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20. Gaussian Measures
Mn(R) is the set of all n× n-matrices with real entries, n ≥ 1.

Definition 141 A matrix M ∈Mn(R) is said to be symmetric, if and only if
M = M t. M is orthogonal, if and only if M is non-singular and M−1 = M t.
If M is symmetric, we say that M is non-negative, if and only if:

∀u ∈ Rn , 〈u,Mu〉 ≥ 0

Theorem 131 Let Σ ∈ Mn(R), n ≥ 1, be a symmetric and non-negative real
matrix. There exist λ1, . . . , λn ∈ R+ and P ∈ Mn(R) orthogonal matrix, such
that:

Σ = P.

 λ1 0
. . .

0 λn

 . P t

In particular, there exists A ∈Mn(R) such that Σ = A.At.

As a rare exception, theorem (131) is given without proof.

Exercise 1. Given n ≥ 1 and M ∈Mn(R), show that we have:

∀u, v ∈ Rn , 〈u,Mv〉 = 〈M tu, v〉

Exercise 2. Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric and
non-negative matrix. Let µ1 be the probability measure on R:

∀B ∈ B(R) , µ1(B) =
1√
2π

∫
B

e−x
2/2dx

Let µ = µ1 ⊗ . . .⊗ µ1 be the product measure on Rn. Let A ∈Mn(R) be such
that Σ = A.At. We define the map φ : Rn → Rn by:

∀x ∈ Rn , φ(x)
4
= Ax+m

1. Show that µ is a probability measure on (Rn,B(Rn)).

2. Explain why the image measure P = φ(µ) is well-defined.

3. Show that P is a probability measure on (Rn,B(Rn)).

4. Show that for all u ∈ Rn:

FP (u) =
∫

Rn

ei〈u,φ(x)〉dµ(x)

5. Let v = Atu. Show that for all u ∈ Rn:

FP (u) = ei〈u,m〉−‖v‖
2/2

6. Show the following:
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Theorem 132 Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric
and non-negative real matrix. There exists a unique complex measure on Rn,
denoted Nn(m,Σ), with fourier transform:

FNn(m,Σ)(u)
4
=
∫

Rn

ei〈u,x〉dNn(m,Σ)(x) = ei〈u,m〉−
1
2 〈u,Σu〉

for all u ∈ Rn. Furthermore, Nn(m,Σ) is a probability measure.

Definition 142 Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric
and non-negative real matrix. The probability measure Nn(m,Σ) on Rn defined
in theorem (132) is called the n-dimensional gaussian measure or normal
distribution, with mean m ∈ Rn and covariance matrix Σ.

Exercise 3. Let n ≥ 1 and m ∈ Rn. Show that Nn(m, 0) = δm.

Exercise 4. Let m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric and non-negative
real matrix. Let A ∈ Mn(R) be such that Σ = A.At. A map p : Rn → C is
said to be a polynomial, if and only if, it is a finite linear complex combination
of maps x→ xα,1 for α ∈ Nn.

1. Show that for all B ∈ B(R), we have:

N1(0, 1)(B) =
1√
2π

∫
B

e−x
2/2dx

2. Show that: ∫ +∞

−∞
|x|dN1(0, 1)(x) < +∞

3. Show that for all integer k ≥ 1:

1√
2π

∫ +∞

0

xk+1e−x
2/2dx =

k√
2π

∫ +∞

0

xk−1e−x
2/2dx

4. Show that for all integer k ≥ 0:∫ +∞

−∞
|x|kdN1(0, 1)(x) < +∞

5. Show that for all α ∈ Nn:∫
Rn

|xα|dN1(0, 1)⊗ . . .⊗N1(0, 1)(x) < +∞

6. Let p : Rn → C be a polynomial. Show that:∫
Rn

|p(x)|dN1(0, 1)⊗ . . .⊗N1(0, 1)(x) < +∞

1See definition (140).
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7. Let φ : Rn → Rn be defined by φ(x) = Ax + m. Explain why the image
measure φ(N1(0, 1)⊗ . . .⊗N1(0, 1)) is well-defined.

8. Show that φ(N1(0, 1)⊗ . . .⊗N1(0, 1)) = Nn(m,Σ).

9. Show if β ∈ Nn and |β| = 1, then x→ φ(x)β is a polynomial.

10. Show that if α′ ∈ Nn and |α′| = k+1, then φ(x)α
′

= φ(x)αφ(x)β for some
α, β ∈ Nn such that |α| = k and |β| = 1.

