19. Fourier Transform

EXERCISE 1. Let $a, b \in \mathbf{R}$, a < b. Let $f : [a, b] \to \mathbf{C}$ be a map such that f'(t) exists for all $t \in [a, b]$. We assume that:

$$\int_{a}^{b} |f'(t)| dt < +\infty$$

- 1. Show that $f':([a,b],\mathcal{B}([a,b]))\to (\mathbf{C},\mathcal{B}(\mathbf{C}))$ is measurable.
- 2. Show that:

$$f(b) - f(a) = \int_{a}^{b} f'(t)dt$$

EXERCISE 2. We define the maps $\psi : \mathbf{R}^2 \to \mathbf{C}$ and $\phi : \mathbf{R} \to \mathbf{C}$:

$$\forall (u, x) \in \mathbf{R}^2 , \ \psi(u, x) \stackrel{\triangle}{=} e^{iux - x^2/2}$$

$$\forall u \in \mathbf{R} , \ \phi(u) \stackrel{\triangle}{=} \int_{-\infty}^{+\infty} \psi(u, x) dx$$

- 1. Show that for all $u \in \mathbf{R}$, the map $x \to \psi(u, x)$ is measurable.
- 2. Show that for all $u \in \mathbf{R}$, we have:

$$\int_{-\infty}^{+\infty} |\psi(u,x)| dx = \sqrt{2\pi} < +\infty$$

and conclude that ϕ is well defined.

- 3. Let $u \in \mathbf{R}$ and $(u_n)_{n\geq 1}$ be a sequence in \mathbf{R} converging to u. Show that $\phi(u_n) \to \phi(u)$ and conclude that ϕ is continuous.
- 4. Show that:

$$\int_{0}^{+\infty} x e^{-x^{2}/2} dx = 1$$

5. Show that for all $u \in \mathbf{R}$, we have:

$$\int_{-\infty}^{+\infty} \left| \frac{\partial \psi}{\partial u}(u, x) \right| dx = 2 < +\infty$$

6. Let $a, b \in \mathbf{R}$, a < b. Show that:

$$e^{ib} - e^{ia} = \int_a^b ie^{ix} dx$$

7. Let $a, b \in \mathbf{R}$, a < b. Show that:

$$|e^{ib} - e^{ia}| \le |b - a|$$

8. Let $a, b \in \mathbf{R}$, $a \neq b$. Show that for all $x \in \mathbf{R}$:

$$\left| \frac{\psi(b,x) - \psi(a,x)}{b - a} \right| \le |x|e^{-x^2/2}$$

9. Let $u \in \mathbf{R}$ and $(u_n)_{n \geq 1}$ be a sequence in \mathbf{R} converging to u, with $u_n \neq u$ for all n. Show that:

$$\lim_{n \to +\infty} \frac{\phi(u_n) - \phi(u)}{u_n - u} = \int_{-\infty}^{+\infty} \frac{\partial \psi}{\partial u}(u, x) dx$$

10. Show that ϕ is differentiable with:

$$\forall u \in \mathbf{R} , \ \phi'(u) = \int_{-\infty}^{+\infty} \frac{\partial \psi}{\partial u}(u, x) dx$$

- 11. Show that ϕ is of class C^1 .
- 12. Show that for all $(u, x) \in \mathbf{R}^2$, we have:

$$\frac{\partial \psi}{\partial u}(u,x) = -u\psi(u,x) - i\frac{\partial \psi}{\partial x}(u,x)$$

13. Show that for all $u \in \mathbf{R}$:

$$\int_{-\infty}^{+\infty} \left| \frac{\partial \psi}{\partial x}(u, x) \right| dx < +\infty$$

14. Let $a, b \in \mathbf{R}$, a < b. Show that for all $u \in \mathbf{R}$:

$$\psi(u,b) - \psi(u,a) = \int_a^b \frac{\partial \psi}{\partial x}(u,x)dx$$

15. Show that for all $u \in \mathbf{R}$:

$$\int_{-\infty}^{+\infty} \frac{\partial \psi}{\partial x}(u, x) dx = 0$$

16. Show that for all $u \in \mathbf{R}$:

$$\phi'(u) = -u\phi(u)$$

EXERCISE 3. Let S be the set of functions defined by:

$$\mathcal{S} \stackrel{\triangle}{=} \{ h : h \in C^1(\mathbf{R}, \mathbf{R}) , \forall u \in \mathbf{R} , h'(u) = -uh(u) \}$$

- 1. Let ϕ be as in ex. (2). Show that $Re(\phi)$ and $Im(\phi)$ lie in \mathcal{S} .
- 2. Given $h \in \mathcal{S}$, we define $g: \mathbf{R} \to \mathbf{R}$, by:

$$\forall u \in \mathbf{R} , g(u) \stackrel{\triangle}{=} h(u)e^{u^2/2}$$

Show that g is of class C^1 with g' = 0.

