17. Image Measure

In the following, **K** denotes **R** or **C**. We denote $\mathcal{M}_n(\mathbf{K})$, $n \geq 1$, the set of all $n \times n$ -matrices with **K**-valued entries. We recall that for all $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$, M is identified with the linear map $M : \mathbf{K}^n \to \mathbf{K}^n$ uniquely determined by:

$$\forall j = 1, \dots, n , Me_j \stackrel{\triangle}{=} \sum_{i=1}^n m_{ij} e_i$$

where (e_1, \ldots, e_n) is the canonical basis of \mathbf{K}^n , i.e. $e_i \stackrel{\triangle}{=} (0, \ldots, \stackrel{\imath}{1}, .., 0)$.

EXERCISE 1. For all $\alpha \in \mathbf{K}$, let $H_{\alpha} \in \mathcal{M}_n(\mathbf{K})$ be defined by:

$$H_{\alpha} \stackrel{\triangle}{=} \left(\begin{array}{ccc} \alpha & & & \\ & 1 & 0 & \\ & & & \\ & 0 & \ddots & \\ & & & 1 \end{array} \right)$$

i.e. by $H_{\alpha}e_1 = \alpha e_1$, $H_{\alpha}e_j = e_j$, for all $j \geq 2$. Note that H_{α} is obtained from the identity matrix, by multiplying the top left entry by α . For $k, l \in \{1, \ldots, n\}$, we define the matrix $\Sigma_{kl} \in \mathcal{M}_n(\mathbf{K})$ by $\Sigma_{kl}e_k = e_l$, $\Sigma_{kl}e_l = e_k$ and $\Sigma_{kl}e_j = e_j$, for all $j \in \{1, \ldots, n\} \setminus \{k, l\}$. Note that Σ_{kl} is obtained from the identity matrix, by interchanging column k and column l. If $n \geq 2$, we define the matrix $U \in \mathcal{M}_n(\mathbf{K})$ by:

$$U \stackrel{\triangle}{=} \left(\begin{array}{ccc} 1 & 0 & & \\ 1 & 1 & 0 & \\ & 0 & \ddots & \\ & & & 1 \end{array} \right)$$

i.e. by $Ue_1 = e_1 + e_2$, $Ue_j = e_j$ for all $j \geq 2$. Note that the matrix U is obtained from the identity matrix, by adding column 2 to column 1. If n = 1, we put U = 1. We define $\mathcal{N}_n(\mathbf{K}) = \{H_\alpha : \alpha \in \mathbf{K}\} \cup \{\Sigma_{kl} : k, l = 1, ..., n\} \cup \{U\}$, and $\mathcal{M}'_n(\mathbf{K})$ to be the set of all finite products of elements of $\mathcal{N}_n(\mathbf{K})$:

$$\mathcal{M}'_n(\mathbf{K}) \stackrel{\triangle}{=} \{ M \in \mathcal{M}_n(\mathbf{K}) : M = Q_1 \dots Q_p, p \ge 1, Q_j \in \mathcal{N}_n(\mathbf{K}), \forall j \}$$

We shall prove that $\mathcal{M}_n(\mathbf{K}) = \mathcal{M}'_n(\mathbf{K})$.

- 1. Show that if $\alpha \in \mathbf{K} \setminus \{0\}$, H_{α} is non-singular with $H_{\alpha}^{-1} = H_{1/\alpha}$
- 2. Show that if $k, l = 1, ..., n, \Sigma_{kl}$ is non-singular with $\Sigma_{kl}^{-1} = \Sigma_{kl}$.
- 3. Show that U is non-singular, and that for $n \geq 2$:

$$U^{-1} = \left(\begin{array}{ccc} 1 & 0 & & \\ -1 & 1 & 0 & \\ & 0 & \ddots & \\ & & & 1 \end{array} \right)$$

4. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$. Let R_1, \ldots, R_n be the rows of M:

$$M \stackrel{\triangle}{=} \left(\begin{array}{c} R_1 \\ R_2 \\ \vdots \\ R_n \end{array} \right)$$

Show that for all $\alpha \in \mathbf{K}$:

$$H_{\alpha}.M = \begin{pmatrix} \alpha R_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix}$$

Conclude that multiplying M by H_{α} from the left, amounts to multiplying the first row of M by α .

- 5. Show that multiplying M by H_{α} from the right, amounts to multiplying the first column of M by α .
- 6. Show that multiplying M by Σ_{kl} from the left, amounts to interchanging the rows R_l and R_k .
- 7. Show that multiplying M by Σ_{kl} from the right, amounts to interchanging the columns C_l and C_k .
- 8. Show that multiplying M by U^{-1} from the left $(n \ge 2)$, amounts to subtracting R_1 from R_2 , i.e.:

$$U^{-1}.\begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 - R_1 \\ \vdots \\ R_n \end{pmatrix}$$

- 9. Show that multiplying M by U^{-1} from the right (for $n \geq 2$), amounts to subtracting C_2 from C_1 .
- 10. Define $U' = \Sigma_{12}.U^{-1}.\Sigma_{12}$, $(n \ge 2)$. Show that multiplying M by U' from the right, amounts to subtracting C_1 from C_2 .
- 11. Show that if n = 1, then indeed we have $\mathcal{M}_1(\mathbf{K}) = \mathcal{M}'_1(\mathbf{K})$.

EXERCISE 2. Further to exercise (1), we now assume that $n \geq 2$, and make the induction hypothesis that $\mathcal{M}_{n-1}(\mathbf{K}) = \mathcal{M}'_{n-1}(\mathbf{K})$.

1. Let $O_n \in \mathcal{M}_n(\mathbf{K})$ be the matrix with all entries equal to zero. Show the existence of $Q'_1, \ldots, Q'_p \in \mathcal{N}_{n-1}(\mathbf{K}), p \geq 1$, such that:

$$O_{n-1} = Q_1' \dots Q_p'$$

2. For k = 1, ..., p, we define $Q_k \in \mathcal{M}_n(\mathbf{K})$, by:

$$Q_k \stackrel{\triangle}{=} \left(\begin{array}{ccc} & & 0 \\ & Q_k' & & \vdots \\ & & 0 \\ 0 & \dots & 0 & 1 \end{array} \right)$$

Show that $Q_k \in \mathcal{N}_n(\mathbf{K})$, and that we have:

$$\Sigma_{1n}.Q_1...Q_p.\Sigma_{1n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & O_{n-1} & \\ 0 & & & \end{pmatrix}$$

- 3. Conclude that $O_n \in \mathcal{M}'_n(\mathbf{K})$.
- 4. We now consider $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K}), M \neq O_n$. We want to show that $M \in \mathcal{M}'_n(\mathbf{K})$. Show that for some $k, l \in \{1, ..., n\}$:

$$H_{m_{kl}}^{-1}.\Sigma_{1k}.M.\Sigma_{1l} = \begin{pmatrix} 1 & * & \dots & * \\ * & & & \\ \vdots & & * & \\ * & & & \end{pmatrix}$$

- 5. Show that if $H_{m_{kl}}^{-1} \cdot \Sigma_{1k} \cdot M \cdot \Sigma_{1l} \in \mathcal{M}'_n(\mathbf{K})$, then $M \in \mathcal{M}'_n(\mathbf{K})$. Conclude that without loss of generality, in order to prove that M lies in $\mathcal{M}'_n(\mathbf{K})$ we can assume that $m_{11} = 1$.
- 6. Let i = 2, ..., n. Show that if $m_{i1} \neq 0$, we have:

$$H_{m_{i1}}^{-1}.\Sigma_{2i}.U^{-1}.\Sigma_{2i}.H_{1/m_{i1}}^{-1}.M = \begin{pmatrix} 1 & * & \dots & * \\ * & & & \\ 0 & \leftarrow i & * \\ * & & & \end{pmatrix}$$

7. Conclude that without loss of generality, we can assume that $m_{i1} = 0$ for all $i \geq 2$, i.e. that M is of the form:

$$M = \begin{pmatrix} 1 & * & \dots & * \\ 0 & & & \\ \vdots & & * & \\ 0 & & & \end{pmatrix}$$

8. Show that in order to prove that $M \in \mathcal{M}'_n(\mathbf{K})$, without loss of generality, we can assume that M is of the form:

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & M' & \\ 0 & & & \end{pmatrix}$$

www.probability.net

9. Prove that $M \in \mathcal{M}'_n(\mathbf{K})$ and conclude with the following:

Theorem 103 Given $n \geq 2$, any $n \times n$ -matrix with values in **K** is a finite product of matrices Q of the following types:

- (i) $Qe_1 = \alpha e_1$, $Qe_j = e_j$, $\forall j = 2, ..., n$, $(\alpha \in \mathbf{K})$
- (ii) $Qe_l = e_k$, $Qe_k = e_l$, $Qe_j = e_j$, $\forall j \neq k, l$, $(k, l \in \mathbf{N}_n)$
- (iii) $Qe_1 = e_1 + e_2$, $Qe_j = e_j$, $\forall j = 2, ..., n$

where (e_1, \ldots, e_n) is the canonical basis of \mathbf{K}^n .

Definition 123 Let $X: (\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a measurable map, where (Ω, \mathcal{F}) and (Ω', \mathcal{F}') are two measurable spaces. Let μ be a (possibly complex) measure on (Ω, \mathcal{F}) . Then, we call **distribution** of X under μ , or **image measure** of μ by X, or even **law** of X under μ , the (possibly complex) measure on (Ω', \mathcal{F}') , denoted μ^X , $X(\mu)$ or $\mathcal{L}_{\mu}(X)$, and defined by:

$$\forall B \in \mathcal{F}' \ , \ \mu^X(B) \stackrel{\triangle}{=} \mu(\{X \in B\}) = \mu(X^{-1}(B))$$

EXERCISE 3. Let $X:(\Omega,\mathcal{F})\to(\Omega',\mathcal{F}')$ be a measurable map, where (Ω,\mathcal{F}) and (Ω',\mathcal{F}') are two measurable spaces.

- 1. Let $B \in \mathcal{F}'$. Show that if $(B_n)_{n \geq 1}$ is a measurable partition of B, then $(X^{-1}(B_n))_{n \geq 1}$ is a measurable partition of $X^{-1}(B)$.
- 2. Show that if μ is a measure on (Ω, \mathcal{F}) , μ^X is a well-defined measure on (Ω', \mathcal{F}') .
- 3. Show that if μ is a complex measure on (Ω, \mathcal{F}) , μ^X is a well-defined complex measure on (Ω', \mathcal{F}') .
- 4. Show that if μ is a complex measure on (Ω, \mathcal{F}) , then $|\mu^X| \leq |\mu|^X$.
- 5. Let $Y:(\Omega',\mathcal{F}')\to (\Omega'',\mathcal{F}'')$ be a measurable map, where (Ω'',\mathcal{F}'') is another measurable space. Show that for all (possibly complex) measure μ on (Ω,\mathcal{F}) , we have:

$$Y(X(\mu)) = (Y \circ X)(\mu) = (\mu^X)^Y = \mu^{(Y \circ X)}$$

Definition 124 Let μ be a (possibly complex) measure on \mathbf{R}^n , $n \geq 1$. We say that μ is **invariant by translation**, if and only if $\tau_a(\mu) = \mu$ for all $a \in \mathbf{R}^n$, where $\tau_a : \mathbf{R}^n \to \mathbf{R}^n$ is the translation mapping defined by $\tau_a(x) = a + x$, for all $x \in \mathbf{R}^n$.

EXERCISE 4. Let μ be a (possibly complex) measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$.

1. Show that $\tau_a: (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)) \to (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ is measurable.

- 2. Show $\tau_a(\mu)$ is therefore a well-defined (possibly complex) measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, for all $a \in \mathbf{R}^n$.
- 3. Show that $\tau_a(dx) = dx$ for all $a \in \mathbf{R}^n$.
- 4. Show the Lebesgue measure on \mathbb{R}^n is invariant by translation.

EXERCISE 5. Let $k_{\alpha}: \mathbf{R}^n \to \mathbf{R}^n$ be defined by $k_{\alpha}(x) = \alpha x$, $\alpha > 0$.

- 1. Show that $k_{\alpha}: (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)) \to (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ is measurable.
- 2. Show that $k_{\alpha}(dx) = \alpha^{-n} dx$.

EXERCISE 6. Show the following:

Theorem 104 (Integral Projection 1) Let $X:(\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a measurable map, where (Ω, \mathcal{F}) , (Ω', \mathcal{F}') are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}) . Then, for all $f:(\Omega', \mathcal{F}') \to [0, +\infty]$ non-negative and measurable, we have:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega'} f dX(\mu)$$

EXERCISE 7. Show the following:

Theorem 105 (Integral Projection 2) Let $X:(\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a measurable map, where (Ω, \mathcal{F}) , (Ω', \mathcal{F}') are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}) . Then, for all $f:(\Omega', \mathcal{F}') \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ measurable, we have the equivalence:

$$f \circ X \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \iff f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', X(\mu))$$

in which case, we have:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega'} f dX(\mu)$$

EXERCISE 8. Further to theorem (105), suppose μ is in fact a complex measure on (Ω, \mathcal{F}) . Show that:

$$\int_{\Omega'} |f|d|X(\mu)| \le \int_{\Omega} |f \circ X|d|\mu| \tag{1}$$

Conclude with the following:

Theorem 106 (Integral Projection 3) Let $X:(\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a measurable map, where (Ω, \mathcal{F}) , (Ω', \mathcal{F}') are measurable spaces. Let μ be a complex measure on (Ω, \mathcal{F}) . Then, for all measurable maps $f:(\Omega', \mathcal{F}') \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$, we have:

$$f \circ X \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \Rightarrow f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', X(\mu))$$

and when the left-hand side of this implication is satisfied:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega'} f dX(\mu)$$

EXERCISE 9. Let $X:(\Omega,\mathcal{F})\to(\mathbf{R},\mathcal{B}(\mathbf{R}))$ be a measurable map with distribution $\mu=X(P)$, where (Ω,\mathcal{F},P) is a probability space.

1. Show that X is integrable, i.e. $\int |X| dP < +\infty$, if and only if:

$$\int_{-\infty}^{+\infty} |x| d\mu(x) < +\infty$$

2. Show that if X is integrable, then:

$$E[X] = \int_{-\infty}^{+\infty} x d\mu(x)$$

3. Show that:

$$E[X^2] = \int_{-\infty}^{+\infty} x^2 d\mu(x)$$

EXERCISE 10. Let μ be a locally finite measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, which is invariant by translation. For all $a = (a_1, \ldots, a_n) \in (\mathbf{R}^+)^n$, we define $Q_a = [0, a_1[\times \ldots \times [0, a_n[$, and in particular $Q = Q_{(1,\ldots,1)} = [0, 1]^n$.

- 1. Show that $\mu(Q_a) < +\infty$ for all $a \in (\mathbf{R}^+)^n$, and $\mu(Q) < +\infty$.
- 2. Let $p = (p_1, \ldots, p_n)$ where $p_i \ge 1$ is an integer for all i's. Show:

$$Q_p = \biguplus_{k \in \mathbf{N}^n} [k_1, k_1 + 1[\times \dots \times [k_n, k_n + 1[$$

 $0 \le k_i < p_i$

- 3. Show that $\mu(Q_p) = p_1 \dots p_n \mu(Q)$.
- 4. Let $q_1, \ldots, q_n \ge 1$ be n positive integers. Show that:

$$Q_p = \biguplus_{k \in \mathbf{N}^n} \left[\frac{k_1 p_1}{q_1}, \frac{(k_1 + 1)p_1}{q_1} \right[\times \ldots \times \left[\frac{k_n p_n}{q_n}, \frac{(k_n + 1)p_n}{q_n} \right] \\ 0 < k_i < q_i$$

- 5. Show that $\mu(Q_p) = q_1 \dots q_n \mu(Q_{(p_1/q_1, \dots, p_n/q_n)})$
- 6. Show that $\mu(Q_r) = r_1 \dots r_n \mu(Q)$, for all $r \in (\mathbf{Q}^+)^n$.
- 7. Show that $\mu(Q_a) = a_1 \dots a_n \mu(Q)$, for all $a \in (\mathbf{R}^+)^n$.
- 8. Show that $\mu(B) = \mu(Q)dx(B)$, for all $B \in \mathcal{C}$, where:

$$\mathcal{C} \stackrel{\triangle}{=} \{ [a_1, b_1[\times \ldots \times [a_n, b_n[, a_i, b_i \in \mathbf{R} , a_i \le b_i , \forall i \in \mathbf{N}^n] \}$$

- 9. Show that $B(\mathbf{R}^n) = \sigma(\mathcal{C})$.
- 10. Show that $\mu = \mu(Q)dx$, and conclude with the following:

Theorem 107 Let μ be a locally finite measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$. If μ is invariant by translation, then there exists $\alpha \in \mathbf{R}^+$ such that:

$$\mu = \alpha dx$$

EXERCISE 11. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection.