11. Show that the product of two polynomials is a polynomial.

12. Show that for all α ∈ Nn, x→ φ(x)α is a polynomial.

13. Show that for all α ∈ Nn:∫
Rn

|φ(x)α|dN1(0, 1)⊗ . . .⊗N1(0, 1)(x) < +∞

14. Show the following:

Theorem 133 Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric and
non-negative real matrix. Then, for all α ∈ Nn, the map x → xα is integrable
with respect to the gaussian measure Nn(m,Σ):∫

Rn

|xα|dNn(m,Σ)(x) < +∞

Exercise 5. Let m ∈ Rn. Let Σ = (σij) ∈ Mn(R) be a symmetric and non-
negative real matrix. Let j, k ∈ Nn. Let φ be the fourier transform of the
gaussian measure Nn(m,Σ), i.e.:

∀u ∈ Rn , φ(u)
4
= ei〈u,m〉−

1
2 〈u,Σu〉

1. Show that: ∫
Rn

xjdNn(m,Σ)(x) = i−1 ∂φ

∂uj
(0)

2. Show that: ∫
Rn

xjdNn(m,Σ)(x) = mj

3. Show that: ∫
Rn

xjxkdNn(m,Σ)(x) = i−2 ∂2φ

∂uj∂uk
(0)

4. Show that: ∫
Rn

xjxkdNn(m,Σ)(x) = σjk +mjmk
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5. Show that: ∫
Rn

(xj −mj)(xk −mk)dNn(m,Σ)(x) = σjk

Theorem 134 Let n ≥ 1 and m ∈ Rn. Let Σ = (σij) ∈ Mn(R) be a
symmetric and non-negative real matrix. Let Nn(m,Σ) be the gaussian measure
with mean m and covariance matrix Σ. Then, for all j, k ∈ Nn, we have:∫

Rn

xjdNn(m,Σ)(x) = mj

and: ∫
Rn

(xj −mj)(xk −mk)dNn(m,Σ)(x) = σjk

Definition 143 Let n ≥ 1. Let (Ω,F , P ) be a probability space. Let X :
(Ω,F)→ (Rn,B(Rn)) be a measurable map. We say that X is an n-dimensional
gaussian or normal vector, if and only if its distribution is a gaussian mea-
sure, i.e. X(P ) = Nn(m,Σ) for some m ∈ Rn and Σ ∈ Mn(R) symmetric and
non-negative real matrix.

Exercise 6. Show the following:

Theorem 135 Let n ≥ 1. Let (Ω,F , P ) be a probability space. Let X :
(Ω,F)→ Rn be a measurable map. Then X is a gaussian vector, if and only if
there exist m ∈ Rn and Σ ∈ Mn(R) symmetric and non-negative real matrix,
such that:

∀u ∈ Rn , E[ei〈u,X〉] = ei〈u,m〉−
1
2 〈u,Σu〉

where 〈·, ·〉 is the usual inner-product on Rn.

Definition 144 Let X : (Ω,F)→ R̄ (or C) be a random variable on a prob-
ability space (Ω,F , P ). We say that X is integrable, if and only if we have
E[|X |] < +∞. We say that X is square-integrable, if and only if we have
E[|X |2] < +∞.

Exercise 7. Further to definition (144), suppose X is C-valued.

1. Show X is integrable if and only if X ∈ L1
C(Ω,F , P ).

2. Show X is square-integrable, if and only if X ∈ L2
C(Ω,F , P ).

Exercise 8. Further to definition (144), suppose X is R̄-valued.

1. Show that X is integrable, if and only if X is P -almost surely equal to an
element of L1

R(Ω,F , P ).
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2. Show that X is square-integrable, if and only if X is P -almost surely equal
to an element of L2

R(Ω,F , P ).

Exercise 9. Let X,Y : (Ω,F) → (R,B(R)) be two square-integrable random
variables on a probability space (Ω,F , P ).

1. Show that both X and Y are integrable.

2. Show that XY is integrable

3. Show that (X − E[X ])(Y − E[Y ]) is a well-defined and integrable.

Definition 145 Let X,Y : (Ω,F) → (R,B(R)) be two square-integrable ran-
dom variables on a probability space (Ω,F , P ). We define the covariance be-
tween X and Y , denoted cov(X,Y ), as:

cov(X,Y )
4
= E[(X − E[X ])(Y − E[Y ])]

We say that X and Y are uncorrelated if and only if cov(X,Y ) = 0. If
X = Y , cov(X,Y ) is called the variance of X, denoted var(X).

Exercise 10. Let X,Y be two square integrable, real random variable on a
probability space (Ω,F , P ).

