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17. Image Measure

In the following, K denotes R or C. We denote M,,(K), n > 1, the set of
all n x n-matrices with K-valued entries. We recall that for all M = (m;;) €
M, (K), M is identified with the linear map M : K" — K" uniquely determined
by:

n
. A
Vi=1,...,n, Me; = E mMi;e;
i=1

i
. . . . A =
where (e, ...,e,) is the canonical basis of K", i.e. ¢, = (0,., 1,.,0).

EXERCISE 1. For all @ € K, let H, € M,,(K) be defined by:

1

i.e. by Hyer = aer, Hoej = ¢, for all j > 2. Note that H,, is obtained from the
identity matrix, by multiplying the top left entry by a. For k,l € {1,...,n},
we define the matrix ¥y € M,,(K) by Zgier = €1, e = e and Zge; = e,
for all j € {1,...,n} \ {k,I}. Note that Xj; is obtained from the identity
matrix, by interchanging column k and column [. If n > 2, we define the matrix
U e M,(K) by:
1 0
1

1 0

1>
o

1

i.e. by Uer = e1+eq, Uej = ¢; for all j > 2. Note that the matrix U is obtained
from the identity matrix, by adding column 2 to column 1. If n = 1, we put
U=1. Wedefine V,,(K) ={Hy: ae K}U{Zy: k,i=1,...,n}U{U}, and
M (K) to be the set of all finite products of elements of A, (K):

A .
M (K)={MeM,(K):M=Q;..... Qp.p>1, Q; e Np(K), Vi}
We shall prove that M,,(K) = M/ (K).
1. Show that if & € K\ {0}, H, is non-singular with H;* = Hy,
2. Show that if k,1 =1,...,n, X is non-singular with Z,;ll =Y.

3. Show that U is non-singular, and that for n > 2:
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4. Let M = (m;j) € My(K). Let Ry, ..., R, be the rows of M:

Ry
Ry

1>

R,
Show that for all o € K:

Conclude that multiplying M by H,, from the left, amounts to multiplying
the first row of M by c.

5. Show that multiplying M by H, from the right, amounts to multiplying
the first column of M by c.

6. Show that multiplying M by 3y from the left, amounts to interchanging
the rows R; and Ry.

7. Show that multiplying M by Xy, from the right, amounts to interchanging
the columns C; and Cj,.

8. Show that multiplying M by U~' from the left ( n > 2), amounts to
subtracting Ry from Ra, i.e.:

R Ry
oo | B2 R; — Ry
R, R,

9. Show that multiplying M by U~ from the right (for n > 2), amounts to
subtracting Cy from Cf.

10. Define U’ = %15.U 1. 312, (n > 2). Show that multiplying M by U’ from
the right, amounts to subtracting Cy from Cs.

11. Show that if n = 1, then indeed we have M;(K) = M/} (K).

EXERCISE 2. Further to exercise (1), we now assume that n > 2, and make the
induction hypothesis that M,,_;(K) = M/, _;(K).

n—1

1. Let O,, € M, (K) be the matrix with all entries equal to zero. Show the
existence of Q7,...,Q;, € N;,—1(K), p > 1, such that:
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2. For k=1,...,p, we define Q; € M, (K), by:

0
Qi £ Qy, :
0
0O ... 01
Show that Q) € N,,(K), and that we have:
1 0 e 0
Q Q "
Yin-@Q1.. ... D = .
! : Onfl
0

3. Conclude that O,, € M/ (K).

4. We now consider M = (m;;) € M,(K), M # O,. We want to show that
M e M (K). Show that for some k,l € {1,...,n}:

1« ... =
*
H,! S M.y, =
*k
*

5. Show that if H, ! .Y1;.M.3y € M}, (K), then M € M/ (K). Conclude

that without loss of generality, in order to prove that M lies in M/ (K)
we can assume that my; = 1.

6. Let i =2,...,n. Show that if m;; # 0, we have:

* =

Hyl S0, U™ S0 HO M =

1/m;q1°

e}
T
~.
*

*

7. Conclude that without loss of generality, we can assume that m;; = 0 for
all i > 2, i.e. that M is of the form:

1 % ... %

8. Show that in order to prove that M € M/ (K), without loss of generality,
we can assume that M is of the form:

10 ... 0

0
M =
Ml
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9. Prove that M € M/ (K) and conclude with the following:

Theorem 103 Given n > 2, any n X n-matriz with values in K is a finite
product of matrices QQ of the following types:
(i) Qer=aer, Qej=¢; ,Vi=2,...,n, (a € K)
(ZZ) Qel:ek7Qek:elaer:ej7vj7ékal7 (k7l€Nn)
(vi1) Qer=e1+er, Qej=e;, Vj=2,....,n

where (e1,...,ey) is the canonical basis of K™.

Definition 123 Let X : (Q,F) — (¥, F') be a measurable map, where (2, F)
and (', F') are two measurable spaces. Let ju be a (possibly complex) measure
on (Q,F). Then, we call distribution of X wunder u, or image measure of
w by X, or even law of X under u, the (possibly complex) measure on (Q', F'),
denoted i, X (1) or L£,(X), and defined by:

VB e F , pX(B)2 u({X € B}) = p(X\(B))

EXERCISE 3. Let X : (Q, F) — (€', F') be a measurable map, where (€2, F) and
(', F') are two measurable spaces.

1. Let B € F'. Show that if (B,,),>1 is a measurable partition of B, then
(XY(Bp))n>1 is a measurable partition of X ~!(B).

X

2. Show that if x is a measure on (92, F), u* is a well-defined measure on

Q,F).

3. Show that if ; is a complex measure on (2, F), u*X is a well-defined com-
plex measure on (', F').

4. Show that if p is a complex measure on (£, F), then |uX| < |u|¥.

5 Let Y : (U, F) — (Q',F") be a measurable map, where (", F") is
another measurable space. Show that for all (possibly complex) measure
won (Q,F), we have:

V(X (1)) = (¥ 0 X) () = ()" = p7e%)

Definition 124 Let u be a (possibly complex) measure on R™, n > 1. We say
that p is invariant by translation, if and only if 7,(u) = p for all a € R",
where 7, : R™ — R"™ is the translation mapping defined by 7,(z) = a + x, for
all x € R".

EXERCISE 4. Let u be a (possibly complex) measure on (R™, B(R")).

1. Show that 7, : (R", B(R™)) — (R™, B(R"™)) is measurable.
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2. Show 7,(p) is therefore a well-defined (possibly complex) measure on
(R™,B(R"™)), for all a € R™.

3. Show that 7,(dz) = dz for all a € R".

4. Show the Lebesgue measure on R is invariant by translation.

EXERCISE 5. Let ko : R” — R™ be defined by ko (z) = az, a > 0.
1. Show that ko : (R™, B(R")) — (R, B(R™)) is measurable.
2. Show that k,(dz) = o "dz.

EXERCISE 6. Show the following:

Theorem 104 (Integral Projection 1) Let X:(Q,F) — (Q',F') be a mea-
surable map, where (0, F), (', F') are measurable spaces. Let p be a measure
on (Q,F). Then, for all f: (Q,F') — [0,+00] non-negative and measurable,
we have:

[ reXan= [ sax
Q Q

EXERCISE 7. Show the following:

Theorem 105 (Integral Projection 2) Let X:(Q,F) — (Q',F') be a mea-
surable map, where (Q, F), (Q',F') are measurable spaces. Let j1 be a measure
on (Q,F). Then, for all f : (', F') — (C,B(C)) measurable, we have the
equivalence:

foX e Lo F,u) & feLo(.F, X (n)

in which case, we have:

[ roxdn= [ faxqo
Q Q

EXERCISE 8. Further to theorem (105), suppose y is in fact a complex measure
n (,F). Show that:

14Xl < [ 1 o Xld )
Q Q
Conclude with the following;:

Theorem 106 (Integral Projection 3) Let X:(Q,F) — (Q,F') be a mea-
surable map, where (Q,F), (', F") are measurable spaces. Let ju be a complex
measure on (2, F). Then, for all measurable maps f : (', F') — (C,B(C)),
we have:

foX eLg(QF,u) = feLe®,F,X(n)
and when the left-hand side of this implication is satisfied:

[ roxdn= [ faxqo
Q Q
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EXERCISE 9. Let X : (Q,F) — (R,B(R)) be a measurable map with distribu-
tion u = X (P), where (Q, F, P) is a probability space.

1. Show that X is integrable, i.e. [|X|dP < +oo0, if and only if:
+oo
/ |z|dp(z) < +o0
—o0

2. Show that if X is integrable, then:

+oo
BIX) = [ adu(o)

3. Show that: e
E[X?] :/ 2dp(x)

— 00

EXERCISE 10. Let g be a locally finite measure on (R™, B(R"™)), which is in-
variant by translation. For all a = (a1,...,a,) € (RT)", we define Q, =
[0,a1][x ... x [0,a,[, and in particular @ = Q(1,...1) = [0, 1[".

1. Show that pu(Q,) < +oc for all @ € (RT)", and p(Q) < +oo.
2. Let p = (p1,-..,pn) where p; > 1 is an integer for all i’s. Show:

Q= [k ks +10x X [, ko + 1
ke N"
0<ki<ps

3. Show that p(Qp) =p1...pou(Q).
4. Let q1,...,q, > 1 be n positive integers. Show that:
klpl (kl + 1)p1 knpn (kn + ]-)pn
Q- Y oo

o @ [X"'X[q g |
n n

ke N™

0<k<q

5. Show that 1% Qp) =dq1--- an(Q(pl/qly~~~7pn/qn))

(

6. Show that u(Q,) =71 ...7,u(Q), for all r € (Q™)™.

7. Show that u(Qu) = a1 ...a,u(Q), for all a € (RT)".
(

8. Show that u(B) = pu(Q)dz(B), for all B € C, where:
C 2 {[ar,bi[X ... X [an,bn[ , ai,b; €ER , a; <b; , Vi € N"}
9. Show that B(R™) = o(C).
10. Show that pu = u(Q)dz, and conclude with the following:
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Theorem 107 Let pv be a locally finite measure on (R™, B(R™)). If u is in-
variant by translation, then there exists a € RT such that:

uw = adzx

EXERCISE 11. Let T : R™ — R” be a linear bijection.