- 1. Show that T and T^{-1} are continuous.
- 2. Show that for all $B \subseteq \mathbb{R}^n$, the inverse image $T^{-1}(B) = \{T \in B\}$ coincides with the direct image:

$$T^{-1}(B) \stackrel{\triangle}{=} \{y: \ y = T^{-1}(x) \text{ for some } x \in B\}$$

- 3. Show that for all $B \subseteq \mathbf{R}^n$, the direct image T(B) coincides with the inverse image $(T^{-1})^{-1}(B) = \{T^{-1} \in B\}.$
- 4. Let $K \subseteq \mathbf{R}^n$ be compact. Show that $\{T \in K\}$ is compact.
- 5. Show that T(dx) is a locally finite measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$.
- 6. Let τ_a be the translation of vector $a \in \mathbf{R}^n$. Show that:

$$T \circ \tau_{T^{-1}(a)} = \tau_a \circ T$$

- 7. Show that T(dx) is invariant by translation.
- 8. Show the existence of $\alpha \in \mathbf{R}^+$, such that $T(dx) = \alpha dx$. Show that such constant is unique, and denote it by $\Delta(T)$.
- 9. Show that $Q = T([0,1]^n) \in \mathcal{B}(\mathbf{R}^n)$ and that we have:

$$\Delta(T)dx(Q) = T(dx)(Q) = 1$$

- 10. Show that $\Delta(T) \neq 0$.
- 11. Let $T_1, T_2: \mathbf{R}^n \to \mathbf{R}^n$ be two linear bijections. Show that:

$$(T_1 \circ T_2)(dx) = \Delta(T_1)\Delta(T_2)dx$$

and conclude that $\Delta(T_1 \circ T_2) = \Delta(T_1)\Delta(T_2)$.

EXERCISE 12. Let $\alpha \in \mathbf{R} \setminus \{0\}$. Let $H_{\alpha} : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection uniquely defined by $H_{\alpha}(e_1) = \alpha e_1$, $H_{\alpha}(e_j) = e_j$ for $j \geq 2$.

- 1. Show that $H_{\alpha}(dx)([0,1]^n) = |\alpha|^{-1}$.
- 2. Conclude that $\Delta(H_{\alpha}) = |\det H_{\alpha}|^{-1}$.

EXERCISE 13. Let $k, l \in \mathbf{N}_n$ and $\Sigma : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection uniquely defined by $\Sigma(e_k) = e_l$, $\Sigma(e_l) = e_k$, $\Sigma(e_j) = e_j$, for $j \neq k, l$.

1. Show that $\Sigma(dx)([0,1]^n) = 1$.

- 2. Show that $\Sigma \cdot \Sigma = I_n$. (Identity mapping on \mathbb{R}^n).
- 3. Show that $|\det \Sigma| = 1$.
- 4. Conclude that $\Delta(\Sigma) = |\det \Sigma|^{-1}$.

EXERCISE 14. Let $n \geq 2$ and $U : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection uniquely defined by $U(e_1) = e_1 + e_2$ and $U(e_j) = e_j$ for $j \geq 2$. Let $Q = [0, 1]^n$.

1. Show that:

$$U^{-1}(Q) = \{ x \in \mathbf{R}^n : 0 \le x_1 + x_2 < 1, 0 \le x_i < 1, \forall i \ne 2 \}$$

2. Define:

$$\Omega_1 \stackrel{\triangle}{=} U^{-1}(Q) \cap \{x \in \mathbf{R}^n : x_2 \ge 0\}$$

$$\Omega_2 \stackrel{\triangle}{=} U^{-1}(Q) \cap \{x \in \mathbf{R}^n : x_2 < 0\}$$

Show that $\Omega_1, \Omega_2 \in \mathcal{B}(\mathbf{R}^n)$.

- 3. Let τ_{e_2} be the translation of vector e_2 . Draw a picture of Q, Ω_1 , Ω_2 and $\tau_{e_2}(\Omega_2)$ in the case when n=2.
- 4. Show that if $x \in \Omega_1$, then $0 \le x_2 < 1$.
- 5. Show that $\Omega_1 \subseteq Q$.
- 6. Show that if $x \in \tau_{e_2}(\Omega_2)$, then $0 \le x_2 < 1$.
- 7. Show that $\tau_{e_2}(\Omega_2) \subseteq Q$.
- 8. Show that if $x \in Q$ and $x_1 + x_2 < 1$ then $x \in \Omega_1$.
- 9. Show that if $x \in Q$ and $x_1 + x_2 \ge 1$ then $x \in \tau_{e_2}(\Omega_2)$.
- 10. Show that if $x \in \tau_{e_2}(\Omega_2)$ then $x_1 + x_2 \ge 1$.
- 11. Show that $\tau_{e_2}(\Omega_2) \cap \Omega_1 = \emptyset$.
- 12. Show that $Q = \Omega_1 \uplus \tau_{e_2}(\Omega_2)$.
- 13. Show that $dx(Q) = dx(U^{-1}(Q))$.
- 14. Show that $\Delta(U) = 1$.
- 15. Show that $\Delta(U) = |\det U|^{-1}$.

EXERCISE 15. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection, $(n \ge 1)$.

- 1. Show the existence of linear bijections $Q_1, \ldots, Q_p : \mathbf{R}^n \to \mathbf{R}^n$, $p \ge 1$, with $T = Q_1 \circ \ldots \circ Q_p$, $\Delta(Q_i) = |\det Q_i|^{-1}$ for all $i \in \mathbf{N}_p$.
- 2. Show that $\Delta(T) = |\det T|^{-1}$.

3. Conclude with the following:

Theorem 108 Let $n \ge 1$ and $T : \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection. Then, the image measure T(dx) of the Lebesgue measure on \mathbf{R}^n is:

$$T(dx) = |\det T|^{-1} dx$$

EXERCISE 16. Let $f: (\mathbf{R}^2, \mathcal{B}(\mathbf{R}^2)) \to [0, +\infty]$ be a non-negative and measurable map. Let $a, b, c, d \in \mathbf{R}$ such that $ad - bc \neq 0$. Show that:

$$\int_{\mathbf{R}^2} f(ax + by, cx + dy) dx dy = |ad - bc|^{-1} \int_{\mathbf{R}^2} f(x, y) dx dy$$

EXERCISE 17. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$, we have $T(B) \in \mathcal{B}(\mathbf{R}^n)$ and:

$$dx(T(B)) = |\det T| dx(B)$$

EXERCISE 18. Let V be a linear subspace of \mathbf{R}^n and $p = \dim V$. We assume that $1 \leq p \leq n-1$. Let u_1, \ldots, u_p be an orthonormal basis of V, and u_{p+1}, \ldots, u_n be such that u_1, \ldots, u_n is an orthonormal basis of \mathbf{R}^n . For $i \in \mathbf{N}_n$, Let $\phi_i : \mathbf{R}^n \to \mathbf{R}$ be defined by $\phi_i(x) = \langle u_i, x \rangle$.

- 1. Show that all ϕ_i 's are continuous.
- 2. Show that $V = \bigcap_{i=p+1}^{n} \phi_i^{-1}(\{0\})$.
- 3. Show that V is a closed subset of \mathbb{R}^n .
- 4. Let $Q = (q_{ij}) \in \mathcal{M}_n(\mathbf{R})$ be the matrix uniquely defined by $Qe_j = u_j$ for all $j \in \mathbf{N}_n$, where (e_1, \ldots, e_n) is the canonical basis of \mathbf{R}^n . Show that for all $i, j \in \mathbf{N}_n$:

$$\langle u_i, u_j \rangle = \sum_{k=1}^n q_{ki} q_{kj}$$

- 5. Show that $Q^t.Q = I_n$ and conclude that $|\det Q| = 1$.
- 6. Show that $dx(\{Q \in V\}) = dx(V)$.
- 7. Show that $\{Q \in V\} = \text{span}(e_1, ..., e_p)^{1}$.
- 8. For all $m \ge 1$, we define:

$$E_m \stackrel{\triangle}{=} \overbrace{[-m,m] \times \ldots \times [-m,m]}^{n-1} \times \{0\}$$

Show that $dx(E_m) = 0$ for all $m \ge 1$.

9. Show that $dx(\text{span}(e_1, ..., e_{n-1})) = 0$.

¹i.e. the linear subspace of \mathbf{R}^n generated by e_1, \ldots, e_p .

10. Conclude with the following:

Theorem 109 Let $n \ge 1$. Any linear subspace V of \mathbf{R}^n is a closed subset of \mathbf{R}^n . Moreover, if dim $V \le n-1$, then dx(V) = 0.

Solutions to Exercises

Exercise 1.

1. Let $\alpha \in \mathbf{K} \setminus \{0\}$. Then, we have:

$$H_{1/\alpha} \circ H_{\alpha} e_1 = H_{1/\alpha}(\alpha e_1) = \alpha H_{1/\alpha} e_1 = \alpha (1/\alpha) e_1 = e_1$$

and for all $j \geq 2$, $H_{1/\alpha} \circ H_{\alpha} e_j = H_{1/\alpha} e_j = e_j$. If I_n denotes the identity matrix of $\mathcal{M}_n(\mathbf{K})$, then I_n and $H_{1/\alpha} \circ H_\alpha$ coincide on the basis (e_1, \ldots, e_n) of \mathbf{K}^n . It follows that I_n and $H_{1/\alpha} \circ H_\alpha$ are in fact equal. So H_α is nonsingular and $H_{\alpha}^{-1} = H_{1/\alpha}$.

- 2. The linear map $\Sigma_{kl}: \mathbf{K}^n \to \mathbf{K}^n$ is defined by $\Sigma_{kl}e_k = e_l, \Sigma_{kl}e_l = e_k$ and $\Sigma_{kl}e_j=e_j$ for all $j\notin\{k,l\}$. Hence, it is clear that $\Sigma_{kl}\circ\Sigma_{kl}e_j=e_j$ for all $j \in \mathbf{N}_n$, and consequently $\Sigma_{kl} \circ \Sigma_{kl} = I_n$. So Σ_{kl} is non-singular and
- 3. If n=1, then U=1 and U is indeed non-singular. We assume that $n\geq 2$. Then U is defined by $Ue_1 = e_1 + e_2$ and $Ue_j = e_j$ for all $j \geq 2$. Consider the linear map $U': \mathbf{K}^n \to \mathbf{K}^n$ defined by $U'e_1 = e_1 - e_2$ and $U'e_j = e_j$ for all $j \geq 2$. Then, we have:

$$U' \circ Ue_1 = U'(e_1 + e_2) = U'e_1 + U'e_2 = e_1 - e_2 + e_2 = e_1$$

and it is clear that $U' \circ Ue_j = e_j$ for all $j \geq 2$. It follows that $U' \circ Ue_j = e_j$ for all $j \in \mathbf{N}_n$ and consequently $U' \circ U = I_n$. We have proved that U is invertible and $U^{-1} = U'$, i.e.:

$$U^{-1} = \begin{pmatrix} 1 & 0 & & \\ -1 & 1 & 0 & & \\ & 0 & \ddots & \\ & & & 1 \end{pmatrix}$$

4. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$, and R_1, \ldots, R_n be the rows of M, i.e.

$$M \stackrel{\triangle}{=} \left(\begin{array}{c} R_1 \\ R_2 \\ \vdots \\ R_n \end{array} \right)$$

Specifically, for all $i \in \mathbf{N}_n$, each R_i is the row vector:

$$R_i = (m_{i1}, m_{i2}, \dots, m_{in})$$

Let $\alpha \in \mathbf{K}$, and consider the matrix $M' \in \mathcal{M}_n(\mathbf{K})$ defined by:

$$M' \stackrel{\triangle}{=} \left(\begin{array}{c} \alpha R_1 \\ R_2 \\ \vdots \\ R_n \end{array} \right)$$

i.e. $M'e_j = \alpha m_{1j}e_1 + \sum_{i=2}^n m_{ij}e_i$ for all $j \in \mathbf{N}_n$. Then:

$$H_{\alpha} \circ Me_{j} = H_{\alpha} \left(\sum_{i=1}^{n} m_{ij} e_{i} \right)$$

$$= \sum_{i=1}^{n} m_{ij} H_{\alpha} e_{i}$$

$$= m_{1j} H_{\alpha} e_{1} + \sum_{i=2}^{n} m_{ij} H_{\alpha} e_{i}$$

$$= \alpha m_{1j} e_{1} + \sum_{i=2}^{n} m_{ij} e_{i}$$

$$= M' e_{j}$$

This being true for all $j \in \mathbf{N}_n$, we have proved that $H_{\alpha}M = M'$, i.e.

$$H_{\alpha}M = \begin{pmatrix} \alpha R_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix}$$

We conclude that multiplying M by H_{α} from the left, amounts to multiplying the first row of M by α .

5. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$, and C_1, \ldots, C_n be the columns of M:

$$M \stackrel{\triangle}{=} (C_1, C_2, \dots, C_n)$$

Specifically, for all $j \in \mathbf{N}_n$, each C_j is the column vector:

$$C_j = \left(\begin{array}{c} m_{1j} \\ m_{2j} \\ \vdots \\ m_{nj} \end{array}\right)$$

Let $\alpha \in \mathbf{K}$, and consider the matrix M' defined by:

$$M' = (\alpha C_1, C_2, \dots, C_n)$$

i.e. $M'e_1 = \sum_{i=1}^n \alpha m_{i1} e_i$ and $M'e_j = \sum_{i=1}^n m_{ij} e_i$ for $j \geq 2$:

$$M \circ H_{\alpha}e_1 = M(\alpha e_1) = \alpha M e_1 = \sum_{i=1}^{n} \alpha m_{i1}e_i = M'e_1$$

and furthermore, for all $j \geq 2$:

$$M \circ H_{\alpha}e_j = Me_j = \sum_{i=1}^n m_{ij}e_i = M'e_j$$

So $M \circ H_{\alpha}e_j = M'e_j$ for all $j \in \mathbf{N}_n$, i.e. $MH_{\alpha} = M'$. Hence:

$$MH_{\alpha} = (\alpha C_1, C_2, \dots, C_n)$$

We conclude that multiplying M by H_{α} from the right, amounts to multiplying the first column of M by α .

6. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$ and R_1, \ldots, R_n be the rows of M, i.e.

$$M \stackrel{\triangle}{=} \left(\begin{array}{c} R_1 \\ R_2 \\ \vdots \\ R_n \end{array} \right)$$

Specifically, for all $i \in \mathbf{N}_n$, R_i is the row vector:

$$R_i = (m_{i1}, m_{i2}, \dots, m_{in})$$

Let $M' = (m'_{ij}) \in \mathcal{M}_n(\mathbf{K})$ be the matrix defined by:

$$M' \stackrel{\triangle}{=} \left(\begin{array}{c} R_1' \\ R_2' \\ \vdots \\ R_n' \end{array} \right)$$

where $R'_k = R_l$, $R'_l = R_k$ and $R'_i = R_i$ for all $i \notin \{k, l\}$. In other words, the matrix M' is nothing but the matrix M, where the rows R_k and R_l have been interchanged. Note that for all $i, j \in \mathbf{N}_n$, $m'_{kj} = m_{lj}$, $m'_{lj} = m_{kj}$ and $m'_{ij} = m_{ij}$ for all $i \notin \{k, l\}$. Now, given $j \in \mathbf{N}_n$, we have:

$$\Sigma_{kl} \circ Me_j = \Sigma_{kl} \left(\sum_{i=1}^n m_{ij} e_i \right)$$

$$= \sum_{i=1}^n m_{ij} \Sigma_{kl} e_i$$

$$= \sum_{i \neq k, l} m_{ij} e_i + m_{kj} e_l + m_{lj} e_k$$

$$= \sum_{i \neq k, l} m'_{ij} e_i + m'_{lj} e_l + m'_{kj} e_k$$

$$= \sum_{i \neq k, l} m'_{ij} e_i = M' e_j$$

This being true for all $j \in \mathbf{N}_n$, $\Sigma_{kl} M = M'$. We conclude that multiplying M by Σ_{kl} from the left, amounts to interchanging the rows R_l and R_k of M.

7. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$, and C_1, \ldots, C_n be the columns of M:

$$M \stackrel{\triangle}{=} (C_1, C_2, \dots, C_n)$$

Specifically, for all $j \in \mathbf{N}_n$, each C_j is the column vector:

$$C_j = \left(\begin{array}{c} m_{1j} \\ m_{2j} \\ \vdots \\ m_{nj} \end{array}\right)$$

Let $M' = (m'_{ij}) \in \mathcal{M}_n(\mathbf{K})$ be the matrix defined by:

$$M' \stackrel{\triangle}{=} (C'_1, C'_2, \dots, C'_n)$$

where $C_k' = C_l$, $C_l' = C_k$ and $C_j' = C_j$ for all $j \notin \{k, l\}$. In other words, the matrix M' is nothing but the matrix M, where the columns C_k and C_l have been interchanged. For all $i, j \in \mathbf{N}_n$, $m_{ik}' = m_{il}$, $m_{il}' = m_{ik}$ and $m_{ij}' = m_{ij}$ for all $j \notin \{k, l\}$. Now:

$$M \circ \Sigma_{kl} e_k = Me_l$$

$$= \sum_{i=1}^n m_{il} e_i$$

$$= \sum_{i=1}^n m'_{ik} e_i = M'e_k$$

and similarly $M \circ \Sigma_{kl} e_l = M' e_l$. Furthermore, if $j \neq k, l$:

$$M \circ \Sigma_{kl} e_j = M e_j$$

$$= \sum_{i=1}^n m_{ij} e_i$$

$$= \sum_{i=1}^n m'_{ij} e_i = M' e_j$$

It follows that $M \circ \Sigma_{kl} e_j = M' e_j$ for all $j \in \mathbf{N}_n$. We conclude that $M \Sigma_{kl} = M'$ and consequently, multiplying M by Σ_{kl} from the right, amounts to interchanging the columns C_l and C_k of M.

8. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$ and R_1, \ldots, R_n be the rows of M, i.e.

$$M \stackrel{\triangle}{=} \left(\begin{array}{c} R_1 \\ R_2 \\ \vdots \\ R_n \end{array} \right)$$

Specifically, for all $i \in \mathbf{N}_n$, R_i is the row vector:

$$R_i = (m_{i1}, m_{i2}, \dots, m_{in})$$

Let $M' = (m'_{ij}) \in \mathcal{M}_n(\mathbf{K})$ be the matrix defined by:

$$M' \stackrel{\triangle}{=} \left(\begin{array}{c} R_1 \\ R_2 - R_1 \\ \vdots \\ R_n \end{array} \right)$$

Specifically, M' is exactly the matrix M, where the second row R_2 has been replaced by $R_2 - R_1$, i.e. where the first row R_1 has been subtracted from the second row R_2 . Recall from 3. that U^{-1} is given by $U^{-1}e_1 = e_1 - e_2$ and $U^{-1}e_j = e_j$ for all $j \geq 2$. Note that for all $i, j \in \mathbf{N}_n$, we have $m'_{ij} = m_{ij}$ if $i \neq 2$, and $m'_{2j} = m_{2j} - m_{1j}$. Now for all $j \in \mathbf{N}_n$:

$$U^{-1}Me_{j} = U^{-1}\left(\sum_{i=1}^{n} m_{ij}e_{i}\right)$$

$$= \sum_{i=1}^{n} m_{ij}U^{-1}e_{i}$$

$$= m_{1j}(e_{1} - e_{2}) + \sum_{i=2}^{n} m_{ij}e_{i}$$

$$= \sum_{i\neq 2} m_{ij}e_{i} + (m_{2j} - m_{1j})e_{2}$$

$$= \sum_{i=1}^{n} m'_{ij}e_{i} = M'e_{j}$$

It follows that $U^{-1}M = M'$, and we conclude that multiplying M by U^{-1} from the left, amounts to subtracting R_1 from R_2 .

9. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$, and C_1, \ldots, C_n be the columns of M:

$$M \stackrel{\triangle}{=} (C_1, C_2, \dots, C_n)$$

Specifically, for all $j \in \mathbf{N}_n$, each C_j is the column vector:

$$C_j = \left(\begin{array}{c} m_{1j} \\ m_{2j} \\ \vdots \\ m_{nj} \end{array}\right)$$

Let $M' = (m'_{ij}) \in \mathcal{M}_n(\mathbf{K})$ be the matrix defined by:

$$M' \stackrel{\triangle}{=} (C_1 - C_2, C_2, \dots, C_n)$$

Specifically, M' is exactly the matrix M, where the second column C_2 has been subtracted from the first column C_1 . For all $i, j \in \mathbf{N}_n$, we have

 $m'_{ij} = m_{ij}$ if $j \neq 1$ and $m'_{i1} = m_{i1} - m_{i2}$. Furthermore:

$$MU^{-1}e_{1} = M(e_{1} - e_{2})$$

$$= Me_{1} - Me_{2}$$

$$= \sum_{i=1}^{n} m_{i1}e_{i} - \sum_{i=1}^{n} m_{i2}e_{i}$$

$$= \sum_{i=1}^{n} (m_{i1} - m_{i2})e_{i}$$

$$= \sum_{i=1}^{n} m'_{i1}e_{i} = M'e_{1}$$

and for all $j \geq 2$:

$$MU^{-1}e_j = Me_j$$

$$= \sum_{i=1}^n m_{ij}e_i$$

$$= \sum_{i=1}^n m'_{ij}e_i = M'e_j$$

Having proved that $MU^{-1}e_j = M'e_j$ for all $j \in \mathbf{N}_n$, we conclude that $MU^{-1} = M'$, or equivalently that multiplying M by U^{-1} from the right, amounts to subtracting C_2 from C_1 .

10. Let $U' = \Sigma_{12}U^{-1}\Sigma_{12}$. Let C_1, \ldots, C_2 be the column vectors of $M \in \mathcal{M}_n(\mathbf{K})$. It follows from 7. and 9. that:

$$MU' = M\Sigma_{12}U^{-1}\Sigma_{12}$$

$$= (C_1, C_2, \dots, C_n)\Sigma_{12}U^{-1}\Sigma_{12}$$

$$= (C_2, C_1, \dots, C_n)U^{-1}\Sigma_{12}$$

$$= (C_2 - C_1, C_1, \dots, C_n)\Sigma_{12}$$

$$= (C_1, C_2 - C_1, \dots, C_n)$$

We conclude that multiplying M by U' from the right, amounts to subtracting C_1 from C_2 .

11. Suppose n=1. It is clear that $\mathcal{M}'_n(\mathbf{K}) \subseteq \mathcal{M}_n(\mathbf{K})$ for all $n \geq 1$, and in particular $\mathcal{M}'_1(\mathbf{K}) \subseteq \mathcal{M}_1(\mathbf{K})$. Suppose $M \in \mathcal{M}_1(\mathbf{K})$. Then $M = (\alpha)$ for some $\alpha \in \mathbf{K}$. However, $(\alpha) = H_{\alpha}$ (one-dimensional). Hence, defining $Q_1 = H_{\alpha}$, we have $Q_1 \in \mathcal{N}_1(\mathbf{K})$ with $M = Q_1$. In particular, M is a finite product of elements of $\mathcal{N}_1(\mathbf{K})$. So $M \in \mathcal{M}'_1(\mathbf{K})$ and we have proved the equality $\mathcal{M}_1(\mathbf{K}) = \mathcal{M}'_1(\mathbf{K})$.

Exercise 1

Exercise 2.

1. Our induction hypothesis is $\mathcal{M}_{n-1}(\mathbf{K}) = \mathcal{M}'_{n-1}(\mathbf{K})$, $n \geq 2$. For all $n \geq 1$, $O_n \in \mathcal{M}_n(\mathbf{K})$ denotes the matrix with all entries equal to $0 \in \mathbf{K}$. Since $O_{n-1} \in \mathcal{M}_{n-1}(\mathbf{K}) = \mathcal{M}'_{n-1}(\mathbf{K})$, O_{n-1} is a finite product of elements of $\mathcal{N}_{n-1}(\mathbf{K})$. Hence, there exist $p \geq 1$ and Q'_1, \ldots, Q'_p elements of $\mathcal{N}_{n-1}(\mathbf{K})$ such that:

$$O_{n-1} = Q_1' \dots Q_p'$$

2. Given $k \in \{1, ..., p\} = \mathbf{N}_p$, we define $Q_k \in \mathcal{M}_n(\mathbf{K})$ by:

$$Q_k \stackrel{ riangle}{=} \left(egin{array}{ccc} & & & 0 \ & Q_k' & & dots \ 0 & \dots & 0 & 1 \end{array}
ight)$$

Since $Q'_k \in \mathcal{N}_{n-1}(\mathbf{K})$, Q'_k can be of three different forms: If Q'_k is of the form H_{α} (of dimension n-1) for some $\alpha \in \mathbf{K}$, it is clear that $Q_k = H_{\alpha}$ (of dimension n). If Q'_k is of the form Σ_{lm} for some $l, m \in \mathbf{N}_{n-1}$, then $Q'_k e_l = e_m$, $Q'_k e_m = e_l$ and $Q'_k e_j = e_j$ for all $j \in \mathbf{N}_{n-1} \setminus \{l, m\}$. Hence, it is clear that $Q_k e_l = e_m$, $Q_k e_m = e_l$ and $Q_k e_j = e_j$ for all $j \in \mathbf{N}_n \setminus \{l, m\}$. So Q_k is of the form Σ_{lm} (of dimension n) for some $l, m \in \mathbf{N}_n$ (in fact, for some $l, m \in \mathbf{N}_{n-1}$). Note that we have used the same notation e_1, \ldots, e_{n-1} and e_1, \ldots, e_n to denote successively the canonical basis of \mathbf{K}^{n-1} and \mathbf{K}^n . Now, if $Q'_k = U$ (of dimension n-1), it is clear that $Q_k = U$ (of dimension n) in the case when $n-1 \geq 2$. In the case when n-1 = 1, we have $Q'_k = (1)$ and consequently $Q_k = I_2 = H_1$ (of dimension 2). In any case, we see that Q_k is an element of $\mathcal{N}_{n-1}(\mathbf{K})$. Now, using 6. and 7. together with block matrix multiplication, we obtain:

which is exactly what we intended to prove.

3. Having proved that:

$$\Sigma_{1n}.Q_1...Q_p.\Sigma_{1n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & O_{n-1} & \\ 0 & & & \end{pmatrix}$$

since H_0 can be written as:

$$H_0 = \begin{pmatrix} 0 & & & & \\ & 1 & 0 & & \\ & 0 & \ddots & \\ & & & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & I_{n-1} & \\ 0 & & & \end{pmatrix}$$

we obtain:

$$H_0 \cdot \Sigma_{1n}.Q_1...Q_p.\Sigma_{1n} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & O_{n-1} & \\ 0 & & & \end{pmatrix} = O_n$$

We have been able to express O_n as a finite product of elements of $\mathcal{N}_n(\mathbf{K})$. We conclude that $O_n \in \mathcal{M}'_n(\mathbf{K})$.

4. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$. We assume that $M \neq O_n$. Then, there exist $k, l \in \mathbf{N}_n$ such that $m_{kl} \neq 0$. From 7. of exercise (1), multiplying M by Σ_{1l} from the right, amounts to interchanging column l with column 1. So m_{kl} appears in the matrix $M\Sigma_{1l}$ as the k-th element of the first column. Multiplying $M\Sigma_{1l}$ by Σ_{1k} from the left, amounts to interchanging row k with row 1. So m_{kl} now appears in the matrix $\Sigma_{1k}M\Sigma_{1l}$ at the intersection of the first row and the first column, i.e. at the top left position. In other words, $\Sigma_{1k}M\Sigma_{1l}$ is of the form:

$$\Sigma_{1k}M\Sigma_{1l} = \begin{pmatrix} m_{kl} & * & \dots & * \\ * & & & \\ \vdots & & * & \\ * & & & \end{pmatrix}$$

Multiplying by $H_{m_{kl}}^{-1}=H_{1/m_{kl}}$ from the left, amounts to multiplying the first row by $1/m_{kl}$. We conclude that:

$$H_{m_{kl}}^{-1} \Sigma_{1k} M \Sigma_{1l} = \begin{pmatrix} 1 & * & \dots & * \\ * & & & \\ \vdots & & * & \\ * & & & \end{pmatrix}$$

5. Suppose we have proved $H_{m_{kl}}^{-1}\Sigma_{1k}M\Sigma_{1l}\in\mathcal{M}_n'(\mathbf{K})$. Then this matrix is a finite product of elements of $\mathcal{N}_n(\mathbf{K})$. In other words, there exist $p\geq 1$ and Q_1,\ldots,Q_p elements of $\mathcal{N}_n(\mathbf{K})$ with:

$$H_{m_{kl}}^{-1} \Sigma_{1k} M \Sigma_{1l} = Q_1 \dots Q_p$$

Since $\Sigma_{1k}^{-1} = \Sigma_{1k}$ and $\Sigma_{1l}^{-1} = \Sigma_{1l}$, we obtain:

$$M = \Sigma_{1k} H_{m_{kl}} Q_1 \dots Q_p \Sigma_{1l}$$

So M is therefore also a finite product of elements of $\mathcal{N}_n(\mathbf{K})$, i.e. $M \in \mathcal{M}'_n(\mathbf{K})$. Hence, in order to prove that $M \in \mathcal{M}'_n(\mathbf{K})$ it is sufficient to prove that $H^{-1}_{m_{kl}} \Sigma_{1k} M \Sigma_{1l}$ is an element of $\mathcal{M}'_n(\mathbf{K})$. It follows from 4. that without loss of generality, we may assume that $m_{11} = 1$.

6. Let $i \in \{2, ..., n\}$ and suppose $m_{i1} \neq 0$. So M is of the form:

$$M = \begin{pmatrix} 1 & * & \dots & * \\ * & & \\ m_{i1} & \leftarrow i & * \\ * & & \end{pmatrix}$$

with $m_{i1} \neq 0$. Since $H_{1/m_{i1}}^{-1} = H_{m_{i1}}$, multiplying M by $H_{1/m_{i1}}^{-1}$ from the left amounts to multiplying the first row of M by m_{i1} . So $H_{1/m_{i1}}^{-1}M$ is of the form:

$$H_{1/m_{i1}}^{-1}M = \begin{pmatrix} m_{i1} & * & \dots & * \\ * & & \\ m_{i1} & \leftarrow i & * \\ * & & \end{pmatrix}$$

Multiplying by Σ_{2i} from the left amounts to interchanging row 2 with row i. Multiplying by U^{-1} from the left amounts to subtracting row 1 from row 2. Multiplying once more by Σ_{2i} from the left amounts to switching back row 2 and row i. It follows that $\Sigma_{2i}U^{-1}\Sigma_{2i}H_{1/m_{i1}}^{-1}M$ is of the form:

$$\Sigma_{2i}U^{-1}\Sigma_{2i}H_{1/m_{i1}}^{-1}M = \begin{pmatrix} m_{i1} & * & \dots & * \\ * & & \\ 0 & \leftarrow i & * \\ * & & \end{pmatrix}$$

Multiplying once more by $H_{m_{i1}}^{-1} = H_{1/m_{i1}}$ from the left amounts to multiplying the first row by $1/m_{i1}$. We conclude that:

$$H_{m_{i1}}^{-1} \Sigma_{2i} U^{-1} \Sigma_{2i} H_{1/m_{i1}}^{-1} M = \begin{pmatrix} 1 & * & \dots & * \\ * & & & \\ 0 & \leftarrow i & * \\ * & & & \end{pmatrix}$$

7. If we prove that the matrix:

$$H_{m_{i1}}^{-1} \Sigma_{2i} U^{-1} \Sigma_{2i} H_{1/m_{i1}}^{-1} M = \begin{pmatrix} 1 & * & \dots & * \\ * & & & \\ 0 & \leftarrow i & * \\ * & & & \end{pmatrix}$$

is a finite product of elements of $\mathcal{N}_n(\mathbf{K})$, then clearly M is also a finite product of elements of $\mathcal{N}_n(\mathbf{K})$. Hence in order to show that $M \in \mathcal{M}'_n(\mathbf{K})$, without loss of generality we may assume that $m_{i1} = 0$. This being true of all $i \in \{2, \ldots, n\}$, without loss of generality we may assume that M is of the form:

$$M = \begin{pmatrix} 1 & * & \dots & * \\ 0 & & & \\ \vdots & & * & \\ 0 & & & \end{pmatrix}$$

8. So we now want to prove that $M \in \mathcal{M}'_n(\mathbf{K})$, where:

$$M = \begin{pmatrix} 1 & * & \dots & * \\ 0 & & & \\ \vdots & & * & \\ 0 & & & \end{pmatrix}$$

Let $j \in \{2, ..., n\}$ and suppose that $m_{1j} \neq 0$. From 5. of exercise (1), multiplying M by $H_{1/m_{1j}}^{-1} = H_{m_{1j}}$ from the right, amounts to multiplying the first column of M by m_{1j} . So $MH_{1/m_{1j}}^{-1}$ is of the form:

$$MH_{1/m_{1j}}^{-1} = \begin{pmatrix} m_{1j} & * & m_{1j} & * \\ 0 & & j \uparrow \\ \vdots & & * \\ 0 & & \end{pmatrix}$$

Multiplying by Σ_{2j} from the right amounts to interchanging column 2 with column j. From 10. of exercise (1), multiplying by $U' = \Sigma_{12}U^{-1}\Sigma_{12}$ from the right amounts to subtracting column 1 from column 2. Multiplying by Σ_{2j} once more from the right, amounts to switching back column 2 and column j. It follows that $MH_{1/m_{1j}}^{-1}\Sigma_{2j}U'\Sigma_{2j}$ is of the form:

$$MH_{1/m_{1j}}^{-1}\Sigma_{2j}U'\Sigma_{2j} = \begin{pmatrix} m_{1j} & * & 0 & * \\ 0 & & j \uparrow & \\ \vdots & & * & \\ 0 & & & \end{pmatrix}$$

Multiplying once more by $H_{m_{1j}}^{-1} = H_{1/m_{1j}}$ from the right:

$$MH_{1/m_{1j}}^{-1}\Sigma_{2j}U'\Sigma_{2j}H_{m_{1j}}^{-1} = \begin{pmatrix} 1 & * & 0 & * \\ 0 & j \uparrow & \\ \vdots & * & \\ 0 & & \end{pmatrix}$$

Since $U' = \Sigma_{12}U^{-1}\Sigma_{12}$, it is clear that in order to prove that M is a finite product of elements of $\mathcal{N}_n(\mathbf{K})$, it is sufficient to prove that the above matrix is itself a finite product of elements of $\mathcal{N}_n(\mathbf{K})$. Hence, in order to prove that $M \in \mathcal{M}'_n(\mathbf{K})$, without loss of generality we may assume that $m_{1j} = 0$. This being true for all $j \in \{2, ..., n\}$, without loss of generality we may assume that M is of the form:

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & M' & \\ 0 & & & \end{pmatrix}$$

where $M' \in \mathcal{M}_{n-1}(\mathbf{K})$.