1. Show that cov(X,Y ) = E[XY ]− E[X ]E[Y ].

2. Show that var(X) = E[X2]− E[X ]2.

3. Show that var(X + Y ) = var(X) + 2cov(X,Y ) + var(Y )

4. Show that X and Y are uncorrelated, if and only if:

var(X + Y ) = var(X) + var(Y )

Exercise 11. Let X be an n-dimensional normal vector on some probability
space (Ω,F , P ), with law Nn(m,Σ), where m ∈ Rn and Σ = (σij) ∈ Mn(R) is
a symmetric and non-negative real matrix.

1. Show that each coordinate Xj : (Ω,F)→ R is measurable.

2. Show that E[|Xα|] < +∞ for all α ∈ Nn.

3. Show that for all j = 1, . . . , n, we have E[Xj ] = mj .

4. Show that for all j, k = 1, . . . , n, we have cov(Xj , Xk) = σjk.
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Theorem 136 Let X be an n-dimensional normal vector on a probability space
(Ω,F , P ), with law Nn(m,Σ). Then, for all α ∈ Nn, Xα is integrable. More-
over, for all j, k ∈ Nn, we have:

E[Xj] = mj

and:
cov(Xj , Xk) = σjk

where (σij) = Σ.

Exercise 12. Show the following:

Theorem 137 Let X : (Ω,F) → (R,B(R)) be a real random variable on a
probability space (Ω,F , P ). Then, X is a normal random variable, if and only
if it is square integrable, and:

∀u ∈ R , E[eiuX ] = eiuE[X]− 1
2u

2var(X)

Exercise 13. Let X be an n-dimensional normal vector on a probability space
(Ω,F , P ), with law Nn(m,Σ). Let A ∈ Md,n(R) be an d × n real matrix,
(n, d ≥ 1). Let b ∈ Rd and Y = AX + b.

1. Show that Y : (Ω,F)→ (Rd,B(Rd)) is measurable.

2. Show that the law of Y is Nd(Am+ b, A.Σ.At)

3. Conclude that Y is an Rd-valued normal random vector.

Theorem 138 Let X be an n-dimensional normal vector with law Nn(m,Σ)
on a probability space (Ω,F , P ), (n ≥ 1). Let d ≥ 1 and A ∈ Md,n(R) be an
d× n real matrix. Let b ∈ Rd. Then, Y = AX + b is an d-dimensional normal
vector, with law:

Y (P ) = Nd(Am+ b, A.Σ.At)

Exercise 14. Let X : (Ω,F) → (Rn,B(Rn)) be a measurable map, where
(Ω,F , P ) is a probability space. Show that if X is a gaussian vector, then for
all u ∈ Rn, 〈u,X〉 is a normal random variable.

Exercise 15. Let X : (Ω,F) → (Rn,B(Rn)) be a measurable map, where
(Ω,F , P ) is a probability space. We assume that for all u ∈ Rn, 〈u,X〉 is a
normal random variable.

1. Show that for all j = 1, . . . , n, Xj is integrable.

2. Show that for all j = 1, . . . , n, Xj is square integrable.

3. Explain why given j, k = 1, . . . , n, cov(Xj , Xk) is well-defined.
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4. Let m ∈ Rn be defined by mj = E[Xj ], and u ∈ Rn. Show:

E[〈u,X〉] = 〈u,m〉

5. Let Σ = (cov(Xi, Xj)). Show that for all u ∈ Rn, we have:

var(〈u,X〉) = 〈u,Σu〉

6. Show that Σ is a symmetric and non-negative n× n real matrix.

7. Show that for all u ∈ Rn:

E[ei〈u,X〉] = eiE[〈u,X〉]− 1
2var(〈u,X〉)

8. Show that for all u ∈ Rn:

E[ei〈u,X〉] = ei〈u,m〉−
1
2 〈u,Σu〉

9. Show that X is a normal vector.

10. Show the following:

Theorem 139 Let X : (Ω,F) → (Rn,B(Rn)) be a measurable map on a
probability space (Ω,F , P ). Then, X is an n-dimensional normal vector, if and
only if, any linear combination of its coordinates is itself normal, or in other
words 〈u,X〉 is normal for all u ∈ Rn.

Exercise 16. Let (Ω,F) = (R2,B(R2)) and µ be the probability on (R,B(R))
defined by µ = 1

2 (δ0 +δ1). Let P = N1(0, 1)⊗µ, and X,Y : (Ω,F)→ (R,B(R))
be the canonical projections defined by X(x, y) = x and Y (x, y) = y.