1.
2.

10.
11.

Show that T and T~! are continuous.

Show that for all B C R"™, the inverse image T~1(B) = {T € B} coincides
with the direct image:

T-Y(B) 2 {y: y=T""(x) for some z € B}

Show that for all B C R”, the direct image T'(B) coincides with the
inverse image (T-1)"Y(B) = {T~! € B}.

Let K C R™ be compact. Show that {T" € K} is compact.

Show that T'(dz) is a locally finite measure on (R™, B(R")).

Let 7, be the translation of vector a € R™. Show that:
ToTp-1(q) =Tao0T

Show that T'(dz) is invariant by translation.

Show the existence of o € R™, such that T'(dz) = adz. Show that such
constant is unique, and denote it by A(T).

Show that @ = T'([0,1]™) € B(R") and that we have:
A(T)dx(Q) = T(dz)(Q) =1
Show that A(T) # 0.

Let 77,75 : R® — R” be two linear bijections. Show that:
(Tl (@) TQ)(diC) = A(Tl)A(TQ)dl'
and conclude that A(Ty o Ta) = A(T1)A(Th).

EXERCISE 12. Let @ € R\ {0}. Let H, : R™ — R” be the linear bijection
uniquely defined by H,(e1) = aer, Ha(e;) = e; for j > 2.

1.

2.

Show that H, (dz)([0,1]") = |a| 7.
Conclude that A(H,) = |det H,| L.

EXERCISE 13. Let k,l € Nyand ¥ : R® — R"™ be the linear bijection uniquely
defined by X(e) = e;, (e;) = ex, X(ej) = e;, for j # k, 1.

1.

Show that X(dx)([0,1]™) = 1.
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2.
3.
4.

Show that ¥.3 = I,,. (Identity mapping on R™).
Show that | det 3| = 1.
Conclude that A(X) = |det X| 1.

EXERCISE 14. Let n > 2 and U : R™ — R be the linear bijection uniquely
defined by U(e1) = e1 + €2 and U(e;) = ¢, for j > 2. Let Q = [0, 1™

1.

10.
11.
12.
13.
14.
15.

© »® 3 o oA

Show that:
U_l(Q):{:CER”:O§m1+m2<1,0§xi<1,w7§2}
Define:
O 2 U@ n{zeR": x>0}
Q 2 UNQ)n{zeR": x5 <0}

Show that 91, € B(R").

Let 7, be the translation of vector es. Draw a picture of @, Q;, Q2 and
Te, (Q22) in the case when n = 2.

Show that if z € Qy, then 0 < x5 < 1.

Show that Q1 C Q.

Show that if = € 7, (€2), then 0 < x5 < 1.

Show that 7, (€Q2) C Q.

Show that if x € Q and z1 + 2o < 1 then z € Q.
Show that if x € @Q and z1 + x2 > 1 then x € 7,(Q2).
Show that if z € 7., (€2) then z1 + a2 > 1.

Show that 7, (Q2) N Q1 = 0.

Show that @Q = Q1 W7, (22).

Show that dz(Q) = dz(U~1(Q)).

Show that A(U) = 1.

Show that A(U) = |det U| .

EXERCISE 15. Let T : R™ — R™ be a linear bijection, (n > 1).

1.

2.

Show the existence of linear bijections @1,...,Q, : R" — R", p > 1, with
T=Qi0...0Qp, A(Q;) = |det Q;| ! for all i € N,.

Show that A(T) = |det T'| 7.
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3. Conclude with the following;:

Theorem 108 Letn > 1 and T : R™ — R"™ be a linear bijection. Then, the
image measure T'(dz) of the Lebesgue measure on R™ is:

T(dz) = |det T| 'dx

EXERCISE 16. Let f : (R?, B(R?)) — [0, +0oc] be a non-negative and measurable
map. Let a,b,c,d € R such that ad — bc # 0. Show that:

/ f(az + by, cx + dy)dzdy = |ad — be| / [z, y)dzdy
R2 R2
EXERCISE 17. Let T : R™ — R"™ be a linear bijection. Show that for all
B € B(R™), we have T'(B) € B(R"™) and:

dx(T(B)) = | det T|dx(B)
EXERCISE 18. Let V' be a linear subspace of R™ and p = dim V. We assume that
1<p<n-—1. Let uy,...,up be an orthonormal basis of V', and upy1,...,u,

be such that wq,...,u, is an orthonormal basis of R™. For i € N,,, Let ¢; :
R"™ — R be defined by ¢;(z) = (u;, ).

1. Show that all ¢;’s are continuous.
2. Show that V = (/_,,, ¢; ' ({0}).
3. Show that V' is a closed subset of R™.

4. Let Q = (¢;5) € Mp(R) be the matrix uniquely defined by Qe; = u; for
all j € N,,, where (eq,...,e,) is the canonical basis of R™. Show that for
all i,7 € N, :

n
(uisug) = Z Akiqk;j
k=1

5. Show that Q'.Q) = I,, and conclude that |det Q| = 1.
6. Show that de({Q € V}) = dz(V).
7. Show that {Q € V} = span(ey,...,ep).!
8. For all m > 1, we define:
n—1
A
E,, =[-m,m] x...x [-m,m] x{0}

Show that dz(E,,) = 0 for all m > 1.

9. Show that dz(span(ey,...,en—1)) =0.

li.e. the linear subspace of R™ generated by e1,...,ep.
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10. Conclude with the following:

Theorem 109 Let n > 1. Any linear subspace V. of R™ is a closed subset of
R"™. Moreover, if dimV <n — 1, then dz(V) = 0.
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Solutions to Exercises

Exercise 1.

1. Let o € K\ {0}. Then, we have:
Hyjo 0 Haer = Hyjo(aer) = aHijper = a(l/a)er = e

and for all j > 2, Hy/o 0 Hoej = Hyjqej = e;. If I, denotes the identity
matrix of M, (K), then I,, and H; /,0H, coincide on the basis (e1, ..., e,)
of K". It follows that I,, and H;,, o H, are in fact equal. So H, is non-
singular and H; ' = Hy /.

2. The linear map X : K" — K" is defined by Xyer = €, Zie; = e and
Yue; = e, for all j & {k,1}. Hence, it is clear that Xy o Xye; = e, for
all j € N, and consequently ¥g; o ¥ = I,,. So Xj; is non-singular and
S0 =S

3. If n =1, then U = 1 and U is indeed non-singular. We assume that n > 2.
Then U is defined by Ue; = e1 + €2 and Ue; = ¢; for all j > 2. Consider
the linear map U’ : K" — K" defined by U'e; = e; — ez and U'e; = e;
for all j > 2. Then, we have:

UoUe =U'(er+e)=Uer +U'ea=e1 —ea+e2=¢e1

and it is clear that U'oUe; = e; for all j > 2. It follows that U'oUe; = e;
for all j € N,, and consequently U’ o U = I,,. We have proved that U is
invertible and U~! = U’ i.e.:

4. Let M = (my;) € M, (K), and Ry, ..., R, be the rows of M, i.e.

Ry
we| ™
R,
Specifically, for all i € N,,, each R; is the row vector:
Ri = (mi1, mig, ..., Min)
Let a € K, and consider the matrix M’ € M,,(K) defined by:
O[Rl
wel| ™
R,
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Le. M'e; = amyjer + Y., myje; for all j € N,,. Then:

n
HaoMej = Ha <Zmijei>
i=1
n
= Zminaei
i=1

n
= mleael—i-E mi;Hye;
i=2

= amyje; + Z mije;
=2
= M'ej
This being true for all j € N,,, we have proved that H,M = M’, i.e.
aR1
Ry
R,
We conclude that multiplying M by H, from the left, amounts to multi-
plying the first row of M by a.
5. Let M = (my;) € M,(K), and C4,...,C, be the columns of M:

M2 (Cy,Cs,...,C)
Specifically, for all j € N,,, each C} is the column vector:
mij
o= "
M
Let a € K, and consider the matrix M’ defined by:
M' = (aCy,Cy, ..., Cp)

ie. Mey => "  amiie; and M'e; = > myje; for j > 2:
n
M o Hyey = M(aey) = aMe; = Zamﬂei =M'e;
i=1
and furthermore, for all j > 2:

n
Mo Huej = Mej = E mije; = M'e;
i=1
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So M o Hyej = M'ej for all j € N, i.e. MH, = M'. Hence:
MHa:(Oécl,CQ,...,Cn)

We conclude that multiplying M by H,, from the right, amounts to multi-
plying the first column of M by «.

6. Let M = (m;;) € M,(K) and Ry,..., R, be the rows of M, i.e.

R
wa| ™
Ry,
Specifically, for all i € N,,, R; is the row vector:
Ri = (mﬂ, mi;2, ... ,m,m)
Let M'" = (mj;) € M, (K) be the matrix defined by:
Ry
wol
R,

where R} = R;, R} = Ry, and R} = R, for alli ¢ {k,l}. In other words, the
matrix M’ is nothing but the matrix M, where the rows Ry and R; have
been interchanged. Note that for all 4,j € Ny, mj; = my;, mj; = my;
and mj; = m;; for all i ¢ {k,l}. Now, given j € N,,, we have:

n
Zkl OM@j = Ekl (Z mijei>
i=1

n
= E M5 21 €4
=1

= E mije; + mgje; + myjeg
ikl

_ I / /
= E m;;€; + My ep + my ep
ik,

n
_ ! R !,
= E mi;e; = Me;
i=1

This being true for all j € N,,, XM = M’. We conclude that multiplying
M by Xk from the left, amounts to interchanging the rows R; and Ry of
M.