3. Let $a, b \in \mathbf{R}$, a < b. Show the existence of $c \in]a, b[$, such that:

$$g(b) - g(a) = g'(c)(b - a)$$

4. Conclude that for all $h \in \mathcal{S}$, we have:

$$\forall u \in \mathbf{R} , h(u) = h(0)e^{-u^2/2}$$

5. Prove the following:

Theorem 124 For all $u \in \mathbb{R}$, we have:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{iux - x^2/2} dx = e^{-u^2/2}$$

Definition 135 Let μ_1, \ldots, μ_p be complex measures on \mathbb{R}^n , where $n, p \geq 1$. We call **convolution** of μ_1, \ldots, μ_p , denoted $\mu_1 \star \ldots \star \mu_p$, the image measure of the product measure $\mu_1 \otimes \ldots \otimes \mu_p$ by the measurable map $S : (\mathbb{R}^n)^p \to \mathbb{R}^n$ defined by:

$$S(x_1,\ldots,x_p)\stackrel{\triangle}{=} x_1+\ldots+x_p$$

In other words, $\mu_1 \star \ldots \star \mu_p$ is the complex measure on \mathbb{R}^n , defined by:

$$\mu_1 \star \ldots \star \mu_p \stackrel{\triangle}{=} S(\mu_1 \otimes \ldots \otimes \mu_p)$$

Recall that the product $\mu_1 \otimes \ldots \otimes \mu_p$ is defined in theorem (66).

EXERCISE 4. Let μ , ν be complex measures on \mathbf{R}^n .

1. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$:

$$\mu \star \nu(B) = \int_{\mathbf{R}^n \times \mathbf{R}^n} 1_B(x+y) d\mu \otimes \nu(x,y)$$

2. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$:

$$\mu \star \nu(B) = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} 1_B(x+y) d\mu(x) \right) d\nu(y)$$

3. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$:

$$\mu \star \nu(B) = \int_{\mathbf{R}^n} \left(\int_{\mathbf{R}^n} 1_B(x+y) d\nu(x) \right) d\mu(y)$$

- 4. Show that $\mu \star \nu = \nu \star \mu$.
- 5. Let $f: \mathbf{R}^n \to \mathbf{C}$ be bounded and measurable. Show that:

$$\int_{\mathbf{R}^n} f d\mu \star \nu = \int_{\mathbf{R}^n \times \mathbf{R}^n} f(x+y) d\mu \otimes \nu(x,y)$$

EXERCISE 5. Let μ, ν be complex measures on \mathbf{R}^n . Given $B \subseteq \mathbf{R}^n$ and $x \in \mathbf{R}^n$, we define $B - x = \{y \in \mathbf{R}^n , y + x \in B\}$.

- 1. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$ and $x \in \mathbf{R}^n$, $B x \in \mathcal{B}(\mathbf{R}^n)$.
- 2. Show $x \to \mu(B-x)$ is measurable and bounded, for $B \in \mathcal{B}(\mathbf{R}^n)$.
- 3. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$:

$$\mu \star \nu(B) = \int_{\mathbf{R}^n} \mu(B - x) d\nu(x)$$

4. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$:

$$\mu \star \nu(B) = \int_{\mathbf{R}^n} \nu(B - x) d\mu(x)$$

EXERCISE 6. Let μ_1, μ_2, μ_3 be complex measures on \mathbb{R}^n .

1. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$:

$$\mu_1 \star (\mu_2 \star \mu_3)(B) = \int_{\mathbf{R}^n \times \mathbf{R}^n} 1_B(x+y) d\mu_1 \otimes (\mu_2 \star \mu_3)(x,y)$$

2. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$ and $x \in \mathbf{R}^n$:

$$\int_{\mathbf{R}^n} 1_B(x+y) d\mu_2 \star \mu_3(y) = \int_{\mathbf{R}^n \times \mathbf{R}^n} 1_B(x+y+z) d\mu_2 \otimes \mu_3(y,z)$$

3. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$:

$$\mu_1 \star (\mu_2 \star \mu_3)(B) = \int_{\mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R}^n} 1_B(x+y+z) d\mu_1 \otimes \mu_2 \otimes \mu_3(x,y,z)$$

4. Show that $\mu_1 \star (\mu_2 \star \mu_3) = \mu_1 \star \mu_2 \star \mu_3 = (\mu_1 \star \mu_2) \star \mu_3$

Definition 136 Let $n \ge 1$ and $a \in \mathbb{R}^n$. We define $\delta_a : \mathcal{B}(\mathbb{R}^n) \to \mathbb{R}^+$:

$$\forall B \in \mathcal{B}(\mathbf{R}^n) , \ \delta_a(B) \stackrel{\triangle}{=} 1_B(a)$$

 δ_a is called the Dirac probability measure on \mathbb{R}^n , centered in a.

EXERCISE 7. Let $n \ge 1$ and $a \in \mathbf{R}^n$.

- 1. Show that δ_a is indeed a probability measure on \mathbb{R}^n .
- 2. Show for all $f: \mathbf{R}^n \to [0, +\infty]$ non-negative and measurable:

$$\int_{\mathbf{R}^n} f d\delta_a = f(a)$$

3. Show if $f: \mathbf{R}^n \to \mathbf{C}$ is measurable, $f \in L^1_C(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), \delta_a)$ and:

$$\int_{\mathbf{R}^n} f d\delta_a = f(a)$$

4. Show that for any complex measure μ on \mathbb{R}^n :

$$\mu \star \delta_0 = \delta_0 \star \mu = \mu$$

5. Let $\tau_a(x) = a + x$ define the translation of vector a in \mathbf{R}^n . Show that for any complex measure μ on \mathbf{R}^n :

$$\mu \star \delta_a = \delta_a \star \mu = \tau_a(\mu)$$

EXERCISE 8. Let $f, g: (\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be two measurable maps, where (Ω, \mathcal{F}) is a measurable space. Let u = Re(f), v = Im(f), u' = Re(g) and v' = Im(g).

- 1. Show that $u, v, u', v' : (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R}))$ are all measurable.
- 2. Show that u + u', v + v', uu' vv' and uv' + u'v are measurable.
- 3. Show that $f + g, fg : (\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ are measurable.
- 4. Show that $C = \mathbb{R}^2$ has a countable base.
- 5. Show that $\mathcal{B}(\mathbf{C} \times \mathbf{C}) = \mathcal{B}(\mathbf{C}) \otimes \mathcal{B}(\mathbf{C})$.
- 6. Show that $(z, z') \to z + z'$ and $(z, z') \to zz'$ are continuous.
- 7. Show that $\omega \to (f(\omega), g(\omega))$ is measurable w.r. to $\mathcal{B}(\mathbf{C}) \otimes \mathcal{B}(\mathbf{C})$.
- 8. Conclude once more that f + g and fg are measurable.

EXERCISE 9. Let $n \ge 1$ and μ, ν be complex measures on \mathbf{R}^n . We assume that $\nu << dx$, i.e. that ν is absolutely continuous with respect to the Lebesgue measure on \mathbf{R}^n .

- 1. Show there is $f \in L^1_C(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx)$, such that $\nu = \int f dx$.
- 2. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$, we have:

$$\mu \star \nu(B) = \int_{\mathbf{R}^n} \nu(B - x) d\mu(x)$$

3. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$ and $x \in \mathbf{R}^n$:

$$\nu(B-x) = \int_{\mathbf{R}^n} 1_B(y) f(y-x) dy$$

4. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$ the map:

$$(x,y) \rightarrow 1_B(y)f(y-x)$$

lies in $L^1_{\mathbf{C}}(\mathbf{R}^n \times \mathbf{R}^n, \mathcal{B}(\mathbf{R}^n) \otimes \mathcal{B}(\mathbf{R}^n), |\mu| \otimes dy)$.

www.probability.net

5. Let $h \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), |\mu|)$ with $|h| = 1, \mu = \int hd|\mu|$. Show:

$$(x,y) \rightarrow 1_B(y)f(y-x)h(x)$$

also lies in $L^1_{\mathbf{C}}(\mathbf{R}^n \times \mathbf{R}^n, \mathcal{B}(\mathbf{R}^n) \otimes \mathcal{B}(\mathbf{R}^n), |\mu| \otimes dy)$.

6. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$, we have:

$$\mu \star \nu(B) = \int_{B} \left(\int_{\mathbf{R}^{n}} f(y - x) d\mu(x) \right) dy$$

- 7. Let g be the map defined by $g(y) \stackrel{\triangle}{=} \int_{\mathbf{R}^n} f(y-x) d\mu(x)$. Recall why g is dy-almost surely well-defined, and dy-almost surely equal to an element of $L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dy)$.
- 8. Show that $\mu \star \nu = \int g dx$ and $\mu \star \nu \ll dx$.

Theorem 125 Let μ, ν be two complex measures on \mathbf{R}^n , $n \geq 1$. If $\nu << dx$, i.e. ν is absolutely continuous with respect to the Lebesgue measure on \mathbf{R}^n , with density $f \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx)$, then the convolution $\mu \star \nu = \nu \star \mu$ is itself absolutely continuous with respect to the Lebesgue measure on \mathbf{R}^n , with density:

$$g(y) = \int_{\mathbf{R}^n} f(y - x) d\mu(x) , dy - a.s.$$

In other words, $\mu \star \nu = \nu \star \mu = \int g dx$.

EXERCISE 10. Let $f \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ where $(\Omega, \mathcal{F}, \mu)$ is a measure space. Let ν be the complex measure on (Ω, \mathcal{F}) defined by $\nu = \int f d\mu$. Let $g: (\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be a measurable map.

- 1. Show that $g \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \nu) \Leftrightarrow gf \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$.
- 2. Show that for all $g \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \nu)$:

$$\int g d\nu = \int g f d\mu$$

EXERCISE 11. Further to theorem (125), show that if $\mu = \int h dx$ for some $h \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx)$, then:

$$g(y) = \int_{\mathbf{R}^n} f(y-x)h(x)dx \ , \ dy - a.s.$$

Definition 137 Let μ be a complex measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, $n \geq 1$. We call **Fourier transform** of μ , the map $\mathcal{F}\mu : \mathbf{R}^n \to \mathbf{C}$ defined by:

$$\forall u \in \mathbf{R}^n , \ \mathcal{F}\mu(u) \stackrel{\triangle}{=} \int_{\mathbf{R}^n} e^{i\langle u, x \rangle} d\mu(x)$$

where $\langle \cdot, \cdot \rangle$ is the usual inner-product in \mathbb{R}^n .

EXERCISE 12. Further to definition (137):

- 1. Show that $\mathcal{F}\mu$ is well-defined.
- 2. Show that $\mathcal{F}\mu \in C^b_{\mathbf{C}}(\mathbf{R}^n)$, i.e $\mathcal{F}\mu$ is continuous and bounded.
- 3. Show that for all $a, u \in \mathbf{R}^n$, we have $\mathcal{F}\delta_a(u) = e^{i\langle u, a \rangle}$.
- 4. Let μ be the probability measure on $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ defined by:

$$\forall B \in \mathcal{B}(\mathbf{R}) \ , \ \mu(B) \stackrel{\triangle}{=} \frac{1}{\sqrt{2\pi}} \int_{B} e^{-x^{2}/2} dx$$

Show that $\mathcal{F}\mu(u) = e^{-u^2/2}$, for all $u \in \mathbf{R}$.

EXERCISE 13. Let μ_1, \ldots, μ_p be complex measures on \mathbf{R}^n , $p \geq 2$.

1. Show that for all $u \in \mathbf{R}^n$, we have:

$$\mathcal{F}(\mu_1 \star \ldots \star \mu_p)(u) = \int_{(\mathbf{R}^n)^p} e^{i\langle u, x_1 + \ldots + x_p \rangle} d\mu_1 \otimes \ldots \otimes \mu_p(x)$$

- 2. Show that if $p \geq 3$ then $\mu_1 \star \ldots \star \mu_p = (\mu_1 \star \ldots \star \mu_{p-1}) \star \mu_p$.
- 3. Show that $\mathcal{F}(\mu_1 \star \ldots \star \mu_p) = \prod_{j=1}^p \mathcal{F}\mu_j$.

