a well-
defined element of G. It follows that ψ ◦ φ : U → G is a well-defined
map.

2. Let ε > 0. Since l1 ∈ LR(E,F ), ‖l1‖ is a well-defined element of R+.
Since l2 ∈ LR(F,G), ‖l2‖ is a well-defined element of R+. Take η =
min(1, ε(1 + ‖l1‖+ ‖l2‖)−1). Then η > 0, and:

η(η + ‖l1‖+ ‖l2‖) ≤ η(1 + ‖l1‖+ ‖l2‖)
≤ ε

3. Since ψ is differentiable at φ(a) ∈ V and l2 = dψ(φ(a)), l2 satisfies the
requirements of definition (128). There is δ2 > 0 such that for all h2 ∈ F
with ‖h2‖ ≤ δ2, φ(a) + h2 ∈ V and:

‖ψ(φ(a) + h2)− ψ ◦ φ(a) − l2(h2)‖ ≤ η‖h2‖

4. Let h2 ∈ F with ‖h2‖ ≤ δ2. Let h ∈ E. Using 3. we obtain:

‖ψ(φ(a) + h2) − ψ ◦ φ(a)− l2 ◦ l1(h)‖
≤ ‖ψ(φ(a) + h2)− ψ ◦ φ(a)− l2(h2)‖
+ ‖l2(h2)− l2 ◦ l1(h)‖
≤ η‖h2‖+ ‖l2(h2 − l1(h))‖
≤ η‖h2‖+ ‖l2‖ · ‖h2 − l1(h)‖

5. Since φ is differentiable at a ∈ U and l1 = dφ(a), l1 satisfies the require-
ments of definition (128). There exists δ1 > 0 such that for all h ∈ E with
‖h‖ ≤ δ1, we have a+ h ∈ U and:

‖φ(a+ h)− φ(a) − l1(h)‖ ≤ η‖h‖ (2)

Moreover, from 1. of exercise (7), φ is continuous at a. Since δ2 > 0, there
exists δ′1 > 0 such that for all h ∈ E with ‖h‖ ≤ δ′1, we have a + h ∈ U
and:

‖φ(a+ h)− φ(a)‖ ≤ δ2 (3)
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Taking δ = min(δ1, δ′1), we have found δ > 0 such that for all h ∈ E with
‖h‖ ≤ δ, we have a+ h ∈ U and furthermore both inequalities (2) and (3)
hold.

6. Let h ∈ E with ‖h‖ ≤ δ, Then a+ h ∈ U and furthermore both inequali-
ties (2) and (3) hold. Let h2 = φ(a+ h)− φ(a). Then (3) can be written
as ‖h2‖ ≤ δ2, and applying 4.:

‖ψ ◦ φ(a+ h) − ψ ◦ φ(a) − l2 ◦ l1(h)‖
= ‖ψ(φ(a) + h2)− ψ ◦ φ(a) − l2 ◦ l1(h)‖
≤ η‖h2‖+ ‖l2‖ · ‖h2 − l1(h)‖
= η‖h2‖+ ‖l2‖ · ‖φ(a+ h)− φ(a)− l1(h)‖

using (2)→ ≤ η‖h2‖+ ‖l2‖η‖h‖
= η‖φ(a+ h)− φ(a)‖ + η‖l2‖ · ‖h‖
≤ η‖φ(a+ h)− φ(a) − l1(h)‖
+ η‖l1(h)‖+ η‖l2‖ · ‖h‖

using (2)→ ≤ η2‖h‖+ η‖l1‖ · ‖h‖+ η‖l2‖ · ‖h‖
= η(η + ‖l1‖+ ‖l2‖)‖h‖

using 2.→ ≤ ε‖h‖

7. Since l1 ∈ LR(E,F ), l1 : E → F is linear and continuous. Since l2 ∈
LR(F,G), l2 : F → G is linear and continuous. So l2 ◦ l1 : E → G is linear
and continuous, and l2 ◦ l1 ∈ LR(E,G).

8. From 6. and 7. we conclude that l2 ◦ l1 ∈ LR(E,G) is such that given
ε > 0, we have found δ > 0 such that for all h ∈ E with ‖h‖ ≤ δ, we have
a+ h ∈ U and:

‖ψ ◦ φ(a+ h)− ψ ◦ φ(a)− l2 ◦ l1(h)‖ ≤ ε‖h‖
From definition (128), it follows that ψ ◦ φ : U → G is differentiable at
a ∈ U , and furthermore from definition (129):

d(ψ ◦ φ)(a) = l2 ◦ l1
= dψ(φ(a)) ◦ dφ(a)

This completes the proof of theorem (110).

Exercise 8

Exercise 9.

1. Let (Ω′, T ′) and (Ω, T ) be two topological spaces, and A ⊆ P(Ω) be a set
of subsets of Ω generating the topology T , i.e. such that T = T (A). Let
f : Ω′ → Ω be a map, and define:

U 4= {A ⊆ Ω : f−1(A) ∈ T ′}
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We claim that U is a topology on Ω. Since f−1(∅) = ∅ ∈ T ′ and f−1(Ω) =
Ω′ ∈ T ′, both ∅ and Ω are elements of U . Let (Ai)i∈I be a family of
elements of U . Then:

f−1

(⋃
i∈I

Ai

)
=
⋃
i∈I

f−1(Ai) ∈ T ′

So ∪i∈IAi ∈ U , and we have proved that U is closed under arbitrary
unions. Let A,B ∈ U . Then:

f−1(A ∩B) = f−1(A) ∩ f−1(B) ∈ T ′

So A ∩B ∈ U , and we have proved that U is closed under finite intersec-
tions. From definition (13), we conclude that U is a topology on Ω.

2. Suppose f : (Ω′, T ′)→ (Ω, T ) is continuous. Then from definition (27), for
all A ∈ T we have f−1(A) ∈ T ′. In particular, since A ⊆ T (A) = T , for
all A ∈ A we have f−1(A) ∈ T ′. Conversely, suppose f−1(A) ∈ T ′ for all
A ∈ A. Then A ⊆ U , where U is the topology on Ω defined in 1. However
from exercise (11) of Tutorial 6, the topology T (A) generated by A is the
smallest topology on Ω containing A, in the inclusion sense. Hence, it
follows from A ⊆ U and the fact that U is a topology, that T (A) ⊆ U .
However by assumption, we have T (A) = T . So T ⊆ U , and we conclude
that f−1(A) ∈ T ′ for all A ∈ T . This shows that f is continuous. We
have proved that f is continuous if and only if f−1(A) ∈ T ′ for all A ∈ A.

Exercise 9

Exercise 10.

1. Let pi : Ω → Ωi be the canonical projection mapping. Given i ∈ I and
Ai ∈ Ti we have:

p−1
i (Ai) = Ai ×

∏
j∈I\{i}

Ωj

It follows from definition (52), that p−1
i (Ai) is an open rectangle, i.e. a

rectangle of (Tj)j∈I , and in particular it is an element of the product
topology T . This shows that pi is continuous.

2. Suppose each fi : (Ω′, T ′) → (Ωi, Ti) is a continuous map. From defini-
tion (56), the product topology T on Ω is the topology generated by the
open rectangles, i.e. the rectangles of (Ti)i∈I . In other words, T = T (A)
where A = qi∈ITi. From exercise (9), to show that f is continuous, it is
sufficient to show that f−1(A) ∈ T ′ for all A ∈ A. So let A ∈ A be an open
rectangle. From definition (52), A can be written as A = Πi∈IAi, where
each Ai is an element of Ti ∪{Ωi} = Ti, and the set J = {i ∈ I : Ai 6= Ωi}
is finite. Hence, we have:

f−1(A) = {ω ∈ Ω′ : f(ω) ∈ A}
= {ω ∈ Ω′ : (fi(ω))i∈I ∈ Πi∈IAi}

www.probability.net

http://www.probability.net


Solutions to Exercises 29

= {ω ∈ Ω′ : fi(ω) ∈ Ai, ∀i ∈ I}
= {ω ∈ Ω′ : fi(ω) ∈ Ai, ∀i ∈ J}
=

⋂
i∈J

f−1
i (Ai)

Having assumed that fi is continuous for all i ∈ I, it follows from Ai ∈
Ti that f−1

i (Ai) ∈ T ′, and consequently since J is finite, f−1(A) =
∩i∈Jf−1

i (Ai) is an element of T ′. Hence, we have proved that f−1(A) ∈ T ′
for all A ∈ A, and we conclude that f is continuous. Conversely, suppose
f : (Ω′, T ′)→ (Ω, T ) is continuous. Since pi : (Ω, T )→ (Ωi, Ti) is contin-
uous, each fi = pi ◦ f is a continuous map.

Exercise 10

Exercise 11.

1. Let E,F,G be three R-normed spaces. Let U be open in E and V be
open in F . Let φ : U → F and ψ : V → G be two maps of class C1 such
that φ(U) ⊆ V . Given (l1, l2) ∈ LR(F,G) × LR(E,F ), we define:

N1(l1, l2)
4
= ‖l1‖+ ‖l2‖

N2(l1, l2)
4
=

√
‖l1‖2 + ‖l2‖2

N∞(l1, l2)
4
= max(‖l1‖, ‖l2‖)

Then each Ni : LR(F,G) × LR(E,F ) → R+ is a well-defined map, i ∈
{1, 2,∞}, and we claim that it is in fact a norm on LR(F,G)×LR(E,F ).
Note that we are implicitly saying that LR(F,G) × LR(E,F ) is an R-
vector space, a fact that has not been justified in these Tutorials. For
those not familiar with the product structure of vector spaces, recall that
given two elements (l1, l2) and (l′1, l

′
2) of LR(F,G)×LR(E,F ), and α ∈ R,

a vector addition ⊕ is defined as:

(l1, l2)⊕ (l′1, l
′
2)
4
= (l1 + l′1, l2 + l′2)

and a scalar multiplication ⊗ is defined as:

α⊗ (l1, l2) = (αl1, αl2)

It is cumbersome but not difficult to show that LR(F,G) × LR(E,F )
together with the operators ⊕ and ⊗, satisfy the requirements of (89)
defining an R-vector space, where the zero element of LR(F,G)×LR(E,F )
is understood to be (0, 0). It is customary to denote ⊕ and ⊗ simply by
+ and ·, and we shall do so from now on. Now, given (x, y) ∈ R2, we
define ‖(x, y)‖1 = |x|+ |y|, ‖(x, y)‖2 =

√
|x|2 + |y|2 as well as ‖(x, y)‖∞ =

max(|x|, |y|). Then it is clear that Ni(l1, l2) = ‖(‖l1‖, ‖l2‖)‖i for all i ∈
{1, 2,∞}. In order to prove that Ni is a norm, we shall first prove that
‖ · ‖i is a norm on R2, a fact that many of us are already familiar with.
For those who require a proof, here is the following: note that ‖ · ‖2 is
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nothing but the norm defined in (81), associated with the usual inner-
product of R2. From exercise (1), ‖ · ‖2 is therefore a norm on R2. So we
may assume that i ∈ {1,∞}. It is clear that ‖(x, y)‖i = 0 is equivalent
to (x, y) = (0, 0) and furthermore that ‖α(x, y)‖i = |α| · ‖(x, y)‖i for all
α ∈ R. Hence, we only need to prove the triangle inequality for ‖ · ‖1 and
‖ · ‖∞. Given (x, y) and (x′, y′) in R2, we have:

‖(x, y) + (x′, y′)‖1 = ‖(x+ x′, y + y′)‖1
= |x+ x′|+ |y + y′|
≤ |x|+ |x′|+ |y|+ |y′|
= ‖(x, y)‖1 + ‖(x′, y′)‖1

Moreover, we have:

|x+ x′| ≤ |x|+ |x′|
≤ max(|x|, |y|) + max(|x′|, |y′|)
= ‖(x, y)‖∞ + ‖(x′, y′)‖∞

and similarly |y + y′| ≤ ‖(x, y)‖∞ + ‖(x′, y′)‖∞. Hence:

‖(x, y) + (x′, y′)‖∞ = ‖(x+ x′, y + y′)‖∞
= max(|x+ x′|, |y + y′|)
≤ ‖(x, y)‖∞ + ‖(x′, y′)‖∞

So we have proved that ‖ · ‖i is a norm on R2 for all i ∈ {1, 2,∞}.
Note that all this will be generalized in a later tutorial, when we formally
study normed vector spaces, and in particular the norm ‖ · ‖p on Rn

or Cn, where p ∈ [1,+∞]. Having proved that ‖ · ‖i is a norm on R2,
we shall now prove that Ni is a norm on LR(F,G) × LR(E,F ). Since
Ni(l1, l2) = ‖(‖l1‖, ‖l2‖)‖i, the condition Ni(l1, l2) = 0 is equivalent to
‖(‖l1‖, ‖l2‖)‖i = 0, which is equivalent to (‖l1‖, ‖l2‖) = (0, 0), which is in
turn equivalent to (l1, l2) = (0, 0). Moreover, if α ∈ R, we have:

Ni[α(l1, l2)] = Ni[(αl1, αl2)]
= ‖ (‖αl1‖, ‖αl2‖) ‖i
= ‖ (|α| · ‖l1‖, |α| · ‖l2‖) ‖i
= ‖ |α|(‖l1‖, ‖l2‖) ‖i
= |α| · ‖ (‖l1‖, ‖l2‖) ‖i
= |α|Ni(l1, l2)

Finally, if (l1, l2), (l′1, l
′
2) ∈ LR(F,G) × LR(E,F ):

Ni[(l1, l2) + (l′1, l
′
2)] = Ni[(l1 + l′1, l2 + l′2)]

= ‖ (‖l1 + l′1‖, ‖l2 + l′2‖) ‖i
≤ ‖ (‖l1‖+ ‖l′1‖, ‖l2‖+ ‖l′2‖) ‖i
= ‖ (‖l1‖, ‖l2‖) + (‖l′1‖, ‖l′2‖) ‖i

www.probability.net

http://www.probability.net


Solutions to Exercises 31

≤ ‖ (‖l1‖, ‖l2‖) ‖i + ‖ (‖l′1‖, ‖l′2‖) ‖i
= Ni(l1, l2) +Ni(l′1, l

′
2)

We have proved that Ni is a norm on LR(F,G) × LR(E,F ).

2. Let X = LR(F,G) × LR(E,F ) and T1, T2, T∞ be the topologies on X
induced by the norms N1, N2 and N∞ respectively. Let T denote the
product topology on X . We shall prove the equality T1 = T2 = T∞ = T .
For all (l1, l2) ∈ X , we have:

[N2(l1, l2)]2 = ‖l1‖2 + ‖l2‖2

≤ ‖l1‖2 + ‖l2‖2 + 2‖l1‖ · ‖l2‖
= (‖l1‖+ ‖l2‖)2

= [N1(l1, l2)]2

≤ [2 max(‖l1‖, ‖l2‖)]2

= 4[N∞(l1, l2)]2

= 4 max(‖l1‖2, ‖l2‖2)
≤ 4(‖l1‖2 + ‖l2‖2)
= 4[N2(l1, l2)]2

from which we obtain N2 ≤ N1 ≤ 2N∞ ≤ 2N2. Consider the identity
mapping j : X → X , defined by j(l1, l2) = (l1, l2) for all (l1, l2) ∈ X .
Then j is a linear mapping and the inequality N2 ≤ N1 can be written as:

∀(l1, l2) ∈ X , N2[j(l1, l2)] ≤ N1(l1, l2)

From exercise (3), it follows that j : (X,N1) → (X,N2) is a continuous
map. Hence, for all U open in (X,N2), i.e. for all U ∈ T2, we have
j−1(U) open in (X,N1), i.e. U ∈ T1. This shows that T2 ⊆ T1. Similarly,
the inequality N1 ≤ 2N∞ implies that T1 ⊆ T∞, and N∞ ≤ N2 that
T∞ ⊆ T2. Hence, we have proved that T2 ⊆ T1 ⊆ T∞ ⊆ T2, or equivalently
T1 = T2 = T∞. It remains to show that T = T∞. From definition (56), the
product topology on X is the topology generated by the open rectangles
of X , i.e. the sets of the form A × B where A is open in LR(F,G) and
B is open in LR(E,F ). To show that T ⊆ T∞, it is sufficient to prove
that any such A × B is an element of T∞. Indeed, T being the smallest
topology on X containing all open rectangles, if T∞ is shown to contain
all open rectangles, then T ⊆ T∞. We therefore consider A × B open
rectangle in X , and we shall prove that A×B ∈ T∞. If A×B = ∅, then
A × B ∈ T∞ is clear. Otherwise, there exists (l1, l2) ∈ A × B. Since A is
open in LR(F,G) and l1 ∈ A, there exists ε1 > 0 such that B(l1, ε1) ⊆ A,
where B(l1, ε1) denotes the open ball in LR(F,G). Similarly, since B is
open in LR(E,F ) and l2 ∈ B, there exists ε2 > 0 such that B(l2, ε2) ⊆ B,
where B(l2, ε2) denotes the open ball in LR(E,F ). Note that we are using
identical notations B(·, ·) to refer to open balls in LR(F,G) and LR(E,F ),
but this is unlikely to confuse anyone. Let ε = min(ε1, ε2). Then ε > 0,
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and furthermore for all (l′1, l
′
2) ∈ X we have:

N∞[(l′1, l
′
2)− (l1, l2)] < ε ⇔ N∞[(l′1 − l1, l′2 − l2)] < ε

⇔ max(‖l′1 − l1‖, ‖l′2 − l2‖) < ε

⇒ ‖l′1 − l1‖ < ε1 , ‖l′2 − l2‖ < ε2

⇔ l′1 ∈ B(l1, ε1) , l′2 ∈ B(l2, ε2)
⇒ l′1 ∈ A , l′2 ∈ B
⇔ (l′1, l

′
2) ∈ A×B

Hence, given (l1, l2) ∈ A×B, we have found ε > 0 such thatB∞[(l1, l2), ε] ⊆
A×B, where B∞[(l1, l2), ε] denotes the open ball in X with respect to the
norm N∞. This shows that A × B is open with respect to the topology
induced by N∞, i.e. that A × B ∈ T∞. We have proved that T ⊆ T∞.
To show the reverse inclusion, consider U ∈ T∞. Given (l1, l2) ∈ U , there
exists ε > 0 such that B∞[(l1, l2), ε] ⊆ U . For all (l′1, l′2) ∈ X :

(l′1, l
′
2) ∈ B(l1, ε)×B(l2, ε) ⇔ ‖l′1 − l1‖ < ε , ‖l′2 − l2‖ < ε

⇔ max(‖l′1 − l1‖, ‖l′2 − l2‖) < ε

⇔ N∞[(l′1 − l1, l′2 − l2)] < ε

⇔ N∞[(l′1, l
′
2)− (l1, l2)] < ε

⇔ (l′1, l
′
2) ∈ B∞[(l1, l2), ε]

and consequently B(l1, ε) × B(l2, ε) = B∞[(l1, l2), ε]. However, B(l1, ε)
being an open ball in LR(F,G), it is an open subset of LR(F,G). Similarly,
B(l2, ε) is an open subset of LR(E,F ). It follows that B(l1, ε) × B(l2, ε)
is an open rectangle in X , and in particular is an element of the product
topology T . We have proved that B∞[(l1, l2), ε] = B(l1, ε)×B(l2, ε) is an
element of T . Hence, given (l1, l2) ∈ U , we have found some U(l1,l2) =
B∞[(l1, l2), ε] ∈ T such that (l1, l2) ∈ U(l1,l2) ⊆ U . Hence:

U =
⋃

(l1,l2)∈U
U(l1,l2) ∈ T

and we have proved that T∞ ⊆ T . This completes our proof of T∞ = T ,
and finally T1 = T2 = T∞ = T .