7. Let M = (my;) € M,(K), and C4,...,C, be the columns of M:

Mé (015027"'7Cn)
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Specifically, for all j € N,,, each C} is the column vector:

mlj
maj

C; =
mnj

Let M'" = (mj;) € M, (K) be the matrix defined by:

M2y, )

where C} = C), C] = Cy and C} = Cj for all j € {k,l}. In other words,
the matrix M’ is nothing but the matrix M, where the columns C} and
C; have been interchanged. For all ¢,j € N,,, m}, = mj, m}, = m;; and
m}, =m;; for all j & {k,l}. Now:

J
MoZklek = Mel

n
= E m4i€q
i=1

n
= E mie; = M'ey
i=1

and similarly M o ¥, = M'e;. Furthermore, if j # k, [:
M o Eklej = Mej

n
= g mijeq
i=1

n
_ / R /.
= Emijez—Me]
i=1

It follows that MoXe; = M’e; for all j € N,,. We conclude that My =
M’ and consequently, multiplying M by Y from the right, amounts to
interchanging the columns C; and Cy of M.

8. Let M = (my;) € M,(K) and Ry, ..., R, be the rows of M, i.e.

R
Ry

1>

R,
Specifically, for all i € N,,, R; is the row vector:

Ri = (mi1, maz, ..., Mip)
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Let M'" = (mj;) € M, (K) be the matrix defined by:
Ry
M’ é R2 - Rl
R,
Specifically, M’ is exactly the matrix M, where the second row Rs has been
replaced by Rs — Ry, i.e. where the first row R; has been subtracted from
the second row Ry. Recall from 3. that U~ is given by U le; = e; — e

and U 'e; = e; for all j > 2. Note that for all i,j € N, we have
m}; =my; if ¢ # 2, and m’2j = mg; —mi;. Now for all j € Ny,:

UﬁlMej = U! (Zmijei>
i=1
n
= ZmijUflei
=1

n
= mlj(el - 62) + Zmijei
=2

’
j

= Zmijei + (mgj - mlj)eg
i#2

= D_miei= M
i=1
It follows that U~'M = M’, and we conclude that multiplying M by U~!
from the left, amounts to subtracting Ry from Rs.
9. Let M = (my;) € M,(K), and C4,...,C, be the columns of M:
A
M = (015027"'7Cn)
Specifically, for all j € N,,, each C} is the column vector:
mij
mo;
C; = ’
M
Let M'" = (mj;) € M, (K) be the matrix defined by:
M 2(Cy = Cy,C,...,C)

Specifically, M’ is exactly the matrix M, where the second column Cs
has been subtracted from the first column C;. For all i, j € N,,, we have
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10.

11.

m;j =m,; if j # 1 and m}; = m;1 — m;s. Furthermore:

MU_lel = M(61 —62)
M€1 —M62

n n
= E mi1€; — § mi2€;
i=1 i=1
n

= Z(mil —miz)e;

i=1
n
— / _ M/
— milei — €1
i=1

and for all j > 2:
MU 'e; = Me;

n
= E mije;
i=1

n
— / . — / .
= gmijez—Mej
i=1

Having proved that MU~ te; = M'e; for all j € N,,, we conclude that
MU' = M’, or equivalently that multiplying M by U~ from the right,
amounts to subtracting Cy from C4.

Let U’ = X12U '35, Let Cy,...,C2 be the column vectors of M €
M, (K). It follows from 7. and 9. that:
MU' = MU 'S
= (C1,Cay...,Cp)X12U 1519
= (C2,C1,....,C)U 'Sy
= (Co—C1,Ch,. .., Cp)E10
= (C1,C—Cy,...,Cp)

We conclude that multiplying M by U’ from the right, amounts to sub-
tracting Cy from Cs.

Suppose n = 1. It is clear that M/, (K) € M,(K) for all n > 1, and
in particular M (K) € M;(K). Suppose M € M;(K). Then M = («)
for some o € K. However, (o) = H, (one-dimensional). Hence, defining
Q1 = H,, we have Q1 € N1(K) with M = Q. In particular, M is a finite
product of elements of N7 (K). So M € M/ (K) and we have proved the
equality M; (K) = M} (K).

Exercise 1

Exercise 2.
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1. Our induction hypothesis is M,,_1(K) = M;,_;(K), n > 2. For alln > 1,

n—1
O, € M, (K) denotes the matrix with all entries equal to 0 € K. Since
Op—1 € My_1(K) = M/,_1(K), O,,_1 is a finite product of elements of
Nin—1(K). Hence, there exist p > 1 and @1, ..., @}, elements of N, 1 (K)
such that:
On1=0Q)...Q,
2. Given k € {1,...,p} = N, we define Q;, € M, (K) by:

0

Q=] @

0

0 ... 01

Since @, € N,—1(K), @), can be of three different forms: If Q) is of the
form H, (of dimension n — 1) for some a € K, it is clear that Q = H,
(of dimension n). If Q) is of the form ¥, for some I,m € N,_1, then
Qle1 = em, Qrem =€ and Qpe; = e; for all j € N,,_1 \ {I,m}. Hence, it
is clear that Qre; = ey, Qrem = € and Qre; = ¢; for all j € N, \ {I,m}.
So Q is of the form ¥, (of dimension n) for some I,m € N,, (in fact, for
some [, m € N,,_1). Note that we have used the same notation eq, ..., e,_1
and eq, ..., e, to denote successively the canonical basis of K»~' and K.
Now, if Q) = U (of dimension n—1), it is clear that Q = U (of dimension
n) in the case when n—1 > 2. In the case when n—1 = 1, we have Q}, = (1)
and consequently Qp = I = H; (of dimension 2). In any case, we see
that Q. is an element of NV,,_1(K). Now, using 6. and 7. together with
block matrix multiplication, we obtain:

0
Zanl---szln = Yin- Q/l ;) 0 i
0 0 1
0
= Yin- On—1 : “Yin
0
0 1
= Eln . On—l
0
1 0 0
1 0 0
0
On—l
0
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which is exactly what we intended to prove.

3. Having proved that:

1 0 0
0
Y1n.Q1.. ... Qp-Xin = .
. On—l
0
since Hy can be written as:
0 o0 ... 0
1 0 0
Hy = . =1 .
0 . : 1,1
1 0
we obtain:
0 0 0
0
Hy - ¥10,.Q1..... QP.EM = . =0,
. Onfl
0

We have been able to express O,, as a finite product of elements of NV, (K).
We conclude that O,, € M/ (K).

4. Let M = (m;;) € M,(K). We assume that M # O,,. Then, there exist
k,l € N,, such that my; # 0. From 7. of exercise (1), multiplying M by
31 from the right, amounts to interchanging column ! with column 1. So
my; appears in the matrix M; as the k-th element of the first column.
Multiplying M¥1; by X1 from the left, amounts to interchanging row k
with row 1. So m; now appears in the matrix X1, MX1; at the intersection
of the first row and the first column, i.e. at the top left position. In other
words, Y1 M>q; is of the form:

mg; * ... *

*
YipM>q =

*

Multiplying by H;lil = Hi/m,, from the left, amounts to multiplying the

first row by 1/my;. We conclude that:

* =

H LS MYy, =

Mgl
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5. Suppose we have proved H;LLEMMEU € M) (K). Then this matrix is
a finite product of elements of NV,,(K). In other words, there exist p > 1
and Q1,...,Q, elements of N, (K) with:

Ho ' S MSy =Q1...Qp

Mkl
Since Efkl = Y and 2;11 = ¥4, we obtain:
M = Elkalel <o szll

So M is therefore also a finite product of elements of N,,(K), i.e. M €
M, (K). Hence, in order to prove that M € M! (K) it is sufficient to
prove that H;ilzlklel is an element of M/ (K). It follows from 4.
that without loss of generality, we may assume that mi; = 1.

6. Let i € {2,...,n} and suppose m;; # 0. So M is of the form:

1 * Lo X
*
M = .
mi1 <1 *
k

with m;; # 0. Since H. ! H,,,,, multiplying M by Hf/inl from the

1/77741 = bil?
left amounts to multiplying the first row of M by m;;. So Hf/lmlM is of
the form:
mi1 * A
1 *
H-, M= .
1/mia mi1 — 1 %
*

Multiplying by Xs; from the left amounts to interchanging row 2 with row
i. Multiplying by U~! from the left amounts to subtracting row 1 from
row 2. Multiplying once more by Yo, from the left amounts to switching
back row 2 and row i. It follows that ZQiU_122iH1_/1 L Mis of the form:

m
mi1 * *
-1 -1 _ *
LU ' EpHy, M= o
*

Multiplying once more by H;L}l = Hy/p,,, from the left amounts to mul-

tiplying the first row by 1/m;;. We conclude that:

1 % ... x
—1 —1 -1 = *
HmmEQiU E2iH1/mi1M7 0 <7 =
*
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7. If we prove that the matrix:

H, '\ So,U ' SoH L M =

1/m,11

* O ¥ =
T
-~
*

is a finite product of elements of A, (K), then clearly M is also a finite
product of elements of N, (K). Hence in order to show that M € M/ (K),
without loss of generality we may assume that m;; = 0. This being true
of all 1 € {2,...,n}, without loss of generality we may assume that M is
of the form:

Let j € {2,...,n} and suppose that mi; # 0. From 5. of exercise (1),
multiplying M by H 17/17“ = H,,,; from the right, amounts to multiplying
J

the first column of M by m.;. So MH;/lm1 is of the form:
mi; ok Myy *
0 Jl

*

MH} =

1/ma;

0
Multiplying by s, from the right amounts to interchanging column 2 with
column j. From 10. of exercise (1), multiplying by U’ = $15U 135 from
the right amounts to subtracting column 1 from column 2. Multiplying by

Yo once more from the right, amounts to switching back column 2 and
column j. It follows that MH1_/1m1 Y9;U'%; is of the form:

mi; 0 *
0 il

*

MH; ! %9,U'S; =

1/my;
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Multiplying once more by H,;}? = Hj/p,,, from the right:

