20. Gaussian Measures

$\mathcal{M}_{n}(\mathbf{R})$ is the set of all $n \times n$-matrices with real entries, $n \geq 1$.
Definition 141 A matrix $M \in \mathcal{M}_{n}(\mathbf{R})$ is said to be symmetric, if and only if $M=M^{t} . M$ is orthogonal, if and only if M is non-singular and $M^{-1}=M^{t}$. If M is symmetric, we say that M is non-negative, if and only if:

$$
\forall u \in \mathbf{R}^{n},\langle u, M u\rangle \geq 0
$$

Theorem 131 Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R}), n \geq 1$, be a symmetric and non-negative real matrix. There exist $\lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}^{+}$and $P \in \mathcal{M}_{n}(\mathbf{R})$ orthogonal matrix, such that:

$$
\Sigma=P \cdot\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) \cdot P^{t}
$$

In particular, there exists $A \in \mathcal{M}_{n}(\mathbf{R})$ such that $\Sigma=A . A^{t}$.
As a rare exception, theorem (131) is given without proof.
Exercise 1. Given $n \geq 1$ and $M \in \mathcal{M}_{n}(\mathbf{R})$, show that we have:

$$
\forall u, v \in \mathbf{R}^{n},\langle u, M v\rangle=\left\langle M^{t} u, v\right\rangle
$$

ExERCISE 2. Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative matrix. Let μ_{1} be the probability measure on \mathbf{R} :

$$
\forall B \in \mathcal{B}(\mathbf{R}), \mu_{1}(B)=\frac{1}{\sqrt{2 \pi}} \int_{B} e^{-x^{2} / 2} d x
$$

Let $\mu=\mu_{1} \otimes \ldots \otimes \mu_{1}$ be the product measure on \mathbf{R}^{n}. Let $A \in \mathcal{M}_{n}(\mathbf{R})$ be such that $\Sigma=A . A^{t}$. We define the map $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by:

$$
\forall x \in \mathbf{R}^{n}, \phi(x) \triangleq A x+m
$$

1. Show that μ is a probability measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.
2. Explain why the image measure $P=\phi(\mu)$ is well-defined.
3. Show that P is a probability measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.
4. Show that for all $u \in \mathbf{R}^{n}$:

$$
\mathcal{F} P(u)=\int_{\mathbf{R}^{n}} e^{i\langle u, \phi(x)\rangle} d \mu(x)
$$

5. Let $v=A^{t} u$. Show that for all $u \in \mathbf{R}^{n}$:

$$
\mathcal{F} P(u)=e^{i\langle u, m\rangle-\|v\|^{2} / 2}
$$

6. Show the following:

Theorem 132 Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative real matrix. There exists a unique complex measure on \mathbf{R}^{n}, denoted $N_{n}(m, \Sigma)$, with fourier transform:

$$
\mathcal{F} N_{n}(m, \Sigma)(u) \triangleq \int_{\mathbf{R}^{n}} e^{i\langle u, x\rangle} d N_{n}(m, \Sigma)(x)=e^{i\langle u, m\rangle-\frac{1}{2}\langle u, \Sigma u\rangle}
$$

for all $u \in \mathbf{R}^{n}$. Furthermore, $N_{n}(m, \Sigma)$ is a probability measure.

Definition 142 Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative real matrix. The probability measure $N_{n}(m, \Sigma)$ on \mathbf{R}^{n} defined in theorem (132) is called the n-dimensional gaussian measure or normal distribution, with mean $m \in \mathbf{R}^{n}$ and covariance matrix Σ.

Exercise 3. Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Show that $N_{n}(m, 0)=\delta_{m}$.
Exercise 4. Let $m \in \mathbf{R}^{n}$. Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative real matrix. Let $A \in \mathcal{M}_{n}(\mathbf{R})$ be such that $\Sigma=A . A^{t}$. A map $p: \mathbf{R}^{n} \rightarrow \mathbf{C}$ is said to be a polynomial, if and only if, it is a finite linear complex combination of maps $x \rightarrow x^{\alpha},{ }^{1}$ for $\alpha \in \mathbf{N}^{n}$.