3. Let X = LR(F,G)×LR(E,F ) and H : X → LR(E,G) be the map defined
by H(l1, l2) = l1 ◦ l2, for all (l1, l2) ∈ X . Note that if l1 ∈ LR(F,G)
and l2 ∈ LR(E,F ), then l1 ◦ l2 : E → G is a well-defined map, which
furthermore is linear and continuous. So H is a well-defined map which
has indeed values in LR(E,G). Given (l1, l2) ∈ X , for all x ∈ E we have:

‖H(l1, l2)(x)‖ = ‖(l1 ◦ l2)(x)‖
= ‖l1(l2(x))‖
≤ ‖l1‖ · ‖l2(x)‖
≤ ‖l1‖ · ‖l2‖ · ‖x‖
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Hence, using 4. of exercise (5), ‖H(l1, l2)‖ ≤ ‖l1‖ · ‖l2‖.

4. For those familiar with the notion, H is a bilinear map such that ‖H(l1, l2)‖ ≤
‖l1‖ · ‖l2‖ for all (l1, l2) ∈ X , where X = LR(F,G)×LR(E,F ). It follows
that H is continuous. As we have not had a tutorial on multilinear maps,
here is a direct proof: Let (l1, l2) and (l′1, l

′
2) be elements of X . Then:

‖H(l′1, l
′
2)−H(l1, l2)‖ = ‖l′1 ◦ l′2 − l1 ◦ l2‖

≤ ‖l′1 ◦ l′2 − l1 ◦ l′2‖+ ‖l1 ◦ l′2 − l1 ◦ l2‖
l1 is linear → = ‖(l′1 − l1) ◦ l′2‖+ ‖l1 ◦ (l′2 − l2)‖

= ‖H(l′1 − l1, l′2)‖+ ‖H(l1, l′2 − l2)‖
≤ ‖l′1 − l1‖ · ‖l′2‖+ ‖l1‖ · ‖l′2 − l2‖
≤ (‖l′2‖+‖l1‖) max(‖l′1 − l1‖, ‖l′2 − l2‖)
= (‖l′2‖+‖l1‖)N∞(l′1 − l1, l′2 − l2)
= (‖l′2‖+‖l1‖)N∞[(l′1, l

′
2)− (l1, l2)]

So we have proved that:

‖H(l′1, l
′
2)−H(l1, l2)‖ ≤ (‖l′2‖+ ‖l1‖)N∞[(l′1, l

′
2)− (l1, l2)] (4)

Suppose now that N∞[(l′1, l
′
2)− (l1, l2)] ≤ 1. Then:

‖l′2‖ ≤ ‖l′2 − l2‖+ ‖l2‖
≤ max(‖l′1 − l1‖, ‖l′2 − l2‖) + ‖l2‖
= N∞[(l′1, l

′
2)− (l1, l2)] + ‖l2‖

≤ 1 + ‖l2‖

and consequently, using (4) we obtain:

‖H(l′1, l
′
2)−H(l1, l2)‖ ≤ (1 + ‖l1‖+ ‖l2‖)N∞[(l′1, l

′
2)− (l1, l2)]

Hence, assuming (l1, l2) ∈ X given and ε > 0, defining η > 0 as η =
min[1, (1 + ‖l1‖+ ‖l2‖)−1ε], it is clear that:

N∞[(l′1, l
′
2)− (l1, l2)] ≤ η ⇒ ‖H(l′1, l

′
2)−H(l1, l2)‖ ≤ ε

Having proved in 2. that the product topology on X is induced by the
norm N∞, it follows that H is continuous at (l1, l2). This being true for
all (l1, l2) ∈ X , H is continuous.

5. Let K : U → LR(F,G) × LR(E,F ) be the map defined by K(a) =
(dψ(φ(a)), dφ(a)) for all a ∈ U . Note that given a ∈ U , having assumed
that φ is of class C1 on U, in particular the differential dφ(a) is a well-
defined element of LR(E,F ). Furthermore, having assumed that ψ is of
class C1 on V and φ(U) ⊆ V , in particular φ(a) ∈ V and the differential
dψ(φ(a)) is a well-defined element of LR(F,G). It follows that K(a) is
a well-defined element of X = LR(F,G) × LR(E,F ). So K is a well-
defined map, which has indeed values in X . From exercise (10), in order
to show that K is continuous, it is sufficient to show that each coordinate
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mapping a → dψ(φ(a)) and a → dφ(a) is continuous. However, since φ
is of class C1, the differential dφ : U → LR(E,F ) is a continuous map.
Similarly, since ψ is of class C1, the differential dψ : V → LR(F,G) is
a continuous map. Since φ : U → F is differentiable on U , it follows
from exercise (7) that it is continuous. Since φ(U) ⊆ V , we conclude that
dψ ◦ φ : U → LR(F,G) is a continuous map. Having proved that the two
coordinate mappings dφ and dψ ◦ φ are continuous, we have proved that
K is a continuous map.

6. Let a ∈ U . Then φ is differentiable at a and ψ is differentiable at φ(a) ∈ V .
From theorem (110), it follows that ψ ◦φ is differentiable at a. This being
true for all a ∈ U , ψ ◦ φ is differentiable on U .

7. From theorem (110), for all a ∈ U we have:

d(ψ ◦ φ)(a) = dψ(φ(a)) ◦ dφ(a)
= H(dψ(φ(a)), dφ(a))
= H(K(a))
= H ◦K(a)

This being true for all a ∈ U , d(ψ ◦ φ) = H ◦K.

8. Given three R-normed spaces E,F and G, given U open in E and V open
in F , given φ : U → F and ψ : V → G of class C1 with φ(U) ⊆ V , we
have shown in 6. that ψ ◦ φ is differentiable on U . Furthermore, we have
shown in 7. that d(ψ ◦ φ) can be expressed as d(ψ ◦ φ) = H ◦ K, where
K : U → LR(F,G) × LR(E,F ) has been shown in 5. to be continuous,
and H : LR(F,G) × LR(E,F ) → LR(E,G) has been shown in 4. to be
continuous. It follows that d(ψ ◦ φ) : U → LR(E,G) is a continuous map.
From definition (130), we conclude that ψ ◦φ : U → G is of class C1. This
completes the proof of theorem (111).

Exercise 11

Exercise 12.

1. Let E be an R-normed space. Let a, b ∈ R, a < b. We assume that
f : [a, b] → E and g : [a, b] → R are two continuous maps which are
differentiable at every point of ]a, b[, with:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)
Let ε > 0. We define φε : [a, b]→ R by:

φε(t)
4
= ‖f(t)− f(a)‖ − g(t) + g(a)− ε(t− a)

for all t ∈ [a, b]. For all x, y ∈ E, we have:

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖
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It follows that the map ‖ · ‖ : E → R+ is a continuous map. Having
assumed that f : [a, b]→ E is continuous, from:

‖f(t)− f(a)− f(t′) + f(a)‖ = ‖f(t)− f(t′)‖
it is clear that t → f(t) − f(a) is also continuous. Hence, we see that
t→ ‖f(t)− f(a)‖ is continuous and finally, since g is itself continuous, we
conclude that φε is a continuous map.

2. Let Eε = {t ∈ [a, b] : φε(t) ≤ ε} and c = supEε. Since φε(a) = 0, in
particular φε(a) ≤ ε and consequently a ∈ Eε. This shows that a ≤ c.
Furthermore, for all t ∈ Eε, we have t ≤ b. So b is an upper-bound of
Eε. Since c is the smallest of such upper-bounds, we obtain c ≤ b. We
have proved that c ∈ [a, b]. In particular φε(c) is well-defined. Suppose
φε(c) > ε. Then c ∈ φ−1

ε (]ε,+∞[). Having proved that φε is continuous,
the fact that ]ε,+∞[ is an open subset of R implies that φ−1

ε (]ε,+∞[) is
an open subset of [a, b]. From c ∈ φ−1

ε (]ε,+∞[), we deduce the existence
of η > 0, such that:

]c− η, c+ η[∩[a, b] ⊆ φ−1
ε (]ε,+∞[) (5)

Now let t ∈ Eε. Then t ∈ [a, b], t ≤ c and furthermore φε(t) ≤ ε. It
follows from (5) that t cannot be an element of ]c−η, c], and consequently
t ≤ c − η. This shows that c − η is an upper-bound of Eε, contradicting
the fact that c is the smallest of such upper-bounds. Indeed, note that
c ∈ [a, b] implies that c < +∞ and consequently c − η < c. Our initial
assumption is therefore absurd, and we have proved that φε(c) ≤ ε. When
dealing with this question, it may have been tempting to some to use the
following argument: since Eε = {t ∈ [a, b] : φε ≤ ε} and φε is continuous,
Eε is a closed subset of [a, b], which furthermore is non-empty since a ∈ Eε.
It follows that c = supEε ∈ Eε. This argument is valid, but one has to
be careful about the following point: if Eε is a closed subset of R, it may
not be true that supEε ∈ Eε (take Eε = R). The fact that Eε is a closed
subset of [a, b] (which is itself closed in R̄) is of crucial importance here.
A rigorous argument goes as follows: The topology of [a, b] is induced
by that of R, but also more importantly by that of R̄. The fact that
Eε is closed in [a, b] implies the existence of some F closed in R̄, such
that Eε = F ∩ [a, b]. However, the interval [a, b] is also closed in R̄ (it
is compact and R̄ is metrizable). So Eε is in fact also a closed subset of
R̄. Being non-empty, we conclude from exercise (9) (part 5.) of Tutorial 8
that c = supEε ∈ Eε.

3. Since φε is continuous and φε(a) = 0, there exists h > 0 with:

∀t ∈ [a, a+ h[∩[a, b] , φε(t) ≤ |φε(t)| ≤ ε

4. Since a < b, we have ]a, a+ h[∩[a, b] 6= ∅. Let t be an arbitrary element of
]a, a+ h[∩[a, b]. Then t ∈ [a, b] and from 3. we have φε(t) ≤ ε. So t ∈ Eε
and consequently t ≤ c. Since t ∈]a, a+ h[, we conclude in particular that
a < c. So c ∈]a, b].
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5. Suppose c ∈]a, b[. By assumption, both derivatives f ′(c) ∈ E and g′(c) ∈
R are well-defined. From the existence of f ′(c) we deduce that of δ1 > 0
such that for all t 6= c:

t ∈]c− δ1, c+ δ1[∩[a, b] ⇒
∥∥∥∥f(t)− f(c)

t− c − f ′(c)
∥∥∥∥ ≤ ε

2
(6)

From the existence of g′(c) we deduce that of δ2 > 0 such that for all t 6= c:

t ∈]c− δ2, c+ δ2[∩[a, b] ⇒
∣∣∣∣g(t)− g(c)

t− c − g′(c)
∣∣∣∣ ≤ ε

2
(7)

Let δ = min(δ1, δ2) > 0. Having assumed that c < b, the set ]c, b]∩]c, c+δ[
is not empty. Let t0 be an arbitrary element of ]c, b]∩]c, c + δ[. From (6)
we obtain:∥∥∥∥f(t0)− f(c)

t0 − c

∥∥∥∥ ≤ ‖f ′(c)‖ +
∥∥∥∥f(t0)− f(c)

t0 − c
− f ′(c)

∥∥∥∥
≤ ‖f ′(c)‖ +

ε

2
From (7) we obtain:

g′(c) =
g(t0)− g(c)
t0 − c

+ g′(c)− g(t0)− g(c)
t0 − c

≤ g(t0)− g(c)
t0 − c

+
∣∣∣∣g(t0)− g(c)

t0 − c
− g′(c)

∣∣∣∣
≤ g(t0)− g(c)

t0 − c
+
ε

2

6. Since ‖f ′(c)‖ ≤ g′(c), it follows from 5. that:

‖f(t0)− f(c)‖ = |t0 − c| ·
∥∥∥∥f(t0)− f(c)

t0 − c

∥∥∥∥
≤ |t0 − c| · (‖f ′(c)‖+ ε/2)
≤ |t0 − c| · (g′(c) + ε/2)

≤ |t0 − c| ·
(
g(t0)− g(c)
t0 − c

+
ε

2
+
ε

2

)
= (t0 − c) ·

(
g(t0)− g(c)
t0 − c

+ ε

)
= g(t0)− g(c) + ε(t0 − c)

7. Having proved in 2. that φε(c) ≤ ε, we have:

‖f(c)− f(a)‖ ≤ g(c)− g(a) + ε(c− a) + ε

8. From 6. and 7. we obtain:

‖f(t0)− f(a)‖ ≤ ‖f(t0)− f(c)‖+ ‖f(c)− f(a)‖
≤ g(t0)− g(c) + ε(t0 − c)
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+ g(c)− g(a) + ε(c− a) + ε

= g(t0)− g(a) + ε(t0 − a) + ε

9. It follows from 8. that φε(t0) ≤ ε. This shows that t0 ∈ Eε and conse-
quently t0 ≤ c. This contradicts that fact that t0 ∈]c, b]. Hence, our initial
assumption that c ∈]a, b[ is absurd.

10. We have proved in 4. that c ∈]a, b]. However, c ∈]a, b[ leads to a contra-
diction. It follows that c = b. Since φε(c) ≤ ε, we conclude that φε(b) ≤ ε.
Hence:

‖f(b)− f(a)‖ ≤ g(b)− g(a) + ε(b− a) + ε

11. Given an R-normed space E, given a, b ∈ R, a < b, given two continuous
maps f : [a, b] → E and g : [a, b] → R which are differentiable at every
point of ]a, b[, and such that:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)

we have proved in 10. that given ε > 0:

‖f(b)− f(a)‖ ≤ g(b)− g(a) + ε(b− a) + ε

This being true for all ε > 0, we conclude that:

‖f(b)− f(a)‖ ≤ g(b)− g(a)

This completes the proof of theorem (112)

Exercise 12

Exercise 13.

1. Let U be open in Rn and φ : U → E be a map where E is an R-normed
space. We assume that φ is differentiable at a ∈ U . The differential
dφ(a) ∈ LR(Rn, E) satisfies the requirements of definition (128). Given
ε > 0, there exists δ > 0 such that for all x ∈ Rn, the condition ‖x‖ ≤ δ
implies that a+ x ∈ U and:

‖φ(a+ x)− φ(a)− dφ(a)(x)‖ ≤ ε‖x‖
If (e1, . . . , en) denotes the canonical basis of Rn, then for all h ∈ R with
|h| ≤ δ, given an arbitrary i ∈ Nn, the vector x = hei is such that
‖x‖ = |h| ≤ δ. So a+ hei ∈ U and:

‖φ(a+ hei)− φ(a)− dφ(a)(hei)‖ ≤ ε‖hei‖
This being true for all h ∈ R with |h| ≤ δ, we have proved that:

lim
h 6=0,h→0

1
‖hei‖

‖φ(a+ hei)− φ(a) − dφ(a)(hei)‖ = 0
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2. Let i ∈ Nn. Putting l = dφ(a), we have:∥∥∥∥φ(a+ hei)− φ(a)
h

− l(ei)
∥∥∥∥=

1
|h|‖φ(a+ hei)−φ(a)−hl(ei)‖

=
1
‖hei‖

‖φ(a+ hei)−φ(a)−l(hei)‖

and it follows from 1. that:

lim
h 6=0,h→0

∥∥∥∥φ(a+ hei)− φ(a)
h

− dφ(a)(ei)
∥∥∥∥ = 0

We conclude from definition (131) that the partial derivative ∂φ
∂xi

(a) exists
and is equal to dφ(a)(ei).