1 x 0 =
. S 0 47
MHl/m,1J YU ZngmU = : .
0

Since U’ = £15U 1314, it is clear that in order to prove that M is a finite
product of elements of A, (K), it is sufficient to prove that the above
matrix is itself a finite product of elements of N, (K). Hence, in order to
prove that M € M! (K), without loss of generality we may assume that
my; = 0. This being true for all j € {2,...,n}, without loss of generality
we may assume that M is of the form:

10 ... 0

where M’ € M,,_1(K).
9. So we now assume that M € M,,(K) is of the form:

1 0 ... O

0
M =

: M’

0
and we shall prove that M € M/ (K), i.e. that M can be expressed as
a finite product of elements of N, (K). Now since M’ € M,,_1(K), and
M;—1(K) = M, _1(K) being true from our induction hypothesis, M’ can
be expressed as a finite product of elements of N,,_1(K). Hence, there
exist p > 1 and Qf, ..., Q,, elements of A;,_;(K) such that:

M =Q;...Q,
For all k£ € N, we define:
0
Op 2 Qx :
0
0 ... 01

Following an argument identical to that contained in 2., each @y is an
element of NV, (K). Furthermore, we have:

Q1...Q, = Q... Q
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0
_ M’ ;
0
0 0 1
and consequently:
10 0
0
2anl cee szln = : Ve =M
0

It follows that M is indeed a finite product of elements of A, (K), and
we have proved that M € M/, (K). In 11. of exercise (1), we have proved
that M;(K) = M} (K). Having assumed that n > 2 and M,,_1(K) =

n_1(K), we have shown that O, € M/ (K), and furthermore that if
M # O,, then M is also an element of M/ (K). This shows that the
equality M, (K) = M! (K) holds, and completes our induction argument.
We conclude that M,,(K) = M/ (K) is true for all n > 1. In particular,

it is true for all n > 2, which is the statement of theorem (103).

Exercise 2

Exercise 3.

1. Let B € ' and (B,)n>1 be a measurable partition of B, i.e from def-
inition (91), a sequence of pairwise disjoint elements of F’ such that
B = W,>1B,. Then, we claim that (X ~!(B,)),>1 is a measurable parti-
tion of X ~1(B). Since X is measurable, X ~!(B) and each X ~1(B,,) is an
element of F. So we only need to prove that:

X YB)= J@OX*(B")

Since B, C B for all n > 1, it is clear that X ~!(B,,) C X ~!(B), which
establishes the inclusion 2. Let w € X *(B). Then X (w) € B = U,,>1B5.
There exists n > 1 such that X(w) € B, i.e. w € X ~(B,,). This proves
the inclusion C. In order to show that the X ~!(B,,)’s are pairwise disjoint,
suppose we have w € X ~1(B,,) N X~1(B,,). Then X (w) € B,, N By, and
since the B,,’s are pairwise disjoint, we conclude that n = m.

2. Let u be a measure on (2, F). Then p: F — [0, +00] is a map such that
1(0) = 0, and which is countably additive. Since X is measurable, for all
B e F', X~Y(B) is an element of F, and:

uX(B) £ W(X~N(B))

is therefore well-defined. So p* : F' — [0, +oc0c] is a well-defined map.
Since X~1(0) = 0, it is clear that uX()) = 0. To show that uX is a
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measure on (€', F'), we only need to show that u¥ is countably additive.
Let (B )n>1 be a sequence of pairwise disjoint elements of F/, and B =
Wy>1By. Then:

+o0o
X'(B)= [ X (Bn)

and consequently, © being countable additive:

pX(B) = w(XH(B))

+oo
= > uX7N(By)

+oo
= Z NX (Bn)

So pX is countably additive, and we have proved that p* is indeed a
well-defined measure on (9, F’).

3. Suppose that p is a complex measure on (€2, F). Then from definition (92),
w: F — C is a map such that for any B € F and (B,,),>1 measurable
partition of B, the series > ., u(B,) converges to p(B). Since X is
measurable, for all B € 7/, X ~1(B) € F and consequently:

A _
p¥(B) = u(X~H(B))
is well-defined. So pX : F' — C is a well-defined map. Let B € F'

and (B,)n,>1 be a measurable partition of B. Then (X '(B,)),>1 is a
measurable partition of X ~!(B), and so:

pX(B) = w(X'(B))
N
= lim Y u(XY(By)

N ——+oco —

N

li (B,

Hence, the series > -, uX(B,,) converges to uX(B), and pX is indeed a
well-defined complex measure on (', F).

4. Suppose p is a complex measure on (€2, F). Let B € F' and (B,,)n>1 be a
measurable partition of B. Then, (X ~*(B,,)),>1 is a measurable partition
of X~1(B). From definition (94), since |u|(X ~!(B)) is an upper-bound of
all sums ) -, [u(Ey,)|, as (Ey,)n>1 ranges through all measurable parti-
tions of X ~1(B):

+oo
> 1t (B
n=1

+oo
D (X (B)

ul(XH(B)) = |ul*(B)

IN
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So |u[¥(B) is an upper-bound of all sums Y1 |X (By)], as (By)n>1
ranges through all measurable partitions of B. Since |u*|(B) is the small-
est of such upper-bounds, we obtain:

X |(B) < |ul*(B)
This being true for all B € F’, we have |uX| < |u|¥X.
CLet Y i (Q,F) — (', F") be a measurable map, where (Q”, F") is an-
other measurable space. Let p be a (possibly complex) measure on (£2, F).
Then X (1) is a well-defined (possibly complex) measure on (', F’). So

Y (X (p)) is a well-defined (possibly complex) measure on (Q”, F”). For
all B e F":

Y(X(u)(B) = Xy~ (B)
= uX7'(YTH(B))
= u((Y o X)"(B))
= (Yo X)(u)(B)
This being true for all B € F”, V(X (1)) = (Y o X)(p). From defini-

tion (123), we obtain immediately:

W) =Y (5) = V(X () = (Y 0 X) () = p¥°Y)

Exercise 3

Exercise 4.

1. Let a € R™ and 7, : R™ — R be the associated translation mapping.

Since ||[7a(x) — 7o(y)|| = ||z — yl| for all z,y € R™, it is clear that 7, is
continuous. It is therefore Borel measurable.

. Let p be a (possibly complex) measure on R". Let a € R". Since
Ta + R™ — R™ is measurable, 7,(u) is a well-defined (possibly complex)
measure on R™.

3. Let a € R™ and u,v € R™ with u; < wv; for all ¢ € N,,. Then:

Ta(dx) <H[uz,vz]> = dx (Tal (H[ui,vi]>>
i=1 1=1

= dx <1_[[uz —a;,v; — ai]>

i=1

= dx (H[u“ vi]>

i=1

From the uniqueness property of definition (63), 7,(dx) = dx.
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4. Having proved that 7,(dz) = dz for all « € R™, we conclude from defini-
tion (124) that the Lebesgue measure dx on R"™ is invariant by translation.

Exercise 4

Exercise 5.
1. Let a > 0, and k, : R™ — R be defined by k,(z) = ax. Since ||kq(z) —

ko(y)|| = allz — y|| for all z,y € R™, it is clear that k, is continuous and
consequently Borel measurable.

2. Since k, is measurable, kq(dz) is a well-defined measure on R, and so is
a"ko(dx). Let u,v € R™ with u; < wv; for all i € N,,:

"k (dz) <H[uz,vz]> a"dx (kal <H[ul,vz]>>

i=1

= dx (H[w,w])

i=1

From the uniqueness property of definition (63), o™ kq (dx) = dx. It follows
that ko (dz) = o "dz.

Exercise 5

Exercise 6. Let X : (2, F) — (Q/,F') be a measurable map, where (Q, F)
and (Q', F') are measurable spaces. Let u be a measure on (2, F). Let f :
(', F') — [0,4+0oc] be a non-negative and measurable map. We claim that:

[ roxin= [ faxq (2)
Q Q

Note that X being measurable, X (1) is a well-defined measure on (Q', ') and
consequently the right-hand-side of (2) is perfectly meaningful. Furthermore,
f o X is a non-negative and measurable map on (2, F) and the left-hand-side
of (2) is also perfectly meaningful. In the case when f = 14 for some A € F,
equation (2) reduces to:

/fonu = /1Aonu
Q Q

= / ].X—l(A)dM
Q
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= pX7H(4)
= X(w(A)

= / 1adX (1)

= fdX(p)
Q/
which is true by virtue of X (u)(A) = pu(X1(A)) of definition (123). When
f =31, a;la, is asimple function on (€', F’), we have:

/Qfonu L(gaiui)oxw
/Q<zn:ai1,4ioX>du

i=1

= Zai/lAiOXdu
i=1 Q
n

= Zat/ 1A1‘,dX(/J)
i=1 o

_ /Q (zn: ailAi> X (1)

— | rax(
o

Hence equation (2) is also true in the case when f is a simple function on
(', F"). We now assume that f is an arbitrary non-negative and measurable
function on (Q,F). From theorem (18), there exists a sequence (s;)n>1 of
simple functions on (€', F’) such that s, T f, i.e. 5, < 8,41 < f foralln >1
and s, (w) — f(w) for all w € . Then it is clear that s, 0 X T fo X, and from
the monotone convergence theorem (19), we obtain:

/fOXdu = lim sp 0 Xdpu
Q

n—-+o0o Q

= lim SndX (1)

n—-—+00 Q/

Lﬁﬂm

This completes the proof of theorem (104).