EXERCISE 14. Let $n \ge 1$, $\sigma > 0$ and $g_{\sigma} : \mathbf{R}^n \to \mathbf{R}^+$ defined by:

$$\forall x \in \mathbf{R}^n , g_{\sigma}(x) \stackrel{\triangle}{=} \frac{1}{(2\pi)^{\frac{n}{2}} \sigma^n} e^{-\|x\|^2/2\sigma^2}$$

- 1. Show that $\int_{\mathbf{R}^n} g_{\sigma}(x) dx = 1$.
- 2. Show that for all $u \in \mathbf{R}^n$, we have:

$$\int_{\mathbf{R}^n} g_{\sigma}(x) e^{i\langle u, x \rangle} dx = e^{-\sigma^2 \|u\|^2 / 2}$$

3. Show that $P_{\sigma} = \int g_{\sigma} dx$ is a probability on \mathbf{R}^{n} , and:

$$\forall u \in \mathbf{R}^n$$
, $\mathcal{F}P_{\sigma}(u) = e^{-\sigma^2 ||u||^2/2}$

4. Show that for all $x \in \mathbf{R}^n$, we have:

$$g_{\sigma}(x) = \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} e^{i\langle x, u \rangle - \sigma^2 ||u||^2/2} du$$

EXERCISE 15. Further to ex. (14), let μ be a complex measure on \mathbb{R}^n .

1. Show that $\mu \star P_{\sigma} = \int \phi_{\sigma} dx$ where:

$$\phi_{\sigma}(x) = \int_{\mathbf{R}^n} g_{\sigma}(x - y) d\mu(y) , dx - a.s.$$

2. Show that we also have:

$$\phi_{\sigma}(x) = \int_{\mathbf{R}^n} g_{\sigma}(y - x) d\mu(y) , dx - a.s.$$

3. Show that:

$$\phi_{\sigma}(x) = \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} \left(\int_{\mathbf{R}^n} e^{i\langle y - x, u \rangle - \sigma^2 ||u||^2/2} du \right) d\mu(y) \ , \ dx - a.s.$$

4. Show that:

$$\phi_{\sigma}(x) = \frac{1}{(2\pi)^n} \int_{\mathbf{R}^n} e^{-i\langle x, u \rangle - \sigma^2 ||u||^2/2} (\mathcal{F}\mu)(u) du$$

5. Show that if μ, ν are two complex measures on \mathbf{R}^n such that $\mathcal{F}\mu = \mathcal{F}\nu$, then for all $\sigma > 0$, we have $\mu \star P_{\sigma} = \nu \star P_{\sigma}$.

Definition 138 Let (Ω, \mathcal{T}) be a topological space. Let $(\mu_k)_{k\geq 1}$ be a sequence of complex measures on $(\Omega, \mathcal{B}(\Omega))$. We say that the sequence $(\mu_k)_{k\geq 1}$ narrowly converges, or weakly converges to a complex measure μ on $(\Omega, \mathcal{B}(\Omega))$, and we write $\mu_k \to \mu$, if and only if:

$$\forall f \in C_{\mathbf{R}}^b(\Omega) , \lim_{k \to +\infty} \int f d\mu_k = \int f d\mu$$

EXERCISE 16. Further to definition (138):

1. Show that $\mu_k \to \mu$ narrowly, is equivalent to:

$$\forall f \in C^b_{\mathbf{C}}(\Omega) , \lim_{k \to +\infty} \int f d\mu_k = \int f d\mu$$

2. Show that if (Ω, \mathcal{T}) is metrizable and ν is a complex measure on $(\Omega, \mathcal{B}(\Omega))$ such that $\mu_k \to \mu$ and $\mu_k \to \nu$ narrowly, then $\mu = \nu$.

Theorem 126 On a metrizable topological space, the narrow or weak limit when it exists, of any sequence of complex measures, is unique.

Exercise 17.

- 1. Show that on $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$, we have $\delta_{1/n} \to \delta_0$ narrowly.
- 2. Show there is $B \in \mathcal{B}(\mathbf{R})$, such that $\delta_{1/n}(B) \neq \delta_0(B)$.