1. Show that for all $B \in \mathcal{B}(\mathbf{R})$, we have:

$$
N_{1}(0,1)(B)=\frac{1}{\sqrt{2 \pi}} \int_{B} e^{-x^{2} / 2} d x
$$

2. Show that:

$$
\int_{-\infty}^{+\infty}|x| d N_{1}(0,1)(x)<+\infty
$$

3. Show that for all integer $k \geq 1$:

$$
\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} x^{k+1} e^{-x^{2} / 2} d x=\frac{k}{\sqrt{2 \pi}} \int_{0}^{+\infty} x^{k-1} e^{-x^{2} / 2} d x
$$

4. Show that for all integer $k \geq 0$:

$$
\int_{-\infty}^{+\infty}|x|^{k} d N_{1}(0,1)(x)<+\infty
$$

5. Show that for all $\alpha \in \mathbf{N}^{n}$:

$$
\int_{\mathbf{R}^{n}}\left|x^{\alpha}\right| d N_{1}(0,1) \otimes \ldots \otimes N_{1}(0,1)(x)<+\infty
$$

6 . Let $p: \mathbf{R}^{n} \rightarrow \mathbf{C}$ be a polynomial. Show that:

$$
\int_{\mathbf{R}^{n}}|p(x)| d N_{1}(0,1) \otimes \ldots \otimes N_{1}(0,1)(x)<+\infty
$$

[^0]7. Let $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined by $\phi(x)=A x+m$. Explain why the image measure $\phi\left(N_{1}(0,1) \otimes \ldots \otimes N_{1}(0,1)\right)$ is well-defined.
8. Show that $\phi\left(N_{1}(0,1) \otimes \ldots \otimes N_{1}(0,1)\right)=N_{n}(m, \Sigma)$.
9. Show if $\beta \in \mathbf{N}^{n}$ and $|\beta|=1$, then $x \rightarrow \phi(x)^{\beta}$ is a polynomial.
10. Show that if $\alpha^{\prime} \in \mathbf{N}^{n}$ and $\left|\alpha^{\prime}\right|=k+1$, then $\phi(x)^{\alpha^{\prime}}=\phi(x)^{\alpha} \phi(x)^{\beta}$ for some $\alpha, \beta \in \mathbf{N}^{n}$ such that $|\alpha|=k$ and $|\beta|=1$.
11. Show that the product of two polynomials is a polynomial.
12. Show that for all $\alpha \in \mathbf{N}^{n}, x \rightarrow \phi(x)^{\alpha}$ is a polynomial.
13. Show that for all $\alpha \in \mathbf{N}^{n}$:
$$
\int_{\mathbf{R}^{n}}\left|\phi(x)^{\alpha}\right| d N_{1}(0,1) \otimes \ldots \otimes N_{1}(0,1)(x)<+\infty
$$
14. Show the following:

Theorem 133 Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative real matrix. Then, for all $\alpha \in \mathbf{N}^{n}$, the map $x \rightarrow x^{\alpha}$ is integrable with respect to the gaussian measure $N_{n}(m, \Sigma)$:

$$
\int_{\mathbf{R}^{n}}\left|x^{\alpha}\right| d N_{n}(m, \Sigma)(x)<+\infty
$$

Exercise 5. Let $m \in \mathbf{R}^{n}$. Let $\Sigma=\left(\sigma_{i j}\right) \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and nonnegative real matrix. Let $j, k \in \mathbf{N}_{n}$. Let ϕ be the fourier transform of the gaussian measure $N_{n}(m, \Sigma)$, i.e.:

$$
\forall u \in \mathbf{R}^{n}, \phi(u) \triangleq e^{i\langle u, m\rangle-\frac{1}{2}\langle u, \Sigma u\rangle}
$$

1. Show that:

$$
\int_{\mathbf{R}^{n}} x_{j} d N_{n}(m, \Sigma)(x)=i^{-1} \frac{\partial \phi}{\partial u_{j}}(0)
$$

2. Show that:

$$
\int_{\mathbf{R}^{n}} x_{j} d N_{n}(m, \Sigma)(x)=m_{j}
$$

3. Show that:

$$
\int_{\mathbf{R}^{n}} x_{j} x_{k} d N_{n}(m, \Sigma)(x)=i^{-2} \frac{\partial^{2} \phi}{\partial u_{j} \partial u_{k}}(0)
$$