3. Given an open subset U of Rn, given a map φ : U → E where E is an
R-normed space, we have proved that if φ is differentiable at a ∈ U , then
∂φ
∂xi

(a) exists for all i ∈ Nn, and furthermore:

∂φ

∂xi
(a) = dφ(a)(ei)

Let h = (h1, . . . , hn) ∈ Rn. We have:

dφ(a)(h) = dφ(a)

(
n∑
i=1

hiei

)

=
n∑
i=1

hidφ(a)(ei)

=
n∑
i=1

hi
∂φ

∂xi
(a) =

n∑
i=1

∂φ

∂xi
(a)hi

This completes the proof of theorem (113).

Exercise 13

Exercise 14.

1. Let U be open in Rn and φ : U → E be a map, where E is an R-
normed space. Suppose φ is differentiable at a, b ∈ U . Let i ∈ Nn. From
exercise (3), we have:

‖dφ(b)− dφ(a)‖ = sup ‖(dφ(b)− dφ(a))(x)‖
where the supremum is taken over all x ∈ Rn with ‖x‖ = 1. Taking
x = ei, where (e1, . . . , en) is the canonical basis of Rn, since ‖ei‖ = 1 we
obtain in particular:∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥ = ‖dφ(b)(ei)− dφ(a)(ei)‖

= ‖(dφ(b)− dφ(a))(ei)‖
≤ ‖dφ(b)− dφ(a)‖
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2. We now assume that φ is of class C1 on U . In particular, dφ(a) exists
for all a ∈ U . From theorem (113), it follows that the partial derivative
∂φ
∂xi

(a) exists for all a ∈ U and i ∈ Nn. Furthermore, the differential
dφ : U → LR(Rn, E) is continuous. It follows from 1. that ∂φ

∂xi
: U → E

is also a continuous map. We have proved that if φ is of class C1 on U ,
then ∂φ

∂xi
exists and is continuous on U , for all i ∈ Nn.

Exercise 14

Exercise 15.

1. Let U be open in Rn. Let φ : U → E be a map, where E is an R-normed
space. We assume that ∂φ

∂xi
exists on U , and is continuous at a ∈ U , for

all i ∈ Nn. We define l : Rn → E by:

l(h)
4
=

n∑
i=1

∂φ

∂xi
(a)hi

for all h = (h1, . . . , hn) ∈ Rn. Having assumed that ∂φ
∂xi

exists on U

for all i ∈ Nn, in particular each ∂φ
∂xi

(a) is a well-defined element of E.
Given h ∈ Rn, each product ∂φ

∂xi
(a) · hi of the scalar hi ∈ R and vector

∂φ
∂xi

(a) is therefore itself well-defined. It follows that l(h) is a well-defined
element of E. So l : Rn → E is a well-defined map, which furthermore is
clearly linear. Given h ∈ Rn, using the Cauchy-Schwarz inequality (50),
we obtain:

‖l(h)‖ =

∥∥∥∥∥
n∑
i=1

∂φ

∂xi
(a)hi

∥∥∥∥∥
≤

n∑
i=1

∥∥∥∥ ∂φ∂xi (a)hi

∥∥∥∥
=

n∑
i=1

|hi| ·
∥∥∥∥ ∂φ∂xi (a)

∥∥∥∥
≤

(
n∑
i=1

|hi|2
)1/2( n∑

i=1

∥∥∥∥ ∂φ∂xi (a)
∥∥∥∥2
)1/2

= M · ‖h‖
where we have put M = (

∑n
i=1 ‖

∂φ
∂xi

(a)‖2)1/2. Having found M ∈ R+

such that ‖l(h)‖ ≤ M‖h‖ for all h ∈ Rn, we conclude from exercise (3)
that l is continuous. So we have proved that l ∈ LR(Rn, E). Of course the
fact that l is continuous is a consequence of a far more general result: any
linear linear map l : F → E defined on a finite dimensional normed space
F , is in fact continuous. We shall prove this result in a later tutorial.

2. Let ε > 0. Having assumed that each partial derivative ∂φ
∂xi

is continuous
at a ∈ U , for all i ∈ Nn there exists ηi > 0 such that for all h ∈ Rn, the
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condition ‖h‖ < ηi implies that a+ h ∈ U and furthermore:∥∥∥∥ ∂φ∂xi (a+ h)− ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε

Taking η = min(η1, . . . , ηn) > 0, the condition ‖h‖ < η implies that
a+ h ∈ U and furthermore:

∀i ∈ Nn ,

∥∥∥∥ ∂φ∂xi (a+ h)− ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε

3. Let h = (h1, . . . , hn) ∈ Rn with ‖h‖ < η. Let (e1, . . . , en) denote the
canonical basis of Rn. Let k0 = a and for all i ∈ Nn:

ki = a+
i∑

j=1

hjej

From 2. the condition ‖h′‖ < η implies that a + h′ ∈ U , for all h′ ∈ Rn.
However, it is clear that k0 ∈ U and for all i ∈ Nn:

‖ki − a‖ =

∥∥∥∥∥∥
i∑

j=1

hjej

∥∥∥∥∥∥
=

 i∑
j=1

h2
j

1/2

≤

 n∑
j=1

h2
j

1/2

= ‖h‖ < η

So ki = a+ (ki − a) is an element of U . Moreover:

φ(a+ h) − φ(a)− l(h) = φ(kn)− φ(k0)− l(h)

=
n∑
i=1

(φ(ki)− φ(ki−1))− l(h)

=
n∑
i=1

(
φ(ki−1 + hiei)− φ(ki−1)− hi

∂φ

∂xi
(a)
)

4. Let i ∈ Nn. Suppose hi > 0 and define fi : [0, hi]→ E by:

fi(t) = φ(ki−1 + tei)− φ(ki−1)− t ∂φ
∂xi

(a)

for all t ∈ [0, hi]. Given t ∈ [0, hi], the product t · ∂φ∂xi (a) is a well-
defined element of E, and φ(ki−1) is also well-defined since ki−1 ∈ U .
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Furthermore, following a similar proof to that of 3.:

‖ki−1 + tei − a‖ =

i−1∑
j=1

h2
j + t2

1/2

≤

 i∑
j=1

h2
j

1/2

< η

and consequently ki−1 + tei ∈ U . It follows that φ(ki−1 + tei) is also
a well-defined element of E. We conclude that fi(t) is a well-defined
element of E of all t ∈ [0, hi], and we have proved that fi : [0, hi] → E
is well-defined. Let t ∈ [0, hi] and u 6= 0 such that t + u ∈ [0, hi]. Define
k∗ = ki−1 + tei ∈ U . We have:

fi(t+ u)− fi(t)
u

=
1
u

[φ(ki−1 + (t+ u)ei)− φ(ki−1)

− (t+ u)
∂φ

∂xi
(a)]

− 1
u

[φ(ki−1 + tei)− φ(ki−1)− t ∂φ
∂xi

(a)]

=
1
u

[φ(k∗ + uei)− φ(k∗)]− ∂φ

∂xi
(a)

Having assumed that the partial derivative ∂φ
∂xi

exists at every point of U ,
in particular it exists at k∗ ∈ U , and consequently from definition (131),
we obtain:

lim
u6=0,u→0

fi(t+ u)− fi(t)
u

=
∂φ

∂xi
(k∗)− ∂φ

∂xi
(a)

So the derivative f ′i(t) exists for all t ∈ [0, hi] and furthermore:

f ′i(t) =
∂φ

∂xi
(ki−1 + tei)−

∂φ

∂xi
(a)

5. The fact that fi is continuous on [0, hi] can be seen in various ways. One
the one hand, having proved that f ′i(t) exists for all t ∈ [0, hi], fi is neces-
sarily continuous on [0, hi]. On the other hand, the map t→ ki−1 + tei is
clearly continuous with values in U , while φ : U → E being differentiable,
is also continuous by virtue of exercise (7). It follows that t→ φ(ki−1+tei)
is a continuous map, and it is clear from there that fi is continuous on
[0, hi]. Having proved that f ′i(t) exists for all t ∈ [0, hi], in particular f ′i(t)
exists for all t ∈]0, hi[. So fi is differentiable on ]0, hi[. Note that our use
of the word differentiable means nothing more here than the existence of
the derivative f ′i(t). Fortunately, from 4. of exercise (7), this is equivalent
to the word differentiable in the sense of definition (128). Since we have
proved that for all t ∈]0, hi[, we have ‖ki−1 + tei − a‖ < η, using 2. we
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obtain:

‖f ′i(t)‖ =
∥∥∥∥ ∂φ∂xi (ki−1 + tei)−

∂φ

∂xi
(a)
∥∥∥∥ ≤ ε

6. Since fi : [0, hi] → E is continuous on [0, hi] and differentiable on ]0, hi[
with ‖f ′i(t)‖ ≤ ε for all t ∈]0, hi[, applying theorem (112) we obtain:∥∥∥∥φ(ki−1 + hiei)− φ(ki−1)− hi

∂φ

∂xi
(a)
∥∥∥∥ = ‖fi(hi)‖

= ‖fi(hi)− fi(0)‖
≤ ε(hi − 0) = ε|hi|

7. Suppose now that hi ≤ 0. The inequality obtained in 6. is clearly true
if hi = 0. So we may assume that hi < 0. Similarly to 4. we define
fi : [hi, 0]→ E by:

fi(t) = φ(ki−1 + tei)− φ(ki−1)− t ∂φ
∂xi

(a)

Then fi is well-defined, continuous on [hi, 0] and differentiable on ]hi, 0[,
with the property that:

f ′i(t) =
∂φ

∂xi
(ki−1 + tei)−

∂φ

∂xi
(a)

for all t ∈]hi, 0[. In particular, we still have ‖f ′i(t)‖ ≤ ε for all t ∈]hi, 0[,
and applying theorem (112) once more, we obtain:∥∥∥∥φ(ki−1 + hiei)− φ(ki−1)− hi

∂φ

∂xi
(a)
∥∥∥∥ = ‖fi(hi)‖

= ‖fi(0)− fi(hi)‖
≤ ε(0− hi) = ε|hi|

Hence, the inequality obtained in 6. is still valid for hi ≤ 0.

8. Using 3. and 6. we obtain:

‖φ(a+ h) − φ(a) − l(h)‖

=

∥∥∥∥∥
n∑
i=1

(
φ(ki−1 + hiei)− φ(ki−1)− hi

∂φ

∂xi
(a)
)∥∥∥∥∥

≤
n∑
i=1

∥∥∥∥φ(ki−1 + hiei)− φ(ki−1)− hi
∂φ

∂xi
(a)
∥∥∥∥

≤
n∑
i=1

ε|hi|

≤
(

n∑
i=1

ε2

)1/2

·
(

n∑
i=1

|hi|2
)1/2

= ε
√
n‖h‖
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This has been proved for any h ∈ Rn with ‖h‖ < η.

9. Given U open in Rn, given a map φ : U → E where E is an R-normed
space, having assumed that ∂φ

∂xi
exists at every point of U and is continuous

at a ∈ U for all i ∈ Nn, given ε > 0, we have found η > 0 such that for
all h ∈ Rn, the condition ‖h‖ < η implies that a+ h ∈ U together with:

‖φ(a+ h)− φ(a)− l(h)‖ ≤ ε
√
n‖h‖

Applying this result to ε/
√
n instead of ε, taking δ = η/2 > 0, the condi-

tion ‖h‖ ≤ δ implies that a+ h ∈ U together with:

‖φ(a+ h)− φ(a) − l(h)‖ ≤ ε‖h‖

It follows that l ∈ LR(Rn, E) satisfies the requirements of definition (128),
and we have proved that φ is differentiable at a ∈ U . This completes the
proof of theorem (114).

Exercise 15

Exercise 16.

1. Let U be open in Rn. Let φ : U → E be a map where E is an R-normed
space. We assume that for all i ∈ Nn, ∂φ

∂xi
exists and is continuous on U .

Then in particular, given a ∈ U , for all i ∈ Nn, ∂φ
∂xi

exists at every point
of U and is continuous at a ∈ U . From theorem (114), it follows that φ is
differentiable at a. This being true for all a ∈ U , we have proved that φ
is differentiable on U .

2. Let a, b ∈ U and h ∈ Rn. Since φ is differentiable at a and b, using
theorem (113) and the Cauchy-Schwarz inequality (50):

‖(dφ(b)−dφ(a))(h)‖ = ‖dφ(b)(h)− dφ(a)(h)‖

=

∥∥∥∥∥
n∑
i=1

∂φ

∂xi
(b)hi −

n∑
i=1

∂φ

∂xi
(a)hi

∥∥∥∥∥
≤

n∑
i=1

∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥ · |hi|

≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥2
)1

2
(

n∑
i=1

|hi|2
)1

2

=

(
n∑
i=1

∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

· ‖h‖

3. Let a, b ∈ U . It follows from 2. together with 4. of exercise (5):

‖dφ(b)− dφ(a)‖ ≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

(8)
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4. Let a ∈ U and ε > 0 be given. Having assumed that ∂φ
∂xi

is continuous
on U for all i ∈ Nn, in particular ∂φ

∂xi
is continuous at a for all i ∈ Nn.

Hence, given i ∈ Nn, there exists ηi > 0 such that for all b ∈ U , we have:

‖a− b‖ ≤ ηi ⇒
∥∥∥∥ ∂φ∂xi (b)− ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε√

n

Taking η = min(η1, . . . , ηn) > 0, for all b ∈ U , using (8):

‖a− b‖ ≤ η ⇒ ‖dφ(b)− dφ(a)‖ ≤ ε
This shows that dφ : U → LR(Rn, E) is continuous at a. This being true
for all a ∈ U , we have proved that dφ is continuous.

5. Given U open in Rn, given a map φ : U → E where E is an R-normed
space, having assumed that ∂φ

∂xi
exists and is continuous on U for all

i ∈ Nn, we have proved that φ is differentiable on U and furthermore
that dφ : U → LR(Rn, E) is a continuous map. From definition (130), it
follows that φ is of class C1 on U . Conversely, if we assume that φ is of
class C1 on U , then from 2. of exercise (14), ∂φ

∂xi
exists and is continuous

on U for all i ∈ Nn. This completes the proof of theorem (115).

Exercise 16

Exercise 17. Let E,F be two R-normed spaces and l ∈ LR(E,F ). Let U
be an open subset of E. Let l|U denote the restriction of l to U , i.e. the map
l|U : U → F defined by (l|U )(x) = l(x) for all x ∈ U . Let a ∈ U . Since U is
open in E, there exists δ > 0 such that the condition ‖h‖ < δ implies a+ h ∈ U
for all h ∈ E. So there exists δ > 0 such that the condition ‖h‖ ≤ δ implies
a+ h ∈ U , and:

‖(l|U )(a+ h)− (l|U )(a)− l(h)‖ = ‖l(a+ h)− l(a)− l(h)‖ = 0

It follows that l satisfies the requirements of definition (128) in relation to l|U .
We conclude that l|U is differentiable at a, and furthermore that d(l|U )(a) = l ∈
LR(E,F ). This being true for all a ∈ U , l|U is differentiable on U , and since
d(l|U ) : U → LR(E,F ) is the constant map d(l|U )(x) = l, d(l|U ) is continuous.
So l|U is of class C1.

Exercise 17

Exercise 18.