EXERCISE 18. Let $n \geq 1$. Given $\sigma > 0$, let P_{σ} be the probability measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ defined as in ex. (14). Let $(\sigma_k)_{k\geq 1}$ be a sequence in \mathbf{R}^+ such that $\sigma_k > 0$ and $\sigma_k \to 0$.

1. Show that for all $f \in C^b_{\mathbf{R}}(\mathbf{R}^n)$, we have:

$$\int_{\mathbf{R}^n} f(x)g_{\sigma_k}(x)dx = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbf{R}^n} f(\sigma_k x)e^{-\|x\|^2/2} dx$$

2. Show that for all $f \in C^b_{\mathbf{R}}(\mathbf{R}^n)$, we have:

$$\lim_{k \to +\infty} \int_{\mathbf{R}^n} f(x) g_{\sigma_k}(x) dx = f(0)$$

3. Show that $P_{\sigma_k} \to \delta_0$ narrowly.

EXERCISE 19. Let μ, ν be two complex measures on \mathbf{R}^n . Let $(\nu_k)_{k\geq 1}$ be a sequence of complex measures on \mathbf{R}^n , which narrowly converges to ν . Let $f \in C^b_{\mathbf{R}}(\mathbf{R}^n)$, and $\phi : \mathbf{R}^n \to \mathbf{R}$ be defined by:

$$\forall y \in \mathbf{R}^n , \ \phi(y) \stackrel{\triangle}{=} \int_{\mathbf{R}^n} f(x+y) d\mu(x)$$

1. Show that:

$$\int_{\mathbf{R}^n} f d\mu \star \nu_k = \int_{\mathbf{R}^n \times \mathbf{R}^n} f(x+y) d\mu \otimes \nu_k(x,y)$$

2. Show that:

$$\int_{\mathbf{R}^n} f d\mu \star \nu_k = \int_{\mathbf{R}^n} \phi d\nu_k$$

- 3. Show that $\phi \in C^b_{\mathbf{C}}(\mathbf{R}^n)$.
- 4. Show that:

$$\lim_{k \to +\infty} \int_{\mathbf{R}^n} \phi d\nu_k = \int_{\mathbf{R}^n} \phi d\nu$$

5. Show that:

$$\lim_{k\to +\infty} \int_{\mathbf{R}^n} f d\mu \star \nu_k = \int_{\mathbf{R}^n} f d\mu \star \nu$$

6. Show that $\mu \star \nu_k \to \mu \star \nu$ narrowly.

Theorem 127 Let μ, ν be two complex measures on \mathbf{R}^n , $n \geq 1$. Let $(\nu_k)_{k \geq 1}$ be a sequence of complex measures on \mathbf{R}^n . Then:

$$\nu_k \to \nu \ narrowly \Rightarrow \mu \star \nu_k \to \mu \star \nu \ narrowly$$

EXERCISE 20. Let μ, ν be two complex measures on \mathbf{R}^n , such that $\mathcal{F}\mu = \mathcal{F}\nu$. For all $\sigma > 0$, let P_{σ} be the probability measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ as defined in ex. (14). Let $(\sigma_k)_{k>1}$ be a sequence in \mathbf{R}^+ such that $\sigma_k > 0$ and $\sigma_k \to 0$.

- 1. Show that $\mu \star P_{\sigma_k} = \nu \star P_{\sigma_k}$, for all $k \geq 1$.
- 2. Show that $\mu \star P_{\sigma_k} \to \mu \star \delta_0$ narrowly.

- 3. Show that $(\mu \star P_{\sigma_k})_{k\geq 1}$ narrowly converges to both μ and ν .
- 4. Prove the following:

Theorem 128 Let μ, ν be two complex measures on \mathbb{R}^n . Then:

$$\mathcal{F}\mu = \mathcal{F}\nu \quad \Rightarrow \quad \mu = \nu$$

i.e. the Fourier transform is an injective mapping on $M^1(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$.

Definition 139 Let (Ω, \mathcal{F}, P) be a probability space. Given $n \geq 1$, and a measurable map $X: (\Omega, \mathcal{F}) \to (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, the mapping ϕ_X defined as:

$$\forall u \in \mathbf{R}^n , \ \phi_X(u) \stackrel{\triangle}{=} E[e^{i\langle u, X \rangle}]$$

is called the **characteristic function**¹ of the random variable X.