9. So we now assume that $M \in \mathcal{M}_n(\mathbf{K})$ is of the form:

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & M' & \\ 0 & & & \end{pmatrix}$$

and we shall prove that $M \in \mathcal{M}'_n(\mathbf{K})$, i.e. that M can be expressed as a finite product of elements of $\mathcal{N}_n(\mathbf{K})$. Now since $M' \in \mathcal{M}_{n-1}(\mathbf{K})$, and $\mathcal{M}_{n-1}(\mathbf{K}) = \mathcal{M}'_{n-1}(\mathbf{K})$ being true from our induction hypothesis, M' can be expressed as a finite product of elements of $\mathcal{N}_{n-1}(\mathbf{K})$. Hence, there exist $p \geq 1$ and Q'_1, \ldots, Q'_p elements of $\mathcal{N}_{n-1}(\mathbf{K})$ such that:

$$M' = Q_1' \dots Q_p'$$

For all $k \in \mathbf{N}_p$, we define:

$$Q_k \stackrel{\triangle}{=} \left(egin{array}{ccc} & & & 0 \\ & Q_k' & & dots \\ & & & 0 \\ 0 & \dots & 0 & 1 \end{array}
ight)$$

Following an argument identical to that contained in 2., each Q_k is an element of $\mathcal{N}_n(\mathbf{K})$. Furthermore, we have:

$$Q_1 \dots Q_p = \begin{pmatrix} & & & 0 \\ & Q_1' \dots Q_p' & & \vdots \\ & & & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

www.probability.net

$$= \begin{pmatrix} & & & 0 \\ & M' & \vdots \\ & & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

and consequently:

$$\Sigma_{1n}Q_1\dots Q_p\Sigma_{1n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & M' & \\ 0 & & & \end{pmatrix} = M$$

It follows that M is indeed a finite product of elements of $\mathcal{N}_n(\mathbf{K})$, and we have proved that $M \in \mathcal{M}'_n(\mathbf{K})$. In 11. of exercise (1), we have proved that $\mathcal{M}_1(\mathbf{K}) = \mathcal{M}'_1(\mathbf{K})$. Having assumed that $n \geq 2$ and $\mathcal{M}_{n-1}(\mathbf{K}) = \mathcal{M}'_{n-1}(\mathbf{K})$, we have shown that $O_n \in \mathcal{M}'_n(\mathbf{K})$, and furthermore that if $M \neq O_n$, then M is also an element of $\mathcal{M}'_n(\mathbf{K})$. This shows that the equality $\mathcal{M}_n(\mathbf{K}) = \mathcal{M}'_n(\mathbf{K})$ holds, and completes our induction argument. We conclude that $\mathcal{M}_n(\mathbf{K}) = \mathcal{M}'_n(\mathbf{K})$ is true for all $n \geq 1$. In particular, it is true for all $n \geq 2$, which is the statement of theorem (103).

Exercise 2

Exercise 3.

1. Let $B \in \mathcal{F}'$ and $(B_n)_{n\geq 1}$ be a measurable partition of B, i.e from definition (91), a sequence of pairwise disjoint elements of \mathcal{F}' such that $B = \bigcup_{n\geq 1} B_n$. Then, we claim that $(X^{-1}(B_n))_{n\geq 1}$ is a measurable partition of $X^{-1}(B)$. Since X is measurable, $X^{-1}(B)$ and each $X^{-1}(B_n)$ is an element of \mathcal{F} . So we only need to prove that:

$$X^{-1}(B) = \biguplus_{n=1}^{+\infty} X^{-1}(B_n)$$

Since $B_n \subseteq B$ for all $n \ge 1$, it is clear that $X^{-1}(B_n) \subseteq X^{-1}(B)$, which establishes the inclusion \supseteq . Let $\omega \in X^{-1}(B)$. Then $X(\omega) \in B = \bigcup_{n \ge 1} B_n$. There exists $n \ge 1$ such that $X(\omega) \in B_n$, i.e. $\omega \in X^{-1}(B_n)$. This proves the inclusion \subseteq . In order to show that the $X^{-1}(B_n)$'s are pairwise disjoint, suppose we have $\omega \in X^{-1}(B_n) \cap X^{-1}(B_m)$. Then $X(\omega) \in B_n \cap B_m$, and since the B_n 's are pairwise disjoint, we conclude that n = m.

2. Let μ be a measure on (Ω, \mathcal{F}) . Then $\mu : \mathcal{F} \to [0, +\infty]$ is a map such that $\mu(\emptyset) = 0$, and which is countably additive. Since X is measurable, for all $B \in \mathcal{F}'$, $X^{-1}(B)$ is an element of \mathcal{F} , and:

$$\mu^X(B) \stackrel{\triangle}{=} \mu(X^{-1}(B))$$

is therefore well-defined. So $\mu^X: \mathcal{F}' \to [0, +\infty]$ is a well-defined map. Since $X^{-1}(\emptyset) = \emptyset$, it is clear that $\mu^X(\emptyset) = 0$. To show that μ^X is a

measure on (Ω', \mathcal{F}') , we only need to show that μ^X is countably additive. Let $(B_n)_{n\geq 1}$ be a sequence of pairwise disjoint elements of \mathcal{F}' , and B= $\bigoplus_{n\geq 1}B_n$. Then:

$$X^{-1}(B) = \biguplus_{n=1}^{+\infty} X^{-1}(B_n)$$

and consequently, μ being countable additive:

$$\mu^{X}(B) = \mu(X^{-1}(B))$$

$$= \sum_{n=1}^{+\infty} \mu(X^{-1}(B_n))$$

$$= \sum_{n=1}^{+\infty} \mu^{X}(B_n)$$

So μ^X is countably additive, and we have proved that μ^X is indeed a well-defined measure on (Ω', \mathcal{F}') .

3. Suppose that μ is a complex measure on (Ω, \mathcal{F}) . Then from definition (92), $\mu: \mathcal{F} \to \mathbf{C}$ is a map such that for any $B \in \mathcal{F}$ and $(B_n)_{n \geq 1}$ measurable partition of B, the series $\sum_{n \geq 1} \mu(B_n)$ converges to $\mu(B)$. Since X is measurable, for all $B \in \mathcal{F}'$, $X^{-1}(B) \in \mathcal{F}$ and consequently:

$$\mu^X(B) \stackrel{\triangle}{=} \mu(X^{-1}(B))$$

is well-defined. So $\mu^X : \mathcal{F}' \to \mathbf{C}$ is a well-defined map. Let $B \in \mathcal{F}'$ and $(B_n)_{n \geq 1}$ be a measurable partition of B. Then $(X^{-1}(B_n))_{n \geq 1}$ is a measurable partition of $X^{-1}(B)$, and so:

$$\mu^{X}(B) = \mu(X^{-1}(B))$$

$$= \lim_{N \to +\infty} \sum_{n=1}^{N} \mu(X^{-1}(B_n))$$

$$= \lim_{N \to +\infty} \sum_{n=1}^{N} \mu^{X}(B_n)$$

Hence, the series $\sum_{n\geq 1} \mu^X(B_n)$ converges to $\mu^X(B)$, and μ^X is indeed a well-defined complex measure on (Ω', \mathcal{F}') .

4. Suppose μ is a complex measure on (Ω, \mathcal{F}) . Let $B \in \mathcal{F}'$ and $(B_n)_{n\geq 1}$ be a measurable partition of B. Then, $(X^{-1}(B_n))_{n\geq 1}$ is a measurable partition of $X^{-1}(B)$. From definition (94), since $|\mu|(X^{-1}(B))$ is an upper-bound of all sums $\sum_{n\geq 1} |\mu(E_n)|$, as $(E_n)_{n\geq 1}$ ranges through all measurable partitions of $X^{-1}(B)$:

$$\sum_{n=1}^{+\infty} |\mu^X(B_n)| = \sum_{n=1}^{+\infty} |\mu(X^{-1}(B_n))|$$

$$\leq |\mu|(X^{-1}(B)) = |\mu|^X(B)$$

So $|\mu|^X(B)$ is an upper-bound of all sums $\sum_{n\geq 1} |\mu^X(B_n)|$, as $(B_n)_{n\geq 1}$ ranges through all measurable partitions of B. Since $|\mu^X|(B)$ is the smallest of such upper-bounds, we obtain:

$$|\mu^X|(B) \le |\mu|^X(B)$$

This being true for all $B \in \mathcal{F}'$, we have $|\mu^X| \leq |\mu|^X$.

5. Let $Y: (\Omega', \mathcal{F}') \to (\Omega'', \mathcal{F}'')$ be a measurable map, where $(\Omega'', \mathcal{F}'')$ is another measurable space. Let μ be a (possibly complex) measure on (Ω, \mathcal{F}) . Then $X(\mu)$ is a well-defined (possibly complex) measure on (Ω', \mathcal{F}') . So $Y(X(\mu))$ is a well-defined (possibly complex) measure on $(\Omega'', \mathcal{F}'')$. For all $B \in \mathcal{F}''$:

$$Y(X(\mu))(B) = X(\mu)(Y^{-1}(B))$$

= $\mu(X^{-1}(Y^{-1}(B)))$
= $\mu((Y \circ X)^{-1}(B))$
= $(Y \circ X)(\mu)(B)$

This being true for all $B \in \mathcal{F}''$, $Y(X(\mu)) = (Y \circ X)(\mu)$. From definition (123), we obtain immediately:

$$(\mu^X)^Y = Y(\mu^X) = Y(X(\mu)) = (Y \circ X)(\mu) = \mu^{(Y \circ X)}$$

Exercise 3

Exercise 4.

- 1. Let $a \in \mathbf{R}^n$ and $\tau_a : \mathbf{R}^n \to \mathbf{R}^n$ be the associated translation mapping. Since $\|\tau_a(x) \tau_a(y)\| = \|x y\|$ for all $x, y \in \mathbf{R}^n$, it is clear that τ_a is continuous. It is therefore Borel measurable.
- 2. Let μ be a (possibly complex) measure on \mathbf{R}^n . Let $a \in \mathbf{R}^n$. Since $\tau_a : \mathbf{R}^n \to \mathbf{R}^n$ is measurable, $\tau_a(\mu)$ is a well-defined (possibly complex) measure on \mathbf{R}^n .
- 3. Let $a \in \mathbf{R}^n$ and $u, v \in \mathbf{R}^n$ with $u_i \leq v_i$ for all $i \in \mathbf{N}_n$. Then:

$$\tau_a(dx) \left(\prod_{i=1}^n [u_i, v_i] \right) = dx \left(\tau_a^{-1} \left(\prod_{i=1}^n [u_i, v_i] \right) \right)$$

$$= dx \left(\prod_{i=1}^n [u_i - a_i, v_i - a_i] \right)$$

$$= \prod_{i=1}^n (v_i - u_i)$$

$$= dx \left(\prod_{i=1}^n [u_i, v_i] \right)$$

From the uniqueness property of definition (63), $\tau_a(dx) = dx$.

4. Having proved that $\tau_a(dx) = dx$ for all $a \in \mathbf{R}^n$, we conclude from definition (124) that the Lebesgue measure dx on \mathbf{R}^n is invariant by translation.

Exercise 4

Exercise 5.

- 1. Let $\alpha > 0$, and $k_{\alpha} : \mathbf{R}^n \to \mathbf{R}^n$ be defined by $k_{\alpha}(x) = \alpha x$. Since $||k_{\alpha}(x) k_{\alpha}(y)|| = \alpha ||x y||$ for all $x, y \in \mathbf{R}^n$, it is clear that k_{α} is continuous and consequently Borel measurable.
- 2. Since k_{α} is measurable, $k_{\alpha}(dx)$ is a well-defined measure on \mathbf{R}^{n} , and so is $\alpha^{n}k_{\alpha}(dx)$. Let $u, v \in \mathbf{R}^{n}$ with $u_{i} \leq v_{i}$ for all $i \in \mathbf{N}_{n}$:

$$\alpha^{n} k_{\alpha}(dx) \left(\prod_{i=1}^{n} [u_{i}, v_{i}] \right) = \alpha^{n} dx \left(k_{\alpha}^{-1} \left(\prod_{i=1}^{n} [u_{i}, v_{i}] \right) \right)$$

$$= \alpha^{n} dx \left(\prod_{i=1}^{n} \left[\frac{u_{i}}{\alpha}, \frac{v_{i}}{\alpha} \right] \right)$$

$$= \alpha^{n} \prod_{i=1}^{n} \left(\frac{v_{i}}{\alpha} - \frac{u_{i}}{\alpha} \right)$$

$$= \prod_{i=1}^{n} (v_{i} - u_{i})$$

$$= dx \left(\prod_{i=1}^{n} [u_{i}, v_{i}] \right)$$

From the uniqueness property of definition (63), $\alpha^n k_\alpha(dx) = dx$. It follows that $k_\alpha(dx) = \alpha^{-n} dx$.

Exercise 5

Exercise 6. Let $X:(\Omega,\mathcal{F})\to(\Omega',\mathcal{F}')$ be a measurable map, where (Ω,\mathcal{F}) and (Ω',\mathcal{F}') are measurable spaces. Let μ be a measure on (Ω,\mathcal{F}) . Let $f:(\Omega',\mathcal{F}')\to[0,+\infty]$ be a non-negative and measurable map. We claim that:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega'} f dX(\mu) \tag{2}$$

Note that X being measurable, $X(\mu)$ is a well-defined measure on (Ω', \mathcal{F}') and consequently the right-hand-side of (2) is perfectly meaningful. Furthermore, $f \circ X$ is a non-negative and measurable map on (Ω, \mathcal{F}) and the left-hand-side of (2) is also perfectly meaningful. In the case when $f = 1_A$ for some $A \in \mathcal{F}'$, equation (2) reduces to:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega} 1_A \circ X d\mu$$
$$= \int_{\Omega} 1_{X^{-1}(A)} d\mu$$

www.probability.net

$$= \mu(X^{-1}(A))$$

$$= X(\mu)(A)$$

$$= \int_{\Omega'} 1_A dX(\mu)$$

$$= \int_{\Omega'} f dX(\mu)$$

which is true by virtue of $X(\mu)(A) = \mu(X^{-1}(A))$ of definition (123). When $f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$ is a simple function on (Ω', \mathcal{F}') , we have:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega} \left(\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}} \right) \circ X d\mu$$

$$= \int_{\Omega} \left(\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}} \circ X \right) d\mu$$

$$= \sum_{i=1}^{n} \alpha_{i} \int_{\Omega} 1_{A_{i}} \circ X d\mu$$

$$= \sum_{i=1}^{n} \alpha_{i} \int_{\Omega'} 1_{A_{i}} dX(\mu)$$

$$= \int_{\Omega'} \left(\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}} \right) dX(\mu)$$

$$= \int_{\Omega'} f dX(\mu)$$

Hence equation (2) is also true in the case when f is a simple function on (Ω', \mathcal{F}') . We now assume that f is an arbitrary non-negative and measurable function on (Ω', \mathcal{F}') . From theorem (18), there exists a sequence $(s_n)_{n\geq 1}$ of simple functions on (Ω', \mathcal{F}') such that $s_n \uparrow f$, i.e. $s_n \leq s_{n+1} \leq f$ for all $n \geq 1$ and $s_n(\omega) \to f(\omega)$ for all $\omega \in \Omega'$. Then it is clear that $s_n \circ X \uparrow f \circ X$, and from the monotone convergence theorem (19), we obtain:

$$\int_{\Omega} f \circ X d\mu = \lim_{n \to +\infty} \int_{\Omega} s_n \circ X d\mu$$

$$= \lim_{n \to +\infty} \int_{\Omega'} s_n dX(\mu)$$

$$= \int_{\Omega'} f dX(\mu)$$

This completes the proof of theorem (104).