4. Show that:

$$
\int_{\mathbf{R}^{n}} x_{j} x_{k} d N_{n}(m, \Sigma)(x)=\sigma_{j k}+m_{j} m_{k}
$$

5. Show that:

$$
\int_{\mathbf{R}^{n}}\left(x_{j}-m_{j}\right)\left(x_{k}-m_{k}\right) d N_{n}(m, \Sigma)(x)=\sigma_{j k}
$$

Theorem 134 Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Let $\Sigma=\left(\sigma_{i j}\right) \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative real matrix. Let $N_{n}(m, \Sigma)$ be the gaussian measure with mean m and covariance matrix Σ. Then, for all $j, k \in \mathbf{N}_{n}$, we have:

$$
\int_{\mathbf{R}^{n}} x_{j} d N_{n}(m, \Sigma)(x)=m_{j}
$$

and:

$$
\int_{\mathbf{R}^{n}}\left(x_{j}-m_{j}\right)\left(x_{k}-m_{k}\right) d N_{n}(m, \Sigma)(x)=\sigma_{j k}
$$

Definition 143 Let $n \geq 1$. Let (Ω, \mathcal{F}, P) be a probability space. Let X : $(\Omega, \mathcal{F}) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ be a measurable map. We say that X is an n-dimensional gaussian or normal vector, if and only if its distribution is a gaussian measure, i.e. $X(P)=N_{n}(m, \Sigma)$ for some $m \in \mathbf{R}^{n}$ and $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ symmetric and non-negative real matrix.

Exercise 6. Show the following:
Theorem 135 Let $n \geq$ 1. Let (Ω, \mathcal{F}, P) be a probability space. Let X : $(\Omega, \mathcal{F}) \rightarrow \mathbf{R}^{n}$ be a measurable map. Then X is a gaussian vector, if and only if there exist $m \in \mathbf{R}^{n}$ and $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ symmetric and non-negative real matrix, such that:

$$
\forall u \in \mathbf{R}^{n}, E\left[e^{i\langle u, X\rangle}\right]=e^{i\langle u, m\rangle-\frac{1}{2}\langle u, \Sigma u\rangle}
$$

where $\langle\cdot, \cdot\rangle$ is the usual inner-product on \mathbf{R}^{n}.

Definition 144 Let $X:(\Omega, \mathcal{F}) \rightarrow \overline{\mathbf{R}}$ (or \mathbf{C}) be a random variable on a probability space (Ω, \mathcal{F}, P). We say that X is integrable, if and only if we have $E[|X|]<+\infty$. We say that X is square-integrable, if and only if we have $E\left[|X|^{2}\right]<+\infty$.

Exercise 7. Further to definition (144), suppose X is \mathbf{C}-valued.

1. Show X is integrable if and only if $X \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, P)$.
2. Show X is square-integrable, if and only if $X \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, P)$.

Exercise 8. Further to definition (144), suppose X is $\overline{\mathbf{R}}$-valued.

1. Show that X is integrable, if and only if X is P-almost surely equal to an element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$.
2. Show that X is square-integrable, if and only if X is P-almost surely equal to an element of $L_{\mathbf{R}}^{2}(\Omega, \mathcal{F}, P)$.

Exercise 9. Let $X, Y:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be two square-integrable random variables on a probability space (Ω, \mathcal{F}, P).

1. Show that both X and Y are integrable.
2. Show that $X Y$ is integrable
3. Show that $(X-E[X])(Y-E[Y])$ is a well-defined and integrable.

Definition 145 Let $X, Y:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be two square-integrable random variables on a probability space (Ω, \mathcal{F}, P). We define the covariance between X and Y, denoted $\operatorname{cov}(X, Y)$, as:

$$
\operatorname{cov}(X, Y) \triangleq E[(X-E[X])(Y-E[Y])]
$$

We say that X and Y are uncorrelated if and only if $\operatorname{cov}(X, Y)=0$. If $X=Y, \operatorname{cov}(X, Y)$ is called the variance of X, denoted $\operatorname{var}(X)$.

Exercise 10. Let X, Y be two square integrable, real random variable on a probability space (Ω, \mathcal{F}, P).