1. Let E1, . . . , En, n ≥ 1, be n K-normed spaces. Let E = E1 × . . . × En.
Let p ∈ [1,+∞[, and for all x = (x1, . . . , xn) ∈ E:

‖x‖p
4
=

(
n∑
i=1

‖xi‖p
)1/p

‖x‖∞
4
= max

i=1,...,n
‖xi‖
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We claim that ‖ · ‖p and ‖ · ‖∞ are norms on E. It is clear that ‖x‖p = 0
and ‖x‖∞ = 0 are both equivalent to xi = 0 for all i ∈ Nn, which is itself
equivalent to x = 0. Note that although the same notation is used, the 0’s
of ‖x‖p = 0, xi = 0 and x = 0, do not refer to the same things. The first
one is the element of R, the second is the identity element of Ei and the
last one refers to (0, . . . , 0), the identity element of E, where the entries
of (0, . . . , 0) are themselves different zeroes, each particular one being the
identity element of the corresponding Ei. . . We have not yet defined an
Abelian group in these tutorials, but we shall still venture the following
comment: in the context where an Abelian group is clearly understood (R
is an Abelian group, a vector space is an Abelian group), it is customary
to denote its identity element by 0. Now for all x ∈ E and α ∈ K we have
‖αx‖∞ = |α| · ‖x‖∞, and furthermore:

‖αx‖p = ‖α · (x1, . . . , xn) ‖p
= ‖ (αx1, . . . , αxn) ‖p

=

(
n∑
i=1

‖αxi‖p
)1/p

=

(
n∑
i=1

(|α| · ‖xi‖)p
)1/p

=

(
|α|p

n∑
i=1

‖xi‖p
)1/p

= |α|
(

n∑
i=1

‖xi‖p
)1/p

= |α| · ‖x‖p

It remains to prove the triangle inequalities for ‖·‖∞ and ‖·‖p. Let x ∈ E
and y ∈ E. For all i ∈ Nn, we have:

‖xi + yi‖ ≤ ‖xi‖+ ‖yi‖
≤ max

i
‖xi‖+ max

i
‖yi‖

= ‖x‖∞ + ‖y‖∞
This being true for all i ∈ Nn, we obtain:

‖x+ y‖∞ = max
i=1,...,n

‖xi + yi‖ ≤ ‖x‖∞ + ‖y‖∞

In order to prove the triangle inequality for ‖ · ‖p, one may think of two
possible strategies: On the one hand, it is likely that mimicking the proof
of theorem (43) will lead to a valid and simplified proof of the triangle
inequality, the crucial point being the convexity of x → xp, x > 0, for
p ∈ [1,+∞[. On the other hand, it is possible to re-interpret the triangle
inequality in a way which makes it a particular case of theorem (43).
This is the approach we shall follow: Let x = (x1, . . . , xn) ∈ E and y =
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(y1, . . . , yn) ∈ E. Define Ω = Nn and let F = P(Ω) be the power set of
Ω. Then F is obviously a σ-algebra on Ω. We define µ : F → [0,+∞] by:

∀A ∈ F , µ(A)
4
=

n∑
i=1

1A(i)

Then µ(∅) = 0, and if A = ]k≥1Ak is a union of pairwise disjoint elements
of F , we have 1A =

∑
k≥1 1Ak and consequently:

µ(A) =
n∑
i=1

1A(i)

=
n∑
i=1

(
+∞∑
k=1

1Ak

)
(i)

=
n∑
i=1

(
+∞∑
k=1

1Ak(i)

)

All terms ≥ 0 → =
+∞∑
k=1

(
n∑
i=1

1Ak(i)

)

=
+∞∑
k=1

µ(Ak)

So µ is a measure on (Ω,F). We define f, g : (Ω,F)→ [0,+∞] by setting
f(i) = ‖xi‖ and g(i) = ‖yi‖ for all i ∈ Ω. Then f and g are non-
negative, and clearly measurable since F is the whole of the power set
P(Ω). Applying theorem (43), we obtain:

‖x+ y‖p = ‖ (x1, . . . , xn) + (y1, . . . , yn) ‖p
= ‖ (x1 + y1, . . . , xn + yn) ‖p

=

(
n∑
i=1

‖xi + yi‖p
)1/p

≤
(

n∑
i=1

(‖xi‖+ ‖yi‖)p
)1/p

µ({i}) = 1 → =

(
n∑
i=1

∫
{i}

(f + g)pdµ

)1/p

=
(∫

(f + g)pdµ
)1/p

Theorem (43) → ≤
(∫

fpdµ

)1/p

+
(∫

gpdµ

)1/p

www.probability.net

http://www.probability.net


Solutions to Exercises 47

=

(
n∑
i=1

‖xi‖p
)1/p

+

(
n∑
i=1

‖yi‖p
)1/p

= ‖x‖p + ‖y‖p
This completes our proof of the triangle inequality for ‖ · ‖p, and we have
proved that ‖ · ‖∞ and ‖ · ‖p are norms on E.

2. Let Tp and T∞ denote the topologies induced on E by ‖ · ‖p and ‖ · ‖∞
respectively. Let T denote the product topology on E. For all x ∈ E, we
have:

‖x‖p =

(
n∑
i=1

‖xi‖p
)1/p

≤
(

n∑
i=1

(‖x‖∞)p
)1/p

= n1/p · ‖x‖∞
= n1/p · (max

i
‖xi‖p)1/p

≤ n1/p ·
(

n∑
i=1

‖xi‖p
)1/p

= n1/p · ‖x‖p

Having proved that ‖ · ‖p ≤ n1/p‖ · ‖∞ ≤ n1/p‖ · ‖p, it follows from ex-
ercise (3) that the identity mapping j : (E, ‖ · ‖p) → (E, ‖ · ‖∞) is a
homeomorphism, i.e. that j and j−1 are continuous. This shows that
Tp = T∞. In order to prove that T ⊆ T∞, it is sufficient to prove that T∞
contains every open rectangle in E. Hence, we consider A = A1× . . .×An,
where each Ai is an open subset of Ei. Suppose x = (x1, . . . , xn) is an ele-
ment of A. Then for all i ∈ Nn, xi is an element of Ai which is open in Ei.
There exists εi > 0 such that B(xi, εi) ⊆ Ai, where B(xi, εi) denotes the
open ball in Ei. Let ε = min(ε1, . . . , εn) > 0 and let B∞(x, ε) denote the
open ball in E, relative to the norm ‖ · ‖∞. For all y = (y1, . . . , yn) ∈ E,
we have:

y ∈ B∞(x, ε) ⇔ ‖y − x‖∞ < ε

⇔ max
i
‖yi − xi‖ < ε

⇒ ‖yi − xi‖ < εi, ∀i ∈ Nn

⇔ yi ∈ B(xi, εi), ∀i ∈ Nn

⇒ yi ∈ Ai, ∀i ∈ Nn

⇔ y ∈ A
This shows thatB∞(x, ε) ⊆ A, and we have proved that for all x ∈ A, there
exists ε > 0 such that B∞(x, ε) ⊆ A. It follows that A ∈ T∞ and we have
proved that T ⊆ T∞. Note that there is no need to consider separately
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the case A = ∅ in the previous argument. To show that T∞ ⊆ T , consider
A ∈ T∞. Given x ∈ A, there exists ε > 0 such that B∞(x, ε) ⊆ A. For all
y ∈ E, we have:

y ∈ B∞(x, ε) ⇔ ‖y − x‖∞ < ε

⇔ max
i
‖yi − xi‖ < ε

⇔ ‖yi − xi‖ < ε, ∀i ∈ Nn

⇔ yi ∈ B(xi, ε), ∀i ∈ Nn

⇔ y ∈ B(x1, ε)× . . .×B(xn, ε)

It follows that B∞(x, ε) = B(x1, ε)× . . .×B(xn, ε) and B∞(x, ε) is there-
fore an open rectangle in E, and in particular an element of the product
topology T . Hence, for all x ∈ A, there exists some Ax ∈ T such that
x ∈ Ax ⊆ A. From A = ∪x∈AAx we conclude that A ∈ T , and we have
proved that T∞ ⊆ T . This completes our proof of Tp = T∞ = T .

3. Although we have not explicitly justified this point, E is a K-vector space
as defined in (89), where the scalar multiplication and vector addition are
given by the formulas:

α · (x1, . . . , xn)
4
= (αx1, . . . , αxn)

(x1 + . . . , xn) + (y1, . . . , yn)
4
= (x1 + y1, . . . , xn + yn)

For all x = (x1, . . . , xn) and y = (y1, . . . , yn) elements of E, and α ∈ K.
Since ‖ · ‖p and ‖ · ‖∞ are norms on E, it follows from definition (125)
that (E, ‖ · ‖p) and (E, ‖ · ‖∞) are K-normed spaces. Having proved that
Tp = T∞ = T , we conclude that the norm topologies on E relative to both
‖ · ‖p and ‖ · ‖∞ are equal to the product topology on E.

Exercise 18

Exercise 19. Let E and F be two R-normed spaces. Let U be open in E and
φ, ψ : U → F be two maps. We assume that both φ and ψ are differentiable
at a ∈ U . Let α ∈ R. Let k = dφ(a) and l = dψ(a). Since both k and l are
elements of LR(E,F ), from exercise (4) the map m = k + αl is an element of
LR(E,F ). To show that φ + αψ is differentiable at a with d(φ + αψ)(a) = m,
we have to show that m satisfies the requirements of definition (128), in relation
to φ+αψ. There is nothing to do if α = 0, so we may assume that α 6= 0. Since
both k and l satisfy the requirements of definition (128), in relation to φ and ψ
respectively, given ε > 0 there exist δ1 > 0 and δ2 > 0 such that for all h ∈ E,
‖h‖ ≤ δ1 implies that a+ h ∈ U , with:

‖φ(a+ h)− φ(a)− k(h)‖ ≤ ε

2
‖h‖

and ‖h‖ ≤ δ2 implies that a+ h ∈ U , with:

‖ψ(a+ h)− ψ(a)− l(h)‖ ≤ ε

2|α| ‖h‖
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Note that to obtain δ1 and δ2, we obviously applied definition (128) to different
values of ’ε’. Defining χ = φ+αψ, if δ = min(δ1, δ2) > 0, the condition ‖h‖ ≤ δ
implies that a+ h ∈ U , with:

‖χ(a+ h)− χ(a)−m(h)‖ ≤ ‖φ(a+ h)− φ(a)− k(h)‖
+ |α| · ‖ψ(a+ h)− ψ(a)− l(h)‖
≤ ε

2
‖h‖+ |α| ε

2|α| ‖h‖

= ε‖h‖
This shows that m satisfies the requirements of definition (128), and we have
proved that χ = φ+ αψ is differentiable with dχ(a) = m, i.e.:

d(φ + αψ)(a) = dφ(a) + αdψ(a)

Exercise 19

Exercise 20.

1. Let E and F be two K-normed spaces. Let NE and NF be two norms
on E and F , inducing the same topologies as the norm topologies on E
and F respectively. From definition (127), the set LK(E,F ) is that of all
linear maps l : E → F which are continuous. In the presence of alter-
native norms NE and NF on E and F respectively, the word continuous
is potentially vague, as it may not be clear which topologies are being
referred to. Fortunately, by assumption the norms ‖ · ‖ and NE induce
the same topology on E, whereas ‖ · ‖ and NF induce the same topology
on F . As far as continuity is concerned, it is therefore unnecessary to be
more specific about which particular norm on E (‖ · ‖ or NE), and which
particular norm on F (‖ · ‖ or NF ) is being considered. Consequently, the
set LK(E,F ) is unambiguously defined, without the need to introduce
more precise but cumbersome notations such as LK[(E, ‖ · ‖), (F, ‖ · ‖)] or
LK[(E,NE), (F,NF )] etc.

2. Let idE : (E, ‖ · ‖) → (E,NE) be the identity mapping. Since ‖ · ‖ and
NE induce the same topology on E, if A is open with respect to the
topology induced by NE, then A = id−1

E (A) is also open with respect to
the topology induced by ‖ · ‖. It follows that idE is a continuous map.

3. Having proved that idE : (E, ‖ · ‖)→ (E,NE) is a continuous map, being
also linear, it follows from exercise (3) that there exists ME ∈ R+ such
that:

∀x ∈ E , NE [idE(x)] ≤ME‖x‖
If ME = 0 (which is possible when E is reduced to the trivial case E =
{0}), it is always possible to replace ME by an arbitrary positive constant.
Hence, there exists ME > 0 such that NE ≤ME‖ · ‖. However, since ‖ · ‖
and NE induce the same topology on E, the map id−1

E : (E,NE) →
(E, ‖ · ‖) is also continuous. Hence, we can find M∗E > 0 such that:

∀x ∈ E , ‖id−1
E (x)‖ ≤M∗ENE(x)
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Defining mE = 1/M∗E > 0, we obtain mE‖ · ‖ ≤ NE . We have proved the
existence of mE ,ME > 0 such that:

∀x ∈ E , mE‖x‖ ≤ NE(x) ≤ME‖x‖

4. Since ‖·‖ and NF induce the same topology on F , applying 3. to the space
F and the norms ‖ · ‖ and NF , we obtain the existence of mF ,MF > 0
such that:

∀y ∈ F , mF ‖y‖ ≤ NF (y) ≤MF ‖y‖
Let l ∈ LK(E,F ) and x ∈ E with NE(x) = 1. We have:

‖NF (l(x))‖ ≤ MF ‖l(x)‖
≤ MF ‖l‖ · ‖x‖

≤ MF ‖l‖ ·
NE(x)
mE

=
MF

mE
‖l‖

Defining M = MF /mE > 0, we have proved that M‖l‖ is an upper-
bound of all ‖NF (l(x))‖’s as x ranges through the set of all x ∈ E with
NE(x) = 1. Since N(l) is by definition the smallest of such upper-bounds,
we obtain N(l) ≤ M‖l‖. This being true for all l ∈ LK(E,F ), we have
found M > 0 such that N ≤ M‖ · ‖. In order to show the existence
of m > 0 such that m‖ · ‖ ≤ N , one may reach a quick conclusion by
interchanging the roles of ‖ · ‖ and NE on the one hand, and ‖ · ‖ and NF
on the other hand, to obtain M∗ > 0 such that ‖·‖ ≤M∗N , and conclude
with m = 1/M∗. As this may seem confusing or unconvincing to some,
we shall proceed without emphasis to this symmetry. Let x ∈ E be such
that ‖x‖ = 1. Using 3. of exercise (5) applied to the norms NE on E, NF
on F , and associated N on LK(E,F ):

‖l(x)‖ ≤ 1
mF

NF (l(x))

3. of ex. (5) → ≤ 1
mF

N(l) ·NE(x)

≤ 1
mF

N(l)ME‖x‖ =
ME

mF
N(l)

Defining m = mF /ME > 0, we have proved that m−1N(l) is an upper-
bound of all ‖l(x)‖’s as x ranges through the set of all x ∈ E with ‖x‖ = 1.
Since ‖l‖ is the smallest of such upper-bounds, we obtain ‖l‖ ≤ m−1N(l),
or equivalently m‖l‖ ≤ N(l). This being true for all l ∈ LK(E,F ), we
have found m > 0 such that m‖ · ‖ ≤ N . Hence, there is m,M > 0 such
that:

∀l ∈ LK(E,F ) , m‖l‖ ≤ N(l) ≤M‖l‖

5. Having found m,M > 0 such that m‖ · ‖ ≤ N ≤ M‖ · ‖, it is clear
from exercise (3) that j : (LK(E,F ), ‖ · ‖)→ (LK(E,F ), N), the identity
mapping, is a homeomorphism, i.e. that both j and j−1 are continuous.
It follows that ‖·‖ and N induce the same topology on LK(E,F ). Indeed,
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let T‖·‖ and TN be the topologies on LK(E,F ) induced by ‖ · ‖ and N
respectively. Let A ∈ TN . Since j is continuous, A = j−1(A) is an
element of T‖·‖. This shows that TN ⊆ T‖·‖, and similarly T‖·‖ ⊆ TN .

6. Suppose that K = R and φ : U → F is differentiable at a ∈ U . Let
l = dφ(a) ∈ LR(E,F ). Our assumption of φ being differentiable at a,
means specifically that l satisfies the requirements of definition (128), in
relation to the normed spaces (E, ‖ · ‖) and (F, ‖ · ‖). Saying that φ is
also differentiable at a with respect to the norms NE and NF , is just
an informal way of saying that l should also satisfy the requirements of
definition (128), in relation to the normed spaces (E,NE) and (F,NF ).
This is exactly what we need to prove. For this purpose, we consider
mE ,ME > 0 such that mE‖ · ‖ ≤ NE ≤ ME‖ · ‖, and mF ,MF > 0 such
that mF ‖·‖ ≤ NF ≤MF ‖·‖. Let ε > 0 be given. Applying definition (128)
to ε′ = εmE/MF in relation to (E, ‖ · ‖) and (F, ‖ · ‖), there exists δ′ > 0
such that for all h ∈ E, the condition ‖h‖ ≤ δ′ implies that a + h ∈ U ,
and furthermore:

‖φ(a+ h)− φ(a) − l(h)‖ ≤ εmE

MF
‖h‖

Defining δ = mEδ
′ > 0, for all h ∈ E the condition NE(h) ≤ δ implies

that mE‖h‖ ≤ mEδ
′ and consequently ‖h‖ ≤ δ′. Hence, the condition

NE(h) ≤ δ implies that a+ h ∈ U and furthermore:

NF (φ(a+ h)− φ(a)− l(h)) ≤ MF ‖φ(a+ h)− φ(a)− l(h)‖
≤ MF ε

mE

MF
‖h‖

≤ MF ε
mE

MF

NE(h)
mE

= εNE(h)

This shows that l satisfies the requirements of definition (128) in relation
to the normed spaces (E,NE) and (F,NF ). We have proved that changing
the norms on E and F with equivalent norms NE and NF , i.e. norms in-
ducing the same topologies on E and F , does not affect the differentiability
of φ : U → F at a ∈ U , or the value of the differential dφ(a) ∈ LR(E,F ).

7. Suppose that K = R and φ : U → F is of class C1 on U . In particular,
φ is differentiable on U . It follows from 6. that φ is also differentiable on
U with respect to the norms NE and NF . Let dφ : U → LR(E,F ) be
the differential of φ. From 6., dφ is also the differential of φ with respect
to the norms NE and NF . Having assumed that φ is of class C1 on U ,
the differential dφ : U → LR(E,F ) is continuous. More precisely, dφ is a
continuous map, with respect to the norm topology on LR(E,F ) and the
topology on U induced by the norm topology on E. If we replace the norms
on E and F by NE and NF respectively, by assumption the norm topology
on E is unchanged, and so is the topology on U . From 5. the topology on
LR(E,F ) is also unchanged. It follows that dφ : U → LR(E,F ) is also
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continuous with respect to the topologies on U and LR(E,F ) induced by
the norms NE and NF . This shows that φ is of class C1 on U , with respect
to the norms NE and NF .