Exercise 6

Exercise 7. Let X : (Q,F) — (', F) be a measurable map, where (Q, F) and
(€', F') are measurable spaces. Let y be a measure on (2, F). Let f : (', F') —
(C,B(C)) be a measurable map. Then, the map fo X : (Q,F) — (C,B(C)) is
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also measurable. Applying theorem (104) to the non-negative and measurable

map |f], we obtain:
[1fexian = [ |floxau
Q Q

= [ 1flax )

It follows that [, [f o X|du < +oo < [, [fldX (1) < +o0, or equivalently, all
maps involved being measurable:

foX e Lo(QF u) & fe€Le(?,F,X(w)

We now assume that f € L§(Q,F, X (u)). Let u = Re(f) and v = Im(f).
Then f = u™—u~+i(vt—v7), and applying theorem (104) to each non-negative
and measurable map u*, v™, we obtain:

/fonu = /[u+—u_+i(v+—v_)]onu
Q Q

/u"’onu—/u_on,u
Q Q

+ i</9v+onu—/Qvonu>
= [ wtaxg - [ wmax
+ i<//v+dX(u)—/,vdX(u)>

= [t i = o)X )

- //de(u)

Note that this derivation is perfectly legitimate, as all the integrals involved are
finite. This completes the proof of theorem (105).
Exercise 7

Exercise 8. Let X : (Q,F) — (Q',F') be a measurable map, where (0, F)
and (', F’) are measurable spaces. Let u be a complex measure on (Q,F).
Let f: (Q,F") — (C,B(C)) be measurable. From 4. of exercise (3), we have
|| < |p|¥, or equivalently | X ()| < X (|pu|). Using exercise (18) of Tutorial 12
together with theorem (104):

/ FlAX ()] < / FlAX ()
Q Q

/ 1o Xdlpl

Q

/ 1f o Xdlpl
Q
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So [ |f o X|d|u| < +o00 = [ [f]d|X (1)] < +00 and consequently:
foX € Lo(QF u) = fe€Le(?,F,X(w)

We now assume that fo X € L&(, F,u). Let pu1 = Re(p) and py = Im(p).
Then, we have y = p — p +i(ug — 5 ), and from exercise (19) of Tutorial 12,
foX € LE(QF, uf), k= 1,2, with:

/Qfonu = /Qfonu;“—/Qfonu;
+ i(/fonui—/fonug) (3)

Applying theorem (105) to each measure uk , we obtain:

/fonuk 7/ fAX(ui) , k=1,2 (4)
Moreover, for all B € F’, we have:

X(w)(B) = n(X~'(B)
= i (X7N(B)) — py (X7H(B))
+ iy (XTH(B)) =y (X7H(B)))
= X(p)(B) = X(uy )(B) +i(X (13 )(B) — X (py )(B))
and consequently:
X(p) =X (pf) = X(uy) +i(X (n3) = X (p3))
Since f € LE(Q/,}",X(Mki)), from exercise (17) of Tutorial 12:

[ ixe =[x - [ axi)

T ( | raxs - | de(u2>) (5

From (3), (4) and (5), we conclude that:

[ roxdn= [ fixqo
Q Q

~

which completes the proof of theorem (106).
Exercise 8

Exercise 9.

1. Let X : (Q,F) — (R,B(R)) be a random variable with distribution p =
X (P) under P, where (2, F, P) is a probability space. Recall that the
notions of probability space, random variable and expectation are defined
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in (70), (71) and (72) respectively. Let i : R — R be the identity mapping.
Applying theorem (104), we have:

/|X|dP _ /|z’oX|dP
Q Q
= /|i|onP
Q
_ /|z‘|dX(P
R
+oo
= [ lelduto)

So X is integrable, if and only if [ |z]du(z) < +oc.
2. If [ |X|dP < +o0, applying theorem (105) we obtain:

X]:/XdP = /z‘onP
Q Q

= /RialX(P)—/_—:O xdu(x)

3. Let f: 2 — x2. From theorem (104), we have:

XQ]:/QXQdP = /fonP
_ / FdX (P / ™ due)

Exercise 9

Exercise 10.

1. Let p be a locally finite measure on R"™, which is invariant by translation.
Givena € R™, let Q, = [0,a1[x ...x[0,a,[. Let K, = [0,a1]x...x][0,ay].
Then Ka is a closed subset of R™. Indeed, it can be written as K, =
N1, ([0, ai]), where p; : R™ — R denotes the i-th canonical projection,
Wthh is a continuous map. Since [0, a;] is closed in R, each pi_l([O7 a;)) is
closed in R™, and K, is closed. Moreover, for all x,y € K,:

=yl < [l + [lyll < 2all

Taking the supremum as z,y € K,, we obtain 6(K,) < 2|al, and in
particular §(K,) < 400, where 0(K,) is the diameter of K,, as defined
n (68). So K, is a closed and bounded subset of R™. From theorem (48),
K, is a compact subset of R". Hence, from exercise (10) of Tutorial 13,
since p is locally finite, we have pu(K,) < +o00. We conclude from Q, C K,
that:

@a<umw<+w
In particular, if @ = Q(1,....1) then p(Q) < +oo.
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2. Let p = (p1,...,pn) where p; € N* for all i € N,,. We claim:

Q= [kk+ 1 x [k 1]
ke N"
0<ki <ps

Let k € N” with 0 < k; < p; for all i € N,,. Let x € R™ and suppose that
k; <z; < k; + 1 for all i € N,,. Then, we have:
0<k<wzi<k+1<p;,VieN,

So in particular € @),,. This shows the inclusion 2. To show the reverse
inclusion, suppose = € @,. Given i € N,,, consider the set X; = {k € N :
0 <a; <k+1}. Since 0 < x; < p; and p; > 1, it is clear that p; — 1 € X;.
So X; is a non-empty subset of N which therefore has a smallest element
ki < p; — 1. Defining k = (k1,...,k,) € N", we have 0 < k; < p; for all
i € N, and furthermore:

ki§$i<ki+17Vi€Nn

This shows the inclusion C. It remains to show that the above union is
indeed a union of pairwise disjoint sets. Let k, k' € N™ and suppose that
x € R"™ is such that:

ze <ﬁ[ki,ki + 1[) N (ﬁ[k;,k; + 1[)

i=1 =1
Then for all i € N,,, z; € [k, k; + 1[N[k], k; + 1[ and consequently k; = k.
Sok=F.
3. For all £k € N™ with 0 < k; < p;, define:
Ak = [kl,k1+1[>< oo X [l{)n,k‘n-f—].[

Let 7, : R™ — R™ be the translation mapping of vector k, defined by
Ti(x) = k+a for all x € R™. Since p is invariant by translation, 7 (u) = p
and consequently:

wWAx) = Tk(M)(Ak)

pu(r, H(A))
({7 € Ax})
(

(

pw{x ki <k +x; <k +1,Vie N"})
= p{r:0<z;, <1,VieN,})

= Q)
Having proved in 2 that @), = W, A, we obtain:

p) = p(Ar) => Q) =p1...pnp(Q)
k k
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where we have used the fact that:

card{k e N": 0< k; <p;, Vie Ny} =p1...pn

4. Let q1,...,q, > 1 be positive integers. We claim that:

Qp: L.ﬂ [@7(]“14'1)1)1[)(.“)( [knpn7(kn+1)pn[

q1 q1 qn An
ke N"
0<k<gq

Let £k € N™ with 0 < k; < ¢; for all 1 € N,,. Let x € R™ with:
ki i ki 1 i

kipi o kit pi

q; q;
Then in particular 0 < z; < p; for all 7’s and consequently z € @,,. This

shows the inclusion D. To show the reverse inclusion, suppose z € Q.
Given i € N,,, consider the set:

Xiz{keN:xi<M}

, Vi e N,

qi

Since 0 < z; < p; and ¢; > 1, it is clear that ¢; — 1 € X;. So X; is a non-
empty subset of N, which therefore has a smallest element k; < ¢; — 1.
Defining k = (k1,...,k,) € N™, it is clear that 0 < k; < ¢; for all i € N,
and furthermore:

kip; <z

qi qi

This shows the inclusion C. It remains to show that the above union is

indeed a union a pairwise disjoint sets. But if k, k' € N" are such that
there exists € R™ with:

kipi (ki +1)pi ipi (ki +1)p;
xie[_p,(kﬂL )p {m{hi’(kz"’ )p[
qi di di di

for all ¢ € N,,, then k; = k] for all ¢’s and consequently k = k'.

i+ Upi .
<M,VZ€NH

5. Given i € N,,, define r; = p;/q;. Let r = (r1,...,7r,). Given k € N” with
0 <k; <gq; for all i € N,,, define:

Ak = [klrlv (kl + ]_)7“1[>< cee X [knrna (kn + 1)Tn[
Let 7 : R® — R” be the translation mapping associated with the vector
u=(kir1,...,knry), and defined by 7(x) = u+ z for all € R™. Since
is invariant by translation, we have 7(u) = u, and consequently:
w(Ar) = 7(p)(Ar)

= u(r7'(Ar)
n({T € Ar})
= M({J? ckiry < kv +a; < (kz + 1)T1‘,VZ' S Nn})
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= p{r:0<z; <r,Vie N}
= (@)
Having proved in 4. that @, = W, Ay, we obtain:

p@p) =Y () =D Q) = a1 - gupt(Qy)
k k

where we have used the fact that:
card{k e N":0<k; <¢q,, VieN,}=q1...qn
Hence, we have proved that:
1(@Qp) = a1 - @t Qpy /q1,....pn /an))
6. Let r € (Q1)™. We claim that:

Q) =11 Q) (6)

If 7, = 0 for some i € N,,, then it is clear that @, = 0 and (6) is satisfied.
So we assume that r; > 0 for all i € N,,. There exist integers p1,...,pn, > 1
and q1,...,¢, > 1 such that r;, = p;/q¢; for all i € N,,. Using 5. and 3. we

obtain: @)
_ P\ _ P1---Pn .
#Qr) = Qe (J1---qnu(Q) =7 Tni(Q)

which establishes our claim of equation (6).