1. Show that P is a probability measure on (Ω,F).

2. Explain why X and Y are measurable.

3. Show that X has the distribution N1(0, 1).

4. Show that P ({Y = 0}) = P ({Y = 1}) = 1
2 .

5. Show that P (X,Y ) = P .

6. Show for all φ : (R2,B(R2))→ C measurable and bounded:

E[φ(X,Y )] =
1
2

(E[φ(X, 0)] +E[φ(X, 1)])

7. Let X1 = X and X2 be defined as:

X2
4
= X1{Y=0} −X1{Y=1}

Show that E[eiuX2 ] = e−u
2/2 for all u ∈ R.

8. Show that X1(P ) = X2(P ) = N1(0, 1).
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9. Explain why cov(X1, X2) is well-defined.

10. Show that X1 and X2 are uncorrelated.

11. Let Z = 1
2 (X1 +X2). Show that:

∀u ∈ R , E[eiuZ ] =
1
2

(1 + e−u
2/2)

12. Show that Z cannot be gaussian.

13. Conclude that although X1, X2 are normally distributed, (and even un-
correlated), (X1, X2) is not a gaussian vector.

Exercise 17. Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric and
non-negative real matrix. Let A ∈Mn(R) be such that Σ = A.At. We assume
that Σ is non-singular. We define pm,Σ : Rn → R+ by:

∀x ∈ Rn , pm,Σ(x)
4
=

1
(2π)

n
2
√

det(Σ)
e−

1
2 〈x−m,Σ

−1(x−m)〉

1. Explain why det(Σ) > 0.

2. Explain why
√

det(Σ) = | det(A)|.

3. Explain why A is non-singular.

4. Let φ : Rn → Rn be defined by:

∀x ∈ Rn , φ(x)
4
= A−1(x−m)

Show that for all x ∈ Rn, 〈x−m,Σ−1(x−m)〉 = ‖φ(x)‖2.

5. Show that φ is a C1-diffeomorphism.

6. Show that φ(dx) = | det(A)|dx.

7. Show that: ∫
Rn

pm,Σ(x)dx = 1

8. Let µ =
∫
pm,Σdx. Show that:

∀u ∈ Rn , Fµ(u) =
1

(2π)
n
2

∫
Rn

ei〈u,Ax+m〉−‖x‖2/2dx

9. Show that the fourier transform of µ is therefore given by:

∀u ∈ Rn , Fµ(u) = ei〈u,m〉−
1
2 〈u,Σu〉

10. Show that µ = Nn(m,Σ).

11. Show that Nn(m,Σ) << dx, i.e. that Nn(m,Σ) is absolutely continuous
w.r. to the Lebesgue measure on Rn.

www.probability.net

http://www.probability.net


Tutorial 20: Gaussian Measures 9

Exercise 18. Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric and
non-negative real matrix. We assume that Σ is singular. Let u ∈ Rn be such
that Σu = 0 and u 6= 0. We define:

B
4
= {x ∈ Rn , 〈u, x〉 = 〈u,m〉}

Given a ∈ Rn, let τa : Rn → Rn be the translation of vector a.

1. Show B = τ−1
−m(u⊥), where u⊥ is the orthogonal of u in Rn.

2. Show that B ∈ B(Rn).

3. Explain why dx(u⊥) = 0. Is it important to have u 6= 0?

4. Show that dx(B) = 0.

5. Show that φ : Rn → R defined by φ(x) = 〈u, x〉, is measurable.

6. Explain why φ(Nn(m,Σ)) is a well-defined probability on R.

7. Show that for all α ∈ R, we have:

Fφ(Nn(m,Σ))(α) =
∫

Rn

eiα〈u,x〉dNn(m,Σ)(x)

8. Show that φ(Nn(m,Σ)) is the dirac distribution on (R,B(R)) centered on
〈u,m〉, i.e. φ(Nn(m,Σ)) = δ〈u,m〉.

9. Show that Nn(m,Σ)(B) = 1.

10. Conclude that Nn(m,Σ) cannot be absolutely continuous with respect to
the Lebesgue measure on (Rn,B(Rn)).

11. Show the following:

Theorem 140 Let n ≥ 1 and m ∈ Rn. Let Σ ∈ Mn(R) be a symmetric and
non-negative real matrix. Then, the gaussian measure Nn(m,Σ) is absolutely
continuous with respect to the Lebesgue measure on (Rn,B(Rn)), if and only if
Σ is non-singular, in which case for all B ∈ B(Rn), we have:

Nn(m,Σ)(B) =
1

(2π)
n
2
√

det(Σ)

∫
B

e−
1
2 〈x−m,Σ

−1(x−m)〉dx
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