Exercise 20

Exercise 21.

1. Let F = F1 × . . . × Fp be the product of p, p ≥ 1, R-normed spaces.
Given i ∈ Np, let pi : F → Fi be the canonical projection defined by
pi(x1, . . . , xp) = xi for all x = (x1, . . . , xp) ∈ F . Given x = (x1, . . . , xp) ∈
F and y = (y1, . . . , yp) ∈ F , given α ∈ R, we have:

pi(x+ αy) = pi[(x1, . . . , xp) + α · (y1, . . . , yp)]
= pi[(x1, . . . , xp) + (αy1, . . . , αyp)]
= pi[(x1 + αy1, . . . , xp + αyp)]
= xi + αyi

= pi(x) + αpi(y)

Hence, pi : F → Fi is a linear map. From exercise (10), pi is continu-
ous with respect to the product topology on F . From exercise (18), the
product topology on F coincides with the norm topology on F viewed as
an R-normed space. So pi is also continuous with respect to the norm
topology on F . This shows that pi ∈ LR(F, Fi). Note that there is no
need to be very specific about which norm on F is being referred to, by
virtue of exercise (18) and (20). It is understood that any norm chosen
on F , if not specifically of a type described in exercise (18), will at least
induce the same topology, i.e. the product topology on F . To show that
pi is continuous, assuming for example that F is endowed with the norm
‖ · ‖q of exercise (18) with q ∈ [1,+∞[, one can argue directly that for all
x ∈ F :

‖pi(x)‖ = ‖xi‖ ≤
(

p∑
i=1

‖xi‖q
)1/q

= ‖x‖q

It follows from exercise (3) that pi is continuous.

2. Given i ∈ Np, let ui : Fi → F be defined as:

∀xi ∈ Fi , ui(xi)
4
= (0, . . . ,

i︷︸︸︷
xi , . . . , 0)

For all xi, yi ∈ Fi and α ∈ R, we have:

ui(xi + αyi) = (0, . . . , xi + αyi, . . . , 0)
= (0, . . . , xi, . . . , 0) + α · (0, . . . , yi, . . . , 0)
= ui(xi) + α · ui(yi)

Hence, ui : Fi → F is linear. Using the norm ‖ · ‖∞ on F as defined in
exercise (18), we obtain:

‖ui(xi)‖∞ = max(0, . . . , ‖xi‖, . . . , 0) = ‖xi‖
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and it follows from exercise (3) that ui : Fi → F is continuous. We have
proved that ui ∈ LR(Fi, F ). Now for all x ∈ F :(

p∑
i=1

ui ◦ pi

)
(x) =

p∑
i=1

(ui ◦ pi)(x)

=
p∑
i=1

ui(pi(x))

=
p∑
i=1

(0, . . . , xi, . . . , 0)

= (x1, . . . , xp) = x

This being true for all x ∈ F , we obtain:
p∑
i=1

ui ◦ pi = idF

where idF : F → F denotes the identity mapping. It follows that if E is
an R-normed space, U is open in E and φ : U → F is a map, then:

φ = idF ◦ φ

=

(
p∑
i=1

ui ◦ pi

)
◦ φ

=
p∑
i=1

(ui ◦ pi) ◦ φ

=
p∑
i=1

ui ◦ (pi ◦ φ)

=
p∑
i=1

ui ◦ φi

where φi : U → Fi is defined as φ = pi ◦ φ.

3. Suppose φ : U → F is differentiable at a ∈ U . Let i ∈ Np. Having
proved in 1. that pi ∈ LR(F, Fi), it follows from exercise (17) that pi :
F → Fi is differentiable on F , with dpi(x) = pi for all x ∈ F . Applying
theorem (110), we conclude that pi ◦ φ = φi is differentiable at a ∈ U ,
with:

dφi(a) = d(pi ◦ φ)(a)
= dpi(φ(a)) ◦ dφ(a) = pi ◦ dφ(a)

4. Suppose that for all i ∈ Np, φi : U → Fi is differentiable at a ∈ U .
Having proved in 2. that ui ∈ LR(Fi, F ), it follows from exercise (17)
that ui : Fi → F is differentiable on Fi, with dui(xi) = ui for all xi ∈ Fi.
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Applying theorem (110), the map ui◦φi : U → F is therefore differentiable
at a ∈ U , with:

d(ui ◦ φi)(a) = dui(φi(a)) ◦ dφi(a) = ui ◦ dφi(a)

Having proved in 2. that φ =
∑p

i=1 ui ◦φi, we conclude from exercise (19)
that φ is differentiable at a ∈ U , with:

dφ(a) = d

(
p∑
i=1

ui ◦ φi

)
(a)

=
p∑
i=1

d(ui ◦ φi)(a)

=
p∑
i=1

ui ◦ dφi(a)

5. Let a, b ∈ U . We assume that φ is differentiable at a and b. Then dφ(a) and
dφ(b) are well-defined elements of LR(E,F ). From 3. dφi(a) and dφi(b)
are well-defined elements of LR(E,Fi) for all i ∈ Np. Given i ∈ Np, we
claim that:

‖dφi(b)− dφi(a)‖ ≤ ‖dφ(b)− dφ(a)‖
Note that ‖dφi(b)− dφi(a)‖ is well-defined from exercise (5):

‖dφi(b)− dφi(a)‖ 4= sup ‖(dφi(b)− dφi(a))(x)‖

where the sup is taken over all x ∈ E with ‖x‖ = 1. Also:

‖dφ(b)− dφ(a)‖ 4= sup ‖(dφ(b)− dφ(a))(x)‖
where the sup is taken over all x ∈ E with ‖x‖ = 1. Note however that
this expression is dependent upon a specific choice of norm on F , in order
for ‖(dφ(b) − dφ(a))(x)‖ to be meaningful. As a possible choice, we shall
work with the norm ‖ · ‖2 of exercise (18), so that specifically:

‖dφ(b)− dφ(a)‖ 4= sup ‖(dφ(b) − dφ(a))(x)‖2
where the supremum is taken over all x ∈ E with ‖x‖ = 1. Now for all
y = (y1, . . . , yp) ∈ F and i ∈ Np, we have:

‖pi(y)‖ = ‖yi‖ ≤

 p∑
j=1

‖yj‖2
1/2

= ‖y‖2

Having proved in 3. that dφi(a) = pi ◦ dφ(a), we have similarly dφi(b) =
pi ◦ dφ(b) and consequently for all x ∈ E with ‖x‖ = 1:

‖(dφi(b)− dφi(a))(x)‖ = ‖ pi[(dφ(b)− dφ(a))(x)] ‖
≤ ‖(dφ(b)− dφ(a))(x)‖2
≤ ‖dφ(b)− dφ(a)‖
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from which we conclude that:

‖dφi(b)− dφi(a)‖ ≤ ‖dφ(b)− dφ(a)‖

6. For all x ∈ E with ‖x‖ = 1, since dφi(a) = pi ◦ dφ(a):

‖(dφ(b)− dφ(a))(x)‖ 4= ‖(dφ(b)− dφ(a))(x)‖2

=

(
p∑
i=1

‖ pi[(dφ(b)− dφ(a))(x)] ‖2
)1/2

=

(
p∑
i=1

‖(dφi(b)− dφi(a))(x)‖2
)1/2

≤
(

p∑
i=1

‖dφi(b)− dφi(a)‖2
)1/2

from which we conclude that:

‖dφ(b)− dφ(a)‖ ≤
(

p∑
i=1

‖dφi(b)− dφi(a)‖2
)1/2

7. Suppose φ : U → F is of class C1 on U . Let i ∈ Np. Since φ is
differentiable on U , from 3. φi : U → Fi is also differentiable on U
. Since dφ : U → LR(E,F ) is a continuous map, it follows from 5.
that dφi : U → LR(E,Fi) is also a continuous map. This shows that
φi : U → Fi is of class C1 on U . We have proved that if φ is of class C1,
then φi = pi ◦ φ is of class C1 for all i ∈ Np. Conversely, suppose all φi’s
are of class C1 on U . Then in particular, all φi’s are differentiable on U .
It follows from 4. that φ is also differentiable on U . Furthermore, each
dφi : U → LR(E,Fi) is a continuous map. In particular, given a ∈ U ,
each dφi is continuous at a. Given ε > 0, for all i ∈ Np there exists ηi > 0
such that for all b ∈ U :

‖b− a‖ ≤ ηi ⇒ ‖dφi(b)− dφi(a)‖ ≤ ε
√
p

Defining η = min(η1, . . . , ηp) > 0, for all b ∈ U , using 6.:

‖b− a‖ ≤ η ⇒ ‖dφ(b)− dφ(a)‖ ≤ ε
This shows that dφ : U → LR(E,F ) is continuous at a. This being true
for all a ∈ U , we have proved that dφ is a continuous map. So φ is of class
C1 on U . We conclude that φ is of class C1 on U , if and only if φi is of
class C1 on U for all i ∈ Np. Note that this conclusion would still hold,
if F were given any other norm N inducing the product topology on F ,
instead of ‖ · ‖2. Indeed from exercise (18) the norm ‖ · ‖2 does induce
the product topology on F . So any other norm N inducing the product
topology, induces the same topology as ‖ · ‖2. It follows from exercise (20)
that φ being of class C1 on U relative to the norm ‖ · ‖2, is equivalent to
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φ being of class C1 on U relative to the norm N . Given i ∈ Np, the map
φi : U → Fi is unaffected by a change of norm on F . It follows that the
conclusion we have reached having assumed that F is endowed with the
norm ‖ · ‖2, is still valid when F is endowed with the norm N .

8. Given p + 1 R-normed spaces E and F1, . . . , Fp, given U open in E and
F = F1 × . . .× Fp, given a map φ = (φ1, . . . , φp) : U → F , for all a ∈ U
we have proved in 3. and 4. that φ is differentiable at a, if and only if φi
is differentiable at a for all i ∈ Np. We have proved in 7. that φ is of class
C1 on U , if and only if φi is of class C1 on U for all i ∈ Np. Now suppose
a ∈ U and φ is differentiable at a. For all h ∈ E, using 4. we obtain:

dφ(a)(h) =

(
p∑
i=1

ui ◦ dφi(a)

)
(h)

=
p∑
i=1

(ui ◦ dφi(a))(h)

=
p∑
i=1

ui[dφi(a)(h)]

=
p∑
i=1

(0, . . . , dφi(a)(h), . . . , 0)

= (dφ1(a)(h), . . . , dφp(a)(h))

This completes the proof of theorem (116).

Exercise 21

Exercise 22. Let φ = (φ1, . . . , φn) : U → Rn be a map, where U is an open
subset of Rn. We assume that φ is differentiable at a ∈ U . Let (e1, . . . , en)
be the canonical basis of Rn. Note that if we consider (R, | · |) as a normed
vector space over itself, then the usual inner-product of Rn induces the norm
‖ · ‖2 of exercise (18), and in particular, it induces the product topology on Rn.
It follows that Rn is a particular case of finite product of R-normed spaces,
as per theorem (116). Having assumed that φ is differentiable at a ∈ U , from
theorem (116) each φi : U → R is differentiable at a ∈ U . Given i ∈ Nn,
applying theorem (113) to φi, it follows that for all j ∈ Nn, the partial derivative
∂φi
∂xj

(a) exists and furthermore for all h = (h1, . . . , hn) ∈ Rn, we have:

dφi(a)(h) =
n∑
j=1

∂φi
∂xj

(a)hj

In particular, dφi(a)(ej) = ∂φi
∂xj

(a) for all j ∈ Nn. Hence, we obtain from
theorem (116):

dφ(a)(ej) = (dφ1(a)(ej), . . . , dφn(a)(ej))
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=
n∑
i=1

dφi(a)(ej)ei

=
n∑
i=1

∂φi
∂xj

(a)ei = Mej

where M ∈ Mn(R) is the n× n matrix:

M =


∂φ1
∂x1

(a) . . . ∂φ1
∂xn

(a)
...

...
∂φn
∂x1

(a) . . . ∂φn
∂xn

(a)


Having proved that dφ(a)(ej) = Mej for all j ∈ Nn, we conclude that dφ(a) =
M . Now from theorem (116), φ being of class C1 on U is equivalent to φi being
of class C1 on U for all i ∈ Nn. From theorem (115), this in turn is equivalent
to ∂φi

∂xj
existing and being continuous on U , for all j ∈ Nn and i ∈ Nn. Hence,

we have proved that φ is of class C1 on U , if and only if for all i, j ∈ Nn, the
partial derivative ∂φi

∂xj
exists and is continuous on U . This completes the proof

of theorem (117).
Exercise 22

Exercise 23.

1. The setMn(R) of n×n matrices with entries in R, is the set of all maps
M : Nn×Nn → R, i.e. Mn(R) = RNn×Nn . There is an obvious topology
on Mn(R), namely the one induced by the inner-product:

〈M,N〉 4=
n∑

i,j=1

Mi,jNi,j

with associated norm:

‖M‖2 =

 n∑
i,j=1

M2
i,j

1/2

which induces the product topology on RNn×Nn , by virtue of exercise (18).
In these tutorials, we have consistently identified elements ofMn(R) with
the set of linear maps l : Rn → Rn. This set coincides with LR(Rn,Rn),
as every such linear map is continuous. Indeed, if (e1, . . . , en) denotes the
canonical basis of Rn and l : Rn → Rn is linear, for all x = (x1, . . . , xn) ∈
Rn:

‖l(x)‖ =

∥∥∥∥∥
n∑
i=1

xil(ei)

∥∥∥∥∥
≤

n∑
i=1

|xi| · ‖l(ei)‖
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≤
(

n∑
i=1

‖l(ei)‖2
)1/2

·
(

n∑
i=1

|xi|2
)1/2

= K‖x‖

where K = (
∑n

i=1 ‖l(ei)‖2)1/2 ∈ R+. Now, the identification of Mn(R)
with LR(Rn,Rn) gives us another obvious topology on Mn(R), namely
the one induced by the norm on LR(Rn,Rn), specifically the norm ‖ · ‖
defined by:

‖M‖ 4= sup{‖Mx‖ : x ∈ Rn, ‖x‖ = 1}
Because we haven’t yet proved that all norms on a finite dimensional space
induce the same topology, we shall now prove that ‖ · ‖2 and ‖ · ‖ induce
the same topology onMn(R), namely the product topology on RNn×Nn .
Let M ∈Mn(R). We have:

‖M‖2 =

 n∑
i,j=1

M2
i,j

1/2

=

 n∑
j=1

n∑
i=1

M2
i,j

1/2

=

 n∑
j=1

‖Mej‖2
1/2

‖ej‖ = 1 → ≤

 n∑
j=1

‖M‖2
1/2

=
√
n‖M‖

Furthermore, if x = (x1, . . . , xn) ∈ Rn with ‖x‖ = 1:

‖Mx‖ =

∥∥∥∥∥∥
n∑
j=1

xjMej

∥∥∥∥∥∥
≤

n∑
j=1

|xj | · ‖Mej‖

≤

 n∑
j=1

‖Mej‖2
1/2

·

 n∑
j=1

|xj |2
1/2

=

 n∑
j=1

n∑
i=1

M2
i,j

1/2

· ‖x‖

= ‖M‖2
from which we obtain ‖M‖ ≤ ‖M‖2. Hence, we have proved that ‖ · ‖ ≤
‖·‖2 ≤

√
n‖·‖, which shows that the identity mapping j : (Mn(R), ‖·‖)→
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(Mn(R), ‖ · ‖2) is a homeomorphism. So ‖ · ‖ and ‖ · ‖2 induce the same
topology on Mn(R), namely the product topology on RNn×Nn . Having
clarified which topology is to be assumed onMn(R), it is now meaningful
to state that the determinant det :Mn(R)→ R is a continuous map. As
we haven’t had a tutorial on the determinant, we shall have to accept this
fact. However, for those familiar with the formula:

detM =
∑
σ

ε(σ)M1,σ(1) · . . . ·Mn,σ(n)

where the sum is taken over all permutations σ : Nn → Nn (and ε(σ) ∈
{−1, 1} denotes the sign of a permutation σ), the fact that det :Mn(R)→
R is a continuous map is a lot easier to believe. Indeed, det can be
expressed as a linear combination (with coefficients in {−1, 1}) of products
of the form pi1,j1 . . . pin,jn , where pi,j : RNn×Nn → R is the (continuous)
canonical projection. Having (hopefully) accepted the continuity of det :
Mn(R) → R, we are now in a position to prove that J(φ) : Ω → R is
itself continuous. From definition (132):

J(φ)(a) = det[dφ(a)] = (det ◦dφ)(a)

This being true for all a ∈ Ω, we obtain J(φ) = det ◦dφ. However, since
φ is assumed to be of class C1 on Ω, the map dφ : Ω → LR(Rn,Rn)
(or equivalently dφ : Ω → Mn(R)) is a continuous map. It follows that
J(φ) = det ◦dφ : Ω→ R is itself continuous. Likewise, since ψ : Ω′ → Rn

is of class C1 on Ω′, J(ψ) : Ω′ → R is continuous.