1. Show that $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]$.
2. Show that $\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}$.
3. Show that $\operatorname{var}(X+Y)=\operatorname{var}(X)+2 \operatorname{cov}(X, Y)+\operatorname{var}(Y)$
4. Show that X and Y are uncorrelated, if and only if:

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
$$

Exercise 11. Let X be an n-dimensional normal vector on some probability space (Ω, \mathcal{F}, P), with law $N_{n}(m, \Sigma)$, where $m \in \mathbf{R}^{n}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathcal{M}_{n}(\mathbf{R})$ is a symmetric and non-negative real matrix.

1. Show that each coordinate $X_{j}:(\Omega, \mathcal{F}) \rightarrow \mathbf{R}$ is measurable.
2. Show that $E\left[\left|X^{\alpha}\right|\right]<+\infty$ for all $\alpha \in \mathbf{N}^{n}$.
3. Show that for all $j=1, \ldots, n$, we have $E\left[X_{j}\right]=m_{j}$.
4. Show that for all $j, k=1, \ldots, n$, we have $\operatorname{cov}\left(X_{j}, X_{k}\right)=\sigma_{j k}$.

Theorem 136 Let X be an n-dimensional normal vector on a probability space (Ω, \mathcal{F}, P), with law $N_{n}(m, \Sigma)$. Then, for all $\alpha \in \mathbf{N}^{n}$, X^{α} is integrable. Moreover, for all $j, k \in \mathbf{N}_{n}$, we have:

$$
E\left[X_{j}\right]=m_{j}
$$

and:

$$
\operatorname{cov}\left(X_{j}, X_{k}\right)=\sigma_{j k}
$$

where $\left(\sigma_{i j}\right)=\Sigma$.

Exercise 12. Show the following:
Theorem 137 Let $X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be a real random variable on a probability space (Ω, \mathcal{F}, P). Then, X is a normal random variable, if and only if it is square integrable, and:

$$
\forall u \in \mathbf{R}, E\left[e^{i u X}\right]=e^{i u E[X]-\frac{1}{2} u^{2} \operatorname{var}(X)}
$$

ExERCISE 13. Let X be an n-dimensional normal vector on a probability space (Ω, \mathcal{F}, P), with law $N_{n}(m, \Sigma)$. Let $A \in \mathcal{M}_{d, n}(\mathbf{R})$ be an $d \times n$ real matrix, $(n, d \geq 1)$. Let $b \in \mathbf{R}^{d}$ and $Y=A X+b$.

1. Show that $Y:(\Omega, \mathcal{F}) \rightarrow\left(\mathbf{R}^{d}, \mathcal{B}\left(\mathbf{R}^{d}\right)\right)$ is measurable.
2. Show that the law of Y is $N_{d}\left(A m+b, A . \Sigma \cdot A^{t}\right)$
3. Conclude that Y is an \mathbf{R}^{d}-valued normal random vector.

Theorem 138 Let X be an n-dimensional normal vector with law $N_{n}(m, \Sigma)$ on a probability space $(\Omega, \mathcal{F}, P),(n \geq 1)$. Let $d \geq 1$ and $A \in \mathcal{M}_{d, n}(\mathbf{R})$ be an $d \times n$ real matrix. Let $b \in \mathbf{R}^{d}$. Then, $Y=A X+b$ is an d-dimensional normal vector, with law:

$$
Y(P)=N_{d}\left(A m+b, A \cdot \Sigma \cdot A^{t}\right)
$$

ExErcise 14. Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ be a measurable map, where (Ω, \mathcal{F}, P) is a probability space. Show that if X is a gaussian vector, then for all $u \in \mathbf{R}^{n},\langle u, X\rangle$ is a normal random variable.
Exercise 15. Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ be a measurable map, where (Ω, \mathcal{F}, P) is a probability space. We assume that for all $u \in \mathbf{R}^{n},\langle u, X\rangle$ is a normal random variable.