EXERCISE 21. Further to definition (139):

- 1. Show that ϕ_X is well-defined, bounded and continuous.
- 2. Show that we have:

$$\forall u \in \mathbf{R}^n , \ \phi_X(u) = \int_{\mathbf{R}^n} e^{i\langle u, x \rangle} dX(P)(x)$$

- 3. Show ϕ_X is the Fourier transform of the image measure X(P).
- 4. Show the following:

Theorem 129 Let $X, Y : (\Omega, \mathcal{F}) \to (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)), n \geq 1$, be two random variables on a probability space (Ω, \mathcal{F}, P) . If X and Y have the same characteristic functions, i.e.

$$\forall u \in \mathbf{R}^n , E[e^{i\langle u, X \rangle}] = E[e^{i\langle u, Y \rangle}]$$

then X and Y have the same distributions, i.e.

$$\forall B \in \mathcal{B}(\mathbf{R}^n) , P(\{X \in B\}) = P(\{Y \in B\})$$

Definition 140 Let $n \geq 1$. Given $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbf{N}^n$, we define the modulus of α , denoted $|\alpha|$, by $|\alpha| = \alpha_1 + \ldots + \alpha_n$. Given $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{N}^n$,

$$x^{\alpha} \stackrel{\triangle}{=} x_1^{\alpha_1} \dots x_n^{\alpha_r}$$

 $x^{\alpha} \stackrel{\triangle}{=} x_1^{\alpha_1} \dots x_n^{\alpha_n}$ where it is understood that $x_j^{\alpha_j} = 1$ whenever $\alpha_j = 0$. Given a map $f: U \to \mathbf{C}$, where U is an open subset of \mathbf{R}^n , we denote $\partial^{\alpha} f$ the $|\alpha|$ -th partial derivative, when it exists:

$$\partial^{\alpha} f \stackrel{\triangle}{=} \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$$

Note that $\partial^{\alpha} f = f$, whenever $|\alpha| = 0$. Given $k \geq 0$, we say that f is of class C^k , if and only if for all $\alpha \in \mathbf{N}^n$ with $|\alpha| \leq k$, $\partial^{\alpha} f$ exists and is continuous on

¹Do not confuse with the *characteristic function* 1_A of a set A, definition (39).

EXERCISE 22. Explain why def. (140) is consistent with def. (130).

EXERCISE 23. Let μ be a complex measure on \mathbb{R}^n , and $\alpha \in \mathbb{N}^n$, with:

$$\int_{\mathbf{R}^n} |x^{\alpha}| d|\mu|(x) < +\infty \tag{1}$$

Let $x^{\alpha}\mu$ the complex measure on \mathbf{R}^n defined by $x^{\alpha}\mu = \int x^{\alpha}d\mu$.

- 1. Explain why the above integral (1) is well-defined.
- 2. Show that $x^{\alpha}\mu$ is a well-defined complex measure on \mathbf{R}^{n} .
- 3. Show that the total variation of $x^{\alpha}\mu$ is given by:

$$\forall B \in \mathcal{B}(\mathbf{R}^n) \ , \ |x^{\alpha}\mu|(B) = \int_{B} |x^{\alpha}|d|\mu|(x)$$

4. Show that the Fourier transform of $x^{\alpha}\mu$ is given by:

$$\forall u \in \mathbf{R}^n , \ \mathcal{F}(x^{\alpha}\mu)(u) = \int_{\mathbf{R}^n} x^{\alpha} e^{i\langle u, x \rangle} d\mu(x)$$

EXERCISE 24. Let μ be a complex measure on \mathbf{R}^n . Let $\beta \in \mathbf{N}^n$ with $|\beta| = 1$, and:

$$\int_{\mathbf{R}^n} |x^{\beta}| d|\mu|(x) < +\infty$$

Let $x^{\beta}\mu$ be the complex measure on \mathbb{R}^n defined as in ex. (23).