2. Let In : Rn → Rn be the identity mapping. From ψ = φ−1 we obtain φ ◦
ψ = (In)|Ω′ , where (In)|Ω′ is the restriction of In to Ω′. From exercise (17),
(In)|Ω′ is differentiable and d(In)|Ω′(x) = In for all x ∈ Ω′. Hence, from
theorem (110) and for all x ∈ Ω′:

dφ(ψ(x)) ◦ dψ(x) = d(φ ◦ ψ)(x) = d(In)|Ω′(x) = In

3. Similarly to 2., from ψ ◦ φ = (In)|Ω we obtain for all x ∈ Ω:

dψ(φ(x)) ◦ dφ(x) = d(ψ ◦ φ)(x) = d(In)|Ω(x) = In

4. Let x ∈ Ω′. From 2. and definition (132) we obtain:

1 = det In
= det[dφ(ψ(x)) ◦ dψ(x)]

Granted → = det[dφ(ψ(x))] det[dψ(x)]
Definition (132) → = J(φ)(ψ(x))J(ψ)(x) (9)

It follows in particular that J(ψ)(x) 6= 0 for all x ∈ Ω′.

5. Let x ∈ Ω. From 3. we have similarly to 4.:

1 = det In
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= det[dψ(φ(x)) ◦ dφ(x)]
= det[dψ(φ(x))] det[dφ(x)]
= J(ψ)(φ(x))J(φ)(x) (10)

and it follows that J(φ)(x) 6= 0 for all x ∈ Ω. Note that it is perfectly
acceptable to deduce J(φ)(x) 6= 0 directly from 3. by interchanging the
roles of φ and ψ.

6. Let x ∈ Ω′. Going back to (9), we have:

J(ψ)(x) =
1

J(φ)(ψ(x))
=

1
(J(φ) ◦ ψ)(x)

This being true for all x ∈ Ω′, J(ψ) = 1/(J(φ) ◦ ψ). Similarly, going back
to (10) we obtain J(φ) = 1/(J(ψ) ◦ φ).

Exercise 23

Exercise 24. Let Ω ∈ B(Rn) be a Borel subset of Rn and B ∈ B(Ω) be a
Borel subset of Ω. Then dx|Ω(B) is defined by dx|Ω(B) = dx(B). For this to be
meaningful, we need to ensure that dx(B) is well-defined, i.e. that B ∈ B(Rn).
This amounts to proving the inclusion B(Ω) ⊆ B(Rn), which can be seen from
theorem (10):

B(Ω)
4
= σ(TΩ)
4
= σ((TRn)|Ω)

Theorem (10) → = σ(TRn)|Ω
4
= B(Rn)|Ω
4
= {B ∩ Ω : B ∈ B(Rn)}

Ω ∈ B(Rn) → ⊆ B(Rn)

So dx|Ω is well-defined, and it is clearly a measure on (Ω,B(Ω)).
Exercise 24

Exercise 25.

1. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-diffeomorphism. Being
open in Rn, in particular Ω and Ω′ are Borel subsets of Rn. From ex-
ercise (24), it follows that dx|Ω′ is a well-defined measure on (Ω′,B(Ω′)),
while dx|Ω is a well-defined measure on (Ω,B(Ω)). Furthermore, being dif-
ferentiable, the map φ : Ω → Ω′ is continuous and therefore measurable.
It follows from definition (123) that the image measure φ(dx|Ω) is a well-
defined measure on (Ω′,B(Ω′)). We have proved that dx|Ω′ and φ(dx|Ω)
are well-defined measures on (Ω′,B(Ω′)).

2. Let a ∈ Ω′. Since Ω′ is open in Rn, there exists η > 0 such that B(a, η) ⊆
Ω′, where B(a, η) denotes the open ball in Rn. Let 0 < ε ≤ η. Then
B(a, ε) ⊆ B(a, η) ⊆ Ω′, and consequently B(a, ε) = B(a, ε) ∩ Ω′. Since
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B(a, ε) is open in Rn, the equality B(a, ε) = B(a, ε) ∩ Ω′ shows that it is
also open in Ω′. In particular, B(a, ε) is a Borel subset of Ω′. We have
found η > 0 such that B(a, ε) ∈ B(Ω′) for all ε > 0 with ε ≤ η. This shows
that B(a, ε) ∈ B(Ω′) for ε > 0 sufficiently small.

3. From 2. B(a, ε) is an element of B(Ω′) for ε > 0 sufficiently small. From 1.
dx|Ω′ and φ(dx|Ω) are well-defined measures on (Ω′,B(Ω′)). It follows that
the quantities dx|Ω′(B(a, ε)) and φ(dx|Ω)(B(a, ε)) are meaningful elements
of [0,+∞] for ε > 0 sufficiently small. In fact, from definition (134), we
have:

dx|Ω′(B(a, ε)) = dx(B(a, ε)) ∈]0,+∞[
It follows that the ratio φ(dx|Ω)(B(a, ε))/dx|Ω′ (B(a, ε)) is well-defined in
[0,+∞] for ε > 0 sufficiently small. Hence, it does make sense to investi-
gate whether the limit:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

exists in [0,+∞], and whether this limit is an element of R.

4. We assume that dψ(a) = In. Let r > 0 be given. Since In satisfies the
requirements of definition (128) in relation to ψ at a ∈ Ω′, there exists
ε1 > 0 such that for all h ∈ Rn, the condition ‖h‖ ≤ ε1 implies that
a+ h ∈ Ω′, and:

‖ψ(a+ h)− ψ(a)− h‖ ≤ r‖h‖

5. Let h ∈ Rn with ‖h‖ ≤ ε1. Then a+ h ∈ Ω′, and:

‖ψ(a+ h)− ψ(a)‖ ≤ ‖ψ(a+ h)− ψ(a)− h‖+ ‖h‖
≤ r‖h‖+ ‖h‖
= (1 + r)‖h‖

6. Let ε ∈]0, ε1[ and x ∈ B(a, ε). Then h = x − a satisfies the condition
‖h‖ < ε, and in particular ‖h‖ ≤ ε1. It follows that a + h ∈ Ω′ and
consequently x ∈ Ω′. So B(a, ε) ⊆ Ω′. Furthermore, if x ∈ B(a, ε) and
h = x− a, we obtain from 5.:

‖ψ(x)− ψ(a)‖ = ‖ψ(a+ h)− ψ(a)‖
≤ (1 + r)‖h‖
< ε(1 + r)

This shows that ψ(x) ∈ B(ψ(a), ε(1 + r)). This being true for all x ∈
B(a, ε), we have proved that:

ψ(B(a, ε)) ⊆ B(ψ(a), ε(1 + r))

7. From 2. of exercise (23), we have dφ(ψ(a))◦dψ(a) = In. Since dψ(a) = In,
we obtain dφ(ψ(a)) = In.
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8. It follows from 7. that In satisfies the requirements of definition (128) in
relation to φ at ψ(a) ∈ Ω. Having fixed r > 0 in 4., there exists ε2 > 0
such that for all k ∈ Rn, the condition ‖k‖ ≤ ε2 implies that ψ(a)+k ∈ Ω,
and:

‖φ(ψ(a) + k)− a− k‖ = ‖φ(ψ(a) + k)− φ(ψ(a)) − In(k)‖
≤ r‖k||

9. Let k ∈ Rn with ‖k‖ ≤ ε2. Then ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k)− a‖ ≤ ‖φ(ψ(a) + k)− a− k‖+ ‖k‖
≤ (1 + r)‖k‖

10. Let ε ∈]0, ε2(1 + r)[. Let y ∈ B(ψ(a), ε(1 + r)−1). Define k = y − ψ(a).
Then k satisfies the condition ‖k‖ < ε(1+r)−1 and in particular ‖k‖ ≤ ε2.
It follows from 9. that ψ(a) + k ∈ Ω. So y ∈ Ω, and we have proved that
B(ψ(a), ε(1 + r)−1) ⊆ Ω. Furthermore, if y ∈ B(ψ(a), ε(1 + r)−1) and
k = y − ψ(a):

‖φ(y)− a‖ = ‖φ(ψ(a) + k)− a‖
From 9. → ≤ (1 + r)‖k‖

< (1 + r)ε(1 + r)−1 = ε

So φ(y) ∈ B(a, ε), i.e. y ∈ {φ ∈ B(a, ε)}. We have proved that:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)}

11. Suppose ε > 0 is such that B(a, ε) ⊆ Ω′. We claim that:

ψ(B(a, ε)) = {φ ∈ B(a, ε)}
Let y ∈ ψ(B(a, ε)). There is x ∈ B(a, ε) such that y = ψ(x). It follows
that φ(y) = φ(ψ(x)) = x ∈ B(a, ε). So y ∈ {φ ∈ B(a, ε)}. This shows the
inclusion ⊆. To show the reverse inclusion, suppose y ∈ Ω is such that
φ(y) ∈ B(a, ε). Define x = φ(y). Then x ∈ B(a, ε) and ψ(x) = ψ(φ(y)) =
y. So y ∈ ψ(B(a, ε)). This shows the inclusion ⊇.

12. Let ε0 = ε1∧ε2(1+r). Let ε ∈]0, ε0[. In particular, ε ∈]0, ε1[ and it follows
from 6. that B(a, ε) ⊆ Ω′. Also, from 6. and 11.:

{φ ∈ B(a, ε)} = ψ(B(a, ε)) ⊆ B(ψ(a), ε(1 + r))

Moreover, since ε ∈]0, ε2(1 + r)[, from 10. we obtain:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)}

We have proved that B(a, ε) ⊆ Ω′, and:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)} ⊆ B(ψ(a), ε(1 + r))
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13. Let ε ∈]0, ε0[. From 12. we have B(a, ε) ⊆ Ω′ and consequently:

B(a, ε) = B(a, ε) ∩ Ω′ ∈ B(Rn)|Ω′ = B(Ω′)

where the last equality has been fully justified in exercise (24). SoB(a, ε) ∈
B(Ω′). Using exercise (12) of Tutorial 16:

dx(B(ψ(a),
ε

1 + r
)) =

εn

(1 + r)n
dx(B(0, 1))

= (1 + r)−ndx(B(a, ε))
= (1 + r)−ndx|Ω′(B(a, ε))

Moreover:

dx(B(ψ(a), ε(1 + r))) = εn(1 + r)ndx(B(0, 1))
= (1 + r)ndx(B(a, ε))
= (1 + r)ndx|Ω′(B(a, ε))

Finally, sinceB(a, ε) ∈ B(Ω′) and φ is measurable, we have {φ ∈ B(a, ε)} ∈
B(Ω) and consequently from definition (123):

dx({φ ∈ B(a, ε)}) = dx|Ω({φ ∈ B(a, ε)}) = φ(dx|Ω)(B(a, ε))

14. Let ε ∈]0, ε0[. From 12. we have B(a, ε) ⊆ Ω′, and:

dx(B(ψ(a),
ε

1 + r
)) ≤ dx({φ ∈ B(a, ε)}) ≤ dx(B(ψ(a), ε(1 + r)))

Since dx|Ω′(B(a, ε)) = dx(B(a, ε)) > 0, using 13. we obtain:

(1 + r)−n ≤
φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

≤ (1 + r)n (11)

15. Given r > 0, we have found ε0 > 0 such that (11) is true for all ε ∈]0, ε0[.
Let η > 0. It is clear that limr→0(1+r)n = 1. It follows that (1+r)n ≤ 1+η
for r > 0 sufficiently small. Likewise, since limr→0(1 + r)−n = 1, we have
1 − η ≤ (1 + r)−n for r > 0 sufficiently small. Hence, given η > 0, it is
possible to find r > 0 sufficiently small such that:

1− η ≤ (1 + r)−n ≤ (1 + r)n ≤ 1 + η

It follows that given η > 0, there exists ε0 > 0 such that:

1− η ≤
φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

≤ 1 + η

for all ε ∈]0, ε0[. This shows that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

Exercise 25

Exercise 26.
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1. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-diffeomorphism. Let
ψ = φ−1 and a ∈ Ω′. Let A = dψ(a). Then A is a linear map A : Rn →
Rn. Furthermore, from 2. of exercise (23):

dφ(ψ(a)) ◦ dψ(a) = In = dφ(ψ(a)) ◦A
It follows that A : Rn → Rn is a linear bijection.

2. Let Ω′′ = A−1(Ω). From exercise (11) (part 2.) of Tutorial 17, the inverse
image A−1(Ω) of Ω by A coincides with the direct image A−1(Ω) of Ω
by A−1. It follows that the definition of Ω′′ does not depend on whether
A−1(Ω) is viewed as an inverse or a direct image.

3. Since A : Rn → Rn is linear and defined on a finite dimensional space,
it is continuous. This general statement has not been proved yet, but
the particular case at hand can be found in exercise (11) (part 1.) of
Tutorial 17. Since Ω is open in Rn, the inverse image Ω′′ = A−1(Ω) is
open in Rn.

4. Let φ̃ : Ω′′ → Ω′ be defined by φ̃(x) = φ ◦ A(x) for all x ∈ Ω′′. Then
φ̃ = φ ◦ A|Ω′′ where A|Ω′′ : Ω′′ → Rn is the restriction of A to Ω′′.
Note that for all x ∈ Ω′′ = A−1(Ω), we have A(x) ∈ Ω and consequently
A|Ω′′ (Ω

′′) ⊆ Ω. This shows that φ̃ = φ ◦ A|Ω′′ is well-defined on Ω′′, (and
it has indeed values in Ω′). From exercise (17), A|Ω′′ is of class C1 on
Ω′′. Since φ : Ω → Ω′ is a C1-diffeomorphism, in particular φ : Ω → Rn

is of class C1 on Ω. Since A|Ω′′(Ω
′′) ⊆ Ω, it follows from theorem (111)

that φ̃ = φ ◦ A|Ω′′ is of class C1 on Ω′′. Let ψ̃ : Ω′ → Ω′′ be defined by
ψ̃ = A−1◦ψ. Note that for all x ∈ Ω′, we have ψ(x) ∈ Ω and consequently:

ψ̃(x) = A−1(ψ(x)) ∈ A−1(Ω) = Ω′′

So ψ̃ has indeed values in Ω′′ (and it is well-defined on Ω′). For all x ∈ Ω′,
we have:

(φ̃ ◦ ψ̃)(x) = φ ◦A|Ω′′ ◦A−1 ◦ ψ(x)

= φ ◦A ◦A−1 ◦ ψ(x)
= φ ◦ ψ(x) = x

and for all x ∈ Ω′′:

(ψ̃ ◦ φ̃)(x) = A−1 ◦ ψ ◦ φ ◦A|Ω′′(x)

= A−1 ◦ ψ ◦ φ ◦A(x)
= A−1 ◦A(x) = x

Hence, we have φ̃ ◦ ψ̃ = idΩ′ and ψ̃ ◦ φ̃ = idΩ′′ , and we have proved that
φ̃ : Ω′′ → Ω′ is a bijection with φ̃−1 = ψ̃. Having assumed φ : Ω → Ω′ to
be a C1-diffeomorphism, in particular ψ : Ω′ → Rn is of class C1 on Ω′.
From exercise (17), A−1 : Rn → Rn is of class C1 on Rn. It follows from
theorem (111) that ψ̃ = A−1 ◦ψ is of class C1 on Ω′. We have proved that

www.probability.net

http://www.probability.net


Solutions to Exercises 65

φ̃ : Ω′′ → Ω′ is a bijection, such that φ̃ : Ω′′ → Rn and φ̃−1 : Ω′ → Rn are
both of class C1. From definition (133), we conclude that φ̃ : Ω′′ → Ω′ is
a C1-diffeomorphism.

5. Using theorem (110) and exercise (17), we obtain:

dψ̃(a) = d(A−1 ◦ ψ)(a)
= d(A−1)(ψ(a)) ◦ dψ(a)
= A−1 ◦ dψ(a)
= A−1 ◦A = In

6. Since φ̃ : Ω′′ → Ω′ is a C1-diffeomorphism with ψ̃ = φ̃−1, and a ∈ Ω′ is
such that dψ̃(a) = In, applying 15. of exercise (25):

lim
ε↓↓0

φ̃(dx|Ω′′ )(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

7. Let ε > 0 with B(a, ε) ⊆ Ω′. Then B(a, ε) ∈ B(Ω′) and:

φ̃(dx|Ω′′ )(B(a, ε)) = dx|Ω′′ ({φ̃ ∈ B(a, ε)})
Definition (134) → = dx({φ̃ ∈ B(a, ε)})
φ̃ = φ ◦A|Ω′′ → = dx({x ∈ Ω′′ : φ ◦A(x) ∈ B(a, ε)})

(∗) = dx({x ∈ Ω′′ : A(x) ∈ φ−1(B(a, ε))})
(∗∗) = dx({x ∈ Rn : A(x) ∈ φ−1(B(a, ε))})

Definition (123) → = A(dx)({φ ∈ B(a, ε)})
Theorem (108) → = | detA|−1dx({φ ∈ B(a, ε)})

Definition (134) → = | detA|−1dx|Ω({φ ∈ B(a, ε)})
Definition (123) → = | detA|−1φ(dx|Ω)(B(a, ε))

where the first equality stems from definition (123), and equality (∗) stems
from the equivalence, given y ∈ Ω:

φ(y) ∈ B(a, ε) ⇔ y ∈ φ−1(B(a, ε))

As for equality (∗∗), it follows from the fact that for all x ∈ Rn:

A(x) ∈ φ−1(B(a, ε)) ⇒ A(x) ∈ Ω ⇒ x ∈ Ω′′

8. For ε > 0 sufficiently small, we have B(a, ε) ⊆ Ω′, and from 7.:

φ(dx|Ω)(B(a, ε)) = | detA|φ̃(dx|Ω′′ )(B(a, ε))

Hence, from 6. we conclude that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= | detA|
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9. From definition (132) we have detA = det[dψ(a)] = J(ψ)(a). Hence,
given a C1-diffeomorphism φ : Ω → Ω′, given a ∈ Ω′ and ψ = φ−1, we
have proved that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

= |J(ψ)(a)|

This completes the proof of theorem (118).