1. Show that for all $j=1, \ldots, n, X_{j}$ is integrable.
2. Show that for all $j=1, \ldots, n, X_{j}$ is square integrable.
3. Explain why given $j, k=1, \ldots, n, \operatorname{cov}\left(X_{j}, X_{k}\right)$ is well-defined.
4. Let $m \in \mathbf{R}^{n}$ be defined by $m_{j}=E\left[X_{j}\right]$, and $u \in \mathbf{R}^{n}$. Show:

$$
E[\langle u, X\rangle]=\langle u, m\rangle
$$

5. Let $\Sigma=\left(\operatorname{cov}\left(X_{i}, X_{j}\right)\right)$. Show that for all $u \in \mathbf{R}^{n}$, we have:

$$
\operatorname{var}(\langle u, X\rangle)=\langle u, \Sigma u\rangle
$$

6. Show that Σ is a symmetric and non-negative $n \times n$ real matrix.
7. Show that for all $u \in \mathbf{R}^{n}$:

$$
E\left[e^{i\langle u, X\rangle}\right]=e^{i E[\langle u, X\rangle]-\frac{1}{2} \operatorname{var}(\langle u, X\rangle)}
$$

8. Show that for all $u \in \mathbf{R}^{n}$:

$$
E\left[e^{i\langle u, X\rangle}\right]=e^{i\langle u, m\rangle-\frac{1}{2}\langle u, \Sigma u\rangle}
$$

9. Show that X is a normal vector.
10. Show the following:

Theorem 139 Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ be a measurable map on a probability space (Ω, \mathcal{F}, P). Then, X is an n-dimensional normal vector, if and only if, any linear combination of its coordinates is itself normal, or in other words $\langle u, X\rangle$ is normal for all $u \in \mathbf{R}^{n}$.

ExERCISE 16. Let $(\Omega, \mathcal{F})=\left(\mathbf{R}^{2}, \mathcal{B}\left(\mathbf{R}^{2}\right)\right)$ and μ be the probability on $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ defined by $\mu=\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$. Let $P=N_{1}(0,1) \otimes \mu$, and $X, Y:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be the canonical projections defined by $X(x, y)=x$ and $Y(x, y)=y$.

1. Show that P is a probability measure on (Ω, \mathcal{F}).
2. Explain why X and Y are measurable.
3. Show that X has the distribution $N_{1}(0,1)$.
4. Show that $P(\{Y=0\})=P(\{Y=1\})=\frac{1}{2}$.
5. Show that $P^{(X, Y)}=P$.
6. Show for all $\phi:\left(\mathbf{R}^{2}, \mathcal{B}\left(\mathbf{R}^{2}\right)\right) \rightarrow \mathbf{C}$ measurable and bounded:

$$
E[\phi(X, Y)]=\frac{1}{2}(E[\phi(X, 0)]+E[\phi(X, 1)])
$$

7. Let $X_{1}=X$ and X_{2} be defined as:

$$
X_{2} \triangleq X 1_{\{Y=0\}}-X 1_{\{Y=1\}}
$$

Show that $E\left[e^{i u X_{2}}\right]=e^{-u^{2} / 2}$ for all $u \in \mathbf{R}$.
8. Show that $X_{1}(P)=X_{2}(P)=N_{1}(0,1)$.
9. Explain why $\operatorname{cov}\left(X_{1}, X_{2}\right)$ is well-defined.
10. Show that X_{1} and X_{2} are uncorrelated.
11. Let $Z=\frac{1}{2}\left(X_{1}+X_{2}\right)$. Show that:

$$
\forall u \in \mathbf{R}, E\left[e^{i u Z}\right]=\frac{1}{2}\left(1+e^{-u^{2} / 2}\right)
$$

12. Show that Z cannot be gaussian.
13. Conclude that although X_{1}, X_{2} are normally distributed, (and even uncorrelated), $\left(X_{1}, X_{2}\right)$ is not a gaussian vector.