Exercise 6

Exercise 7. Let $X:(\Omega,\mathcal{F})\to (\Omega',\mathcal{F}')$ be a measurable map, where (Ω,\mathcal{F}) and (Ω',\mathcal{F}') are measurable spaces. Let μ be a measure on (Ω,\mathcal{F}) . Let $f:(\Omega',\mathcal{F}')\to (\mathbf{C},\mathcal{B}(\mathbf{C}))$ be a measurable map. Then, the map $f\circ X:(\Omega,\mathcal{F})\to (\mathbf{C},\mathcal{B}(\mathbf{C}))$ is

also measurable. Applying theorem (104) to the non-negative and measurable map |f|, we obtain:

$$\begin{split} \int_{\Omega} |f \circ X| d\mu &= \int_{\Omega} |f| \circ X d\mu \\ &= \int_{\Omega'} |f| dX(\mu) \end{split}$$

It follows that $\int_{\Omega} |f \circ X| d\mu < +\infty \Leftrightarrow \int_{\Omega'} |f| dX(\mu) < +\infty$, or equivalently, all maps involved being measurable:

$$f \circ X \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \Leftrightarrow f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', X(\mu))$$

We now assume that $f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', X(\mu))$. Let u = Re(f) and v = Im(f). Then $f = u^+ - u^- + i(v^+ - v^-)$, and applying theorem (104) to each non-negative and measurable map u^{\pm}, v^{\pm} , we obtain:

$$\begin{split} \int_{\Omega} f \circ X d\mu &= \int_{\Omega} [u^+ - u^- + i(v^+ - v^-)] \circ X d\mu \\ &= \int_{\Omega} u^+ \circ X d\mu - \int_{\Omega} u^- \circ X d\mu \\ &+ i \left(\int_{\Omega} v^+ \circ X d\mu - \int_{\Omega} v^- \circ X d\mu \right) \\ &= \int_{\Omega'} u^+ dX(\mu) - \int_{\Omega'} u^- dX(\mu) \\ &+ i \left(\int_{\Omega'} v^+ dX(\mu) - \int_{\Omega'} v^- dX(\mu) \right) \\ &= \int_{\Omega'} [u^+ - u^- + i(v^+ - v^-)] dX(\mu) \\ &= \int_{\Omega'} f dX(\mu) \end{split}$$

Note that this derivation is perfectly legitimate, as all the integrals involved are finite. This completes the proof of theorem (105).

Exercise 7

Exercise 8. Let $X:(\Omega,\mathcal{F})\to (\Omega',\mathcal{F}')$ be a measurable map, where (Ω,\mathcal{F}) and (Ω',\mathcal{F}') are measurable spaces. Let μ be a complex measure on (Ω,\mathcal{F}) . Let $f:(\Omega',\mathcal{F}')\to (\mathbf{C},\mathcal{B}(\mathbf{C}))$ be measurable. From 4. of exercise (3), we have $|\mu^X|\leq |\mu|^X$, or equivalently $|X(\mu)|\leq X(|\mu|)$. Using exercise (18) of Tutorial 12 together with theorem (104):

$$\begin{split} \int_{\Omega'} |f| d|X(\mu)| & \leq & \int_{\Omega'} |f| dX(|\mu|) \\ & = & \int_{\Omega} |f| \circ X d|\mu| \\ & = & \int_{\Omega} |f \circ X| d|\mu| \end{split}$$

So $\int_{\Omega} |f \circ X| d|\mu| < +\infty \Rightarrow \int_{\Omega'} |f| d|X(\mu)| < +\infty$ and consequently:

$$f \circ X \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \Rightarrow f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', X(\mu))$$

We now assume that $f \circ X \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Let $\mu_1 = Re(\mu)$ and $\mu_2 = Im(\mu)$. Then, we have $\mu = \mu_1^+ - \mu_1^- + i(\mu_2^+ - \mu_2^-)$, and from exercise (19) of Tutorial 12, $f \circ X \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu_k^{\pm})$, k = 1, 2, with:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega} f \circ X d\mu_{1}^{+} - \int_{\Omega} f \circ X d\mu_{1}^{-} + i \left(\int_{\Omega} f \circ X d\mu_{2}^{+} - \int_{\Omega} f \circ X d\mu_{2}^{-} \right) \tag{3}$$

Applying theorem (105) to each measure μ_k^{\pm} , we obtain:

$$\int_{\Omega} f \circ X d\mu_k^{\pm} = \int_{\Omega'} f dX(\mu_k^{\pm}) , \quad k = 1, 2$$

$$\tag{4}$$

Moreover, for all $B \in \mathcal{F}'$, we have:

$$X(\mu)(B) = \mu(X^{-1}(B))$$

$$= \mu_1^+(X^{-1}(B)) - \mu_1^-(X^{-1}(B))$$

$$+ i(\mu_2^+(X^{-1}(B)) - \mu_2^-(X^{-1}(B)))$$

$$= X(\mu_1^+)(B) - X(\mu_1^-)(B) + i(X(\mu_2^+)(B) - X(\mu_2^-)(B))$$

and consequently:

$$X(\mu) = X(\mu_1^+) - X(\mu_1^-) + i(X(\mu_2^+) - X(\mu_2^-))$$

Since $f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', X(\mu_k^{\pm}))$, from exercise (17) of Tutorial 12:

$$\int_{\Omega'} f dX(\mu) = \int_{\Omega'} f dX(\mu_1^+) - \int_{\Omega'} f dX(\mu_1^-) + i \left(\int_{\Omega'} f dX(\mu_2^+) - \int_{\Omega'} f dX(\mu_2^-) \right)$$
(5)

From (3), (4) and (5), we conclude that:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega'} f dX(\mu)$$

which completes the proof of theorem (106).

Exercise 8

Exercise 9.

1. Let $X:(\Omega,\mathcal{F})\to (\mathbf{R},\mathcal{B}(\mathbf{R}))$ be a random variable with distribution $\mu=X(P)$ under P, where (Ω,\mathcal{F},P) is a probability space. Recall that the notions of probability space, random variable and expectation are defined

in (70), (71) and (72) respectively. Let $i : \mathbf{R} \to \mathbf{R}$ be the identity mapping. Applying theorem (104), we have:

$$\begin{split} \int_{\Omega} |X| dP &= \int_{\Omega} |i \circ X| dP \\ &= \int_{\Omega} |i| \circ X dP \\ &= \int_{\mathbf{R}} |i| dX(P) \\ &= \int_{-\infty}^{+\infty} |x| d\mu(x) \end{split}$$

So X is integrable, if and only if $\int_{\mathbf{R}} |x| d\mu(x) < +\infty$.

2. If $\int |X|dP < +\infty$, applying theorem (105) we obtain:

$$\begin{split} E[X] &= \int_{\Omega} X dP &= \int_{\Omega} i \circ X dP \\ &= \int_{\mathbf{R}} i dX(P) = \int_{-\infty}^{+\infty} x d\mu(x) \end{split}$$

3. Let $f: x \to x^2$. From theorem (104), we have:

$$\begin{split} E[X^2] &= \int_{\Omega} X^2 dP &= \int_{\Omega} f \circ X dP \\ &= \int_{\mathbb{R}} f dX(P) = \int_{-\infty}^{+\infty} x^2 d\mu(x) \end{split}$$

Exercise 9

Exercise 10.

1. Let μ be a locally finite measure on \mathbf{R}^n , which is invariant by translation. Given $a \in \mathbf{R}^n$, let $Q_a = [0, a_1[\times \ldots \times [0, a_n[$. Let $K_a = [0, a_1] \times \ldots \times [0, a_n[$. Then K_a is a closed subset of \mathbf{R}^n . Indeed, it can be written as $K_a = \bigcap_{i=1}^n p_i^{-1}([0, a_i])$, where $p_i : \mathbf{R}^n \to \mathbf{R}$ denotes the *i*-th canonical projection, which is a continuous map. Since $[0, a_i]$ is closed in \mathbf{R} , each $p_i^{-1}([0, a_i])$ is closed in \mathbf{R}^n , and K_a is closed. Moreover, for all $x, y \in K_a$:

$$||x - y|| \le ||x|| + ||y|| \le 2||a||$$

Taking the supremum as $x, y \in K_a$, we obtain $\delta(K_a) \leq 2||a||$, and in particular $\delta(K_a) < +\infty$, where $\delta(K_a)$ is the diameter of K_a , as defined in (68). So K_a is a closed and bounded subset of \mathbf{R}^n . From theorem (48), K_a is a compact subset of \mathbf{R}^n . Hence, from exercise (10) of Tutorial 13, since μ is locally finite, we have $\mu(K_a) < +\infty$. We conclude from $Q_a \subseteq K_a$ that:

$$\mu(Q_a) \le \mu(K_a) < +\infty$$

In particular, if $Q = Q_{(1,...,1)}$ then $\mu(Q) < +\infty$.

2. Let $p = (p_1, \ldots, p_n)$ where $p_i \in \mathbf{N}^*$ for all $i \in \mathbf{N}_n$. We claim:

$$Q_p = \biguplus_{k \in \mathbf{N}^n} [k_1, k_1 + 1[\times \dots \times [k_n, k_n + 1[$$

 $0 \le k_i < p_i$

Let $k \in \mathbf{N}^n$ with $0 \le k_i < p_i$ for all $i \in \mathbf{N}_n$. Let $x \in \mathbf{R}^n$ and suppose that $k_i \le x_i < k_i + 1$ for all $i \in \mathbf{N}_n$. Then, we have:

$$0 \le k_i \le x_i < k_i + 1 \le p_i$$
, $\forall i \in \mathbf{N}_n$

So in particular $x \in Q_p$. This shows the inclusion \supseteq . To show the reverse inclusion, suppose $x \in Q_p$. Given $i \in \mathbf{N}_n$, consider the set $X_i = \{k \in \mathbf{N} : 0 \le x_i < k+1\}$. Since $0 \le x_i < p_i$ and $p_i \ge 1$, it is clear that $p_i - 1 \in X_i$. So X_i is a non-empty subset of \mathbf{N} which therefore has a smallest element $k_i \le p_i - 1$. Defining $k = (k_1, \dots, k_n) \in \mathbf{N}^n$, we have $0 \le k_i < p_i$ for all $i \in \mathbf{N}_n$, and furthermore:

$$k_i \le x_i < k_i + 1$$
, $\forall i \in \mathbf{N}_n$

This shows the inclusion \subseteq . It remains to show that the above union is indeed a union of pairwise disjoint sets. Let $k, k' \in \mathbb{N}^n$ and suppose that $x \in \mathbb{R}^n$ is such that:

$$x \in \left(\prod_{i=1}^{n} [k_i, k_i + 1]\right) \cap \left(\prod_{i=1}^{n} [k'_i, k'_i + 1]\right)$$

Then for all $i \in \mathbf{N}_n$, $x_i \in [k_i, k_i + 1] \cap [k'_i, k'_i + 1]$ and consequently $k_i = k'_i$. So k = k'.

3. For all $k \in \mathbf{N}^n$ with $0 \le k_i < p_i$, define:

$$A_k = [k_1, k_1 + 1] \times \ldots \times [k_n, k_n + 1]$$

Let $\tau_k : \mathbf{R}^n \to \mathbf{R}^n$ be the translation mapping of vector k, defined by $\tau_k(x) = k + x$ for all $x \in \mathbf{R}^n$. Since μ is invariant by translation, $\tau_k(\mu) = \mu$ and consequently:

$$\mu(A_k) = \tau_k(\mu)(A_k) = \mu(\tau_k^{-1}(A_k)) = \mu(\{\tau_k \in A_k\}) = \mu(\{x : k_i \le k_i + x_i < k_i + 1, \forall i \in \mathbf{N}^n\}) = \mu(\{x : 0 \le x_i < 1, \forall i \in \mathbf{N}_n\}) = \mu(Q)$$

Having proved in 2 that $Q_p = \bigoplus_k A_k$, we obtain:

$$\mu(Q_p) = \sum_k \mu(A_k) = \sum_k \mu(Q) = p_1 \dots p_n \mu(Q)$$

where we have used the fact that:

$$\operatorname{card}\{k \in \mathbf{N}^n : 0 \le k_i < p_i, \forall i \in \mathbf{N}_n\} = p_1 \dots p_n$$

4. Let $q_1, \ldots, q_n \ge 1$ be positive integers. We claim that:

$$Q_p = \biguplus_{k \in \mathbf{N}^n} \left[\frac{k_1 p_1}{q_1}, \frac{(k_1 + 1)p_1}{q_1} \right[\times \dots \times \left[\frac{k_n p_n}{q_n}, \frac{(k_n + 1)p_n}{q_n} \right] \\ 0 \le k_i < q_i$$

Let $k \in \mathbf{N}^n$ with $0 \le k_i < q_i$ for all $i \in \mathbf{N}_n$. Let $x \in \mathbf{R}^n$ with:

$$\frac{k_i p_i}{q_i} \le x_i < \frac{(k_i + 1)p_i}{q_i} , \ \forall i \in \mathbf{N}_n$$

Then in particular $0 \le x_i < p_i$ for all *i*'s and consequently $x \in Q_p$. This shows the inclusion \supseteq . To show the reverse inclusion, suppose $x \in Q_p$. Given $i \in \mathbf{N}_n$, consider the set:

$$X_i = \left\{ k \in \mathbf{N} : x_i < \frac{(k+1)p_i}{q_i} \right\}$$

Since $0 \le x_i < p_i$ and $q_i \ge 1$, it is clear that $q_i - 1 \in X_i$. So X_i is a non-empty subset of \mathbf{N} , which therefore has a smallest element $k_i \le q_i - 1$. Defining $k = (k_1, \ldots, k_n) \in \mathbf{N}^n$, it is clear that $0 \le k_i < q_i$ for all $i \in \mathbf{N}_n$ and furthermore:

$$\frac{k_i p_i}{q_i} \le x_i < \frac{(k_i + 1)p_i}{q_i} , \ \forall i \in \mathbf{N}_n$$

This shows the inclusion \subseteq . It remains to show that the above union is indeed a union a pairwise disjoint sets. But if $k, k' \in \mathbb{N}^n$ are such that there exists $x \in \mathbb{R}^n$ with:

$$x_i \in \left[\frac{k_i p_i}{q_i}, \frac{(k_i + 1)p_i}{q_i}\right] \cap \left[\frac{k_i' p_i}{q_i}, \frac{(k_i' + 1)p_i}{q_i}\right]$$

for all $i \in \mathbf{N}_n$, then $k_i = k'_i$ for all i's and consequently k = k'.

5. Given $i \in \mathbf{N}_n$, define $r_i = p_i/q_i$. Let $r = (r_1, \dots, r_n)$. Given $k \in \mathbf{N}^n$ with $0 \le k_i < q_i$ for all $i \in \mathbf{N}_n$, define:

$$A_k = [k_1r_1, (k_1+1)r_1[\times \ldots \times [k_nr_n, (k_n+1)r_n[$$

Let $\tau: \mathbf{R}^n \to \mathbf{R}^n$ be the translation mapping associated with the vector $u = (k_1 r_1, \dots, k_n r_n)$, and defined by $\tau(x) = u + x$ for all $x \in \mathbf{R}^n$. Since μ is invariant by translation, we have $\tau(\mu) = \mu$, and consequently:

$$\mu(A_k) = \tau(\mu)(A_k) = \mu(\tau^{-1}(A_k)) = \mu(\{\tau \in A_k\}) = \mu(\{x : k_i r_i \le k_i r_i + x_i < (k_i + 1)r_i, \forall i \in \mathbf{N}_n\})$$

$$= \mu(\{x : 0 \le x_i < r_i, \forall i \in \mathbf{N}_n\})$$

= $\mu(Q_r)$

Having proved in 4. that $Q_p = \bigoplus_k A_k$, we obtain:

$$\mu(Q_p) = \sum_k \mu(A_k) = \sum_k \mu(Q_r) = q_1 \dots q_n \mu(Q_r)$$

where we have used the fact that:

$$\operatorname{card}\{k \in \mathbf{N}^n : 0 \le k_i < q_i, \forall i \in \mathbf{N}_n\} = q_1 \dots q_n$$

Hence, we have proved that:

$$\mu(Q_p) = q_1 \dots q_n \mu(Q_{(p_1/q_1,\dots,p_n/q_n)})$$

6. Let $r \in (\mathbf{Q}^+)^n$. We claim that:

$$\mu(Q_r) = r_1 \dots r_n \mu(Q) \tag{6}$$

If $r_i = 0$ for some $i \in \mathbf{N}_n$, then it is clear that $Q_r = \emptyset$ and (6) is satisfied. So we assume that $r_i > 0$ for all $i \in \mathbf{N}_n$. There exist integers $p_1, \ldots, p_n \ge 1$ and $q_1, \ldots, q_n \ge 1$ such that $r_i = p_i/q_i$ for all $i \in \mathbf{N}_n$. Using 5. and 3. we obtain:

$$\mu(Q_r) = \frac{\mu(Q_p)}{q_1 \dots q_n} = \frac{p_1 \dots p_n}{q_1 \dots q_n} \mu(Q) = r_1 \dots r_n \mu(Q)$$

which establishes our claim of equation (6).