Exercise 26

Exercise 27.

1. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-diffeomorphism. Let
ψ = φ−1. Let K ⊆ Ω′ be a non-empty compact subset of Ω′ such that
dx|Ω′ (K) = 0. Let x ∈ Ω′. Since the Lebesgue measure dx on Rn is locally
finite, there exists U open in Rn such that x ∈ U and dx(U) < +∞. It
follows that U ∩ Ω′ is open in Ω′, x ∈ U ∩ Ω′ and furthermore:

dx|Ω′(U ∩ Ω′) = dx(U ∩ Ω′) ≤ dx(U) < +∞
Hence, the Lebesgue measure dx|Ω′ on Ω′ is also locally finite. From
theorem (74), dx|Ω′ is therefore a regular measure on (Ω′,B(Ω′)). From
definition (103), we obtain:

dx|Ω′(K) = inf{dx|Ω′(V ) : K ⊆ V , V open in Ω′}
Let ε > 0. Having assumed that dx|Ω′ (K) = 0, in particular we have
dx|Ω′ (K) < ε. Since dx|Ω′(K) is the greatest lower-bound of all dx|Ω′ (V )’s
as V ranges through the set of all open subsets of Ω′ with K ⊆ V , ε
cannot be such an lower-bound. Hence, there exists V open in Ω′ such
that K ⊆ V (⊆ Ω′) and dx|Ω′ (V ) < ε. In particular we have dx|Ω′(V ) ≤ ε.

2. Since V is open in Ω′, from definition (23) of the induced topology, there
exists U open in Rn such that V = U ∩ Ω′. Since Ω′ is open in Rn, we
conclude that V is also open in Rn.

3. Let M = supx∈K ‖dψ(x)‖. Having assumed that φ : Ω → Ω′ is a C1-
diffeomorphism, in particular ψ : Ω′ → Rn is of class C1 on Ω′. Hence,
the differential dψ : Ω′ → LR(Rn,Rn) is continuous. Since for all l, l′ ∈
LR(Rn,Rn) we have:

| ‖l‖ − ‖l′‖ | ≤ ‖l − l′‖
the norm ‖ · ‖ : LR(Rn,Rn) → R+ is also continuous. It follows that
‖dψ(·)‖ : Ω′ → R+ is a continuous map, and its restriction ‖dψ(·)‖|K is
therefore a continuous map defined on the non-empty compact topological
space K. From theorem (37), ‖dψ(·)‖|K attains its maximum. In other
words, there exists xM ∈ K such that:

M = sup
x∈K
‖dψ(x)‖ = ‖dψ(xM )‖

We conclude that M ∈ R+.
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4. Let x ∈ K. Since K ⊆ V , in particular x ∈ V . Since V is open in Rn,
there exists ε1 > 0 such that B(x, ε1) ⊆ V . Furthermore, since K ⊆ Ω′,
x ∈ Ω′ and ψ is therefore differentiable at x. Applying definition (128) to
ψ and ε = 1, there exists δ > 0 such that for all h ∈ Rn, the condition
‖h‖ ≤ δ implies that x+ h ∈ Ω′, and:

‖ψ(x+ h)− ψ(x) − dψ(x)(h)‖ ≤ ‖h‖
Defining εx = min(ε1, δ/3), we have B(x, εx) ⊆ V and for all h ∈ Rn with
‖h‖ ≤ 3εx, we obtain x+ h ∈ Ω′, and:

‖ψ(x+ h)− ψ(x)‖ ≤ ‖dψ(x)(h)‖ + ‖h‖
≤ ‖dψ(x)‖ · ‖h‖+ ‖h‖

≤
(

sup
u∈K
‖dψ(u)‖

)
· ‖h‖+ ‖h‖

= (M + 1)‖h‖

5. Let x ∈ K. Let y ∈ B(x, 3εx). Define h = y − x. Then h ∈ Rn satisfies
the condition ‖h‖ ≤ 3εx. It follows from 4. that y = x + h ∈ Ω′, and we
have proved that B(x, 3εx) ⊆ Ω′. Moreover, applying 4. once more, we
obtain:

‖ψ(y)− ψ(x)‖ = ‖ψ(x+ h)− ψ(x)‖
≤ (M + 1)‖h‖
< 3(M + 1)εx

and consequently ψ(y) ∈ B(ψ(y), 3(M + 1)εx). This being true for all
y ∈ B(x, 3εx), we have proved that:

ψ(B(x, 3εx)) ⊆ B(ψ(x), 3(M + 1)εx)

6. Let x ∈ K. We claim that ψ(B(x, 3εx)) = {φ ∈ B(x, 3εx)}. Suppose
z ∈ ψ(B(x, 3εx)). There exists y ∈ B(x, 3εx) such that z = ψ(y). So
φ(z) = φ(ψ(y)) = y and consequently we have φ(z) ∈ B(x, 3εx), i.e.
z ∈ {φ ∈ B(x, 3εx)}. This shows the inclusion ⊆. To show the reverse
inclusion, suppose φ(z) ∈ B(x, 3εx). Then z = ψ(φ(z)) ∈ ψ(B(x, 3εx)).
This shows the inclusion ⊇.

7. We claim the existence of a finite subset {x1, . . . , xp} of K with:

K ⊆ B(x1, εx1) ∪ . . . ∪B(xp, εxp) (12)

Since K is compact and K ⊆ ∪x∈KB(x, εx) where each B(x, εx) is open,
from exercise (2) (part 5.) of Tutorial 8, there exists {x1, . . . , xp} ⊆ K
such that the inclusion (12) holds. Note that since K 6= ∅, we must have
p ≥ 1.

8. Since B(x1, εx1), . . . , B(xp, εxp) is a finite sequence of open balls in Rn,
from exercise (14) of Tutorial 16, there exists S finite subset of Np such
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that (B(xi, εxi))i∈S is a family of pairwise disjoint open balls, and further-
more:

p⋃
i=1

B(xi, εxi) ⊆
⋃
i∈S

B(xi, 3εxi)

It follows from 7. that:

K ⊆
⋃
i∈S

B(xi, 3εxi)

9. Using 5., 6. and 8. we obtain:

{φ ∈ K} = φ−1(K)

From 8. → ⊆ φ−1

(⋃
i∈S

B(xi, 3εxi)

)
=

⋃
i∈S

φ−1(B(xi, 3εxi))

=
⋃
i∈S
{φ ∈ B(xi, 3εxi)}

From 6. → =
⋃
i∈S

ψ(B(xi, 3εxi))

From 5. → ⊆
⋃
i∈S

B(ψ(xi), 3(M + 1)εxi)

10. From 9. and exercise (12) of Tutorial 16, we obtain:

φ(dx|Ω)(K)
4
= dx|Ω({φ ∈ K})

≤ dx|Ω

(⋃
i∈S

B(ψ(xi), 3(M + 1)εxi)

)
≤

∑
i∈S

dx|Ω(B(ψ(xi), 3(M + 1)εxi))

=
∑
i∈S

dx(B(ψ(xi), 3(M + 1)εxi))

=
∑
i∈S

3n(M + 1)nεnxidx(B(0, 1))

=
∑
i∈S

3n(M + 1)ndx(B(xi, εxi))

11. Since (B(xi, εxi))i∈S is a family of pairwise disjoint (Borel) sets:

dx

(⊎
i∈S

B(xi, εxi)

)
=
∑
i∈S

dx(B(xi, εxi))
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Hence, having proved in 4. that B(x, εx) ⊆ V for all x ∈ K, we obtain
from 10.:

φ(dx|Ω)(K) ≤
∑
i∈S

3n(M + 1)ndx(B(xi, εxi))

= 3n(M + 1)ndx

(⊎
i∈S

B(xi, εxi)

)
≤ 3n(M + 1)ndx(V )

12. Since dx(V ) = dx|Ω′(V ) ≤ ε, it follows from 11.:

φ(dx|Ω)(K) ≤ 3n(M + 1)nε (13)

13. We have found M ∈ R+ for which inequality (13) holds for all ε > 0. It
follows that φ(dx|Ω)(K) = 0

14. Let x ∈ Ω′. Then ψ(x) ∈ Ω. Since dx|Ω is a locally finite measure on
Ω, there exists W open in Ω, such that ψ(x) ∈ W and dx|Ω(W ) < +∞.
Define U = ψ−1(W ). Then U is open in Ω′ and x ∈ U . Moreover:

φ(dx|Ω)(U) = dx|Ω(φ−1(U))

= dx|Ω(φ−1(ψ−1(W )))

= dx|Ω((ψ ◦ φ)−1(W ))
= dx|Ω(W ) < +∞

Hence, given x ∈ Ω′ we have found U open in Ω′ such that x ∈ U and
φ(dx|Ω)(U) < +∞. From definition (102), we conclude that φ(dx|Ω) is a
locally finite measure on (Ω′,B(Ω′)).

15. Having proved in 14. that φ(dx|Ω) is a locally finite measure, from theo-
rem (74) it follows that φ(dx|Ω) is a regular measure. Given B ∈ B(Ω′),
from definition (103) we obtain:

φ(dx|Ω)(B) = sup{φ(dx|Ω)(K) : K ⊆ B , K compact }

16. Let B ∈ B(Ω′) with dx|Ω′ (B) = 0. Let K be a compact subset of B. Then
in particular, K is a compact subset of Ω′ with dx|Ω′(K) = 0. If K 6= ∅,
it follows from 13. that φ(dx|Ω)(K) = 0. This is obviously still true if
K = ∅. Hence we see that φ(dx|Ω)(B) is the supremum of the set {0},
and consequently φ(dx|Ω)(B) = 0. We have proved that for all B ∈ B(Ω′):

dx|Ω′ (B) = 0 ⇒ φ(dx|Ω)(B) = 0 (14)

17. Given Ω,Ω′ open in Rn and φ : Ω → Ω′ C1-diffeomorphism, we have
proved that for all B ∈ B(Ω′) the implication (14) holds. From defini-
tion (96), it follows that the image measure φ(dx|Ω) is absolutely contin-
uous with respect to dx|Ω′ , i.e.:

φ(dx|Ω) << dx|Ω′
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This completes the proof of theorem (119).

Exercise 27

Exercise 28.

1. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-diffeomorphism. Let
ψ = φ−1. Since Rn is metrizable and strongly σ-compact, since Ω′ is
open in Rn, from theorem (76), Ω′ is itself strongly σ-compact. From
definition (104), there exists a sequence (Vp)p≥1 of open subsets of Ω′,
such that Vp ↑ Ω′ and for all p ≥ 1 the closure of Vp in Ω′ (denoted V̄ Ω′

p )
is compact.

2. Being open in Ω′, each Vp can be written as Vp = Up∩Ω′ where Up is open
in Rn. Since Ω′ is itself open in Rn, it follows that Vp is also open in Rn.
Let V̄p denote the closure of Vp in Rn. We claim that V̄ Ω′

p = V̄p. Since Ω′

is open in Rn, from exercise (19) of Tutorial 13 we have V̄ Ω′

p = V̄p ∩ Ω′.
However, having assumed that V̄ Ω′

p is a compact subset of Ω′, it is also a
compact subset of Rn, and Rn is Hausdorff. It follows from theorem (35)
that V̄ Ω′

p is a closed subset of Rn, which furthermore contains Vp in the
inclusion sense. From exercise (21) of Tutorial 4, V̄p is the smallest closed
subset of Rn containing Vp in the inclusion sense. Hence, we see that
V̄p ⊆ V̄ Ω′

p and in particular V̄p ⊆ Ω′. We conclude from V̄ Ω′

p = V̄p ∩ Ω′

that V̄ Ω′

p = V̄p.

3. Let p ≥ 1. Using 14. of exercise (27), the image measure φ(dx|Ω) is a
locally finite measure on (Ω′,B(Ω′)). From exercise (10) of Tutorial 13,
since V̄ Ω′

p is a compact subset of Ω′ we have φ(dx|Ω)(V̄ Ω′

p ) < +∞. Since
V̄ Ω′

p = V̄p we conclude that:

φ(dx|Ω)(Vp) ≤ φ(dx|Ω)(V̄p) < +∞

4. It follows from 3. that (Vp)p≥1 is a sequence of Borel subsets of Ω′ such
that Vp ↑ Ω′ and φ(dx|Ω)(Vp) < +∞ for all p ≥ 1. From definition (61),
we conclude that φ(dx|Ω) is a σ-finite measure on (Ω′,B(Ω′)). Similarly,
since dx|Ω′ is a locally finite measure, from exercise (10) of Tutorial 13,
V̄ Ω′

p being compact:

dx|Ω′ (Vp) ≤ dx|Ω′(V̄p) = dx|Ω′(V̄ Ω′

p ) < +∞

It follows that dx|Ω′ is also a σ-finite measure on (Ω′,B(Ω′)).

5. From theorem (119), we have φ(dx|Ω) << dx|Ω′ . Furthermore from 4.
φ(dx|Ω) and dx|Ω′ are two σ-finite measures on (Ω′,B(Ω′)). From the
Radon-Nikodym theorem (61), there is h : (Ω′,B(Ω′)) → (R+,B(R+))
measurable such that:

∀B ∈ B(Ω′) , φ(dx|Ω)(B) =
∫
B

hdx|Ω′

www.probability.net

http://www.probability.net


Solutions to Exercises 71

6. Given p ≥ 1, we define hp = h1Vp , and we put:

∀x ∈ Rn , h̃p(x)
4
=
{
hp(x) if x ∈ Ω′

0 if x 6∈ Ω′

Using exercise (19) of Tutorial 16, h̃p is measurable, and:∫
Rn

h̃pdx =
∫

Ω′
hpdx|Ω′

=
∫

Ω′
h1Vpdx|Ω′

=
∫
Vp

hdx|Ω′

From 5. → = φ(dx|Ω)(Vp)
From 3. → < +∞

We conclude that h̃p ∈ L1
R(Rn,B(Rn), dx).

7. Applying theorem (101) to h̃p, dx-almost every x ∈ Rn is a Lebesgue
point of h̃p. In other words, there exists Np ∈ B(Rn) with dx(Np) = 0
such that for all x ∈ N c

p , x is a Lebesgue point of h̃p, and in particular
from exercise (17) of Tutorial 16:

h̃p(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

h̃pdx (15)

Defining N = ∪p≥1Np, we have N ∈ B(Rn) and dx(N) = 0, and further-
more (15) holds for all x ∈ N c and p ≥ 1.

8. Let N ′ = N ∩ Ω′. Then N ′ ∈ B(Rn)|Ω′ = B(Ω′), and:

dx|Ω′ (N ′) = dx(N ′) ≤ dx(N) = 0

9. Let x ∈ Ω′. Suppose p ≥ 1 is such that x ∈ Vp. Let ε > 0 be such that
B(x, ε) ⊆ Vp. Then in particular B(x, ε) ⊆ Ω′ and:

B(x, ε) = B(x, ε) ∩ Ω′ ∈ B(Rn)|Ω′ = B(Ω′)

It follows that dx|Ω′(B(x, ε)) is meaningful, and:

dx(B(x, ε)) = dx|Ω′ (B(x, ε))

Furthermore, it is clear that:

∀u ∈ Rn , (1B(x,ε)h̃p)(u)
4
=
{

(1B(x,ε)hp)(u) if u ∈ Ω′

0 if u 6∈ Ω′

where we have used that same notation 1B(x,ε) to denote successively the
characteristic function of B(x, ε) on Rn and on Ω′. Applying exercise (19)
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of Tutorial 16, we obtain:∫
B(x,ε)

h̃pdx =
∫

Rn

1B(x,ε)h̃pdx

Ex. (19) of T. 16 → =
∫

Ω′
1B(x,ε)hpdx|Ω′

10. Since hp = h1Vp and B(x, ε) ⊆ Vp, using 5. we have:∫
Ω′

1B(x,ε)hpdx|Ω′ =
∫

Ω′
1B(x,ε)h1Vpdx|Ω′

=
∫

Ω′
1B(x,ε)hdx|Ω′

=
∫
B(x,ε)

hdx|Ω′

From 5. → = φ(dx|Ω)(B(x, ε))

11. Let x ∈ Ω′ \N ′. Since N ′ = N ∩ Ω′, we have:

Ω′ \N ′ = Ω′ ∩ (N ∩Ω′)c

= Ω′ ∩ (N c ∪ (Ω′)c) = Ω′ ∩N c

So in particular x ∈ N c. It follows from 7. that for all p ≥ 1:

h̃p(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

h̃pdx (16)

However, by assumption Vp ↑ Ω′. Since x ∈ Ω′, there exists p ≥ 1 such
that x ∈ Vp. In particular we obtain:

h̃p(x) = hp(x) = h(x)1Vp(x) = h(x) (17)

Furthermore, since x ∈ Vp and Vp is open in Rn, there exists η > 0 such
that B(x, η) ⊆ Vp. For all ε > 0 with ε < η we have B(x, ε) ⊆ Vp and
consequently from 9. and 10. we obtain:∫

B(x,ε)

h̃pdx = φ(dx|Ω)(B(x, ε)) (18)

and furthermore:
dx(B(x, ε)) = dx|Ω′ (B(x, ε)) (19)

Having proved the equalities (18) and (19) for ε > 0 sufficiently small, we
conclude from (16) and (17) that:

h(x) = lim
ε↓↓0

φ(dx|Ω)(B(x, ε))
dx|Ω′(B(x, ε))

(20)

Hence, we have proved (20) for all x ∈ Ω′ \N ′.
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12. Applying theorem (118), for all x ∈ Ω′ we have:

|J(ψ)(x)| = lim
ε↓↓0

φ(dx|Ω)(B(x, ε))
dx|Ω′(B(x, ε))

It follows from (20) that h and |J(ψ)| coincide on Ω′ \N ′. Having proved
in 8. that dx|Ω′ (N ′) = 0, we conclude that h = |J(ψ)|, dx|Ω′ -almost surely.