- 1. Show that there is $j \in \mathbf{N}_n$ with $x^{\beta} = x_j$ for all $x \in \mathbf{R}^n$.
- 2. Show that for all $u \in \mathbf{R}^n$, $\frac{\partial \mathcal{F}\mu}{\partial u_j}(u)$ exists and that we have:

$$\frac{\partial \mathcal{F}\mu}{\partial u_j}(u) = i \int_{\mathbf{R}^n} x_j e^{i\langle u, x \rangle} d\mu(x)$$

3. Conclude that $\partial^{\beta} \mathcal{F} \mu$ exists and that we have:

$$\partial^{\beta} \mathcal{F} \mu = i \mathcal{F}(x^{\beta} \mu)$$

4. Explain why $\partial^{\beta} \mathcal{F} \mu$ is continuous.

EXERCISE 25. Let μ be a complex measure on \mathbf{R}^n . Let $k \geq 0$ be an integer. We assume that for all $\alpha \in \mathbf{N}^n$, we have:

$$|\alpha| \le k \implies \int_{\mathbf{R}^n} |x^{\alpha}| d|\mu|(x) < +\infty$$
 (2)

In particular, if $|\alpha| \leq k$, the measure $x^{\alpha}\mu$ of ex. (23) is well-defined. We claim that for all $\alpha \in \mathbf{N}^n$ with $|\alpha| \leq k$, $\partial^{\alpha} \mathcal{F} \mu$ exists, and:

$$\partial^{\alpha} \mathcal{F} \mu = i^{|\alpha|} \mathcal{F}(x^{\alpha} \mu)$$

- 1. Show that if k=0, then the property is obviously true. We assume the property is true for some $k\geq 0$, and that the above integrability condition (2) holds for k+1.
- 2. Let $\alpha' \in \mathbf{N}^n$ be such that $|\alpha'| \leq k + 1$. Explain why if $|\alpha'| \leq k$, then $\partial^{\alpha'} \mathcal{F} \mu$ exists, with:

$$\partial^{\alpha'} \mathcal{F} \mu = i^{|\alpha'|} \mathcal{F}(x^{\alpha'} \mu)$$

- 3. We assume that $|\alpha'| = k + 1$. Show the existence of $\alpha, \beta \in \mathbf{N}^n$ such that $\alpha + \beta = \alpha'$, $|\alpha| = k$ and $|\beta| = 1$.
- 4. Explain why $\partial^{\alpha} \mathcal{F} \mu$ exists, and:

$$\partial^{\alpha} \mathcal{F} \mu = i^{|\alpha|} \mathcal{F}(x^{\alpha} \mu)$$

5. Show that:

$$\int_{\mathbb{R}^n} |x^{\beta}| d|x^{\alpha} \mu|(x) < +\infty$$

6. Show that $\partial^{\beta} \mathcal{F}(x^{\alpha} \mu)$ exists, with:

$$\partial^{\beta} \mathcal{F}(x^{\alpha} \mu) = i \mathcal{F}(x^{\beta}(x^{\alpha} \mu))$$

7. Show that $\partial^{\beta}(\partial^{\alpha}\mathcal{F}\mu)$ exists, with:

$$\partial^{\beta}(\partial^{\alpha}\mathcal{F}\mu) = i^{|\alpha|+1}\mathcal{F}(x^{\beta}(x^{\alpha}\mu))$$

- 8. Show that $x^{\beta}(x^{\alpha}\mu) = x^{\alpha'}\mu$.
- 9. Conclude that the property is true for k + 1.
- 10. Show the following:

Theorem 130 Let μ be a complex measure on \mathbb{R}^n , $n \geq 1$. Let $k \geq 0$ be an integer such that for all $\alpha \in \mathbb{N}^n$ with $|\alpha| \leq k$, we have:

$$\int_{\mathbf{R}^n} |x^{\alpha}| d|\mu|(x) < +\infty$$

Then, the Fourier transform $\mathcal{F}\mu$ is of class C^k on \mathbf{R}^n , and for all $\alpha \in \mathbf{N}^n$ with $|\alpha| \leq k$, we have:

$$\forall u \in \mathbf{R}^n \ , \ \partial^{\alpha} \mathcal{F} \mu(u) = i^{|\alpha|} \int_{\mathbf{R}^n} x^{\alpha} e^{i\langle u, x \rangle} d\mu(x)$$

In particular:

$$\int_{\mathbf{R}^n} x^{\alpha} d\mu(x) = i^{-|\alpha|} \partial^{\alpha} \mathcal{F} \mu(0)$$