7. Let $a \in (\mathbf{R}^+)^n$. We claim that:

$$\mu(Q_a) = a_1 \dots a_n \mu(Q) \tag{7}$$

If $a_i = 0$ for some $i \in \mathbf{N}_n$, then (7) is obviously true. So we assume that $a_i > 0$ for all $i \in \mathbf{N}_n$. Let $(r^p)_{p \geq 1}$ be a sequence in $(\mathbf{Q}^+)^n$ such that $r_i^p \uparrow \uparrow a_i$ for all $i \in \mathbf{N}_n$, i.e. $r_i^p \leq r_i^{p+1} < a_i$ for all $p \geq 1$ and $r_i^p \to a_i$ as $p \to +\infty$. The map $\phi : \mathbf{R}^n \to \mathbf{R}$ defined by $\phi(x) = x_1 \dots x_n$ can be written as $\phi = p_1 \dots p_n$ where $p_i : \mathbf{R}^n \to \mathbf{R}$ is the *i*-th canonical projection. Since each p_i is continuous, ϕ is itself continuous. Furthermore, since $r_i^p \to a_i$ for all $i \in \mathbf{N}_n$, we have $r^p \to a$ with respect to the product topology of \mathbf{R}^n (which is also the usual topology of \mathbf{R}^n). Hence:

$$\lim_{n \to +\infty} r_1^p \dots r_n^p = \lim_{n \to +\infty} \phi(r^p) = \phi(a) = a_1 \dots a_n \tag{8}$$

We now claim that $Q_{r^p} \uparrow Q_a$. Since $r_i^p \leq r_i^{p+1}$ for all $i \in \mathbf{N}_n$ and $p \geq 1$, it is clear that $Q_{r^p} \subseteq Q_{r^{p+1}}$ for all $p \geq 1$. So we only need to prove that $Q_a = \bigcup_{p \geq 1} Q_{r^p}$. From $r_i^p < a_i$ (and in particular $r_i^p \leq a_i$) for all $i \in \mathbf{N}_n$ and $p \geq 1$, we obtain $Q_{r^p} \subseteq Q_a$ for all $p \geq 1$. This shows the inclusion \supseteq . To show the reverse inclusion, let $x \in Q_a$. Given $i \in \mathbf{N}_n$, we have $0 \leq x_i < a_i$. Since $r_i^p \to a_i$ as $p \to +\infty$, there exist $N_i \geq 1$ such that:

$$p \ge N_i \implies x_i < r_i^p < a_i$$

Taking $p = \max(N_1, ..., N_n)$ we obtain $0 \le x_i < r_i^p$ for all $i \in \mathbf{N}_n$, and consequently $x \in Q_{r^p}$. This shows the inclusion \subseteq . Having proved that $Q_{r^p} \uparrow Q_a$, from theorem (7) we have:

$$\lim_{p \to +\infty} \mu(Q_{r^p}) = \mu(Q_a) \tag{9}$$

Using 6. together with (8) and (9) we obtain:

$$\mu(Q_a) = \lim_{p \to +\infty} \mu(Q_{r^p})$$

$$= \lim_{p \to +\infty} r_1^p \dots r_n^p \mu(Q)$$

$$= a_1 \dots a_n \mu(Q)$$

which establishes our claim of equation (7). Note that the third equality is legitimate from $\mu(Q) < +\infty$ and the continuity of the map $\psi : \mathbf{R}^+ \to \mathbf{R}$ defined by $\psi(x) = x\mu(Q)$. If we had $\mu(Q) = +\infty$, the conclusion would remain valid (the sequence $r_1^p \dots r_n^p$ is non-decreasing), but it would no longer be true that ψ (with values in $[0, +\infty]$) is continuous, (recall that $(1/p) \cdot (+\infty)$ does not converge to $0 \cdot (+\infty)$ as $p \to +\infty$).

8. We define the set of subsets of \mathbf{R}^n :

$$\mathcal{C} \stackrel{\triangle}{=} \{ [a_1, b_1] \times \ldots \times [a_n, b_n] , a_i, b_i \in \mathbf{R} , a_i \leq b_i , \forall i \in \mathbf{N}^n \}$$

Let $B = [a_1, b_1[\times ... \times [a_n, b_n] \in \mathcal{C}.$ Let $a = (a_1, ..., a_n) \in \mathbf{R}^n$ and $b = (b_1, ..., b_n) \in \mathbf{R}^n$. Let $c = b - a \in (\mathbf{R}^+)^n$. Let $\tau_a : \mathbf{R}^n \to \mathbf{R}^n$ be the translation mapping of vector a, defined by $\tau_a(x) = a + x$ for all $x \in \mathbf{R}^n$. Since μ is invariant by translation, we have $\tau_a(\mu) = \mu$. Using 7. we obtain:

$$\mu(B) = \tau_{a}(\mu)(B)$$

$$= \mu(\tau_{a}^{-1}(B))$$

$$= \mu(\{\tau_{a} \in B\})$$

$$= \mu(\{x : a_{i} \leq a_{i} + x_{i} < b_{i}, \forall i \in \mathbf{N}_{n}\})$$

$$= \mu(\{x : 0 \leq x_{i} < c_{i}, \forall i \in \mathbf{N}_{n}\})$$

$$= \mu(Q_{c})$$

$$= c_{1} \dots c_{n}\mu(Q)$$

$$= \mu(Q) \prod_{i=1}^{n} (b_{i} - a_{i})$$

$$= \mu(Q) \prod_{i=1}^{n} dx^{i}([a_{i}, b_{i}])$$

$$= \mu(Q) \prod_{i=1}^{n} dx^{i}([a_{i}, b_{i}])$$

$$= \mu(Q) dx^{1} \otimes \dots \otimes dx^{n}(B)$$

$$= \mu(Q) dx(B)$$

So we have proved that $\mu(B) = \mu(Q)dx(B)$ for all $B \in \mathcal{C}$. Note that in obtaining this equality, we have refrained from writing directly:

$$\prod_{i=1}^{n} (b_i - a_i) = dx \left(\prod_{i=1}^{n} [a_i, b_i] \right) = dx(B)$$
 (10)

as this equality has not been proved anywhere in the Tutorials. Indeed, definition (63) of the Lebesgue measure on \mathbb{R}^n , defines it as the unique measure with the property (given $a, b \dots$):

$$\prod_{i=1}^{n} (b_i - a_i) = dx \left(\prod_{i=1}^{n} [a_i, b_i] \right)$$

which is not quite the same as (10). However, if dx^i denotes the Lebesgue measure on \mathbf{R} , then it is clear that:

$$dx^{i}([a_{i}, b_{i}]) = dx^{i}([a_{i}, b_{i}]) = dx^{i}([a_{i}, b_{i}])$$

and furthermore, it is not difficult from the uniqueness property of definition (63) to establish the fact that the Lebesgue measure dx on \mathbf{R}^n is the product measure $dx = dx^1 \otimes \ldots \otimes dx^n$.

9. Let $C_1 = \{[a, b[: a, b \in \mathbf{R}\}\}$. It is by now a standard exercise to show that $\mathcal{B}(\mathbf{R}) = \sigma(C_1)$. Let $C_1^{\mathrm{II}n}$ be the *n*-fold product $C_1 \coprod \ldots \coprod C_1$, i.e. the set of rectangles, as per definition (52):

$$C_1^{\coprod n} = \{A_1 \times \ldots \times A_n : A_i \in C_1 \cup \{\mathbf{R}\}, \ \forall i \in \mathbf{N}_n\}$$

Since **R** is separable (has a countable base), from exercise (18) of Tutorial 6, we have $\mathcal{B}(\mathbf{R}^n) = \mathcal{B}(\mathbf{R})^{\otimes n}$ and consequently from theorem (26):

$$\mathcal{B}(\mathbf{R}^n) = \mathcal{B}(\mathbf{R})^{\otimes n} = \sigma(\mathcal{C}_1)^{\otimes n} = \sigma(\mathcal{C}_1^{\mathrm{II}n})$$

Hence, in order to prove that $\mathcal{B}(\mathbf{R}^n) = \sigma(\mathcal{C})$, we only need to show that $\sigma(\mathcal{C}) = \sigma(\mathcal{C}_1^{\mathrm{II}n})$. It is clear that $\mathcal{C} \subseteq \mathcal{C}_1^{\mathrm{II}n}$ which establishes the inclusion \subseteq . To show the reverse inclusion, it is sufficient to prove that $\mathcal{C}_1^{\mathrm{II}n} \subseteq \sigma(\mathcal{C})$. Let $B = A_1 \times \ldots \times A_n$ be a rectangle of $\mathcal{C}_1^{\mathrm{II}n}$. Suppose $A_1 = \mathbf{R}$. Then, we have:

$$B = \bigcup_{p=1}^{+\infty} [-p, p[\times A_2 \times \ldots \times A_n$$

and in order to prove that $B \in \sigma(\mathcal{C})$, it is sufficient to prove that each $[-p, p[\times A_2 \times \ldots \times A_n \text{ is an element of } \sigma(\mathcal{C}).$ Hence, without loss of generality, we may assume that $A_1 \in \mathcal{C}_1$. Likewise, we may assume that $A_2 \in \mathcal{C}_1$, and in fact we may assume without loss of generality that $A_i \in \mathcal{C}_1$ for all $i \in \mathbf{N}_n$, in which case $B \in \mathcal{C} \subseteq \sigma(\mathcal{C})$. This completes our proof, and $\mathcal{B}(\mathbf{R}^n) = \sigma(\mathcal{C})$.

10. Given $p \ge 1$ we define:

$$\mathcal{D}_p = \{ B \in \mathcal{B}(\mathbf{R}^n) : \mu(B \cap [-p, p]^n) = \mu(Q) dx (B \cap [-p, p]^n) \}$$

Having proved in 8. that $\mu(B) = \mu(Q)dx(B)$ for all $B \in \mathcal{C}$, since \mathcal{C} is closed under finite intersection and $[-p, p]^n \in \mathcal{C}$, it is clear that $\mathcal{C} \subseteq \mathcal{D}_p$ and $\mathbf{R}^n \in \mathcal{D}_p$. Furthermore, if $A, B \in \mathcal{D}_p$ are such that $A \subseteq B$, then:

$$\mu((B \setminus A) \cap [-p, p[^n)] = \mu(B \cap [-p, p[^n) - \mu(A \cap [-p, p[^n)])$$

$$= \mu(Q)dx(B \cap [-p, p[^n)]$$

$$- \mu(Q)dx(A \cap [-p, p[^n)]$$

$$= \mu(Q)dx((B \setminus A) \cap [-p, p[^n)]$$

So $B \setminus A \in \mathcal{D}_p$. Note that the above derivation is legitimate, as all the quantities involved are finite since $\mu(Q) < +\infty$. This is a very important point, and is in fact the very reason why we have *localized* the problem on $[-p, p]^n$ by defining \mathcal{D}_p , rather than considering directly:

$$\mathcal{D} = \{ B \in \mathcal{B}(\mathbf{R}^n) : \mu(B) = \mu(Q) dx(B) \}$$

for which the property $B \setminus A \in \mathcal{D}$ whenever $A, B \in \mathcal{D}$, $A \subseteq B$, may not be easy to establish, if at all true. Let $(B_k)_{k\geq 1}$ be a sequence of elements of \mathcal{D}_p such that $B_k \uparrow B$. From theorem (7):

$$\mu(B \cap [-p, p[^n)) = \lim_{k \to +\infty} \mu(B_k \cap [-p, p[^n))$$

$$= \lim_{k \to +\infty} \mu(Q) dx (B_k \cap [-p, p[^n))$$

$$= \mu(Q) \lim_{k \to +\infty} dx (B_k \cap [-p, p[^n))$$

$$= \mu(Q) dx (B \cap [-p, p[^n))$$

So $B \in \mathcal{D}_p$, and we have proved that \mathcal{D}_p is a Dynkin system on \mathbf{R}^n . Since $\mathcal{C} \subseteq \mathcal{D}_p$ and \mathcal{C} is closed under finite intersection, from the Dynkin system theorem (1), we obtain $\sigma(\mathcal{C}) \subseteq \mathcal{D}_p$. Having proved in 9. that $\sigma(\mathcal{C}) = \mathcal{B}(\mathbf{R}^n)$, it follows that $\mathcal{B}(\mathbf{R}^n) \subseteq \mathcal{D}_p$ for all $p \geq 1$. Hence, given $B \in \mathcal{B}(\mathbf{R}^n)$, using theorem (7):

$$\mu(B) = \lim_{p \to +\infty} \mu(B \cap [-p, p[^n)]$$

$$= \lim_{p \to +\infty} \mu(Q) dx (B \cap [-p, p[^n)]$$

$$= \mu(Q) \lim_{p \to +\infty} dx (B \cap [-p, p[^n)]$$

$$= \mu(Q) dx (B)$$

So $\mu = \mu(Q)dx$. Given a locally finite measure μ on \mathbb{R}^n , which is invariant by translation, we have found $\alpha = \mu(Q) \in \mathbb{R}^+$, such that $\mu = \alpha dx$. This completes the proof of theorem (107).

Exercise 10

Exercise 11.

1. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection. In particular, T is a linear map defined on a finite dimensional normed space. So T is continuous.

Likewise, T^{-1} is a linear map defined on a finite dimensional normed space, so T^{-1} is continuous. The fact that a linear map defined on a finite dimensional normed space is continuous, has not yet been proved in these Tutorials (we have not even defined what a normed space is, see Tutorial 18). For those not familiar with the result, the proof in the case \mathbf{R}^n (together with its usual inner-product) goes as follows: Let e_1, \ldots, e_n be the canonical basis of \mathbf{R}^n and $x, y \in \mathbf{R}^n$. We have:

$$||T(x) - T(y)|| = \left\| T\left(\sum_{i=1}^{n} x_{i}e_{i}\right) - T\left(\sum_{i=1}^{n} y_{i}e_{i}\right) \right\|$$

$$= \left\| \sum_{i=1}^{n} (x_{i} - y_{i})T(e_{i}) \right\|$$

$$\leq \sum_{i=1}^{n} |x_{i} - y_{i}| \cdot ||T(e_{i})||$$

$$\leq \left(\sum_{i=1}^{n} ||T(e_{i})||^{2}\right)^{1/2} \left(\sum_{i=1}^{n} |x_{i} - y_{i}|^{2}\right)^{1/2}$$

$$= M||x - y||$$

where $M=(\sum_{i=1}^n\|T(e_i)\|^2)^{1/2}$, and we have used the Cauchy-Schwarz inequality (50). Having proved the existence of $M\in\mathbf{R}^+$ such that $\|T(x)-T(y)\|\leq M\|x-y\|$ for all $x,y\in\mathbf{R}^n$, it is clear that T is continuous. Similarly, there exists $M'\in\mathbf{R}^+$ such that $\|T^{-1}(x)-T^{-1}(y)\|\leq M'\|x-y\|$ for all $x,y\in\mathbf{R}^n$. So T^{-1} is continuous.