7. Let a € (RT)". We claim that:
M(Qa) =az.. anﬂ(@) (7)

If a; = 0 for some i € N,,, then (7) is obviously true. So we assume that
a; > 0 for all i € N,,. Let (r?),>1 be a sequence in (QT)" such that
™ 11 a; for all i € Ny, ie. 7 < 7Pt < g, for all p > 1 and 7 — a; as
p — +00. Themap ¢ : R™ — R defined by ¢(z) = 1 ...z, can be written
as ¢ = p1...p, where p; : R™ — R is the i-th canonical projection. Since
each p; is continuous, ¢ is itself continuous. Furthermore, since ¥ — q;
for all ¢ € N,,, we have r? — a with respect to the product topology of
R™ (which is also the usual topology of R™). Hence:

lim 77...72 = lim ¢(r’) =¢(a) =ay...a, (8)

p—+oo p—+oo

We now claim that Q,» 1 Qq. Since 7? < rf“ for alli € N,, and p > 1,
it is clear that Q,» C @Q,»+1 for all p > 1. So we only need to prove that
Qo = Up>1Qpr. From ¥ < a; (and in particular ¥ < a;) for all i € N,
and p > 1, we obtain Q,» C @, for all p > 1. This shows the inclusion
D. To show the reverse inclusion, let z € Q,. Given ¢ € N,,, we have
0 <uz; < a;. Since rf — a; as p — 400, there exist N; > 1 such that:

p>N; = z; <1l <a
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Taking p = max(Ny,...,N,) we obtain 0 < z; < r¥ for all ¢ € N,,, and
consequently = € @Q,». This shows the inclusion C. Having proved that
Qrr T Qq, from theorem (7) we have:

pgr_iloo wM(Qrr) = 1(Qa) (9)
Using 6. together with (8) and (9) we obtain:
mQa) = lim p(Qrr)

p—+o0
BT P P
=l (@)
= a1...a,u(Q)

which establishes our claim of equation (7). Note that the third equality
is legitimate from ;(Q) < +oc and the continuity of the map ¢ : R™ — R

defined by ¥(x) = zu(Q). If we had u(Q) = +o0, the conclusion would

remain valid (the sequence 77 ...7r%2 is non-decreasing), but it would no

longer be true that ¢ (with values in [0, +00]) is continuous, (recall that
(1/p) - (+00) does not converge to 0 - (+00) as p — +00).

8. We define the set of subsets of R™:
C 2 {[ar,bi[X ... X [an,bn[ , ai,b; €ER , a; <b; , Vi € N"}

Let B = [a1,01][% ... X [an,by[€ C. Let a = (a1,...,a,) € R" and b =
(b1,...,b,) € R". Let c =b—a € (R")". Let 7, : R® — R" be the
translation mapping of vector a, defined by 7,(z) = a + z for all x € R™.
Since p is invariant by translation, we have 7, () = p. Using 7. we obtain:

u(B) = ta(p)(B)
= u(r, 1 (B))
= u({ra € B})
= p{z:a; <a;i+x; <b;,VieN,})
= p{r:0<z; <¢,Vie N}
= Q)
= c1...cnu(Q)

= W@ [ = a)

i=1

= Q) dei(]ai;bi])
i=1

= Q) dei([ai,bi[)

= pQ)ds' ®...®ds"(B)
= w(Q)dx(B)
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So we have proved that u(B) = pu(Q)dz(B) for all B € C. Note that in
obtaining this equality, we have refrained from writing directly:

n n
H(bz - ai) =dx (H[ai, bz[> = dl‘(B) (10)
i=1 i=1

as this equality has not been proved anywhere in the Tutorials. Indeed,

definition (63) of the Lebesgue measure on R, defines it as the unique
measure with the property (given a,b...):

H(bz — ai) = dl‘ (H[ai, bz]>

which is not quite the same as (10). However, if dz* denotes the Lebesgue
measure on R, then it is clear that:

dxi([ai, bz]) = dmi(]ai, bz]) = dmi([ai, sz
and furthermore, it is not difficult from the uniqueness property of defini-

tion (63) to establish the fact that the Lebesgue measure dz on R is the
product measure dz = dz' ® ... ® da".

9. Let C; = {[a,b[: a,b € R}. Tt is by now a standard exercise to show that
B(R) = o(Cy). Let CI™ be the n-fold product C; IT...11Cy, i.e. the set of
rectangles, as per definition (52):

C{‘In:{AlX...XAnZAiéclLJ{R},ViENn}

Since R is separable (has a countable base), from exercise (18) of Tuto-
rial 6, we have B(R") = B(R)®" and consequently from theorem (26):

B(R") = B(R)®" = 0(C1)*" = o(C1'")

Hence, in order to prove that B(R™) = ¢(C), we only need to show that
o(C) = o(CH™). Tt is clear that C C CI™ which establishes the inclusion
C. To show the reverse inclusion, it is sufficient to prove that C}" C o(C).
Let B = A; x ... x A, be a rectangle of CI'". Suppose A; = R. Then, we

have:
—+00

B= U[—p,p[xAg X ... x A,
p=1

and in order to prove that B € o(C), it is sufficient to prove that each
[—p,p[x Az x...x A, is an element of o(C). Hence, without loss of general-
ity, we may assume that A; € C;. Likewise, we may assume that As € Cq,
and in fact we may assume without loss of generality that A; € Cy for
all i € N,,, in which case B € C C ¢(C). This completes our proof, and
B(R"™) =o(C).

10. Given p > 1 we define:
D, ={B € BR"): (BN [~p,p[") = u(Q)dz(B N [-p,p[")}
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Having proved in 8. that p(B) = u(Q)dz(B) for all B € C, since C is
closed under finite intersection and [—p,p["€ C, it is clear that C C D,
and R™ € D,. Furthermore, if A, B € D, are such that A C B, then:

p((B\A) N [=p,p[") = wuBN[-p,p[") = (AN [-p,p[")
= M(Q)dx(Bﬁ[ p,p[")
- w(Q)dz(AN[—p,p[")

= wQ)de((B\A) N [=p,p[")

So B\ A € D,. Note that the above derivation is legitimate, as all the
quantities involved are finite since u(Q) < +o00. This is a very important
point, and is in fact the very reason why we have localized the problem on
[—p, p[™ by defining D,,, rather than considering directly:

D={BeBR"): u(B)=pQ)dx(B)}

for which the property B\ A € D whenever A, B € D, A C B, may not
be easy to establish, if at all true. Let (Bj)r>1 be a sequence of elements
of D, such that By 1 B. From theorem (7):

(BN [=p,p[") = kETmﬂ(Bk N [=p,p[")
Qm 1(Q)dx(Bi N [—p, p[")
Q) Jm dx(By N [=p,p[")

= w@Q)dz(B N [-p,p[")

So B € D,, and we have proved that D, is a Dynkin system on R".
Since C C D, and C is closed under finite intersection, from the Dynkin
system theorem (1), we obtain ¢(C) C D,. Having proved in 9. that
o(C) = B(R™), it follows that B(R™) C D, for all p > 1. Hence, given
B € B(R"), using theorem (7):

W(B) = lm p(BO[p.pl"
= lim w(@Q)dz(BN[-p,p[")
= w(Q) lim_da(BN[-p.pl")
— W(Q)dx(B)

So 1 = u(Q)dz. Given a locally finite measure p on R™, which is invariant
by translation, we have found o = u(Q) € R*, such that p = adz. This
completes the proof of theorem (107).

Exercise 10

Exercise 11.

1. Let T : R™ — R"™ be a linear bijection. In particular, T is a linear
map defined on a finite dimensional normed space. So T is continuous.
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Likewise, T~! is a linear map defined on a finite dimensional normed
space, so 77! is continuous. The fact that a linear map defined on a
finite dimensional normed space is continuous, has not yet been proved
in these Tutorials (we have not even defined what a normed space is, see
Tutorial 18). For those not familiar with the result, the proof in the case
R" (together with its usual inner-product) goes as follows: Let e1,..., e,
be the canonical basis of R™ and z,y € R™. We have:

() ()

Z(xi —yi)T(e:)

IT(x) =Tl =

< S fmi—pl - 1T
i=1
n /2 ;. 1/2
< (Z ||T<ei>||2> (Z ;s — y|>
i=1 =1

= Mz —y|

where M = (31 [|T(e;)|[>)*/2, and we have used the Cauchy-Schwarz
inequality (50). Having proved the existence of M € R such that ||7(z)—
T(y)|| < M|z — y| for all z,y € R™, it is clear that T is continuous.
Similarly, there exists M’ € RT such that [|T~1(z) =T 1(y)|| < M'||z—vy||
for all x,y € R"™. So T~! is continuous.

2. Let B C R™. The notation T~1(B) is potentially ambiguous, as it may
refer to the inverse image of B by T as defined in (26), or the direct image
of B by T~ as defined in (25). Let S = T~ and let S(B) denote the
direct image, whereas T~!(B) denotes the inverse image. We claim that
T~YB) = S(B). Indeed, suppose that z € T~Y(B). Then T(z) € B. Let
y=T(z). Theny € B and S(y) = T~ }(T(x)) = z. So x € S(B). This
shows that T=*(B) C S(B). To show the reverse inclusion, suppose x €
S(B). There exists y € B such that = S(y). So T'(x) = T(S(y)) = y.
So T(x) € B, and x € T~*(B). This shows that S(B) C T~!(B). We
have proved that T~(B) = S(B), and it follows that whether we view
T~Y(B) as an inverse image (that of B by T) or a direct image (that of
B by T~') makes no difference, as the two sets are in fact equal. The
notation T~1(B) is no longer ambiguous.

3. Let B C R™. Since T : R® — R" is a linear bijection, T~ is also a linear
bijection. Applying 2. to T 1, it follows that the direct image T'(B) of
B by T = (T'~1)~! coincides with the inverse image (T~1)~!(B) of B by
T-1 ie. T(B)=(T"YH~Y(B).

4. Let K C R" be a compact subset of R". {T' € K} = T7!(K) denotes
the inverse image of K by T. However from 2. it can also be viewed as
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the direct image of K by T—!. Having proved that 7-! : R® — R" is
continuous and K being compact, it follows from exercise (8) of Tutorial 8
that T-1(K) is a compact subset of R™. We conclude that {T' € K} is a
compact subset of R"™.