ExERCISE 17. Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative real matrix. Let $A \in \mathcal{M}_{n}(\mathbf{R})$ be such that $\Sigma=A . A^{t}$. We assume that Σ is non-singular. We define $p_{m, \Sigma}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{+}$by:

$$
\forall x \in \mathbf{R}^{n}, p_{m, \Sigma}(x) \triangleq \frac{1}{(2 \pi)^{\frac{n}{2}} \sqrt{\operatorname{det}(\Sigma)}} e^{-\frac{1}{2}\left\langle x-m, \Sigma^{-1}(x-m)\right\rangle}
$$

1. Explain why $\operatorname{det}(\Sigma)>0$.
2. Explain why $\sqrt{\operatorname{det}(\Sigma)}=|\operatorname{det}(A)|$.
3. Explain why A is non-singular.
4. Let $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined by:

$$
\forall x \in \mathbf{R}^{n}, \phi(x) \triangleq A^{-1}(x-m)
$$

Show that for all $x \in \mathbf{R}^{n},\left\langle x-m, \Sigma^{-1}(x-m)\right\rangle=\|\phi(x)\|^{2}$.
5. Show that ϕ is a C^{1}-diffeomorphism.
6. Show that $\phi(d x)=|\operatorname{det}(A)| d x$.
7. Show that:

$$
\int_{\mathbf{R}^{n}} p_{m, \Sigma}(x) d x=1
$$

8. Let $\mu=\int p_{m, \Sigma} d x$. Show that:

$$
\forall u \in \mathbf{R}^{n}, \mathcal{F} \mu(u)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbf{R}^{n}} e^{i\langle u, A x+m\rangle-\|x\|^{2} / 2} d x
$$

9. Show that the fourier transform of μ is therefore given by:

$$
\forall u \in \mathbf{R}^{n}, \mathcal{F} \mu(u)=e^{i\langle u, m\rangle-\frac{1}{2}\langle u, \Sigma u\rangle}
$$

10. Show that $\mu=N_{n}(m, \Sigma)$.
11. Show that $N_{n}(m, \Sigma) \ll d x$, i.e. that $N_{n}(m, \Sigma)$ is absolutely continuous w.r. to the Lebesgue measure on \mathbf{R}^{n}.

ExERCISE 18. Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative real matrix. We assume that Σ is singular. Let $u \in \mathbf{R}^{n}$ be such that $\Sigma u=0$ and $u \neq 0$. We define:

$$
B \triangleq\left\{x \in \mathbf{R}^{n},\langle u, x\rangle=\langle u, m\rangle\right\}
$$

Given $a \in \mathbf{R}^{n}$, let $\tau_{a}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the translation of vector a.

1. Show $B=\tau_{-m}^{-1}\left(u^{\perp}\right)$, where u^{\perp} is the orthogonal of u in \mathbf{R}^{n}.
2. Show that $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
3. Explain why $d x\left(u^{\perp}\right)=0$. Is it important to have $u \neq 0$?
4. Show that $d x(B)=0$.
5. Show that $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ defined by $\phi(x)=\langle u, x\rangle$, is measurable.
6. Explain why $\phi\left(N_{n}(m, \Sigma)\right)$ is a well-defined probability on \mathbf{R}.
7. Show that for all $\alpha \in \mathbf{R}$, we have:

$$
\mathcal{F} \phi\left(N_{n}(m, \Sigma)\right)(\alpha)=\int_{\mathbf{R}^{n}} e^{i \alpha\langle u, x\rangle} d N_{n}(m, \Sigma)(x)
$$

8. Show that $\phi\left(N_{n}(m, \Sigma)\right)$ is the dirac distribution on $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ centered on $\langle u, m\rangle$, i.e. $\phi\left(N_{n}(m, \Sigma)\right)=\delta_{\langle u, m\rangle}$.
9. Show that $N_{n}(m, \Sigma)(B)=1$.
10. Conclude that $N_{n}(m, \Sigma)$ cannot be absolutely continuous with respect to the Lebesgue measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.
11. Show the following:

Theorem 140 Let $n \geq 1$ and $m \in \mathbf{R}^{n}$. Let $\Sigma \in \mathcal{M}_{n}(\mathbf{R})$ be a symmetric and non-negative real matrix. Then, the gaussian measure $N_{n}(m, \Sigma)$ is absolutely continuous with respect to the Lebesgue measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$, if and only if Σ is non-singular, in which case for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, we have:

$$
N_{n}(m, \Sigma)(B)=\frac{1}{(2 \pi)^{\frac{n}{2}} \sqrt{\operatorname{det}(\Sigma)}} \int_{B} e^{-\frac{1}{2}\left\langle x-m, \Sigma^{-1}(x-m)\right\rangle} d x
$$

[^0]: ${ }^{1}$ See definition (140).