- 2. Let $B \subseteq \mathbb{R}^n$. The notation $T^{-1}(B)$ is potentially ambiguous, as it may refer to the inverse image of B by T as defined in (26), or the direct image of B by T^{-1} as defined in (25). Let $S = T^{-1}$, and let S(B) denote the direct image, whereas $T^{-1}(B)$ denotes the inverse image. We claim that $T^{-1}(B) = S(B)$. Indeed, suppose that $x \in T^{-1}(B)$. Then $T(x) \in B$. Let y = T(x). Then $y \in B$ and $S(y) = T^{-1}(T(x)) = x$. So $x \in S(B)$. This shows that $T^{-1}(B) \subseteq S(B)$. To show the reverse inclusion, suppose $x \in S(B)$. There exists $y \in B$ such that x = S(y). So T(x) = T(S(y)) = y. So $T(x) \in B$, and $x \in T^{-1}(B)$. This shows that $S(B) \subseteq T^{-1}(B)$. We have proved that $T^{-1}(B) = S(B)$, and it follows that whether we view $T^{-1}(B)$ as an inverse image (that of B by T) or a direct image (that of B by T^{-1}) makes no difference, as the two sets are in fact equal. The notation $T^{-1}(B)$ is no longer ambiguous.
- 3. Let $B \subseteq \mathbf{R}^n$. Since $T: \mathbf{R}^n \to \mathbf{R}^n$ is a linear bijection, T^{-1} is also a linear bijection. Applying 2. to T^{-1} , it follows that the direct image T(B) of B by $T = (T^{-1})^{-1}$ coincides with the inverse image $(T^{-1})^{-1}(B)$ of B by T^{-1} , i.e. $T(B) = (T^{-1})^{-1}(B)$.
- 4. Let $K \subseteq \mathbf{R}^n$ be a compact subset of \mathbf{R}^n . $\{T \in K\} = T^{-1}(K)$ denotes the inverse image of K by T. However from 2. it can also be viewed as

the direct image of K by T^{-1} . Having proved that $T^{-1}: \mathbf{R}^n \to \mathbf{R}^n$ is continuous and K being compact, it follows from exercise (8) of Tutorial 8 that $T^{-1}(K)$ is a compact subset of \mathbf{R}^n . We conclude that $\{T \in K\}$ is a compact subset of \mathbf{R}^n .

5. The Lebesgue measure dx on \mathbf{R}^n is clearly locally finite, as can be seen from definition (102). Indeed, given $x \in \mathbf{R}^n$, the set $U = \prod_{i=1}^n]x_i - 1, x_i + 1[$ is an open neighborhood of x with finite Lebesgue measure $(dx(U) = 2^n < +\infty)$. From exercise (10) of Tutorial 13, if K' is a compact subset of \mathbf{R}^n , then we have $dx(K') < +\infty$. Furthermore, \mathbf{R}^n is locally compact, as can be seen from definition (105). Indeed, given $x \in \mathbf{R}^n$, x has an open neighborhood with compact closure: taking U as above, the closure $K = \bar{U}$ is closed and bounded, and therefore compact from theorem (48). Having proved in 4. that $K' = \{T \in K\}$ is itself compact, it follows that:

$$T(dx)(U) < T(dx)(K) = dx(\{T \in K\}) = dx(K') < +\infty$$

Given $x \in \mathbf{R}^n$, we have shown the existence of U open, such that $x \in U$ and $T(dx)(U) < +\infty$. We conclude from definition (102) that T(dx) (which is well-defined since T is continuous, hence Borel measurable) is a locally finite measure on \mathbf{R}^n .

6. Given $a \in \mathbf{R}^n$, let $\tau_a : \mathbf{R}^n \to \mathbf{R}^n$ be the translation mapping of vector a, defined by $\tau_a(x) = a + x$ for all $x \in \mathbf{R}^n$. We have:

$$T \circ \tau_{T^{-1}(a)}(x) = T(T^{-1}(a) + x)$$

= $T(T^{-1}(a)) + T(x)$
= $a + T(x)$
= $\tau_a(T(x)) = \tau_a \circ T(x)$

This being true for all $x \in \mathbf{R}^n$, $T \circ \tau_{T^{-1}(a)} = \tau_a \circ T$.

7. Using 6. together with 5. of exercise (3), we have:

$$\tau_a(T(dx)) = (\tau_a \circ T)(dx)$$

$$= (T \circ \tau_{T^{-1}(a)})(dx)$$

$$= T(\tau_{T^{-1}(a)}(dx)) = T(dx)$$

where the last equality stems from the fact that the Lebesgue measure dx is invariant by translation. Having proved that $\tau_a(T(dx)) = T(dx)$ for all $a \in \mathbb{R}^n$, we conclude that T(dx) is itself invariant by translation.

8. From 5. T(dx) is a locally finite measure on \mathbf{R}^n . From 7. it is invariant by translation. It follows from theorem (107) that there exists $\alpha \in \mathbf{R}^+$ such that $T(dx) = \alpha dx$. Suppose β is another element of \mathbf{R}^+ such that $T(dx) = \beta dx$. Then:

$$\alpha = \alpha dx([0,1]^n) = \beta dx([0,1]^n) = \beta$$

Hence, α is unique and we denote it $\Delta(T)$, so that $\Delta(T)$ is the unique element of \mathbf{R}^+ such that $T(dx) = \Delta(T)dx$.

9. Let $Q = T([0,1]^n)$. Then Q is the direct image of $[0,1]^n$ by T. However from 3. it can also be viewed as the inverse image $(T^{-1})^{-1}([0,1]^n)$ of $[0,1]^n$ by T^{-1} . Since T^{-1} is continuous, in particular it is Borel measurable. It follows from $[0,1]^n \in \mathcal{B}(\mathbf{R}^n)$ that $(T^{-1})^{-1}([0,1]^n) \in \mathcal{B}(\mathbf{R}^n)$. So $Q \in \mathcal{B}(\mathbf{R}^n)$. Furthermore, denoting $S = T^{-1}$, we have:

$$\begin{array}{lll} \Delta(T)dx(Q) & = & T(dx)(Q) \\ & = & dx(T^{-1}(Q)) \\ & = & dx(T^{-1}(T([0,1]^n))) \\ & = & dx(S(T([0,1]^n))) \\ & = & dx((S\circ T)([0,1]^n)) \\ & = & dx([0,1]^n) = 1 \end{array}$$

- 10. Since $\Delta(T)dx(Q) = 1$ for some $Q \in \mathcal{B}(\mathbf{R}^n), \ \Delta(T) \neq 0$.
- 11. Let $T_1, T_2 : \mathbf{R}^n \to \mathbf{R}^n$ be two linear bijections. If $B \in \mathcal{B}(\mathbf{R}^n)$:

$$(T_{1} \circ T_{2})(dx)(B) = T_{1}(T_{2}(dx))(B)$$

$$= T_{1}(\Delta(T_{2})dx)(B)$$

$$= (\Delta(T_{2})dx)(T_{1}^{-1}(B))$$

$$= \Delta(T_{2})dx(T_{1}^{-1}(B))$$

$$= \Delta(T_{2})T_{1}(dx)(B)$$

$$= \Delta(T_{2})(\Delta(T_{1})dx(B))$$

$$= \Delta(T_{1})\Delta(T_{2})dx(B)$$

This being true for all $B \in \mathcal{B}(\mathbf{R}^n)$, we have:

$$(T_1 \circ T_2)(dx) = \Delta(T_1)\Delta(T_2)dx$$

Since $\Delta(T_1 \circ T_2)$ is the unique element of \mathbf{R}^+ with the property $(T_1 \circ T_2)(dx) = \Delta(T_1 \circ T_2)dx$, we conclude that:

$$\Delta(T_1 \circ T_2) = \Delta(T_1)\Delta(T_2)$$

Exercise 11

Exercise 12.

1. Let $\alpha \in \mathbf{R} \setminus \{0\}$ and $H_{\alpha} : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection defined by $H_{\alpha}e_1 = \alpha e_1$ and $H_{\alpha}e_j = e_j$ for $j \geq 2$, where e_1, \ldots, e_n is the canonical basis of \mathbf{R}^n . If $\alpha > 0$, we have:

$$H_{\alpha}(dx)([0,1]^n) = dx(H_{\alpha}^{-1}([0,1]^n))$$

$$= dx(\{x : H_{\alpha}x \in [0,1]^n\})$$

$$= dx\left(\left\{x : \sum_{j=1}^n x_j H_{\alpha} e_j \in [0,1]^n\right\}\right)$$

$$= dx(\{x : (\alpha x_1, x_2, \dots, x_n) \in [0, 1]^n\})$$

= $dx([0, \alpha^{-1}] \times [0, 1]^{n-1}) = \alpha^{-1}$

If $\alpha < 0$, we have similarly:

$$H_{\alpha}(dx)([0,1]^n) = dx([\alpha^{-1},0] \times [0,1]^{n-1}) = -\alpha^{-1}$$

In any case we obtain $H_{\alpha}(dx)([0,1]^n) = |\alpha|^{-1}$.

2. The determinant $\det H_{\alpha}$ of H_{α} has not been defined in these Tutorials. Until we do so, we will have to accept that:

$$\det H_{\alpha} = \det \left(\begin{array}{ccc} \alpha & & & \\ & 1 & 0 & \\ & & 0 & \ddots & \\ & & & 1 \end{array} \right) = \alpha$$

This being granted, using 1. we have:

$$\Delta(H_{\alpha}) = \Delta(H_{\alpha})dx([0,1]^n)$$

$$= H_{\alpha}(dx)([0,1]^n)$$

$$= |\alpha|^{-1} = |\det H_{\alpha}|^{-1}$$

Exercise 12

Exercise 13.

1. Let $k, l \in \mathbf{N}_n$ and $\Sigma : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection defined by $\Sigma e_k = e_l$, $\Sigma e_l = e_k$ and $\Sigma e_j = e_j$ for $j \neq k, l$, where e_1, \ldots, e_n is the canonical basis of \mathbf{R}^n . Let $\sigma : \mathbf{N}_n \to \mathbf{N}_n$ be the permutation of \mathbf{N}_n defined by $\sigma(k) = l$, $\sigma(l) = k$ and $\sigma(j) = j$ for $j \neq k, l$. Then $\Sigma e_j = e_{\sigma(j)}$ for all $j \in \mathbf{N}_n$. We have:

$$\begin{split} \Sigma(dx)([0,1]^n) &= dx(\Sigma^{-1}([0,1]^n)) \\ &= dx(\{x: \Sigma x \in [0,1]^n\}) \\ &= dx \left(\left\{ x: \sum_{j=1}^n x_j \Sigma e_j \in [0,1]^n \right\} \right) \\ &= dx \left(\left\{ x: \sum_{j=1}^n x_{\sigma^{-1}(j)} \Sigma e_{\sigma^{-1}(j)} \in [0,1]^n \right\} \right) \\ &= dx(\{x: (x_{\sigma^{-1}(1)}, \dots, x_{\sigma^{-1}(n)}) \in [0,1]^n\}) \\ &= dx([0,1]^n) = 1 \end{split}$$

- 2. Since $\Sigma \cdot \Sigma e_j = e_j$ for all $j \in \mathbf{N}_n$, we have $\Sigma \cdot \Sigma = I_n$.
- 3. Until we have a Tutorial on the determinant, we shall have to accept that given $A, B \in \mathcal{M}_n(\mathbf{K})$, we have:

$$\det AB = \det A \det B$$

This being granted, using 2. we obtain:

$$1 = \det I_n = \det \Sigma \Sigma = (\det \Sigma)^2$$

from which we conclude that $|\det \Sigma| = 1$.

4. Using 1. we have:

$$\Delta(\Sigma) = \Delta(\Sigma) dx([0,1]^n)$$

$$= \Sigma(dx)([0,1]^n)$$

$$= 1 = |\det \Sigma|^{-1}$$

Exercise 13

Exercise 14.

1. Let $n \geq 2$ and $U : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection defined by $Ue_1 = e_1 + e_2$ and $Ue_j = e_j$ for $j \geq 2$, where e_1, \ldots, e_n is the canonical basis of \mathbf{R}^n . Let $Q = [0, 1]^n$. Given $x \in \mathbf{R}^n$, we have:

$$Ux = U\left(\sum_{j=1}^{n} x_j e_j\right)$$

$$= \sum_{j=1}^{n} x_j U e_j$$

$$= x_1(e_1 + e_2) + \sum_{j=2}^{n} x_j e_j$$

$$= (x_1, x_1 + x_2, x_3, \dots, x_n)$$

Since $U^{-1}(Q) = \{x \in \mathbf{R}^n : Ux \in [0,1[^n]\}$ we conclude that:

$$U^{-1}(Q) = \{x \in \mathbf{R}^n : 0 \le x_1 + x_2 < 1, 0 \le x_i < 1, \forall i \ne 2\}$$

2. We define:

$$\Omega_1 \stackrel{\triangle}{=} U^{-1}(Q) \cap \{x \in \mathbf{R}^n : x_2 \ge 0\}$$

$$\Omega_2 \stackrel{\triangle}{=} U^{-1}(Q) \cap \{x \in \mathbf{R}^n : x_2 < 0\}$$

Given $i \in \mathbf{N}_n$, let $p_i : \mathbf{R}^n \to \mathbf{R}$ be the *i*-th canonical projection. Then each p_i is continuous and therefore Borel measurable. From 1. we obtain:

$$U^{-1}(Q) = (p_1 + p_2)^{-1}([0, 1[) \cap \left(\bigcap_{i \neq 2} p_i^{-1}([0, 1[))\right))$$

So it is clear that $U^{-1}(Q) \in \mathcal{B}(\mathbf{R}^n)$. From:

$$\Omega_1 = U^{-1}(Q) \cap p_2^{-1}([0, +\infty[)]$$

$$\Omega_2 = U^{-1}(Q) \cap p_2^{-1}([-\infty, 0[)]$$

we conclude that $\Omega_1, \Omega_2 \in \mathcal{B}(\mathbf{R}^n)$.

- 3. It is impossible for me to draw a picture with Latex. Some people can do it, but I can't. A picture is not a proof of anything, and is therefore not essential. However, if you have spent the time drawing it, it should be clear to you that $\{\Omega_1, \tau_{e_2}(\Omega_2)\}$ forms a partition of Q, which we shall prove formally in this exercise.
- 4. Suppose $x \in \Omega_1$. Then $x_2 \ge 0$ and furthermore $x \in U^{-1}(Q)$. So $0 \le x_1 + x_2 < 1$ while $0 \le x_1 < 1$. Hence, we have:

$$0 \le x_2 \le x_1 + x_2 < 1$$

We have proved that $x \in \Omega_1 \Rightarrow 0 \leq x_2 < 1$.

- 5. If $x \in \Omega_1$ then in particular $x \in U^{-1}(Q)$. So $0 \le x_i < 1$ for all $i \in \mathbf{N}_n$, $i \ne 2$. However from 4. we have $0 \le x_2 < 1$. It follows that $0 \le x_i < 1$ for all $i \in \mathbf{N}_n$. So $x \in Q = [0, 1]^n$. We have proved that $\Omega_1 \subseteq Q$.
- 6. Suppose $x \in \tau_{e_2}(\Omega_2)$. There exists $y \in \Omega_2$ such that $x = \tau_{e_2}(y) = e_2 + y$. In particular, $x_1 = y_1$ and $x_2 = 1 + y_2$ for some $y \in \Omega_2$. The fact that $y \in \Omega_2$ implies in particular that $y_2 < 0$ and $y \in U^{-1}(Q)$. So $0 \le y_1 < 1$ and $0 \le y_1 + y_2 < 1$. Hence:

$$0 \le y_1 + y_2 < 1 + y_2 = x_2 < 1 + 0 = 1$$

We have proved that $x \in \tau_{e_2}(\Omega_2) \Rightarrow 0 \leq x_2 < 1$. In fact, we have proved the stronger inequality $0 < x_2 < 1$, but we shall not need it.

- 7. Suppose $x \in \tau_{e_2}(\Omega_2)$. There exists $y \in \Omega_2$ such that $x = \tau_{e_2}(y) = e_2 + y$. So $x_2 = 1 + y_2$ and $x_i = y_i$ for all $i \neq 2$. The fact that $y \in \Omega_2$ implies in particular that $y \in U^{-1}(Q)$. So $0 \leq y_i < 1$ for all $i \neq 2$ and consequently $0 \leq x_i < 1$ for all $i \neq 2$. However, we have proved in 6. that $0 \leq x_2 < 1$. So $0 \leq x_i < 1$ for all $i \in \mathbb{N}_n$, i.e. $x \in Q = [0, 1]^n$. We have proved that $\tau_{e_2}(\Omega_2) \subseteq Q$.
- 8. Suppose $x \in Q$ and $x_1 + x_2 < 1$. Then for all $i \in \mathbf{N}_n$, we have $0 \le x_i < 1$ and furthermore $x_1 + x_2 < 1$. In particular, we have $x_2 \ge 0$ and $0 \le x_1 + x_2 < 1$, while $0 \le x_i < 1$ for all $i \ne 2$. So $x \in U^{-1}(Q)$ while $x_2 \ge 0$, i.e. $x \in \Omega_1$. We have proved that $x \in Q$ and $x_1 + x_2 < 1$ implies that $x \in \Omega_1$.
- 9. Suppose $x \in Q$ and $x_1 + x_2 \ge 1$. Then for all $i \in \mathbf{N}_n$ we have $0 \le x_i < 1$ and furthermore $x_1 + x_2 \ge 1$. Define $y = (x_1, -1 + x_2, x_3, \dots, x_n)$. Then it is clear that $e_2 + y = x$. So $x = \tau_{e_2}(y)$. We claim that $y \in \Omega_2$. From $x_2 < 1$ we obtain $y_2 = -1 + x_2 < 0$. Furthermore, for all $i \ne 2$ we have $x_i = y_i$ and consequently $0 \le y_i < 1$. Finally, from $x_1 + x_2 \ge 1$, we obtain:

$$0 \le x_1 + x_2 - 1 = y_1 + y_2 < 1 + 0 = 1$$

Hence, we see that $y \in U^{-1}(Q)$ while $y_2 < 0$. So $y \in \Omega_2$ and since $x = \tau_{e_2}(y)$, we have $x \in \tau_{e_2}(\Omega_2)$. We have proved that $x \in Q$ and $x_1 + x_2 \ge 1$ implies that $x \in \tau_{e_2}(\Omega_2)$.