5. The Lebesgue measure dz on R" is clearly locally finite, as can be seen
from definition (102). Indeed, given z € R™, the set U = II7" 4 Jo; — 1, 2;+1]
is an open neighborhood of = with finite Lebesgue measure (dz(U) = 2" <
+00). From exercise (10) of Tutorial 13, if K’ is a compact subset of R"™,
then we have dz(K') < 4oo. Furthermore, R™ is locally compact, as
can be seen from definition (105). Indeed, given 2 € R™, x has an open
neighborhood with compact closure: taking U as above, the closure K = U
is closed and bounded, and therefore compact from theorem (48). Having
proved in 4. that K’ = {T € K} is itself compact, it follows that:

T(dz)(U) <T(dzx)(K) =dz({T € K}) = da(K') < 400

Given = € R"™, we have shown the existence of U open, such that z € U
and T'(dz)(U) < 4oo. We conclude from definition (102) that T'(dx)
(which is well-defined since T' is continuous, hence Borel measurable) is a
locally finite measure on R"™.

6. Given a € R", let 7, : R® — R" be the translation mapping of vector a,
defined by 7,(x) = a + « for all z € R™. We have:

Torr-ig(z) = T(T '(a)+z)
= T(T'(a)+T(z)
= a+T(x)
= 74(T(z)) =14 0T(x)
This being true for all z € R", Tomp-1(q) = T4 0 T.

7. Using 6. together with 5. of exercise (3), we have:
Ta (T (dx)) (1o o T)(dx)
= (TOTTfl(a))(dx)
= T(rp-1(a)(dz)) = T(dz)
where the last equality stems from the fact that the Lebesgue measure dx

is invariant by translation. Having proved that 7,(T(dz)) = T'(dx) for all
a € R™, we conclude that T'(dx) is itself invariant by translation.

8. From 5. T'(dx) is a locally finite measure on R™. From 7. it is invariant
by translation. It follows from theorem (107) that there exists « € R™
such that T'(dz) = adz. Suppose 3 is another element of R™ such that
T(dz) = Gdx. Then:

a = adz([0,1]") = Bdx([0,1]") = §

Hence, « is unique and we denote it A(T'), so that A(T) is the unique
element of R" such that T'(dz) = A(T)dz.
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9. Let @ = T([0,1]™). Then Q is the direct image of [0, 1]™
from 3. it can also be viewed as the inverse image (7~1)~1(]0,

by T-!. Since T—!
follows from [0, 1]™

38

by T'. However
1]™) of [0, 1]™

is continuous, in particular it is Borel measurable. It
€ B(R") that (T1)~

1([0,1]") € B(R™). So Q €

B(R™). Furthermore, denoting S = T~ !, we have:

A(T)dz(Q)

10. Since A(T)dz(Q) =1 for some Q € B(R"),

T(dz)(Q)
dz(T~1(Q))
(T=H(T((0,1]"))
da(S(T((0,1]")))
da((S o )([0,1]"))
([0,1]") =

A(T) # 0.

dx

U

11. Let T1,T» : R™ — R™ be two linear bijections. If B € B(R"™):

(Ty 0 Ty)(dx)(B)

T1(T(dx))(B)
T1(A(T2)dz)(B)

(A(T)dar) (T (B))
A(Tz dm( '(B))

This being true for all B € B(R"), we have:

(Th o T»)(dx) =

A(T1)A(Ty)d

Since A(T) o T) is the unique element of R* with the property (7} o

T5)(dx)

Exercise 12.

= A(T; o Ty)dz, we conclude that:

A(Ty 0 Ty) = A(T1)A(T3)

Exercise 11

1. Let « € R\ {0} and H, : R™ — R" be the linear bijection defined by

Hye1 = aey and Hye; = ej for j > 2, where eq, ...,

basis of R™. If @ > 0, we have:
Ha(dz)([0,1]")

dx(H,,
dx({l‘ :How € [Oa 1]n})

i ({x : zn:xjHaej e [o, 1]”})

e, is the canonical

H([0,1]))

www.probability.net


http://www.probability.net

Solutions to Exercises 39

= de({x: (azy,22,...,2,) €10,1]"})
= dz([0,a” ] x [0,1]" ) =a!
If a < 0, we have similarly:
Ho(dz)([0,1]") = dz([a~",0] x [0,1]" ') = —a™!
In any case we obtain H, (dx)([0,1]") = |a| L.

2. The determinant det H, of H, has not been defined in these Tutorials.
Until we do so, we will have to accept that:

«

det H, = det

I
Q

This being granted, using 1. we have:
A(Hy) = A(Ha)dx([0,1]")

= Ha(dz)([0,1]")
= Ja|™' =|det H,| !

Exercise 12

Exercise 13.

1. Let k,1 € N, and ¥ : R — R"™ be the linear bijection defined by ey =
e;, e, = e, and Ye; = e; for j # k,l, where eq,...,e, is the canonical
basis of R™. Let ¢ : N,, — N,, be the permutation of N, defined by
(k) =1, o(l) = k and o(j) = j for j # k,I. Then Xe; = e ;) for all
7 € N,,. We have:

S(dz)([0,1]") = da(271([0,1]"))
= dzx({z: 3z €[0,1]"})

= dv Z x;2e; €

= Zx 71(3)26 -1(4) € [0 1]
= {.23 —1(1),... To— l(n)) S [0,1]"})
= ([07 ") =

2. Since ¥ - Ye; = ¢; for all j € N,,, we have ¥ - ¥ = I,,.

3. Until we have a Tutorial on the determinant, we shall have to accept that
given A, B € M,,(K), we have:

det AB = det Adet B
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This being granted, using 2. we obtain:
1 =det I, = det ¥ = (det X)?
from which we conclude that | det X| = 1.

4. Using 1. we have:

A(X) = A(®)dz([0,1]")
X(dz)([0,1]™)
= 1=|dety|™*
Exercise 13

Exercise 14.

1. Let n > 2 and U : R™ — R"™ be the linear bijection defined by Ue; =
e1 + e and Ue; = ¢; for j > 2, where ey, ..., e, is the canonical basis of
R"™. Let @ = [0,1[". Given z € R"™, we have:

n

U E a:jej
j=1
n

= E xz;Ue;
Jj=1

Ux

n
= x1(e1 +e2) + ijej
j=2

= (r1,71 + 22, 23,...,%y)
Since U=1(Q) = {z € R" : Uz € [0,1]["} we conclude that:
UM Q)={zceR": 0<a1+aa<1,0<m <1, Vi#£2}
2. We define:
931
Qs

U_l(Q)ﬁ{xE R": 23 >0}
U @Q)n{zeR": 23 <0}

Given i € N, let p; : R™ — R be the i-th canonical projection. Then
each p; is continuous and therefore Borel measurable. From 1. we obtain:

e e

UHQ) = (p1 +p2) (0. 1) 0 [ ()i ([0, 1)

i#2
So it is clear that U~(Q) € B(R™). From:
Q= UTHQ)Npz" (0, +o0])
Q = UTHQ)Npz' (] - 0,0])

we conclude that Q, Qs € B(R™).
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3. It is impossible for me to draw a picture with Latex. Some people can
do it, but I can’t. A picture is not a proof of anything, and is therefore
not essential. However, if you have spent the time drawing it, it should
be clear to you that {4, 7.,(Q2)} forms a partition of ¢, which we shall
prove formally in this exercise.

4. Suppose x € ;. Then z > 0 and furthermore z € U~!(Q). So 0 <
r1 + 22 < 1 while 0 < z1 < 1. Hence, we have:

0<az<zx1+a2<1

We have proved that x € Q1 = 0 < x5 < 1.

5. If x € Q; then in particular z € U=1(Q). So 0 < x; < 1 for all i € N,,,
i # 2. However from 4. we have 0 < zo < 1. It follows that 0 < x; < 1 for
all i € N,,. Soz € @ =[0,1[™. We have proved that Q; C Q.

6. Suppose x € Te, (22). There exists y € s such that x = 7, (y) = e2 + y.
In particular, 1 = y; and 2o = 1 + yo for some y € Q5. The fact that
y € Qy implies in particular that yo < 0 and y € U"1(Q). So 0 <y < 1
and 0 < y; + y2 < 1. Hence:

0<y1+ye<ltys=ax2<14+0=1

We have proved that z € 7, (£22) = 0 < 22 < 1. In fact, we have proved
the stronger inequality 0 < x2 < 1, but we shall not need it.

7. Suppose x € Te, (22). There exists y € Qs such that x = 7, (y) = e2 + y.
So o =1+ y2 and z; = y; for all 7 # 2. The fact that y € Q5 implies in
particular that y € U~(Q). So 0 < y; < 1 for all i # 2 and consequently
0 < z; <1 for all i # 2. However, we have proved in 6. that 0 < x5 < 1.
So0<uaz; <1forallieN,,ie x¢€@=][0,1[". We have proved that
Tes (QQ) cQ.

8. Suppose x € Q and z1 + x5 < 1. Then for all i € N,,, we have 0 < z; < 1
and furthermore x1 + x2 < 1. In particular, we have zo > 0 and 0 <
21+ a9 < 1, while 0 < 2; < 1 for all i # 2. So x € U~1(Q) while 25 > 0,
ie. x € Q1. We have proved that z € @ and x; + x2 < 1 implies that
r € Q.

9. Suppose z € ) and x1 + x2 > 1. Then for all i € N,, we have 0 < x; < 1
and furthermore 1 + 29 > 1. Define y = (z1, —1 + 22,23, ...,2,). Then
it is clear that e2 +y = 2. So & = T¢,(y). We claim that y € Q3. From
r9 < 1 we obtain yo = —1 + 22 < 0. Furthermore, for all i # 2 we have
x; = y; and consequently 0 < y; < 1. Finally, from x; +z2 > 1, we obtain:

0<z14+22—1=9yy1+9y2<14+0=1

Hence, we see that y € U~1(Q) while yo < 0. So y € Qs and since
T = Tey(y), we have & € 7.,(Q2). We have proved that z € @ and
21 + 2 > 1 implies that z € 7, (Q2).
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10.