13. From 5. and 12. we see that for all B ∈ B(Ω′):

φ(dx|Ω)(B) =
∫
B

hdx|Ω′

=
∫
B

|J(ψ)|dx|Ω′

This being true for all B ∈ B(Ω′), we conclude that the image measure
φ(dx|Ω) has density |J(ψ)| with respect to the Lebesgue measure dx|Ω′ on
Ω′, i.e.:

φ(dx|Ω) =
∫
|J(ψ)|dx|Ω′

This completes the proof of theorem (120).

Exercise 28

Exercise 29. Let Ω,Ω′ be open in Rn and φ : Ω→ Ω′ be a C1-diffeomorphism.
Let ψ = φ−1 and f : (Ω′,B(Ω′)) → [0,+∞] be a non-negative and measurable
map. Applying the integral projection theorem (104), we have:∫

Ω

f ◦ φdx|Ω =
∫

Ω′
fφ(dx|Ω) (21)

and furthermore, from theorem (120):

φ(dx|Ω) =
∫
|J(ψ)|dx|Ω′

So from the stack integral theorem (21), we obtain:∫
Ω′
fφ(dx|Ω) =

∫
Ω′
f |J(ψ)|dx|Ω′ (22)

From equations (21) and (22) we conclude that:∫
Ω

f ◦ φdx|Ω =
∫

Ω′
f |J(ψ)|dx|Ω′ (23)

Having proved in exercise (23) that J(ψ) is continuous, and furthermore that
J(ψ)(x) 6= 0 for all x ∈ Ω′, the map f/|J(ψ)| is well-defined, non-negative and
measurable. Applying equation (23) to f/|J(ψ)|:∫

Ω′
fdx|Ω′ =

∫
Ω′

(
f

|J(ψ)|

)
|J(ψ)|dx|Ω′

Equation (23) → =
∫

Ω

f ◦ φ
|J(ψ) ◦ φ|dx|Ω
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Exercise (23) → =
∫

Ω

(f ◦ φ)|J(φ)|dx|Ω

This completes the proof of theorem (121).
Exercise 29

Exercise 30. Let Ω,Ω′ be open in Rn and φ : Ω→ Ω′ be a C1-diffeomorphism.
Let ψ = φ−1 and f : (Ω′,B(Ω′))→ (C,B(C)) be a measurable map. Since φ and
|J(ψ)| are continuous, in particular they are Borel measurable and consequently
f ◦ φ and f |J(ψ)| are Borel measurable. Furthermore, applying the Jacobian
formula (121) to the non-negative and measurable map |f |, we obtain:∫

Ω

|f ◦ φ|dx|Ω =
∫

Ω

|f | ◦ φdx|Ω

Theorem (121) → =
∫

Ω′
|f | · |J(ψ)|dx|Ω′

=
∫

Ω′
|fJ(ψ)|dx|Ω′

Hence, we have proved the equivalence:

f ◦ φ ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f |J(ψ)| ∈ L1

C(Ω′,B(Ω′), dx|Ω′ )

Similarly, since φ and |J(φ)| are continuous, both (f ◦ φ)|J(φ)| and f are Borel
measurable, and from theorem (121):∫

Ω′
|f |dx|Ω′ =

∫
Ω

(|f | ◦ φ)|J(φ)|dx|Ω

=
∫

Ω

|(f ◦ φ)J(φ)|dx|Ω

Hence, we have proved the equivalence:

(f ◦ φ)|J(φ)| ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f ∈ L1

C(Ω′,B(Ω′), dx|Ω′)

Now suppose that f ◦φ ∈ L1
C(Ω,B(Ω), dx|Ω). Let u = Re(f) and v = Im(f), so

that f = u+−u−+ i(v+−v−). Since u+, u− ≤ |u| ≤ |f | and v+, v− ≤ |v| ≤ |f |,
each u± ◦ φ and v± ◦ φ is an element of L1

C(Ω,B(Ω), dx|Ω). It follows that each
u±|J(ψ)| and v±|J(ψ)| is an element of L1

C(Ω′,B(Ω′), dx|Ω′), and we have:∫
Ω

f ◦ φdx|Ω =
∫

Ω

(u+ ◦ φ)dx|Ω −
∫

Ω

(u− ◦ φ)dx|Ω

+ i

(∫
Ω

(v+ ◦ φ)dx|Ω −
∫

Ω

(v− ◦ φ)dx|Ω

)
Theorem (121) → =

∫
Ω′
u+|J(ψ)|dx|Ω′ −

∫
Ω′
u−|J(ψ)|dx|Ω′

+ i

(∫
Ω′
v+|J(ψ)|dx|Ω′ −

∫
Ω′
v−|J(ψ)|dx|Ω′

)
=

∫
Ω′
f |J(ψ)|dx|Ω′
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Suppose now that f ∈ L1
C(Ω′,B(Ω′), dx|Ω′). Then u+, u−, v+ and v− are all

elements of L1
C(Ω′,B(Ω′), dx|Ω′), and furthermore:∫

Ω′
fdx|Ω′ =

∫
Ω′

[u+ − u− + i(v+ − v−)]dx|Ω′

=
∫

Ω′
u+dx|Ω′ −

∫
Ω′
u−dx|Ω′

+ i

(∫
Ω′
v+dx|Ω′ −

∫
Ω′
v−dx|Ω′

)
Theorem (121) → =

∫
Ω

(u+ ◦ φ)|J(φ)|dx|Ω

−
∫

Ω

(u− ◦ φ)|J(φ)|dx|Ω

+ i

∫
Ω

(v+ ◦ φ)|J(φ)|dx|Ω

− i

∫
Ω

(v− ◦ φ)|J(φ)|dx|Ω

=
∫

Ω

(f ◦ φ)|J(φ)|dx|Ω

This completes the proof of theorem (122).
Exercise 30

Exercise 31.

1. Let f : R2 → [0,+∞] be defined by:

∀(x, y) ∈ R2 , f(x, y) = exp(−(x2 + y2)/2)

Using Fubini’s theorem (31) we obtain:∫
R2
f(x, y)dxdy =

∫
R×R

exp(−(x2 + y2)/2)dxdy

Theorem (31) → =
∫

R

(∫
R

exp(−x2/2) exp(−y2/2)dx
)
dy

=
∫

R

exp(−y2/2)
(∫

R

exp(−x2/2)dx
)
dy

=
(∫

R

exp(−x2/2)dx
)∫

R

exp(−y2/2)dy

=
(∫ +∞

−∞
e−u

2/2du

)2

2. We define the following subsets of R2:

∆1
4
= {(x, y) ∈ R2 : x > 0 , y > 0}

∆2
4
= {(x, y) ∈ R2 : x < 0 , y > 0}
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∆3
4
= {(x, y) ∈ R2 : x > 0 , y < 0}

∆4
4
= {(x, y) ∈ R2 : x < 0 , y < 0}

and:
∆5 = {(x, y) ∈ R2 : x = 0} ∪ {(x, y) ∈ R2 : y = 0}

Then ∆1,∆2,∆3,∆4 and ∆5 are pairwise disjoint, and:

R2 = ∆1 ]∆2 ]∆3 ]∆4 ]∆5

Moreover, since {x = 0} and {y = 0} are one-dimensional subspaces of
R2, from theorem (109) we have:

dxdy(∆5) ≤ dxdy({x = 0}) + dxdy({y = 0}) = 0

Hence, we have:∫
R2
f(x, y)dxdy =

∫
∆1]...]∆5

f(x, y)dxdy

=
∫

∆1]...]∆4

f(x, y)dxdy +
∫

∆5

f(x, y)dxdy

=
∫

∆1]...]∆4

f(x, y)dxdy

3. Let Q : R2 → R2 be defined by Q(x, y) = (−x, y). Then Q is a linear
bijection and furthermore:

detQ = det
(
−1 0
0 1

)
= −1

From theorem (108), we have:

Q(dxdy) = | detQ|−1dxdy

and consequently:∫
∆1

f(x, y)dxdy =
∫

1∆1fdxdy

=
∫

(1∆1 ◦Q−1 ◦Q)(f ◦Q−1 ◦Q)dxdy

Theorem (104) → =
∫

(1∆1 ◦Q−1)(f ◦Q−1)Q(dxdy)

= | detQ|−1

∫
(1∆1 ◦Q−1)(f ◦Q−1)dxdy

=
∫

1∆2(f ◦Q−1)dxdy

=
∫

∆2

f ◦Q−1(x, y)dxdy
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4. Since f(x, y) = exp(−(x2 + y2)/2), f ◦Q−1 = f . So, from 3.:∫
∆1

f(x, y)dxdy =
∫

∆2

f(x, y)dxdy

Similarly, using Q′(x, y) = (x,−y) and Q′′(x, y) = (−x,−y):∫
∆1

f(x, y)dxdy =
∫

∆3

f(x, y)dxdy

=
∫

∆4

f(x, y)dxdy

We conclude from 2.:∫
R2
f(x, y)dxdy =

∫
∆1]...]∆4

f(x, y)dxdy

=
4∑
i=1

∫
∆i

f(x, y)dxdy

= 4
∫

∆1

f(x, y)dxdy

5. Let D1 =]0,+∞[×]0, π/2[ and φ : D1 → ∆1 be defined by:

∀(r, θ) ∈ D1 , φ(r, θ)
4
= (r cos θ, r sin θ)

Let ψ : ∆1 → D1 be defined by:

∀(x, y) ∈ ∆1 , ψ(x, y) = (
√
x2 + y2, arctan(y/x))

Then for all (r, θ) ∈ D1, we have:

ψ ◦ φ(r, θ) = ψ(r cos θ, r sin θ)

= [
√

(r cos θ)2 + (r sin θ)2, arctan(sin θ/ cos θ)]

= (|r|
√

cos2 θ + sin2 θ, arctan(tan θ))
= (r, θ)

So ψ ◦ φ = idD1 . Furthermore, for all θ ∈]0, π/2[ we have:

tan2 θ =
sin2 θ

cos2 θ
=

1− cos2 θ

cos2 θ

and consequently, since cos θ > 0, we obtain:

cos θ =
1√

1 + tan2 θ
(24)

Similarly, from:

tan2 θ =
sin2 θ

cos2 θ
=

sin2 θ

1− sin2 θ
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and the fact sin θ > 0 and tan θ > 0, we obtain:

sin θ =
tan θ√

1 + tan2 θ
(25)

From (24) and (25) we see that for all (x, y) ∈ ∆1:

cos(arctan(y/x)) =
1√

1 + y2/x2
=

x√
x2 + y2

and:

sin(arctan(y/x))
y/x√

1 + y2/x2
=

y√
x2 + y2

It follows that for all (x, y) ∈ ∆1:

φ ◦ ψ(x, y) = φ(
√
x2 + y2, arctan(y/x))

=
√
x2 + y2[cos(arctan(y/x)), sin(arctan(y/x))]

=
√
x2 + y2

[
x√

x2 + y2
,

y√
x2 + y2

]
= (x, y)

and we have proved that φ ◦ ψ = id∆1 . Having proved that ψ ◦ φ = idD1

and φ◦ψ = id∆1 , we conclude that φ : D1 → ∆1 is bijective and ψ = φ−1.

6. In order to show that φ : D1 → ∆1 is a C1-diffeomorphism, we need to
show that both φ : D1 → R2 and ψ : ∆1 → R2 are of class C1. Given
(r, θ) ∈ D1, define φx(r, θ) = r cos θ and φy(r, θ) = r sin θ. Then, we have:

∂φx
∂r

(r, θ) = cos θ ,
∂φx
∂θ

(r, θ) = −r sin θ

∂φy
∂r

(r, θ) = sin θ ,
∂φy
∂θ

(r, θ) = r cos θ

So it is clear that ∂φx
∂r , ∂φx∂θ , ∂φy∂r and ∂φy

∂θ exist and are continuous on D1.
From theorem (117), it follows that φ : D1 → R2 is of class C1 and for all
(r, θ) ∈ D1, we have:

dφ(r, θ) =
(

cos θ −r sin θ
sin θ r cos θ

)
Given (x, y) ∈ ∆1, define ψr(x, y) =

√
x2 + y2 together with ψθ(x, y) =

arctan(y/x). As some of us may have forgotten, recall that the map
tan: ]− π/2, π/2[→ R is differentiable, and:

(tan θ)′ =
(

sin θ
cos θ

)′
=

(sin θ)′ cos θ − (cos θ)′ sin θ
cos2 θ

=
cos2 θ + sin2 θ

cos2 θ

= 1 + tan2 θ
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Moreover, the map arctan : R →] − π/2, π/2[ is also differentiable, and
one way to remember its derivative is to differentiate both sides of the
identity x = tan(arctanx), to obtain:

1 = tan′(arctanx) · (arctanx)′

= (1 + tan2(arctanx)) · (arctanx)′

= (1 + x2) · (arctanx)′

and consequently for all x ∈ R:

(arctanx)′ =
1

1 + x2

It follows that given (x, y) ∈ ∆1, we have:

∂ψr
∂x

(x, y) =
x√

x2 + y2
,
∂ψr
∂y

(x, y) =
y√

x2 + y2

and furthermore:
∂ψθ
∂x

(x, y) =
(
− y

x2

)
· arctan′(y/x)

= − y

x2
· 1

1 + y2/x2

= − y

x2 + y2

as well as:
∂ψθ
∂y

(x, y) =
1
x
· arctan′(y/x)

=
1
x
· 1

1 + y2/x2

=
x

x2 + y2

Hence, we see that ∂ψr
∂x , ∂ψr

∂y , ∂ψθ
∂x and ∂ψθ

∂y exist and are continuous on
∆1. From theorem (117), it follows that ψ : ∆1 → R2 is of class C1 and
for all (x, y) ∈ ∆1, we have:

dψ(x, y) =

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)
We have proved that φ : D1 → ∆1 is a C1-diffeomorphism.

7. From 6. and definition (132), for all (r, θ) ∈ D1:

J(φ)(r, θ) = det
(

cos θ −r sin θ
sin θ r cos θ

)
= cos θ · (r cos θ)− sin θ(−r sin θ)
= r(cos2 θ + sin2 θ)
= r
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8. From 6. and definition (132), for all (x, y) ∈ ∆1:

J(ψ)(x, y) = det

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)

=
x2

(x2 + y2)3/2
+

y2

(x2 + y2)3/2

=
1√

x2 + y2

9. Applying the Jacobian formula (121) to f|∆1 : ∆1 → [0,+∞]:∫
∆1

f(x, y)dxdy =
∫

R2
1∆1fdxdy

Definition (45) → =
∫

∆1

f|∆1(dxdy)|∆1

Theorem (121) → =
∫
D1

(f|∆1 ◦ φ)|J(φ)|(drdθ)|D1

f|∆1 ◦ φ(r) = e−r
2/2 → =

∫
D1

exp(−r2/2)r(drdθ)|D1

Definition (45) → =
∫

R2
1D1 exp(−r2/2)rdrdθ

Fubini (31) → =
∫

R

(∫
R

1D1 exp(−r2/2)rdθ
)
dr

=
∫

R

1]0,+∞[

(π
2

)
exp(−r2/2)rdr

=
π

2

∫
R

1[0,+∞[ exp(−r2/2)rdr

MON (19) → = lim
n→+∞

π

2

∫
R

1[0,n] exp(−r2/2)rdr

Theorem (99) → = lim
n→+∞

π

2
[1− exp(−n2/2)] =

π

2

10. Using 1., we obtain:

1√
2π

∫ +∞

−∞
e−u

2/2du =
1√
2π

(∫
R2
f(x, y)dxdy

)1/2

From 4. → =
1√
2π

(
4
∫

∆1

f(x, y)dxdy
)1/2

From 9. → =
1√
2π

(
4 · π

2

)1/2

= 1

This complete the proof of theorem (123).

Exercise 31
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