10. Suppose $x \in \tau_{e_2}(\Omega_2)$. There exists $y \in \Omega_2$ such that $x = \tau_{e_2}(y) = e_2 + y$. In particular, $x_1 = y_1$ and $x_2 = 1 + y_2$ for some $y \in \Omega_2$. The fact that $y \in \Omega_2$ implies that $y \in U^{-1}(Q)$ and $0 \le y_1 + y_2 < 1$. Hence, we have:

$$1 \le 1 + y_1 + y_2 = x_1 + x_2$$

We have proved that $x \in \tau_{e_2}(\Omega_2) \Rightarrow x_1 + x_2 \geq 1$.

- 11. Suppose $x \in \tau_{e_2}(\Omega_2) \cap \Omega_1$. From $x \in \Omega_1$ we have in particular $x \in U^{-1}(Q)$ and consequently $x_1 + x_2 < 1$. From $x \in \tau_{e_2}(\Omega_2)$ using 10. we have $x_1 + x_2 \ge 1$. This is a contradiction. We have proved that $\tau_{e_2}(\Omega_2) \cap \Omega_1 = \emptyset$.
- 12. From 5. we have $\Omega_1 \subseteq Q$ while from 7. we have $\tau_{e_2}(\Omega_2) \subseteq Q$. This shows that $\Omega_1 \cup \tau_{e_2}(\Omega_2) \subseteq Q$. To show the reverse inclusion, suppose $x \in Q$. If $x_1 + x_2 < 1$ from 8. we have $x \in \Omega_1$. If $x_1 + x_2 \ge 1$ from 9. we have $x \in \tau_{e_2}(\Omega_2)$. In any case, we have $x \in \Omega_1 \cup \tau_{e_2}(\Omega_2)$. This shows that $Q \subseteq \Omega_1 \cup \tau_{e_2}(\Omega_2)$, and we have proved that $Q = \Omega_1 \cup \tau_{e_2}(\Omega_2)$. Having proved that Ω_1 and $\tau_{e_2}(\Omega_2)$ are disjoint, we conclude that $Q = \Omega_1 \cup \tau_{e_2}(\Omega_2)$.
- 13. Noting that $\tau_{e_2}(\Omega_2) = \tau_{-e_2}^{-1}(\Omega_2) \in \mathcal{B}(\mathbf{R}^n)$, we have:

$$\begin{array}{lll} dx(Q) & = & dx(\Omega_1 \uplus \tau_{e_2}(\Omega_2)) \\ & = & dx(\Omega_1) + dx(\tau_{e_2}(\Omega_2)) \\ & = & dx(\Omega_1) + dx(\Omega_2) \\ & = & dx(U^{-1}(Q) \cap \{x_2 \geq 0\}) + dx(U^{-1}(Q) \cap \{x_2 < 0\}) \\ & = & dx(U^{-1}(Q)) \end{array}$$

where the third equality stems from the fact that the Lebesgue measure dx is invariant by translation.

14. It follows from 13. that:

$$\Delta(U) = \Delta(U) dx(Q) = U(dx)(Q) = dx(U^{-1}(Q)) = dx(Q) = 1$$

15. Until we have a Tutorial on determinants, we shall accept:

$$\det U = \det \begin{pmatrix} 1 & 0 & & \\ 1 & 1 & 0 & & \\ & 0 & \ddots & \\ & & & 1 \end{pmatrix} = 1$$

This being granted, we conclude from 14. that:

$$\Delta(U) = 1 = |\det U|^{-1}$$

Exercise 14

Exercise 15.

43

1. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection where $n \geq 1$. If n = 1 then T is of the form $T = H_{\alpha}$ as defined in exercise (12), where $\alpha \neq 0$. In particular, we have $\Delta(T) = |\det T|^{-1}$. We now assume that $n \geq 2$. From theorem (103), there exist $p \geq 1$ and $Q_1, \ldots, Q_p \in \mathcal{M}_n(\mathbf{R})$ such that:

$$T = Q_1 \circ \dots \circ Q_p \tag{11}$$

and each Q_i is of the form H_{α} of exercise (12), or of the form Σ of exercise (13), or is equal to U as defined in exercise (14). From (11) we obtain $\det T = \det Q_1 \dots \det Q_p$ and since T is a bijection, $\det T \neq 0$. It follows that $\det Q_i \neq 0$ for all $i \in \mathbf{N}_p$, and in particular that $\alpha \neq 0$ whenever Q_i is of the form $Q_i = H_{\alpha}$ of exercise (12). This shows that exercise (12) can be applied as much as exercise (13) and exercise (14), from which we see that $\Delta(Q_i) = |\det Q_i|^{-1}$ for all $i \in \mathbf{N}_p$. We have proved that T can be decomposed as (11), where each $Q_i : \mathbf{R}^n \to \mathbf{R}^n$ is a linear bijection satisfying $\Delta(Q_i) = |\det Q_i|^{-1}$ for all $i \in \mathbf{N}_p$.

2. Using 11. of exercise (11), we obtain:

$$\Delta(T) = \Delta(Q_1 \circ \dots \circ Q_p)$$

$$= \Delta(Q_1) \dots \Delta(Q_p)$$

$$= |\det Q_1|^{-1} \dots |\det Q_p|^{-1}$$

$$= |\det Q_1 \dots \det Q_p|^{-1}$$

$$= |\det (Q_1 \dots Q_p)|^{-1}$$

$$= |\det T|^{-1}$$

3. Given $n \geq 1$ and a linear bijection $T : \mathbf{R}^n \to \mathbf{R}^n$, we have proved in exercise (11) that $T(dx) = \Delta(T)dx$ for a unique constant $\Delta(T) \in \mathbf{R}^+$. However, it follows from 2. that $\Delta(T) = |\det T|^{-1}$. So $T(dx) = |\det T|^{-1}dx$, which completes the proof of theorem (108).

Exercise 15

Exercise 16. Let $f: (\mathbf{R}^2, \mathcal{B}(\mathbf{R}^2)) \to [0, +\infty]$ be a non-negative and measurable map. Let $a, b, c, d \in \mathbf{R}$ be such that $ad - bc \neq 0$. Let $T \in \mathcal{M}_2(\mathbf{R})$ be defined by:

$$T = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Then $T: \mathbf{R}^2 \to \mathbf{R}^2$ is a linear map, and $\det T = ad - bc \neq 0$. So T is a linear bijection. Using theorem (104) with theorem (108):

$$\int_{\mathbf{R}^2} f(ax + by, cx + dy) dx dy = \int_{\mathbf{R}^2} f \circ T(x, y) dx dy$$
$$= \int_{\mathbf{R}^2} f \circ T dx$$
$$= \int_{\mathbf{R}^2} f T(dx)$$

$$= \int_{\mathbf{R}^2} f(|\det T|^{-1} dx)$$

$$= |\det T|^{-1} \int_{\mathbf{R}^2} f dx$$

$$= |ad - bc|^{-1} \int_{\mathbf{R}^2} f(x, y) dx dy$$

where the fifth equality stems from exercise (18) of Tutorial 12.

Exercise 16

Exercise 17. Let $B \in \mathcal{B}(\mathbf{R}^n)$ and $T : \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection. From 3. of exercise (11), the direct image T(B) is also the inverse image $(T^{-1})^{-1}(B)$ of B by T^{-1} . Since T^{-1} is continuous, in particular it is Borel measurable, and consequently $T(B) \in \mathcal{B}(\mathbf{R}^n)$. From $TT^{-1} = I_n$, we obtain $\det T \det T^{-1} = 1$, and it follows that $\det T^{-1} = (\det T)^{-1}$. Applying theorem (108) to T^{-1} , we obtain:

$$dx(T(B)) = dx((T^{-1})^{-1}(B))$$

$$= T^{-1}(dx)(B)$$

$$= |\det T^{-1}|^{-1}dx(B)$$

$$= |(\det T)^{-1}|^{-1}dx(B)$$

$$= |\det T|dx(B)$$

Exercise 17

Exercise 18.

1. Let V be a linear subspace of \mathbf{R}^n , and $p = \dim V$. We assume that $1 \le p \le n-1$. Let u_1, \ldots, u_p be an orthonormal basis of V, and u_{p+1}, \ldots, u_n be such that $u_1, \ldots u_n$ is an orthonormal basis of \mathbf{R}^n . Note that the existence of an orthonormal basis of V, and the fact that such basis can be extended to an orthonormal basis of \mathbf{R}^n , has not been proved in these Tutorials. So we shall have to accept it for the time being. Given $i \in \mathbf{N}_n$, we define $\phi_i : \mathbf{R}^n \to \mathbf{R}$ by $\phi_i(x) = \langle u_i, x \rangle$ for all $x \in \mathbf{R}^n$, where $\langle \cdot, \cdot \rangle$ denotes the usual inner-product of \mathbf{R}^n . From the Cauchy-Schwarz inequality (50), for all $x, y \in \mathbf{R}^n$, we have:

$$|\phi_i(x) - \phi_i(y)| = |\langle u_i, x \rangle - \langle u_i, y \rangle|$$

$$= |\langle u_i, x - y \rangle|$$

$$\leq ||u_i|| \cdot ||x - y||$$

So it is clear that $\phi_i : \mathbf{R}^n \to \mathbf{R}$ is continuous.

2. Let $x \in \mathbf{R}^n$. Since u_1, \ldots, u_n is a basis of \mathbf{R}^n , there exists a unique $(\alpha_1, \ldots, \alpha_n) \in \mathbf{R}^n$ such that:

$$x = \alpha_1 u_1 + \ldots + \alpha_n u_n$$

Now suppose that $x \in \bigcap_{j=p+1}^n \phi_j^{-1}(\{0\})$. Then for all $j \ge p+1$ we have $\phi_j(x) = 0$, i.e.:

$$0 = \phi_j(x)$$

$$= \langle u_j, x \rangle$$

$$= \langle u_j, \alpha_1 u_1 + \ldots + \alpha_n u_n \rangle$$

$$= \sum_{i=1}^n \alpha_i \langle u_j, u_i \rangle$$

$$= \alpha_j \langle u_j, u_j \rangle$$

$$= \alpha_j$$

where we have used the fact that u_1, \ldots, u_n is an orthonormal basis of \mathbf{R}^n . Since $\alpha_j = 0$ for all $j \geq p+1$, we obtain $x = \alpha_1 u_1 + \ldots + \alpha_p u_p \in V$. This shows that $\bigcap_{j=p+1}^n \phi_j^{-1}(\{0\}) \subseteq V$. To show the reverse inclusion, suppose $x \in V$. Since u_1, \ldots, u_p is a basis of V, there exists $\alpha_1, \ldots, \alpha_p \in \mathbf{R}$ such that $x = \alpha_1 u_1 + \ldots + \alpha_p u_p$, and since u_1, \ldots, u_n is orthogonal, it is clear that $\langle u_j, x \rangle = 0$ for all $j \geq p+1$. Hence, we have $x \in \bigcap_{j=p+1}^n \phi_j^{-1}(\{0\})$ and we have proved that $V \subseteq \bigcap_{j=p+1}^n \phi_j^{-1}(\{0\})$. We conclude that $V = \bigcap_{j=p+1}^n \phi_j^{-1}(\{0\})$.

- 3. Since ϕ_j is continuous for all $j \in \mathbf{N}_n$, in particular $\phi_j^{-1}(\{0\})$ is a closed subset of \mathbf{R}^n for all $j \in \mathbf{N}_n$. It follows from 2. that $V = \bigcap_{j=p+1}^n \phi_j^{-1}(\{0\})$ is a closed subset of \mathbf{R}^n .
- 4. Let $Q = (q_{ij}) \in \mathcal{M}_n(\mathbf{R})$ be the matrix defined by $Qe_j = u_j$ for all $j \in \mathbf{N}_n$, where e_1, \ldots, e_n is the canonical basis of \mathbf{R}^n . For all $i, j \in \mathbf{N}_n$, we have:

$$\langle u_i, u_j \rangle = \langle Qe_i, Qe_j \rangle$$

$$= \left\langle \sum_{k=1}^n q_{ki}e_k, \sum_{l=1}^n q_{lj}e_l \right\rangle$$

$$= \sum_{k=1}^n \sum_{l=1}^n q_{ki}q_{lj} \langle e_k, e_l \rangle$$

$$= \sum_{k=1}^n q_{ki}q_{kj} \langle e_k, e_k \rangle$$

$$= \sum_{k=1}^n q_{ki}q_{kj}$$

5. Using 4. for all $i, j \in \mathbf{N}_n$, we obtain:

$$(Q^t Q)_{ij} = \sum_{k=1}^n (Q^t)_{ik}(Q)_{kj}$$
$$= \sum_{k=1}^n q_{ki} q_{kj}$$

$$=\langle u_i, u_i \rangle = (I_n)_{ij}$$

46

This being true for all $i, j \in \mathbf{N}_n$, $Q^t \cdot Q = I_n$. Accepting the fact that $\det Q^t = \det Q$, we obtain:

$$1 = \det I_n = \det Q^t \cdot Q = \det Q^t \det Q = (\det Q)^2$$

We conclude that $|\det Q| = 1$.

6. Applying theorem (108) to Q, we obtain:

$$dx(\lbrace Q \in V \rbrace) = Q(dx)(V)$$
$$= |\det Q|^{-1}dx(V) = dx(V)$$

7. Let span (e_1, \ldots, e_p) denote the linear subspace of \mathbf{R}^n generated by e_1, \ldots, e_p , i.e. the set:

$$\operatorname{span}(e_1,\ldots,e_p) = \{\alpha_1 e_1 + \ldots + \alpha_p e_p : \alpha_i \in \mathbf{R}, \forall i \in \mathbf{N}_p\}$$

We claim that $\{Q \in V\} = \operatorname{span}(e_1, \dots, e_p)$. Let $x \in \{Q \in V\}$. Then $Q(x) \in V$. Given $j \in \{p+1, \dots, n\}$, it follows from 2. that $\phi_j(Q(x)) = 0$, i.e.:

$$0 = \phi_j(Q(x))$$

$$= \langle u_j, x_1 Q e_1 + \dots + x_n Q e_n \rangle$$

$$= \langle u_j, x_1 u_1 + \dots + x_n u_n \rangle$$

$$= x_j \langle u_j, u_j \rangle = x_j$$

So $x_j = 0$ for all $j \ge p + 1$ and consequently:

$$x = \sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{p} x_i e_i \in \text{span}(e_1, \dots, e_p)$$

This shows the inclusion \subseteq . To show the reverse inclusion, suppose $x \in \operatorname{span}(e_1,\ldots,e_p)$. Then $x_j=0$ for all $j\geq p+1$, and going back through the preceding calculation, it is clear that $\phi_j(Q(x))=0$ for all $j\geq p+1$. So $Q(x)\in \cap_{j=p+1}^n\phi_j^{-1}(\{0\})=V$, i.e. $x\in\{Q\in V\}$. This shows the inclusion \supseteq , and we have proved that $\{Q\in V\}=\operatorname{span}(e_1,\ldots,e_p)$.

8. Let $m \ge 1$ be an integer. We define:

$$E_m \stackrel{\triangle}{=} \overbrace{[-m,m] \times \ldots \times [-m,m]}^{n-1} \times \{0\}$$

It is clear from definition (63) that $dx(E_m) = 0$ for all $m \ge 1$.

9. Since $E_m \uparrow \operatorname{span}(e_1, \ldots, e_{n-1})$, i.e. $E_m \subseteq E_{m+1}$ for all $m \ge 1$ and $\bigcup_{m \ge 1} E_m = \operatorname{span}(e_1, \ldots, e_{n-1})$, from theorem (7) we obtain:

$$dx(\operatorname{span}(e_1,\ldots,e_{n-1})) = \lim_{m \to +\infty} dx(E_m) = 0$$

10. Using 6. and 7. together with 9. we have:

$$dx(V) = dx(\lbrace Q \in V \rbrace) = dx(\operatorname{span}(e_1, \dots, e_p))$$

$$\leq dx(\operatorname{span}(e_1, \dots, e_{n-1})) = 0$$

This completes the proof of theorem (109) in the case when $1 \le \dim V \le n-1$. The case $\dim V=0$, i.e. $V=\{0\}$ is clear.

Exercise 18