11.

12.

13.

14.

15.

Suppose & € Te, (£22). There exists y € Qg such that z = 7., (y) = e2 + y.
In particular, ;1 = y; and 2o = 1 + yo for some y € Q5. The fact that
y € Qo implies that y € U~(Q) and 0 < y; + y2 < 1. Hence, we have:

I<l4+yi+ye=o1+22
We have proved that © € 7.,(Q2) = a1 + x2 > 1.

Suppose x € T, (Q2)NQ4. From x € Q; we have in particular z € U~1(Q)
and consequently x; + z2 < 1. From x € 7,(Q2) using 10. we have
1422 > 1. This is a contradiction. We have proved that 7., (Q2)NQ; = 0.

From 5. we have €y C @ while from 7. we have 7., (Q2) C (. This shows
that Q1 U 7, (22) € Q. To show the reverse inclusion, suppose z € Q.
If 21 + 29 < 1 from 8. we have x € Q1. If 1 + 29 > 1 from 9. we have
T € Te, (Q2). In any case, we have x € 4 UTe, (€2). This shows that @ C
Oy U, (Q2), and we have proved that Q = Q U ¢, (2). Having proved
that € and 7, (€22) are disjoint, we conclude that @ = Q; W 7, (Q2).
Noting that 7.,(Q2) = 7-2 () € B(R™), we have:

—eg

dz(Q) = dz(Q1 W e, (Q2))
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st

dz(U~1(Q))

where the third equality stems from the fact that the Lebesgue measure
dx is invariant by translation.

It follows from 13. that:
AU) = A(U)dx(Q) = U(dz)(Q) = de(U™1(Q)) = dx(Q) = 1

Until we have a Tutorial on determinants, we shall accept:

10
1 1 0
det U = det i =1
0o .

1
This being granted, we conclude from 14. that:
AU)=1=|detU|™*

Exercise 14

Exercise 15.
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1. Let T : R™ — R"™ be a linear bijection where n > 1. If n = 1 then
T is of the form T = H, as defined in exercise (12), where o« # 0. In
particular, we have A(T) = |det T|~!. We now assume that n > 2. From
theorem (103), there exist p > 1 and Q1,...,Q, € M, (R) such that:

T=Qi0...00Q) (11)

and each Q; is of the form H,, of exercise (12), or of the form ¥ of exer-
cise (13), or is equal to U as defined in exercise (14). From (11) we obtain
detT = det @y ...det @, and since T is a bijection, detT" # 0. It follows
that det @; # 0 for all i € N, and in particular that o # 0 whenever Q;
is of the form @, = H, of exercise (12). This shows that exercise (12)
can be applied as much as exercise (13) and exercise (14), from which we
see that A(Q;) = |det Q;|~! for all i € N,,. We have proved that T' can
be decomposed as (11), where each @; : R" — R"™ is a linear bijection
satisfying A(Q;) = | det Q;|7* for all i € N,,.

2. Using 11. of exercise (11), we obtain:

AT) = A(Qio...0Qp)
A(Q1) - Al@p)

|det Q1| ...|detQ,| "
= |detQ...detQ,|!
|det(Q1...Qp)| "

= |detT|™!

3. Given n > 1 and a linear bijection T": R™ — R, we have proved in exer-
cise (11) that T'(dz) = A(T)dz for a unique constant A(T) € R™. How-
ever, it follows from 2. that A(T) = |det T|~t. So T(dz) = | det T'|~*du,
which completes the proof of theorem (108).

Exercise 15

Exercise 16. Let f : (R?, B(R?)) — [0, +00] be a non-negative and measurable
map. Let a,b,c,d € R be such that ad—be # 0. Let T' € M3 (R) be defined by:

r=(e4)

Then T : R?> — R? is a linear map, and detT = ad — bc # 0. So T is a linear
bijection. Using theorem (104) with theorem (108):

flax + by, cx + dy)dxdy = foT(x,y)dzdy
R? R2

foTdx
R?2

fT(dr)

R?2
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/f(|detT|*1dx)

R?2

|detT|71/ fdx
R?2

lad — bc|_1/ [z, y)dzdy
R2

where the fifth equality stems from exercise (18) of Tutorial 12.
Exercise 16

Exercise 17. Let B € B(R") and T : R™ — R"™ be a linear bijection. From 3.
of exercise (11), the direct image T'(B) is also the inverse image (T~!)~1(B) of
B by T~'. Since T! is continuous, in particular it is Borel measurable, and
consequently 7'(B) € B(R"). From TT~! = I,,, we obtain det T'detT~! = 1,
and it follows that detT~! = (det T)~!. Applying theorem (108) to T, we
obtain:
dz(T(B)) = da((T™')"'(B))

— T (dn)(B)

= |detT | 'dx(B)

= |(detT)" ! dz(B)

| det T'|dxz(B)

Exercise 17

Exercise 18.

1. Let V be a linear subspace of R", and p = dim V. We assume that 1 < p <
n —1. Let uy,...,u, be an orthonormal basis of V', and up1,...,u, be
such that wuq, ... u, is an orthonormal basis of R™. Note that the existence
of an orthonormal basis of V', and the fact that such basis can be extended
to an orthonormal basis of R™, has not been proved in these Tutorials.
So we shall have to accept it for the time being. Given ¢ € N,,, we define
¢; - R" — R by ¢;(z) = (u;,x) for all z € R™, where (-,-) denotes the
usual inner-product of R". From the Cauchy-Schwarz inequality (50), for
all z,y € R", we have:

9i(2) = di(y)] = [ui, ) = (i, y)
[(ui, 2 — )|
[l - |z =y

So it is clear that ¢; : R™ — R is continuous.

IN

2. Let x € R™. Since uq,...,u, is a basis of R", there exists a unique
(a1,...,a,) € R™ such that:

r=ou1 + ...+ alpn
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Now suppose that x € ﬁ?:pﬂqu_l({O}). Then for all j > p+ 1 we have
¢j(z) =0, ie:
0 = ¢jx)
= <ujvx>

= (uj,qur + ...+ apty)

n
= > ailuju)
i=1

a;(ug, u;)

where we have used the fact that uy, ..., u, is an orthonormal basis of R™.
Since a; = 0 for all j > p+ 1, we obtain # = ajus + ... + apu, € V. This
shows that ﬁj=p+1¢;1({0}) C V. To show the reverse inclusion, suppose
x € V. Since uy,...,up is a basis of V, there exists a1,..., 0, € R such
that x = ajus + ... + apu,, and since uq, ..., uy is orthogonal, it is clear
that (uj,z) = 0 for all j > p+ 1. Hence17 we have z € ﬁ?:pﬂgﬁj_l({O})
and we halve proved that V- C N7_ ., ¢, ({0}). We conclude that V' =
N_pi1®; ({0}).

3. Since ¢; is continuous for all j € N,,, in particular qu_l({O}) is a closed

subset of R" for all j € N,,. It follows from 2. that V = ﬁj:pﬂgﬁj_l({O})
is a closed subset of R".

4. Let Q = (gi;) € M, (R) be the matrix defined by Qe; = u; for all j € N,,,
where eq,..., e, is the canonical basis of R". For all i, j € N,,, we have:

(uiyuj) = (Qei, Qey)

n n
SRS iy
k=1 =1

n n
= ZZQkinj<ekael>
k=11=1

n
= ) arigrjex ex)
k=1

n
= Z Akiqk;
k=1

5. Using 4. for all 7, j € N,,, we obtain:

Q'Qi = D (@)ik(Q;

n
Z Akiqk;
k=1
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= (i, uj) = (In)ij
This being true for all 4,5 € N,,, Q' - Q = I,. Accepting the fact that
det Q! = det Q, we obtain:
1=detl, =detQ"-Q = det Q" det Q = (det Q)?
We conclude that | det Q| = 1.

6. Applying theorem (108) to @), we obtain:

dz({Q € V}) = Q(dz)(V)
= |det Q| 'da(V) = dx(V)

7. Let span(er, . .., ep) denote the linear subspace of R generated by e1, .. ., ep,
i.e. the set:

span(eq, ..., ep) = {arer + ...+ apep ta; € R, Vi € N}

We claim that {Q € V} = span(ei,...,e,). Let z € {Q € V}. Then
Q(z) € V. Given j € {p+1,...,n}, it follows from 2. that ¢,;(Q(z)) =0,
ie.:
0 = ¢;(Q))
= (uj,z1Qer + ... +z,Qey)
= <Uj,$1’U/1+---+xnun>
= xj(uy,uy) = x;

So x; =0 for all j > p+ 1 and consequently:

n P
T = Z Tie; = Z x;e; € span(eq,...,ep)
i=1 i=1

This shows the inclusion C. To show the reverse inclusion, suppose = €
span(ei,...,ep). Then x; = 0 for all j > p+ 1, and going back through
the preceding calculation, it is clear that ¢;(Q(x)) = 0 for all j > p+1. So
Q(x) € ﬁj:pﬂcﬁj_l({O}) =V, ie. x € {Q € V}. This shows the inclusion
D, and we have proved that {Q € V'} = span(eq,...,ep).

8. Let m > 1 be an integer. We define:

n—1

En 2

It is clear from definition (63) that dx(E,,) =0 for all m > 1.

[-m,m] x ... x [-m,m] x{0}

9. Since E,, T span(ei,...,en_1), ie. E, C FEp4q for all m > 1 and
Um>1Em = span(eq,...,ey—1), from theorem (7) we obtain:

dx(span(e, ..., ep—1)) = ml_ig_loo dx(Enm) =0
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10. Using 6. and 7. together with 9. we have:
dz(V) = dz({Q € V}) = dxz(span(er,...,¢p))
S dm(span(el, AR enfl)) =0

This completes the proof of theorem (109) in the case when 1 < dimV <
n —1. The case dimV = 0, i.e. V = {0} is clear.

Exercise 18
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